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Abstract

We investigate numerical methods for passive
model reduction of linear dynamical systems. This
is an important task in circuit simulation when
modeling parasitic effects of interconnect. We will
show how positive real balancing, based on bal-
ancing the solutions of two algebraic Riccati equa-
tions, can be used for passive model reduction
of large-scale systems on parallel computers. Nu-
merical experiments demonstrate the performance
of the parallel algorithms using several examples
from circuit simulation.

1. Introduction

We consider linear dynamical systems, given in
generalized state-space form by

Eẋ(t) = Ax(t) + Bu(t), t > 0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(1)

whereA,E ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n,

D ∈ R
m×m, andx(0) = x0 ∈ R

n is the initial
state of the system. Here,n is the order (or state-
space dimension) of the system and the associated
(square) transfer function matrix (TFM) is

G(s) = C(sE − A)−1B + D.

Systems of the form (1) arise in several areas
of circuit simulation. A modified nodal analysis

(MNA) using Kirchhoff’s laws for linear RLC cir-
cuits directly yields such a model. These mod-
els are used in circuit simulation when large sub-
circuits are decoupled from the given circuit, e.g.,
when modeling interconnect or the pin package of
VLSI circuits [6, 8]. Another possible source is the
linearization of nonlinear circuits around a DC op-
erating point like in small-signal analysis [9]. In
both cases, the order of the system equals the num-
ber of elements in the described circuit and there-
fore is often too large to allow simulation in an
adequate time or to even tackle the model using
available differential equation solvers. Therefore,
reduced-order modeling is frequently used to re-
place the circuit model or parts thereof (like large
linear sub-circuits) by models of the form (1) of
much smaller order.

In general, the model reduction problem con-
sists in finding a reduced-order system,

Ê ˙̂x(t) = Âx̂(t) + B̂û(t), t > 0

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(2)

of orderr, r ≪ n, and associated TFM

Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂

which approximatesG(s) such that‖G− Ĝ‖ < τ,
for a prescribed system norm and tolerance thresh-
old τ ≥ 0. Note that in frequency domain,y(s) =
G(s)u(s) for x0 = 0, so that

y(s) − ŷ(s) = (G(s) − Ĝ(s))u(s).

Hence, for compatible norms,

‖y − ŷ‖ ≤ ‖G − Ĝ‖‖u‖ < τ‖u‖,



i.e., the inputu results in a deviation of sizeτ ,
measured in the given norm, in the output quan-
tities.

In circuit simulation, methods based on modal
truncation or Pad́e approximation are most often
used for computing reduced-order models [7, 8].
In general these methods perform well, but have
the disadvantage of providing only a good lo-
cal approximation for which no computable er-
ror bound is known. Moreover, important proper-
ties like stability or passivity of the (sub-)circuit
are usually not preserved. On the other hand, the
model reduction methods mostly used in control
theory, which are based on system balancing, pro-
vide global computable error bounds and can pre-
serve the system properties. Unfortunately, these
methods present a complexity ofO(n3) floating-
point arithmetic operations.

Here, we will suggest a parallel implementation
of the positive real balancing truncation (PRBT)
technique. For a passive circuit, the reduced-order
model computed by PRBT is passive again. The
focus will be on computing reduced-order mod-
els of systems of orders ranging fromO(103) to
O(104). This task is encountered, for example,
when RLC circuits are used to model interconnect.
For a VLSI design, often several thousands of such
models of order of a few thousands need to be re-
placed by models of very small order.

Before we describe the method in the next sec-
tion, we need some basics about passivity and pos-
itive real transfer functions. A linear system ispas-
sive if ∫ t

−∞

u(τ)T y(τ) dτ ≥ 0

for all t ∈ R and allu ∈ L2(R, Rm). In practice
this means that the system can not generate energy.
It is a classical result of network theory [1] that a
system is passive if and only if its transfer func-
tion G(s) is positive real, that is,

1. G is analytic inC
+ := {s ∈ C | Re(s) > 0},

2. G(s) + GT (s̄) ≥ 0 for all s ∈ C
+.

This shows that in order to retain passivity in the
reduced-order model, we need its transfer function
Ĝ to be positive real. This can be achieved by trun-
cating a positive real balanced realization of the
system. This approach will be briefly discussed in
Section 2. Implementation details of the resulting
algorithm and numerical experiments demonstrat-
ing its parallel performance are described in Sec-
tion 3.

2. Model Reduction Using Positive-
Real Balancing

The core computation of PRBT is the solu-
tion of the two coupled algebraic Riccati equations
(AREs), which read withF := A − BR−1C:

0 = FPE + ET PFT

+ EPCT R−1CPET + BR−1BT ,
0 = FT QE + ET QF

+ EQBR−1BT QE + CT R−1C,

(3)

whereP,Q ∈ R
n×n are the sought-after minimal

solutions of the AREs andR := D + DT . For
the ease of notation, we assume hereafterE = In.
Then a realization of a linear system is calledpos-
itive real balanced if the two Gramians, defined
as the minimal positive (semi-)definite solutions of
the above AREs, are diagonal and equal.

Analogous to the standard balanced truncation
method [12], the system is transformed via a state-
space transformation into positive real balanced
coordinates; that is, for the transformed system
given by Ã, B̃, C̃, D̃ with corresponding AREs
like in (3), we obtain that̃P andQ̃ are equal and di-
agonal. The reduced-order model is then obtained
by truncatingÃ, B̃, C̃, D̃ to a desired order (for
a given accuracy threshold). It can then be shown
[13] that the resulting reduced-order model is sta-
ble and passive. The diagonal entriesσ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0 of the balanced positive real Grami-
ans are called thepositive real Hankel singular
values and can be used to derive error bounds
for the approximation error. Re-arranging a mul-
tiplicative error bound given in [10], the following
error bound can be obtained:

‖G − Gr‖H∞
≤ (4)

2‖R‖2
2‖ĜD‖H∞

‖GD‖H∞

n∑
k=r+1

σk,

whereGD := G + DT , ĜD := Ĝ + DT , and
‖F‖H∞

:= supω∈R
‖F (ω)‖2 denotes theH∞-

norm of a stable, matrix-valued rational transfer
functionF . (‖M‖2 is the usual matrix 2-norm of
M .) The error bound (4), though sometimes quite
pessimistic, distinguishes positive real balanced
truncation from all passivity-preserving model re-
duction methods based on Padé and Pad́e- type ap-
proximation like PRIMA or SyPVL (see [8] and
the references therein). It also has the advantage to
be applicable to general passive systems while the
aforementioned methods require additional struc-
ture arising in RLC circuits.



As in the square-root method for balanced trun-
cation [11, 14] we do not compute the balanc-
ing state-space transformation explicitly but the
reduced-order model is obtained by a projection
on the reduced-state space obtained from the nec-
essary parts of the balancing transformation. These
parts are computed from a singular value decom-
position (SVD) of the product of certain factors
of the GramiansP and Q. In standard balanced
truncation, Cholesky factors of the positive (semi)-
definite matricesP andQ are used. Here we will
follow an approach suggested in [4], based on us-
ing full-rank factors of the Gramians. Mathemat-
ically, exactly the same reduced-order model as
for the standard method is obtained. As mostly,
the GramiansP,Q have low numerical rank, this
yields much lower computational cost and storage
requirements than the standard approach.

The computational approach here is based on
solving the AREs (3) using Newton’s method. In
each Newton step for each of the two equations, a
matrix Lyapunov equation of the form

FT Y + Y F + W = 0 (5)

has to be solved forY . For this purpose, we em-
ploy a method based on the sign function method.
This choice allows for a particularly well paral-
lelizable implementation of Newton’s method, see
[2], needed to solve problems of the size1, 000 ≤
n ≤ 10, 000 as required for interconnect model-
ing. As the matrixF is the same for both AREs
in the first iteration step, we also employ a spe-
cial coupled Lyapunov solver [3] in the first step.
The full-rank factors ofP andQ are obtained after
convergence of Newton’s method by solving again
two coupled Lyapunov equations where the spe-
cially adapted Lyapunov solver is used again.

The computation of the SVD and the matrices
yielding the reduced-order model is performed us-
ing the same procedure as for standard balanced
truncation described in [4].

3. Parallel Implementation and Exper-
imental Results

3.1. Implementation details

The numerical algorithms that we have de-
scribed in the previous sections are all com-
posed of basic matrix computations such as
solving linear systems of equations, matrix prod-
ucts, and QR factorizations. These operations
have been efficiently parallelized and imple-

mented for modern serial and parallel comput-
ers in existing libraries such as ScaLAPACK [5].
The use of such libraries enhances the reliabil-
ity and improves portability of the model reduc-
tion routines. The performance will depend on
the efficiency of the underlying serial and par-
allel libraries and the communication routines.
Here we will employ the ScaLAPACK parallel li-
brary [5].

All the experimental results described in the
following two subsections were obtained on In-
tel Pentium Xeon machines usingIEEE double-
precision floating-point arithmetic (i.e., the ma-
chine epsilon wasε ≈ 2.2204 × 10−16). Specif-
ically, we employ a cluster consisting of 30 nodes
with two Intel Pentium Xeon@2.4GHz each, and
1 Gbyte of RAM per node. We use a BLAS library,
specially tuned for the Intel Pentium Xeon proces-
sor, that achieves around 3800 Mflops (millions of
flops per second) for the matrix product (routine
DGEMM). The nodes are connected via aMyrinet
switch and the communication library BLACS em-
ploys a tuned implementation of MPI. The perfor-
mance of the interconnection network for MPI was
measured by a simple loopback message transfer
and offered a latency of10 µsec and a bandwidth
of approximately 1.9 Gbit/sec.

In our evaluation of the accuracy and the par-
allel performance of the proposed numerical algo-
rithms, we use the following two examples arising
in electrical engineering:

Example 1 This example describes a transmis-
sion line used to model interconnect, and was pro-
vided by a German chip manufacturer. A single
transmission line, partitioned intonseg segments,
is modeled by an RLC loop where each resistance
and inductance is grounded via a capacity. The
model is symmetric, of order3 nseg + 1, and has
two inputs. The output matrix isC = BT .

Example 2 This is a slightly different model of
interconnect. Again, an RLC circuit is used, where
the topology is given as a ladder network [10]. The
system is parameterized by four system values that
we set in our tests toR = 0.1, R̄ = 1.0, Cap =
0.1, andL = 0.1. The system has a single input
and a single output.

3.2. Accuracy of reduced-order models

In this paragraph we briefly describe the accu-
racy attainable with the proposed model reduction
method based on positive real balancing. Most of-
ten the accuracy is presented using Bode diagrams,
in particular the magnitude part, showing the ab-
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Figure 1. Accuracy of reduced-order model for Example 1. Act ual error for the four
I/O channels. Here, n = 199 and r = 20.

solute values of the frequency responses of input-
output (I/O) channels of the system for the relevant
frequency range. The Bode diagrams shown here
are computed using the MATLAB Control Tool-
box functionbodemag. As this requires the time-
consuming solution of linear systems of equations
for a lot of frequencies, we restrict ourselves to rel-
atively small systems of order≈ 200. The results
are shown in Figure 1 and 2.

Figure 1 shows the Bode plots of all four input-
output channels of the error systemG − Ĝ for
Example 1 withn = 199. As A is fairly ill-
conditioned, theH∞-norm of G is so large that
the bound (4) is a gross over-estimate of the ac-
tual error. Therefore it is not shown in the figure.
We note that the maximum absolute error of less
than10−2 (or less than 40 dB, respectively) occurs
at very low frequencies while it gets much smaller
for increasingω. The wiggles around 100 Hz ap-
pear due to a falling edge of the output signal of
the original system which is difficult to catch. Note
that positive-real balancing still does a fairly good

job at catching this edge.
Example 2 is easier to approximate and the er-

ror bound (4) is still pessimistic, but gives some
impression what can usually be expected from that
bound. It is therefore included in the error plot.
Moreover, the frequency response of the original
and reduced system are also shown separately. By
just inspecting the plot, no deviation of the two
curves is visible. This is what is usually consid-
ered as the best one should expect from a reduced-
order model.

3.3. Parallel performance

We first analyze the scalability of the parallel
numerical kernels involved in the PRBT model re-
duction algorithm. For this purpose, we generate
random stable linear systems with state-space di-
mensionn = 2000/

√
np , wherenp denotes the

number of nodes employed in the experiment, and
a single input/output (m = p = 1). Figure 3
reports the Mflop/rate (millions of floating-point
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Figure 2. Accuracy of reduced-order model for Example 2. Fre quency response for
original n = 200 and reduced-order model with r = 20 (left) and actual error compared
to bound (4) (right).

arithmetic operations) per node achieved by the
following routines:

– psb03odc. Sign function method for cou-
pled Lyapunov equations.

– pdgeclnw. Sign function method for Lya-
punov equations.

– pdgecrny. Newton’s method for AREs.

For the latter algorithm, the number of itera-
tions required to solve the corresponding Lya-
punov equation is set to 10. The figure shows
a remarkable scalability of the parallel ker-
nels as there is only a minor decrease in perfor-
mance when the problem size and the number of
nodes are increased proportionally.

In order to illustrate the performance of the
complete parallel PRBT algorithms, we next eval-
uate the execution time of the serial and the par-
allel algorithm employing RLC systems withn =
2002 states for Example 1 andn = 2000 for Ex-
ample 2. Figure 4 illustrates a considerable parallel
performance for our approach: the time necessary
to apply model reduction to the system from Ex-
ample 1 was reduced from 2’5 hours using a sin-
gle processor to 20 minutes using only 16 nodes of
the cluster. The results are more dramatic for Ex-
ample 2, from 7’5 hours on a single processor to
38 minutes on 16 nodes. Notice that using a larger
number of nodes for solving such (small) problems
can reduce further the execution time of the paral-
lel PRBT algorithm, but at the expense of a larger
amount of resources that is not always justified.

The much larger execution times of Example 2
in the figure are explained by the lower perfor-
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Figure 3. Mflop rate of the parallel nu-
merical kernels involved in the PRBT
model reduction algorithm.

mance of the BLAS routine for solving a triangular
linear system in this case (routineDTRSM). In par-
ticular, during the solution of the Lyapunov equa-
tion, the numerical data of this example produces a
certain amount of underflows that stall the proces-
sor pipeline and reduce drastically the Mflop rate
of routineDTRSM.

For those more familiar with speed-up, Table 1
reports the speed-up of the parallel algorithms. As
usual, the speed-up decreases when the number of
nodes is increased while the problem size is main-
tained constant.
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#Nodes (np) Example 1 Example 2
(n = 2002, (n = 2000,
m = p = 1) m = p = 1)

4 3.74 2.93
8 6.69 4.84

12 9.69 6.20
16 12.06 7.37

Table 1. Speed-up of the parallel
PRBT model reduction algorithms.

4. Conclusions

Our parallel codes can be used to reduce sys-
tems of orderO(104), a state-space dimension that
could by no means be solved using a single proces-
sor due to memory restrictions.

Preliminary results using two numerical exam-
ples from circuit simulation show that our parallel
PRBT codes for model reduction can be employed
to reduce large systems, of order about 2000, in a
reasonable amount of time.

The advantages of the new method over existing
methods are that a computable error bound is avail-
able and passivity of the reduced-order model is
guaranteed without further structural assumptions
on the original passive system.
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