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Abstract

Several qualitative properties of equilibria in electrical circuits are analyzed in this
paper. Specifically, non-singularity, hyperbolicity, and asymptotic stability are ad-
dressed in terms of the circuit topology, which is captured through the use of Modified
Nodal Analysis (MNA) models. The differential-algebraic or semistate nature of these
models drives the analysis of the spectrum to a matrix pencil setting, and puts the
results beyond the ones already known for state-space models, unfeasible in many ac-
tual problems. The topological conditions arising in this qualitative study are proved
independent of those supporting the index, and therefore they apply to both index-1
and index-2 configurations. The analysis combines results coming from graph theory,
matrix analysis, matrix pencil theory, and Lyapunov theory for DAEs. The study
is restricted to problems with independent sources; qualitative properties of circuits
including controlled sources are the focus of future research.
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1 Introduction

The time-domain analysis of different features of (linear or non-linear) electrical circuits often
requires a strong interaction between differential equation theory, graph theory, and matrix
analysis. The time-domain model of a lumped (non-distributed) circuit with reactive devices
will take the form of a differential equation, either an explicit ODE in so-called state-space
models (see e.g. [5, 8, 13, 36] and references therein), or a differential-algebraic equation
(DAE) in semistate models [6, 7, 16, 17, 25, 27, 29, 33]. Graphs [2, 3] naturally describe
the topology of lumped circuits [8]. Matrices arise not only in the analytical description of
graphs [3], but also in the linearization of the characteristics of (coupled) electrical devices.
Additionally, matrix pencils [4, 12] are a key tool in the analysis of semistate models.

Qualitative properties of equilibria and operating points have been mainly addressed
within the framework of state (ODE) models [5, 13, 14, 15, 35, 36]. In particular, Chua’s
paper [5] provides a nice compilation of the main results in this direction up to 1980. The
use of state models requires a careful distinction between operating points and equilibria, as
well as local solvability hypotheses (see Theorem 12 in [5]). The local stability analysis in [5]
is supported on linearization; different results based upon Lyapunov function methods can
be found in [10, 36] and references therein.

The operating point/equilibrium distinction was pursued further in [13, 14, 15|, where
operating point potential stability and instability are defined and analyzed in terms of the DC
equations only. Broadly speaking, an operating point of a given DC circuit is unstable if no
insertion of shunt capacitors and series inductors results in a structurally stable equilibrium
of the corresponding dynamic circuit. Related results can be found in [35].

Besides other limitations of state models [16], the main drawback of state-space-based
qualitative analyses is the need for assumptions allowing for the derivation of an explicit ODE
model. Qualitative properties should ideally reflect features of the circuit itself, regardless
of the model. Therefore, assumptions needed for the formulation of a state model are in
many cases unnecessarily restrictive from the qualitative point of view. For instance, local
solvability hypotheses in [5, Theorem 4] can be seen as local index-1 conditions on a certain
semistate model [31], and therefore the stability results in [5] are restricted to certain (index-
1, in DAE terms) configurations. As a simple example, a C-loop (displayed for instance in
many MOS transistor models [31, 36, 38]) would put the circuit out of the scope of these
results. No state-space-based general approach to the study of hyperbolicity or stability
problems for these or other degenerate configurations [18, 28, 34] is known to the authors.

A semistate approach seems therefore to be of interest in this regard, since the formulation
of differential-algebraic models such as Tableau Analysis or Modified Nodal Analysis ones [9,
16, 17, 38] (the latter being used in SPICE or TITAN) do actually need not much more than the
lumped hypothesis. A framework based on matrix pencil theory has been recently proposed
for the local stability analysis of semistate-modeled nonlinear circuits [31], supported on
previous results concerning stability of DAEs [20, 21, 26, 30, 37]. The results in [31], however,
are not stated in terms of the topology of the circuit or the specific features of the devices;
we extend in the present paper those results by addressing qualitative properties in these



circuit-theoretic terms, with particular attention to topological aspects. These features will
be captured here through the use of MNA models. Background in this direction is given in
Section 2.

Specifically, under certain local passivity assumptions on resistive devices, we will state
topological conditions guaranteeing non-singularity as well as hyperbolicity of equilibria.
This is carried out in Section 3 (Theorems 1 and 3), and only requires reciprocity in reactive
devices. These topological conditions, milder than those of [5], will be proved independent
of those supporting the index, showing that local solvability hypotheses can be actually
removed. V-C loops and I-L cutsets can be accommodated without difficulty in this context,
so that these results hold for both index-1 and index-2 configurations.

Requiring additionally local passivity in the reactances, these topological conditions will
be shown in Theorem 4 of Section 4 to guarantee linearized asymptotic stability of equilibria.
In addition, Theorem 5 shows that the property Re A < 0 on the matrix pencil eigenvalues
derived in the previous result indeed guarantees asymptotic stability of the equilibrium; in
other words, we show that Lyapunov asymptotic stability holds via linearization in index-1
and index-2 circuit DAEs. The focus will be placed on equilibrium stability, since the location
of reactive elements will be assumed to be fixed and known. Rather natural consequences
of this analysis follow for periodically-forced circuits, and the approach might open another
way for the study of additional qualitative aspects involving bifurcations, quasiperiodic ex-
citations, etc., which are beyond the scope of the present work.

Finally, this framework is applied in Section 5 to a specific nonlinear Josephson circuit
which displays several different configurations depending on certain circuit parameters.

2 Background

2.1 MNA models

The conventional MNA equations for an RLC circuit without controlled sources can be
written as follows (see [38] and the bibliography therein):

Ac(p(AGe)) + Ary(ARe) + Apiy + Avi, = —Api,(t) (1a)
(p(w)) —Are = 0 (1b)
—Aje = —u,(t), (1c)
the “—” sign in the last equation owing to later convenience. Here, Ag (resp. Ar, Ac, Av, Ar)

describes the incidence between resistive (resp. inductive, capacitive, voltage source, current
source) branches and nodes in the circuit, once a reference node has been chosen. Specif-
ically, the incidence matrix A = (a;;) € R®Y*% (n and b being the number of nodes and
branches in the circuit, respectively) is given by

1 if branch j leaves node 7
a;;j =4 —1 if branch j enters node :
0 if branch j is not incident with node 1.



The vector e stands for node voltages; 7;, 4, represent currents in inductors and voltage
sources, respectively, and is(t), vs(tf) denote currents and voltages in the (independent)
sources. Capacitors and resistors are assumed to be voltage-controlled through the relations
q = Y(AZe), i, = y(Age), whereas inductors are supposed to be current-controlled by
¢ = ¢(1;). Note that these assumptions allow for coupling effects within each one of these
three sets of devices.

System (1) may be rewritten as a quasilinear standard-form DAE under C! assumptions
on 7 and ¢. Assuming also that 7 is C', let us denote the capacitance, inductance, and
conductance matrices as

Clw) = v'(u) (2a)
L@) = ¢0) (2b)
Glw) = +(u), (2¢)

the last one being aimed at later use. In circuit-theoretic terms, symmetric capacitance
or inductance matrices will be said to describe reciprocal devices, whereas positive definite
capacitance, inductance or conductance matrices will be said to yield strictly locally passive
elements [5]; positive definiteness of an n X n matrix B means in this paper that zTBxz > 0
for any z € R® — {0}, not implying that B is symmetric.

In the light of (2), system (1) can be rewritten as

ACC(Age)Age' + AR’)/(AEG) + AL’il + Aviv = —Ajis (t) (3&)
L(i)i, — A%e = 0 (3b)
—Ale = —u,(t), (3¢)

which is a quasilinear DAE

A(z)’ + f(z) = s(1), (4)

where z is the semistate vector of conventional MNA,

e

r = il )

Iy

and
ACC(A(T;e)Ag 0 0 AR’Y(A?_—EG) + ALil + Aviv —A]’is
A= 0 LG) 0 ), f= —ATe , § = 0
0 0 0 —Afe —g

Many analytical and numerical features of a DAE rely upon its index: see [9, 38] for a
discussion of this notion in the context of MNA models. In [38], topological criteria for the
index of MNA-modeled circuits without controlled sources are discussed; a central role is
played by certain configurations such as V-C loops (loops formed exclusively by capacitors
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and/or voltage sources) and I-L cutsets (cutsets formed exclusively by inductors and/or
current sources). Remark that V-loops and I-cutsets are excluded if the circuit is well-
posed.

We compile in Proposition 1 below Theorems 4 and 5 of the above-mentioned paper. It
is worth emphasizing that, in the first assertion, positive definiteness of L in [38] is replaced
by the milder assumption that L is non-singular: this owes to the fact that in the proof of
[38, Theorem 4] nothing more than non-singularity is actually needed on L.

Proposition 1. Assume that the capacitance and conductance matrices are positive definite,
and that the inductance matriz is non-singular.

1. If the network contains neither I-L cutsets nor V-C loops (except for C-loops), then
the MNA system (8) has index < 1.

2. Assume additionally that the inductance matriz is positive definite. If the network
contains an I-L cutset or a V-C loop (with at least one voltage source), then the MNA
system (3) has index 2.

Note that the “index < 1”7 condition in the first item can be rewritten as an “index 1”
condition except in cases in which there are no voltage sources and every node has a capacitive
path to a reference node, what characterizes index-0 problems.

2.2 Linearization and matrix pencils

Assume that a given circuit has only independent DC sources, so that s in (4) is a constant
vector. We may hence rewrite this equations as the quasilinear autonomous DAE

A(z)z' + g(x) =0, (5)

with g(z) = f(z) — s.
Equilibrium points of (5) are defined by the condition g(z*) = 0, and the linearization of
the DAE at equilibrium leads to the matriz pencil [4, 12]

M(z*) + ¢'(z") = A 0 L@Er) 0 |+ —AT 0 0 |. (6
0 0 0 —A"l; 0 0

Several qualitative properties of equilibria can be characterized in terms of the spectrum
o{A(z*), ¢ (z*)} = {A € C / det(AA(z*) + ¢'(z*)) = 0} of the matrix pencil depicted in (6).
These results often depend on the structure and/or the index of the equation; the reader is
referred to [20, 21, 22, 26, 30, 31, 37] for specific results concerning the relation between the
pencil spectrum and the qualitative properties of equilibria. Specifically, we prove in Section
4 that certain results in [20, 21, 22|, guaranteeing that the property Re A < 0 on the matrix
pencil eigenvalues yields asymptotic stability of the equilibrium, hold for both index-1 and
index-2 MNA equations.



Based upon this background, the purpose of the present work is to characterize the
spectrum of (6) and several related properties of equilibria in terms of the topology of the
circuit. In this regard, several results from graph theory will be needed; such results are
compiled below.

2.3 Some graph-theoretic properties
Lemma 1. If G has n nodes and k connected components, then tkA =n — k [3, 3.16].
Corollary 1. G is connected if and only if A has full row rank (n — 1).

Let K be a subset of the set of branches of a connected graph G. Denote as Ax (resp. Ag_x)
the submatrix of A formed by the columns corresponding to the branches in K (resp. not in
KC). The following is a particular case of [3, 3.17]:

Lemma 2. A subset K of the set of branches of a connected graph G are the branches of a
tree if and only if Ax is a non-singular ((n — 1) x (n — 1)) matriz.

Cutsets. A subset K of the set of branches of a connected graph is a cutset if the deletion
of K results in a disconnected graph, and it is minimal with respect to this property (i.e.
the deletion of any proper subset of IC does not disconnect the graph).

Lemma 3. A subset IC of the set of branches of a connected graph G includes at least one
cutset if and only if Ag_x does not have full row rank, namely, the rows of Ag_x are linearly
dependent.

This follows from the fact that, according to Corollary 1, Ag_x does not have full row rank
if and only if it is disconnected, ¢.e., if K disconnects the graph, which in turn is equivalent
to the fact that I includes at least one cutset.

Corollary 2. Let IC be a subset of the set of branches of a connected graph G. K does not
contain cutsets if and only if t¥Ag_x = 0 = z = 0 or, equivalently, Ag_,cx =0=2z=0,
that is, Ker Aj_, = {0}.

Loops. A set of branches forming a loop yields linearly dependent columns in the incidence
matrix [3, 3.13 and p. 145]. Conversely, if a set /C does not contain a loop, then there exists
a tree 7 containing all the branches in K [2, 2.29 and pp. 219-220]. Owing to Lemma 2, the
columns of A7 are linearly independent, and since they include the columns of Ay, these are
also linearly independent. Hence:

Lemma 4. A subset K of the set of branches of a connected graph G includes at least one
loop if and only if Ax does not have full column rank, namely, the columns of Ax are linearly
dependent.

Corollary 3. Let K be a subset of the set of branches of a connected graph G. K does not
contain loops if and only if Axy = 0=y =0, that is, Ker Ax = {0}.



3 Hyperbolicity
3.1 Non-singularity

As indicated in 2.2, equilibrium points of (5) are defined by the vanishing of g(z). For several
reasons, it is of interest to assure that a given equilibrium z* is non-singular in the sense
that the Jacobian ¢'(z*) is invertible. For instance, in linear problems (defined by A(z) = A,
g(xz) = Bx — s, for certain constant matrices A, B) there exists a unique equilibrium point
if and only if ¢’ = B is non-singular (invertible), regardless of the vector s. In non-linear
cases, assumed an equilibrium point z* is given, the non-singularity of ¢'(z*) guarantees the
isolation of this equilibrium. Furthermore, these non-singular equilibria are well-conditioned
for Newton-based computations [32].

Non-singularity of equilibria in circuits with definite conductance can be guaranteed if
the topological conditions of Theorem 1 below are satisfied; these topological conditions are
entirely independent of those characterizing the index in Proposition 1. Note that this result
is consistent with the fact that a V-L loop or a I-C cutset would yield a bad-posed resistive
DC circuit after short-circuiting inductors and open-circuiting capacitors. It is also coherent
with the results in [23], but in its present form the result is stated without the need to refer
to operating points of this resistive DC circuit.

Theorem 1. Let z* = (e*,4},i}) be an equilibrium point of (5). Denote G = G(Agxe*),
and assume that G is (positive or negative) definite. Then z* is non-singular (equivalently,
0 ¢ o{A(z*), ¢'(z*)}) if and only if there are neither V -L loops nor I-C' cutsets in the circuit.

Proof: note that
A RGA% Ar Ay
g (x*) = -AT 0 0
—A‘T/ 0 0

Write M = ApRGAL, N = (A Ay), so that
M N
! *\
g (.’L’ ) - < _NT 0 >
By construction, y* My = 0 = A}y = 0, since y" My = yTArGALy = (A}y) 'G(ARy) =
0 = ARy = 0 in virtue of the definiteness of G. This results in the property

ARy =0

ArGAL N
(5 5 ) (1) =0ed N0t @)
Nz=0

which is non-trivial only in the “=" sense: My + Nz = 0 yields y' My + y*Nz = 0, but
yTN = (NTy)T = 0 implies that y"My = 0 and, as indicated above, ALy = 0. Nz =0
follows.



The equivalence depicted in (7) can be also written as
Ker ¢'(z*) = Ker (A N)T x Ker N, (8)

and, therefore, Ker ¢’(z*) = {0} if and only if Ker (Ax N)T = Ker (Azx A Ay)T = {0}
and Ker N = Ker (A, Ay) = {0}. But, owing to Corollaries 2 and 3, these two conditions
are equivalent to the absence of I-C cutsets and V-L loops.

O

3.2 Non-vanishing, purely imaginary eigenvalues

Non-trivial, purely imaginary eigenvalues are important in linear circuit applications since
they characterize the existence of periodic solutions describing oscillations. In non-linear
circuits, a pair of purely imaginary eigenvalues may be responsible for a Hopf bifurcation
phenomenon also yielding oscillations [24].

Lemma 5. Let K be positive (resp. negative) definite. Denoting as z* the conjugate trans-
pose of z, then z*K+TKTz is real and positive (resp. negative) for any non-vanishing complex
vector z.

This well-known property can be easily checked by writing z = x + y+/—1, for real vectors
z, y. Then,
K+ K? K+ K" K+ K"
z*%z = xT%x + yT%y >0 (resp. < 0),

K+KT

since the purely imaginary terms cancel due to the symmetry of =5

vanish simultaneously.

Theorem 2. If G is (positive or negative) definite, both C = C(ALe*) and L = L(i}) are
symmetric and non-singular, and any one of the conditions

,and = and y do not

a) there are no I-C-L cutsets; or

b) there are no V-C-L loops;
is satisfied, then there are no purely imaginary eigenvalues A = aj with € R — {0}.

Proof: Note that A € C is an eigenvalue if and only if there exists a nonvanishing vector
w = (We, Wy, wy) such that (AA(z*) + ¢'(z*))w = 0, that is,

McCAL + ARGAT Ap Ay We
—A}: AL 0 wq = O,
— AT 0 0 Wy
or
McCALw, + ARGARw, + Apw; + Ayw, = 0 (9a)
—ATw,+ ALw;, = 0 (9b)
—Atw, = 0. (9c)



Multiplying (9a) by the conjugate transpose w?, we get
M AcC A w, + w* ARGATw, + wiALw, + wiAyw, = 0. (10)

Note that (9b) yields w*A;, = Aw;L, where we have made use of the symmetry of L. On the
other hand, from (9¢), it follows that w}Ay = 0. Therefore, (10) reads

M AcCALw, + wrARGARw, + MwfLw, = 0. (11)
Applying the * operator to (11), we are led to

MrAcC A w, + wiARGT Apw, + AwfLw, = 0, (12)
since C' is also symmetric. The semisum of (11) and (12) reads

G+GT

(ReNwAcCALw, + wiAg Afw, + (ReN)wfLw; = 0. (13)
Let A be a non-vanishing eigenvalue with ReA = 0. Equation (13) then leads to Afw, = 0,
owing to Lemma 5. Note also that AL w,. = 0, as displayed in (9¢c).

Assume that condition a) is satisfied. The exclusion of I-C-L cutsets, together with
ATw, = 0 and ALw, = 0, implies that w, = 0. From (9b), the assumption A # 0, and the
non-singularity of L, we get w; = 0. Then, from (9a), we get Ayw, = 0, and the exclusion
of V-loops in well-posed circuits would yield w, = 0.

Assume now that condition b) is satisfied, and write (9a) as

AC()\CAEUJC) + ALwl + Avwv = 0,

since Apw, = 0. From the V-C-L loop exclusion property, it follows that A\C Afw, = 0,
w; = 0, w, = 0. From the first identity, the non-vanishing of A\, and the non-singularity of
C, we get AZw, = 0. On the other hand, w; = 0 yields, in the light of (9b), ATw, = 0.
Together with the conditions Ajw, = 0, Apw, = 0, ALw, = 0, and the exclusion of I cutsets
in well-posed circuits, we would get w, = 0.

3.3 Hyperbolicity

An equilibrium point z* is said to be hyperbolic if the spectrum of the linearization has no
purely imaginary eigenvalues. Null eigenvalues have been considered in terms of the non-
singularity of ¢'(z*) in 3.1, whereas non-trivial, purely imaginary eigenvalues are ruled out
by the discussion performed in 3.2. Hence, Theorems 1 and 2 together provide a sufficient
condition for the hyperbolicity of the matrix pencil. Merging the topological conditions, and
with some additional effort (Propositions 2 and 3), we may improve the result in order to
allow for the existence of I-L cutsets and V-C' loops, so that the resulting topological condi-
tions be entirely independent of the index conditions appearing in Proposition 1. Therefore,
Theorem 3 will naturally apply to both index-1 and index-2 problems.
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Proposition 2. Let Iy, Ko be two sets of branches of a connected graph G, K1 C Ko. If all
cutsets within Ko are actually contained in Ky, then

wTAg_;C2 =0= ’wTA;Cz_;cl =0.
Equivalently, Ker Aj . =Ker AT , .

Proof: From the working assumption we may derive that rkAg x, = rkAg x,. This can
be seen as follows: assume ro = rkAg_x, < tkAg_x, = 7. If 1 <n —1, that is, if G — K4
is not connected, add to G — Ky a set M of (n — 1) — r; branches from within ; to get a
connected graph, that is, complete minimally the columns of Ag_x, so that full row rank is
achieved in (Ag x, Am)-

From the assumption ro < r1, (Ag_x, Aar) cannot meet the maximal rank n — 1, so that
(G—K2)UM = G—(Ky—M) is not connected. This means that there is a “disconnecting set”
of branches (and therefore a cutset) within the set /o — M. This cutset cannot be formed
exclusively by elements of IC; — M since their removal from G would result in a connected set
(because it would comprise G — (K; —M), which satisfies rk(Ag_x, Ap) = n—1). This means
that there is at least one branch of this cutset belonging to (Ko — M) — (K1 —M) = Ko — K4,
against the main assumption in the statement.

Hence, from the already proved identity rkAg_x, = rkAg_,, it follows that all columns
in o — K1 = (G — K1) — (G — K3) can be written as a linear combination of those in G — /s,
that is, there exists a matrix F' such that

A]C2_IC1 - Ag_’CQF'
Therefore, from the assumption wT Ag_x, = 0 we get wT Ay, x, = wTAg_x,F = 0.
O

Proposition 3. Let Ji, Jo be two sets of branches of a connected graph G, J1 C Jo. If all
loops within Jo are actually contained in Ji, then

Ajlwl + Ajz,jlwg =0=wy,=0.
Equivalently, letting the first columns of Az, be those of Az, Ker Az, = Ker Az x {0}.

Proof: If wy # 0, then it is possible to construct a vanishing, non-trivial linear combination
of columns of A7, corresponding to two sets of branches R C J; and £ C Jo — Ji, in a way
such that the columns in Ax are linearly independent and £ is non-empty. The existence of
such a linear combination implies that (Ag A.) does not have full column rank, and then
Lemma 4 leads to the existence of a loop formed by branches within the set R U L C 7.
On the other hand, loops exclusively formed by branches in R are precluded from the linear
independence of columns in Ag, so that there must actually exist one loop containing some
branch | € J5 — J;.
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Theorem 3. If G is (positive or negative) definite, both C and L are symmetric and non-
singular, and any one of the two pairs of conditions

a) there are neither V-L loops nor I[-C-L cutsets (except maybe I-L cutsets); or
b) there are neither I-C cutsets nor V-C-L loops (except maybe V-C' loops);
is satisfied, then ReX # 0, YA € o{A(z*), ¢'(z*)}.

Proof: Since I-C-L cutsets include in particular I-C' cutsets, and so do V-C-L loops with
regard to V-L loops, the only cases which do not follow automatically from Theorem 1 and
Theorem 2 are those in which either I-L cutsets or V-C loops are present. We have to show
that purely imaginary non-vanishing eigenvalues may not exist in this situation.

Let us first consider case a). Proceeding as in the proof of Theorem 2, we get Ajw, = 0
and ALw. = 0. But now the condition w, = 0 derived there does not follow from the cutset
exclusion property, since I-L cutsets may be present. In contrast, we will make use of the
exclusion of V-L loops, which did not hold there.

Denote as K; the set of branches corresponding to inductors and current sources, and
as Iy the ones corresponding to capacitors, inductors and current sources. If G stands for
the graph of the circuit, the branches in G — K5 correspond to resistors and voltage sources,
whereas those in Ky — K; are the capacitive ones. With this notation, and in the light of
Proposition 2, we get that w) (Agr Ay) = 0 = w] Ac = 0, that is, Afw, = 0. From this
property, (9a) reads A,w; + Ayw, = 0, and the exclusion of V-L loops in a) yields w; = 0,
w, = 0. Additionally, (9b) implies ATw, = 0, and the absence of I cutsets in well-posed
circuits implies w, = 0.

Now consider case b). Again, Azw, = 0 and Ajw, = 0 hold, but the reasoning in
Theorem 2 cannot be applied to derive Afw, = 0 since now V-C loops may be present. The
proof in this case will now rely upon the non-existence of I-C' cutsets.

Using ALw, = 0, equation (9a) reads

)\ACC’Agwe -+ AL’LUl + Av’LUU = 0. (14)

Let J; stand for the capacitor and voltage source branches, and assume that [, includes
these and, additionally, the inductive branches. Based upon the absence of V-C-L loops
except for V-C' loops, a straightforward application of Proposition 3 shows that (14) yields
w; = 0. In virtue of (9b), it is AJw, = 0, and the properties Azw, = 0, AL w, = 0, together
with the exclusion of I-C' cutsets, lead to w, = 0. Finally, w, = 0 from (9a) and the absence
of V-loops in well-posed circuits.

O

Note that both a) and b) in Theorem 3 are (in a certain sense) minimal topological extensions
of the conditions in Theorem 1 excluding null eigenvalues.
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4 Asymptotic stability

Proposition 4. If G is positive definite, and both C and L are symmetric positive definite,
then ReX <0, VA € o{A(z*), ¢'(z*)}.

Proof: The derivation of (13) in Theorem 2 is still valid under the current working as-
sumptions. Let A be an eigenvalue with ReA > 0. From Lemma 5 and the assumption of
symmetry and positive definiteness of both C' and L, it follows that
G+GT

wrAcCALw, = w:AR—i_TA};we =w/Lw, = 0, (15)
so that ASw, = 0, Afw, = 0, w; = 0 and (using (9b)) ATw, = 0. Additionally, Ajw, = 0 as
displayed in (9c). Since current source cutsets are forbidden in well-posed circuits, it follows
that w, = 0. From (9a), we get Ayw, = 0 and, since voltage source loops are also excluded
in well-posed circuits, it follows that w, = 0. This would yield the contradiction w = 0,
meaning that it must be ReA < 0.

O

It is worth emphasizing that Proposition 4 does not require topological conditions at all,
apart from the exclusion of V-loops and I-cutsets guaranteeing that the circuit is well-posed.
In particular, it holds independently of the topological index conditions. Note also that the
assumptions on the devices imply in particular those used in the hyperbolicity criterion of
Theorem 3. Therefore, adding the topological conditions assumed there, we get the following
sufficient condition to guarantee that ReA < 0 for A € o{A(z*), ¢'(z*)} .

Theorem 4. Assume that:
1) G is positive definite, and both C and L are symmetric positive definite.
2) At least one of the two pairs of topological conditions holds:

2a) There are neither V-L loops nor I-C-L cutsets (except maybe I-L cutsets); or
2b) There are neither I-C' cutsets nor V-C-L loops (except maybe V-C' loops).

Then, all eigenvalues in the spectrum o{A(z*), ¢'(z*)} verify ReX < 0. O

Again, the topological conditions here are independent of those characterizing the index
in Proposition 1. This provides a significant improvement with respect to [5, Theorem 12],
supported on a state-space approach, since the local solvability and topological requirements
there restrict the scope of Chua’s result to certain index-1 configurations.

It remains to show that the condition ReA < 0 for A € o{A(z*), ¢'(z*)} guarantees indeed

asymptotic stability of the equilibrium. Loosely speaking, the difficulty in the linearization
does not rely on the “dynamics” (since this is essentially given by Lyapunov’s theorem [1])
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but on the DAE structure. See [20, 21, 22, 26, 30, 31, 37] for details. In our case, we need
to show that Lyapunov’s theorem can be applied to index-1 and index-2 MNA equations.

We first remark in this direction that we are allowed to work with the charge-oriented
model

Acq' + Agry(ATe) + Api; + Ayiy + Aris = 0 (16a)
¢ —Aje = 0 (16b)

—Aje+uv, = 0 (16¢)

g—P(Age) = 0 (16d)

p—p(i) = 0 (16e)

instead of the conventional one, by virtue of Proposition 5 below. We have written this
system focusing on the autonomous case. Note that the index of this model is proved in [38,
Th. 7] to coincide with that of the conventional system as far as both are not higher than
2. System (16) has a semilinear structure

A2 4+ §(z) =0, (17)
in which the coefficient matrix A is constant. This property will make the analysis easier.

Proposition 5. If z* = (e*,i},i}) is an equilibrium of the conventional MNA model (5)
and 2* = (z*,q%, ¢*) with ¢* = Y(ATe*), ¢* = (i}) is the corresponding equilibrium of
the charge-oriented system (17), then the spectrum of the matriz pencil NA(z*) + ¢'(z*) (6)

coincides with that of the charge-oriented pencil

000 Ac 0 ARGAL Ap Ay 0 0

000 0 I —AT 0 0 00
M+g()=x{o000 0 0o|+]| -4 0 0 0 0], (18)

000 0 0 —~CAL 0 0 10

000 0 0 0 L 0 01

regardless of the indez.

Proof: Note that in (18) we denote G = G(ARe*) = v'(Axe*), C = C(Afe*) = ' (Afe*),
L = L(if) = ¢'(i;). The spectrum of the matrix pencil (18) is the set of values of A for which
the matrix

[ ARGAL A, AvidAc 0 )
AT 0 00 A
M=| _—4% o 0 0 o0 (19)
T
0 —-L 00 I)

is singular. We have partitioned M in (19) as

13



D E
M = (J - ) (20)

to make apparent that D — FK~'J is the Schur reduction [19] of the identity K in M.
Therefore, M is singular if and only if so it is D — EK~'.J, which reads

ARGég A, Ay Mo 0N oar g g
—ALOO—O/\I<O _L0>:
—AT 0 0 0 0
ARGAY A, Ay AcCAL 0 0
= —AT 0 0 |+ 0 L O
—AT 0 0 0 00

This is exactly the matrix whose singularities define the eigenvalues of the matrix pencil (6),
what proves the fact that both spectra are identical.

O

Theorem 5. Assume that the conventional system (5) has index < 2. Let x* be an equi-
librium point of (5), i.e. g(z*) = 0, and assume that the spectrum o{A(x*),¢'(z*)} of the
matriz pencil (6) has only eigenvalues with negative real part. Let v, @ and v be C' and,
in the index-2 case, assume additionally that o', ©' and ~' are positive definite and that ",
©" and v" exist and are uniformly bounded. Then x* is asymptotically stable in the sense of
Lyapunov.

Proof: Note that for index-0 cases it suffices to apply Lyapunov’s theorem for ODEs [1].
Let again (z*, ¢*, ¢*), with ¢* = (ALe*), ¢* = p(i}), denote the corresponding equilibrium
of the charge-oriented system (17). In the index-1 case, its semilinear structure allows for the
direct application of [21, Th. 2.1] to conclude that (z*, ¢*, ¢*) is asymptotically stable for the
dynamics of the charge-oriented MNA model. Alternatively, we may rewrite the semilinear
charge-oriented equation as a semiexplicit one: if rkA = r, there exist non-singular matrices

E, F such that [11]
A I, 0
FAF = .

Now, if we premultiply (17) by E and perform the coordinate change z = Fu, the semilinear
system in z adopts a semiexplicit form in u, and the index-1 condition is preserved. We may
then directly apply [31, Th. 1].

For the index-2 case, we want to apply Theorem 3.3 in [22]. Introducing

y(‘)

YL r—x*
y=|\w/ | =|e—a |,

Yq ¢ — "

Yo
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the equation system (16) can be rewritten as

Ay + By + h(y) =0 (21)
with
0 0O AC 0 AR’y'(Aﬁe*)Aﬁ AL AV 0 0
000 0 I — AE 0 0 00
A=|10 0 0 0 0|, B= — A‘T/ 0 0O 0 0
000 0 0 —/(ALe)AL 0 0 10
000 0 O 0 —Q'@) 0 0 I
and
Apy(AR(Ye + €*)) — Ary(ARe*) — ArY (ARe*) ARye
0
h(y) = 0

— (AL (Ye +€7)) + ¥(Age’) + ¥'(Age") Adye
= dyr + i) + ¢(i) + &' (i )y
Then, A(y) is twice continuously differentiable with 2(0) = 0 and A/(0) = 0. Additionally,
R"(y) is uniformly bounded. Consequently, the assumptions (A) and (B) of Theorem 3.3 in
[22] are satisfied. Next, we will see that also assumption (C) of Theorem 3.3 in [22] is true.
Using Lemma 3.4 in [22], it is sufficient to show

h(y) = h(Py + UQy)
for projectors P, Q and U satisfying
imQ =kerA, P=1-Q, kerU=kerAN{z: BzeimA}.

Regarding the special structure of A, we may choose

I 00 0 0
070 0 0
Q=001 0 0
000 Qo O
000 0 0

with any projector Q¢ onto ker A¢. Taking additionally any projector Q¢ onto ker AL, the
space ker AN {z: Bz € im A} equals

{z: Afze=0, ARz =0, ALz, =0, 2, =0, Q-Avzy =0, 2, =0, 25 =0}

Consequently,
I—Qcry O 0 00
0 I 0 00
U:= 0 0 I—Qc_y 0 0
0 0 0 I 0
0 0 0 0 I



projects onto ker A N {z: Bz € im fl} for any projector Qcry onto ker(Aq, Ag, Ay)T and
any projector Q¢ _y onto ker QF Ay.. This leads to

(I - QCRV)ye
YL
Py+UQy=| (I~ Qc-v)yv |,
Yq
Yo

which implies A(y) = h(Py + UQy).
Therefore, we may apply Theorem 3.3 in [22], showing that the the equilibrium (z*, ¢*, ¢*)
of (17) is asymptotically stable in the sense of Lyapunov for the change-oriented index-2 case.
Finally, since the dynamics of the charge-oriented and the conventional system are linked
by the smooth functions ¢ = ¥(AZ%e), ¢ = ©(4;), it follows that in both index-1 and index-2
cases the equilibrium z* is also asymptotically stable for the conventional MNA system (5).

O

5 A Josephson junction circuit

Consider the nonlinear circuit depicted in Figure 1. The device labeled as L, is a Josephson
junction, consisting of two superconductors separated by an insulating layer [8]. This junc-
tion can be treated as a nonlinear inductor with a current-flux characteristic i, = I sin k¢,
where Iy > 0 is a device parameter, and k£ = 4me/h (e and h denoting electron charge
and Planck’s constant, respectively). The incremental inductance of this device is Ly, =
(Iok cos keo) L.

Gl
el e?

L1 G2 L2

Ref.

Figure 1: Nonlinear circuit.

The two resistors are linear with conductances G1, GG, and the inductor L; is a linear one.
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MNA equations for this circuit are easily shown to read

Lty = e (22a)
Loi, = ey (22b)
0 = i1+Gi(e1—eg)—1 (22c¢)
0 = iy — Gi(e; — es) + Gaen. (22d)

Equilibrium points are given by e; = es = 0, 44 = I, 15 = 0. The last condition yields
sin k¢o = 0, that is, ¢po = n7w/k, n € Z, so that the incremental inductance Ly at equilibrium
is (Ipk)™! for ¢o = 2mm/k, m € Z, and —(lyk)™" for ¢y = (2m + 1)w/k, m € Z. In both
cases, the Josephson junction is (locally, around equilibria) current-controlled.

Stability properties of these equilibria have been analyzed in [31] through the explicit
computation of the spectrum arising in a certain differential-algebraic model of the circuit.
Our present purpose is to illustrate that such a local qualitative analysis can be performed
checking only device characteristics and circuit topology, without making explicit use of (22)
or any other semistate model.

Following [31], we will assume that G; > 0, L; > 0, and will consider two different cases:
G5 > 0, and G5 = 0. The latter describes a situation in which the resistor defined by G5
is open-circuited, yielding a change in the circuit configuration. The conductance matrix G
reads diag(Gy, G2) if G > 0, and amounts to (G;) if G5 = 0, that is, if the branch associated
with G9 is removed. In both cases, the conductance matrix is (symmetric) positive definite.
In contrast, the (symmetric) inductance matrix L = diag(Lq, Ly) is positive definite at
equilibria yielding Ly = (lok)™! (that is, for ¢o = 2mn/k, m € 7Z), whereas the case
Ly = —(Iyk)™" (displayed for ¢y = (2m + 1)7/k, m € 7Z) yields a non-definite matrix.

Index. Since neither capacitors nor voltage sources appear in the circuit, according to
Proposition 1 it suffices to check for I-L cutsets in order to compute the index of the MNA
model (22). Tt is easy to see that no I-L cutset is displayed when Gy > 0; since the index-1
conditions in Proposition 1 only require a non-singularity assumption in the inductance ma-
trix L, we may conclude that G5 > 0 yields an index-1 configuration around any equilibrium,
regardless of the sign of the Josephson junction inductance Ls.

In contrast, the case Go = 0 yields an I-L cutset defined by the linear inductor, the
current source and the Josephson junction. In this situation, Proposition 1 only allows one
to conclude that the index is 2 if L is positive definite, that is, around equilibria in which
Ly = (Itk)™' > 0. Using (22), it is not difficult to check that, at the remaining equilibria (for
which Ly = —(Iyk)~! < 0), the index is 2 if and only if the additional condition L; # —Lo
is satisfied.

Non-singularity and hyperbolicity. The absence of capacitors and voltage sources make
the topological conditions in Theorem 3 amount to the absence of L-loops, which is verified
for all equilibria independently of the value of G5. Note that this topological property is
independent of the topological conditions characterizing the index. Since this theorem only
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requires L to be symmetric and non-singular, this means that all equilibria are hyperbolic,
regardless of the sign of Ly. In more detail, zero eigenvalues are ruled out by Theorem 1,
showing that equilibria are non-singular, whereas non-trivial, purely imaginary eigenvalues
are precluded by case b) of Theorem 2.

Asymptotic stability. Finally, in the light of the absence of L-loops, Theorems 4 and
5 make it possible to guarantee that equilibria with Ly = (Ipk)™' > 0 are asymptotically
stable, since for them the inductance matrix is (symmetric) positive definite. This property
is again independent of the topological index conditions.

Asymptotic stability of equilibria with Ly = —(lyk) ™! < 0 cannot be assessed in terms
of Theorems 4 and 5. An explicit spectrum computation shows that, when G5 > 0, these
equilibria are unstable; in contrast, if Gy = 0, these equilibria are asymptotically stable if
—L, = (Iyk)™" < L,, and unstable if —L, = (Iyk)™' > L;. Again, a more detailed study
is necessary for non-passive circuits; note, in particular, that the two different situations
depicted by the case Go = 0 show that the inertia of the conductance, capacitance and in-
ductance matrices is not always sufficient to characterize the stability properties of equilibria
in non-passive problems, even in hyperbolic cases.
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