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Summary. In the planning process of railway companies, we propose to integrate important
decisions of network planning, line planning, and vehicle scheduling into the task of peri-
odic timetabling. From such an integration, we expect to achieve an additional potential for
optimization.

Models for periodic timetabling are commonly based on the Periodic Event Scheduling
Problem (PESP). We show that, for our purpose of this integration, the PESP has to be ex-
tended by only two features, namely a linear objective function and a symmetry requirement.
These extensions of the PESP do not really impose new types of constraints, because practi-
tioners have already required them even when only planning timetables autonomously without
interaction with other planning steps.

1 Introduction

Traditionally, the planning process of railway companies is subdivided into several
tasks. From the strategic level down to the operational level, the most prominent sub-
tasks are network planning, line planning, timetable generation, vehicle scheduling,
crew scheduling, and crew rostering, see Figure 1.

For a detailed description of these planning steps as well as for an overview
of solution approaches, we refer to Bussieck, Winter, and Zimmermann [4]. Notice
that network planning and line planning are of course part of the strategic planning
process of public transportation companies. In contrast, vehicle scheduling and crew
scheduling are of operational nature. In other words, timetabling forms the linkage
between service and operation. An important reason for the division into at least five
subtasks is the high complexity of the overall planning process ([4], [7]).

However, during the last years, a trend towards the integration of several plan-
ning steps has emerged. For example, vehicle and crew scheduling were successfully
combined by Borndörfer, Löbel, and Weider [3] and by Haase, Desaulniers, and
Desrosiers [8]. Similarly, a combination of line planning and network planning is

? Supported by the DFG Research Center “Mathematics for key technologies” in Berlin
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Network Planning

Line Planning

Timetabling

Vehicle Scheduling

Crew Scheduling

PESP model

Fig. 1. Planning phases covered by the PESP beforehand

the objective of Borndörfer, Grötschel, and Pfetsch [2]. Periodic timetabling has also
served as a starting point for such attempts. Kolonko and Engelhardt-Funke [9] con-
sider investments into infrastructure by using multi-criteria optimization. Liebchen
and Peeters [15] add important aspects of vehicle scheduling.

In this paper, we demonstrate how periodic timetable construction can be com-
bined with other planning steps and also incorporate other practical conditions on
timetables. This concerns timetable symmetry, line planning, and even infrastruc-
ture decisions. We show that this can in fact be achieved with only slight variations
of the commonly used model for periodic timetable construction, the PESP model
introduced by Serafini and Ukovich [24] in 1989. The variations keep much of the
properties of the PESP model and are again mixed integer programs over over a fea-
sibility domain with essentially the same structure as the original PESP. In particular,
all of the valid inequalities for the PESP stay valid, and some of the new formulations
even speed up the solution time of standard MIP solvers.

In the discussion of these modeling features, we will also lay out the map of the
borderline between what still fits into the traditional PESP model, and what does
require new features, and at which cost. To this end, we also review the traditional
PESP modeling issues, thus altogether providing a selfcontained presentation of the
PESP modeling capabilities and its extensions to symmetry, line planning, and net-
work planning.

The paper is organized as follows. Section 2 introduces the PESP. It presents
its main formulations as a graph theoretic potential problem and as a mixed inte-
ger program, and reports on its complexity and a useful characterization of periodic
timetables.

Section 3 discusses requirements for cyclic timetables that can be met by the
PESP. These include simple requirements such as collision-free traffic on single
tracks and headway between successive trains but also more sophisticated ones such
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as bundling of lines, train coupling and sharing, fixed events in connection with hi-
erarchical planning, and also disjunctive constraints and soft constraints.

Section 4 is devoted to timetable requirements that leave the traditional PESP,
such as balanced reduction of service and symmetry of timetables. We show that, in
the case of symmetry, the PESP or its MIP model only needs to be extended slightly
in order to accommodate them.

Finally, in Section 5, we consider the integration of aspects of other planning
steps into periodic timetable construction, in particular vehicle scheduling (min-
imization of rolling stock), line planning (simultaneous construction of line plan
and timetable), and network planning (making infrastructure decisions). This inte-
gration makes essential use of the flexibility of the PESP (in particular disjunctive
constraints), uses symmetry and, as a new technique, integrates aspects of graph
techniques into the PESP in order to handle line planning.

All model features are illustrated by examples from our practical experience
with timetable construction at Deutsche Bahn AG, S-Bahn Berlin GmbH, and
BVG (Berlin Underground).

2 The Periodic Event Scheduling Problem (PESP)

In 1989, Serafini and Ukovich [24] introduced the periodic event scheduling prob-
lem (PESP), by which periodic timetabling instances may be formulated in a very
compact way. Since then, this model has been widely used ([23],[17],[16]). In the Pe-
riodic Event Scheduling Problem (PESP), we are given a period time T and a set V

of events, where an event models either the arrival or the departure of a directed traf-
fic line at a certain station. Furthermore, we are given a set of constraints A. Every
constraint a = (i, j) relates a pair of events i, j by a lower bound `a and an upper
bound ua.

A solution of a PESP instance is a node assignment π : V 7→ [0, T ) that satisfies

(πj − πi − `a) mod T ≤ ua − `a, ∀ a = (i, j) ∈ A,

or πj−πi ∈ [`a, ua]T for short. We call a feasible node potential a feasible timetable.
Notice that we can scale an instance such that 0 ≤ `a < T , and for the span da :=
ua−`a of a feasible interval [`a, ua]T we may assume w.l.o.g. da < T . Furthermore,
for every fixed event i0, every fixed point of time t0 ∈ [0, T ), and every feasible
timetable π there exists an equivalent timetable π′ with π′

i0
= t0. This is achieved

by performing the simple shift π′
i := (πi − (πi0 − t0)) mod T . Let us denote by

D = (V, A, `, u) the constraint graph modeling a PESP instance.
There are several practical aspects of periodic timetabling which profit from the

presence of a linear objective function of the form
∑

a=(i,j)∈A

ca · (πj − πi − `a) mod T,

with costs ca. In our opinion, the most striking one is the integration of central aspects
of vehicle scheduling, cf. section 5.1.
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Another perspective of periodic scheduling can be obtained by considering tensions
instead of potentials. In a straightforward way, define for a given node potential π its
tension

x̂a := πj − πi, ∀a = (i, j) ∈ A.

Recall that a vector x̂ is a tension, if and only if for some cycle basis C, and each of
its cycles C ∈ C with incidence vectors γC ∈ {−1, 0, 1}A, there holds γC x̂ = 0.
This yields the following MIP formulation

min ct(x̂ + pT )
s.t. Γ x̂ = 0

` ≤ x̂ + pT ≤ u

p ∈
�

A,

or

min ctx

s.t. Γ (x − pT ) = 0
` ≤ x ≤ u

p ∈
�

A,









(1)

where Γ ∈ {−1, 0, 1}(|A|−|V |+1)×|A| denotes the cycle-arc incidence matrix (cycle
matrix) of some cycle basis of the graph D. Notice that the x variables are in fact a
periodic tension, which we formally define for a given node potential π to be

xij := (πj − πi − `ij) mod T + `ij .

Already Serafini and Ukovich made the following simple but useful observation.

Lemma 1 (Serafini and Ukovich [24]). If we relax the requirement π ∈ [0, T )V

to π ∈ � V , then for every spanning tree H and every feasible timetable π there
exists a feasible timetable π′ of the same objective value, but which induces pa = 0
for a ∈ H .

Notice that we may interprete the remaining non-zero integer variables as the repre-
sentants of the elements of a (strictly) fundamental cycle basis. A generalization to
integral cycle bases yields many variants of problem formulation 1, some of which
are easier to solve for MIP solvers ([14]).

Periodic tensions can be characterized similarly to classic aperiodic tensions.

Lemma 2 (Cycle Periodicity Property). A vector x ∈ � A is a periodic tension, if
and only if for every cycle C with incidence vector γC ∈ {−1, 0, 1}A, there exists
some zC ∈

�
, such that

γCx = zCT. (2)

Sometimes, things become more obvious by defining slack variables x̃a := xa − `a.
The PESP is NP-complete, since it obviously generalizes Vertex Coloring ([21]).

We just orient the edges of a Coloring instance arbitrarily and assign feasible peri-
odic intervals [1, T − 1]T to each of them. Solution methods for the PESP include
Constraint Programming ([23]), Genetic Algorithms ([19]), and of course integer
programming techniques. For the latter, a very important ingredient is

Theorem 1 (Odijk [21]). An integer vector p allows a feasible solution for the
MIP (1), if and only if for every oriented cycle C of the constraint graph, the fol-
lowing cycle inequalities hold
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where C+ and C− denote the forward and the backward arcs of the cycle C.

We close this section by listing several other totally different practical applica-
tions which can be modeled via the PESP ([24]). Rather prominent ones are the
scheduling of systems of traffic lights, and periodic job shop scheduling.

3 Timetabling Requirements Covered by the PESP

This section gives a broad overview of the modeling capabilities of the PESP. Con-
trary to the following sections, practical requirements to be modeled are limited to
those arising in periodic timetabling. Nevertheless, there are many facts we have to
discuss in order to give a selftcontained overview.

However, let us start by naming two facts which are definitely beyond the scope
of the PESP: routing of trains through stations or even alternative tracks, and routing
of the passenger flow. Hence, throughout this paper we assume fixed routes for both,
trains and passengers. A short motivation for these assumptions will be given at the
beginning of Section 4

For the vast majority of practical requirements which we are going to model,
we are trying to provide examples which are close to practice. Notice, however, that
in particular time and track information might not always reflect practice exactly.
Depending on the fact to be modeled, we will provide a track map, a line plan, a
visualization2 of the timetable of a given track, and last but not least the resulting
PESP subgraph. For readers not being familiar with the first three types of charts, we
refer to any textbook on railway engineering.

Most of our real-world examples will be taken from the surroundings of the sta-
tion Köln-Deutz (Cologne), which is part of the German ICE/IC-network. Figure 2
displays the general track map of Köln-Deutz. Unless stated otherwise, we assume a
period time of T = 60 minutes.

3.1 Elementary Requirements

Both, for sake of completeness and in order to introduce the notation we use in the
following figures, we start by modeling the three most elementary actions within
public transportation networks: trips, stops, and changeovers.

In Figure 3 (a), we highlight the tracks used by two lines which cross at
Köln-Deutz. The lines themselves are given in Figure 3 (b). Finally, we provide
the constraint graph which models running, stopping, and changeover activities of
these lines at Köln-Deutz in Figure 3 (c) as PESP constraints. Notice that we ensure
changeover quality by linearly penalizing changeover times which exceed a certain

2 In German: “Bildfahrplan.”
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Köln
Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Fig. 2. Track map of Köln-Deutz (Cologne) — based on [12].

minimal changeover time required for changing platforms. In our example, a mini-
mal changeover time of six minutes is assumed when connecting from Dortmund to
Frankfurt. Using this approach, changeover arcs typically have a wide span.

An alternative way of modeling changeovers is to require some important ones
not to exceed a maximal amount of effective waiting time. Then, we end up with
rather small spans for changeover arcs. Schrijver and Steenbeek [23] follow this
approach, which seems to be very suitable for constraint programming solvers.

Stopping arcs typically have very small span. In rather unimportant stations, it
is a good choice to fix the span to zero, in particular if there is neither a junction of
tracks, nor a single track, nor any changeovers.

Just as trip arcs, stopping arcs with span zero constitute redundancies which can
be eliminated very efficiently in a preprocessing step. For example, one can con-
tract any fixed arc, i.e. having zero span, together with its target node. Doing so, the
arcs which were incident with the contracted target node have only to be redirected
to the source node of the contracted arc, after having shifted their feasible interval
appropriately, of course. Moreover, an arc being (anti-) parallel to another one can
obviously be eliminated, if its feasible interval is a superset of the other arc. In addi-
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Köln
Hbf

Köln−Deutz

WuppertalDüsseldorf

Abzw. Gummersbacher Str.

Köln−Mülheim

High−speed−track (Frankfurt)

Köln−Deutz

Frankfurt

Paris

Amsterdam

Dortmund

[`a, ua], wa

[6, 65], 119

[4, 4], 0
[3, 8], 266

stop arc

trip arc

changeover

K öln-Deutz

Fig. 3. Modeling elementary requirements: (a) two disjoint routes of lines serving Köln-Deutz;
(b) the corresponding line plan; (c) PESP constraints modeling running activities, stopping
activities, and changeover activities
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tion to nodes with degree at most two, Lindner [16] gives further situations, in which
we may simplify the graph.

If there are several lines using the same track into the same direction, sometimes it is
required that a balanced service is offered. For n lines, this can easily be achieved by
introducing arcs with feasible interval [T

n
, T − T

n
]T between any unordered pair of

events that represent the departure at the first station of the common track. Certainly,
strict balancedness may be relaxed by increasing the feasible interval.

Safety Requirements. If, in contrast to the previous discussion, there is no need
for a balanced service, then at least a minimal headway d between any two of them
has to be ensured. In the easiest case, the lines are operated with the same type
of trains, and their running time is fixed. Then, we can sufficiently separate any
two lines by introducing constraints much similar to the above ones, having feasible
interval [d, T−d]T . These can be inserted either at the beginning or at the end of their
common track. More sophisticated constellations, in particular involving different
speeds of the trains, will be discussed in Section 3.2.

But two trains may also use the same track in opposite directions. This is in particular
the case for single tracks, see Figure 4 (a). Obviously, a train may not enter the single
track until the train of the opposite direction has left it. In Figure 4 (b), we give
one of the visualizations of timetables which are extremely useful in particular for
single tracks. We assume a fixed local signaling, and the grey boxes visualize the
time a train blocks a certain part of the track. Surprisingly, there is only one single
constraint needed to prevent two trains of opposite directions from colliding within
the single track, as can be seen in Figure 4 (c).

Note that we have not cared about any buffer times and blocking times when
setting the feasible interval to [0, T − ((a1 − d1) + (a2 − d2))]T . If, for example,
time d2 was the earliest possible departure time respecting the above buffers after an
arrival at time a1, and if we assume the same minimal crossing time for Abzw. Gum-
mersbacher Straße, the appropriate constraint would have been

[d2 − a1, T − ((a1 − d1) + (a2 − d2) + (d2 − a1))]T = [d2 − a1, T − (a2 − d1)]T .

Again, if there are several lines that have to be scheduled on a single track, one
constraint for every unordered pair of opposite directions is needed.

Some authors ([10]) consider situations at crossings, where trains are shortly using
the track of the opposite direction (cf. Figure 5), as another modeling feature. But
if the network is blown up such that Abzw. Gummersbacher Straße splits into a
northern station and a southern station which are linked by an eastern and a western
track, this is just a special case of single tracks.

3.2 More Sophisticated Requirements

Whereas the practical requirements discussed in the previous section might arise in
almost every railway network, the following aspects are of a more specialized nature.



The Modeling Power of the PESP 9

Köln−Deutz

Abzw. Gummersbacher Str.

High−speed−track (Frankfurt)

KKDZ

Abz
w. G

.

0

T

d1

a1

d2

a2

T + d1 [`a, ua]

[a1 − d1, a1 − d1]

[a2 − d2, a2 − d2]

[0, T − ((a1 − d1) + (a2 − d2))]

K öln-Deutz (KKDZ)

Fig. 4. Modeling single tracks: (a) a single track south of Köln-Deutz; (b) visualization of a
feasible timetable for that single track; (c) PESP constraints ensuring safety distance for single
track
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Köln−Deutz

Abzw. Gummersbacher Str.

Fig. 5. Crossing of track of the opposite direction south of Köln-Deutz

Fixed Events. When planning a timetable hierarchically, e.g. from international
trains down to local trains, one has to consider the fixed settings of previous hi-
erarchies without replanning their times. Hence, the capability to fix an event to a
certain point of time is another important modeling feature.

Fortunately, due to the periodic nature of the PESP, we may shift every feasi-
ble timetable such that a fixed event i0 is fixed to a desired point in time t0 ∈
[0, T ), i.e. πi0 = t0, and the objective value remains unchanged. By defining one
of the events to be fixed as a kind of “anchor” event, we can easily relate the other
events ij to be fixed to certain points of time tj by introducing arcs aj = (i0, ij)
with `aj

= uaj
= tj − t0.

Bundling of Lines. Hierarchical planning gives rise to an even more challenging
aspect of timetabling. Notice that if a track is used by trains of different speeds,
the capacity of that track depends significantly on the ordering of the trains. The
first two parts of Figure 6 visualize this effect. In the first scenario, slow and fast
trains alternate, which implies that only two hourly lines of the two train types can
be scheduled. However, if lines are bundled with respect to their speeds, three lines
of the same two types of trains can be scheduled on the same infrastructure, cf. Fi-
gure 6 (b).

On the one hand, when only planning the high-speed lines in the first step of a
hierarchical approach, it may happen that decisions on a higher level result in infea-
sibility on a lower level. On the other hand, hierarchical decomposition might have
been chosen because an overall planning was considered to be too complex.

In order to keep the advantage of decomposition but limit the risk of infeasibility
on lower levels, we propose to only bundle the lines of the current level of hierarchy.
Figure 6 (c) gives the complete set of lines which should be operated on the track
in question. In Figure 6 (d), we provide the PESP graph for the ICE/IC network.
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10:40

KKDZ

KD

10:00

10:20

11:00

11:20

10:40

KKDZ

KD

10:00

10:20

11:00

11:20

ICE/IC

RE/RB
Düsseldorf

Köln−Deutz
(KKDZ)

artifi cial
event

[0, 24]

[`a, ua]

KKDZ

Fig. 6. Bundling of lines: (a) poor capacity if slow and fast trains are alternating; (b) increase
of capacity by bundling trains of the same type; (c) complete line plan for all the types of lines;
(d) PESP constraints ensuring enough capacity for RE/RB lines already when planning only
ICE/IC lines within the fi rst step of a hierarchical planning
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To bundle the three active lines, we introduce an artificial event and require each of
the departure events to be sufficiently close to that artificial event. Obviously, the
departure events will be close to each other as well.

Notice that we must not choose one of the existing events as “anchor”, because
this would predict the corresponding line to be the head of the sequence of bundled
lines. This must definitively be avoided, because — contrary to assumptions made
by Krista [10] — the ordering of lines is indeed a major result of timetabling.

Train Coupling/Train Sharing. During the last decade, in railway passenger traffic
a trend emerged towards train units which can easily be coupled and shared. Doing
so, more direct connections can be offered without increasing the capacity of some
bottleneck tracks.

In Figure 7 (a), we display a line which is operated by two coupled train units
between Berlin and Hamm. They split in Hamm to serve the two major routes of the
Ruhr area, hereby offering direct connections from Berlin to the most important cities
of that region. Still, this line occupies in particular the high-speed track between
Berlin and Hannover only once per hour.

In Figure 7 (b), we provide PESP constraints which ensure the time for splitting
the two train units in Hamm to be at least five minutes. Furthermore, for the two

Berlin
Hamm

Köln−Deutz

Köln/Bonn−Airport
Bonn Hbf

[5, 12]

[5, 12]
[4, 56]

[`a, ua]

Hamm

Fig. 7. Modeling train sharing: (a) line plan for line Berlin-Hamm-{Bonn Hbf |Köln/Bonn-
Airport}; (b) PESP constraints ensuring safety distance and time to split train units, but not
specifying the ordering of departures

departing trains, a safety distance of four minutes is guaranteed. Notice that we do
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not need to specify which train should leave Hamm first. This decision will be made
implicitly, and in an optimized way, by the PESP solver.

Variable Trip Times. As long as trip times are fixed, a usual safety constraint pre-
vents two identical trains from overtaking each other. With d being the minimal head-
way for the track, we put an arc with feasible interval [d, T − d]T between the two
events of entering the common track. If the line at the tail of the constraints is by
f time units faster than the line at the tail of the constraints, overtaking can be pre-
vented by modifying the constraint to [d+ f, T − d]T . This can be understood easily
by having again a look at the corresponding situation in Figure 6 (a).

But this is no longer guaranteed if the model includes variable trip times. Even
ensuring the minimal headway at the end of the track, too, does no longer prevent
overtaking (even of trains of the same type) if the span in the trip times is at least
twice the safety distance d, i.e. ua − `a ≥ 2d. Schrijver and Steenbeek [23] and
Kroon and Peeters [11] tackle this phenomenon by adding extra constraints, and
hereby leave the PESP model.

In order to stay within the PESP model, we propose to subdivide3 an initial trip
arc into new smaller ones such that ua − `a < 2d for every new trip arc. For an
example, we refer to Figure 8, where bold arcs represent arcs of the spanning tree
for which we set pa = 0, cf. Lemma 1.

[r, r + d][r, r + d][r, r + d]

[r, r + d][r, r + d][r, r + d][3r, 3r + 3d]

[3r, 3r + 3d]

[d, T − d]

Fig. 8. Overtaking and variable trip times: (a) standard granularity does not prevent overtak-
ing; (b) fi ner granularity prevents overtaking

Although this might seem to expand the model, the approach behaves rather well.
More precisely, in every feasible timetable, the integer variables which we have to
introduce for our additional arcs are in fact fixed to zero. This can simply be seen by
applying the cycle inequalities (3) to any of the three squares in Figure 8 (b),

p =

⌈

1

T
(r + d − (T − d) − (r + d))

⌉

=

⌈

d − T

T

⌉

= 0,

p =

⌊

1

T
((r + d) + (T − d) − d − r)

⌋

=

⌊

T − d

T

⌋

= 0.

3 This approach has also been discussed with Peeters [22] some years ago.
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Notice that the corresponding bounds for the initial formulation are only -1 and 1.
But this is very natural, because there are three different types of timetables possible,
of which we have to cut off two. The value one, for instance, models the fact that the
second (lower) train is overtaking the first (upper) train.

Although we showed that the inconveniences caused by flexible running times
can be overcome, we will assume fixed running times throughout the remainder of
this paper.

3.3 General Modeling Capabilities

There are also important non-timetabling features which can be modeled by the
PESP in a very elegant way. The types of such constraints are disjunctive constraints
and soft constraints. Although they were originally introduced for their own sake,
they turn out to be very useful for even more specialized requirements, which we
were asked by practitioners to model.

Disjunctive Constraints. The feasible region of MIPs are commonly given as the
intersection of finitely many half-spaces, plus some integrality conditions. If disjunc-
tive constraints have to be modeled, usually artificial integer variables are introduced.
However, the PESP offers a much more elegant way.

When introducing the PESP, Serafini and Ukovich [24] already made the impor-
tant observation that the intersection of two PESP constraints is not always again a
single PESP constraint. Rather, the feasible interval for a tension variable can be-
come the union of two PESP constraints, e.g.

πj − πi ∈ [`1, u1]T ∩ [`2, u2]T ⇔ πj − πi ∈ [`1, u2]T ∪ [`2, u1]T .

We illustrate their observation in Figure 9. Nachtigall [18] observed that any union

[`1, u1]T

[`2, u2]T

T/0

`1

u2`2

u1

Fig. 9. Disjunctive constraints

of k PESP constraints can be formulated as the intersection of at most k PESP con-
straints.

As an immediate practical application of disjunctive constraints, we consider op-
tional operational stops. Long single tracks with no stop may cause the timetable of
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a line to be fixed within only small tolerances. In such a situation, Deutsche Bahn AG
considers the option of letting the ICE/IC trains of one direction stop somewhere, al-
though there is no ICE/IC station. In the current timetable, this takes places on the
line between Stuttgart and Zurich, at Epfendorf.

If we want periodic timetable optimization to be competitive, we should enable
the PESP to introduce an additional stop as well. We do so by introducing a pair of
disjunctive constraints. The first constraint is a usual stop arc a1. We set the lower
bound `a1

to zero, which models the option of not introducing an additional stop.
The upper bound ua1

will be set to the sum of the minimal increase b of travel time
occurring from braking and accelerating, plus the maximal amount of stopping time s

at the station. Obviously, the effected increase xa of travel time must fulfill

xa ∈ {0}T ∪ [b, b + s]T ,

which, of course, is nothing but a disjunctive constraint. Notice that additional wait-
ing time should be penalized in this situation similarly to an extension of a regular
service stop.

Obviously, the introduction of an additional stop can also be due to the con-
struction of a new station. Since such decisions are a part of network planning, we
postpone this discussion until section 5.3.

Soft Constraints. Nachtigall [20] investigated the combination of two antiparallel
arcs a1 = (i, j) and a2 = (j, i). If they have an identical coefficient in the objective
function, as well as upper bounds uai

= `ai
+T−1, then they model a soft constraint.

Classically, if a certain tension value xa does not satisfy a given PESP con-
straint [`a, ua]T , one would declare the complete timetable as infeasible. But some-
times, it can be an alternative only to produce a significant penalty in the objective
function, if a constraint is not satisfied.

To that end, we relax the upper bound of the original constraint to ` + T − 1 and
introduce a new antiparallel arc with feasible interval according to Figure 10. Then,

[`, ` + T )T

[−u, T − u)T

T` u x

P

objective

M · (u − `)

M · (u − ` + T )

Fig. 10. Soft constraints

these two constraints yield a piecewise constant behavior of the objective function,
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which serves as an indicator for the violation of the original constraint, but without
guaranteeing feasibility.

In our cooperation with Berlin Underground, we were asked to construct a timetable
that, among the top 50 most important connections, maximizes the number con-
nections having a waiting time at most five minutes. Obviously, soft constraints are
well-suited for letting MIP solvers produce a timetable being optimal subject to this
kind of objective function.

4 Timetabling Requirements Not Covered by the PESP

Although the most important practical requirements for a periodic timetable can be
modeled within the PESP, we are still aware of some special features for which the
PESP fails.

First, one may think of situations, in which it is not fixed which trains will be
operated on which track, for example within stations. Consider a station having two
tracks in the same direction and three lines serving that direction. Then, we can-
not decide a priori, which pair of lines shall be within the station at the same time,
hence omitting the sequencing constraint between these two lines. This observation
is the motivation for the DONS system to be subdivided into CADANS, covering the
timetabling step, and STATIONS, covering the routing aspect ([6]).

Apart from this rather important requirement, which unfortunately is simply out
of scope for the PESP, we will analyze a very special situation in more detail. Finally,
we will introduce the important notion of symmetry. On the one hand, symmetry
slightly exceeds the original PESP, but on the other hand, when added explicitly,
gives rise to a mechanism to include important aspects of line planning into the very
same planning step as periodic timetabling and vehicle scheduling.

4.1 Balanced Reduction of Service

The Berlin fast train company (S-Bahn Berlin GmbH) aims at operating only one
timetable for one whole day. The late evening service differs from the rush hour
only in that some trains are omitted. Hence, the timetable must respect the available
capacity during the rush hour, and it has to offer a balanced service in the late evening
as well.

To sidestep an intraday change of the timetable structure could seem strange
considering all the information technology available in the 21st century. But it is still
the policy of the company. It is given as a motivation that customers really expect to
have only one single timetable to be kept in mind for their station.

Consider the approximately 10 km long track from Zoo station to Berlin East
station. On it, a minimal headway of 2.5 minutes has to be respected. The period time
is 20 minutes and eight lines (having identical train types) per period and direction
have to be scheduled, one of them being only a free slot for occasional non-passenger
trips. In the late evening service, there are four trains every 20 minutes, two of them
being fixed to a 10 minutes time lag. We call these lines core-lines.
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Of course it would be ideal to have a five minutes time lag between two con-
secutive trains in the evening. But this is impossible because for one of the evening
trains it is required to serve Potsdam every 10 minutes together with a rush hour
train. Hence, one should ensure that the maximal time lag between two consecutive
trains does not exceed 7.5 minutes.

But this simple requirement cannot be covered by the PESP. Consider the two
types of timetables given in Table 1. Timetables of type 1 satisfy our requirement,

Timetable Departure times (T = 20 minutes)
Type 1 0.0 – – 7.5 10.0 12.5 – – (20.0)
Type 2 0.0 2.5 – 7.5 10.0 – – – (20.0)

Table 1. Timetables

but type 2 does not.

Proposition 1. For every set of PESP constraints either timetables of both types are
feasible, or timetables of both types are infeasible.

Proof. There are two types of constraints to be analyzed:

i. one constraint between the two non-core lines,
ii. four constraints between one of the two core lines and one of the two non-core

lines.

Since we must not specify the sequence of the lines in advance, only symmetric
constraints [`, T − `]T make sense. Moreover, all constraints of type (ii) have to be
identical for the same reason.

To guarantee feasibility of type 1 timetables, we deduce ` ≤ 5 for the constraint
of type (i) and ` ≤ 2.5 for the constraints of type (ii). But then, timetables of type 2
stay feasible as well. Hence, in order to cut off timetables of type 2, we have to
increment one of the given bounds. But since they are obviously tight, this would
immediately cut off timetables of type 1 as well. ut

4.2 Symmetry of a Periodic Timetable

Throughout our discussion of symmetry, we will assume that for every directed line
there exists another directed line serving the same stations just in opposite order.
Moreover, the concept of symmetry makes only sense, if for every traffic line, the
running and stopping of its two opposite directions are the same. Furthermore, the
passenger flow is assumed to be symmetric.

A periodic railway timetable is called symmetric, if at time 0 every train in the
network meets a train of the opposite direction of its line. Large parts of the timeta-
bles of central European countries, such as Germany and Switzerland, are sym-
metric within only small tolerances, see Figure 11 for an example. For instance in
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Station/Stop Date Time Platform Products Comments

Berlin Zoologischer Garten 05.06.03 dep 09:54 4 ICE 952 InterCityExpress
BordRestaurantWolfsburg dep 10:54

Hannover Hbf dep 11:31
Bielefeld Hbf dep 12:24
Hamm(Westf) dep 12:54
Hagen Hbf dep 13:25
Wuppertal Hbf dep 13:42
Köln-Deutz dep 14:11
Köln Hbf 05.06.03 arr 14:14 6

Köln Hbf 05.06.03 dep 15:13 8 ICE 14 InterCityExpress
Onboard meeting placeAachen Hbf dep 15:52

Aachen Süd(Gr)
Liege-Guillemins
Bruxelles-Midi 05.06.03 arr 17:46

Duration: 7:52; runs daily

All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03 [5.00.DB.4.5/v4.05.p0.13_data:59e79704]

Station/Stop Date Time Platform Products Comments

Bruxelles-Midi 05.06.03 dep 12:16 ICE 15 InterCityExpress
Onboard meeting placeLiege-Guillemins dep 13:28

Aachen Süd(Gr)
Aachen Hbf dep 14:10
Köln Hbf 05.06.03 arr 14:46 3

Köln Hbf 05.06.03 dep 15:47 2 ICE 953 InterCityExpress
BordRestaurantKöln-Deutz dep 15:51

Wuppertal Hbf dep 16:17
Hagen Hbf dep 16:35
Hamm(Westf) dep 17:10
Bielefeld Hbf dep 17:37
Hannover Hbf dep 18:31
Wolfsburg dep 19:05
Berlin Zoologischer Garten 05.06.03 arr 20:02 1

Duration: 7:46; runs Mo - Fr, not 29. May, 9. Jun, 21. Jul, 15. Aug, 11. Nov
Hint: Prolonged stop

All information is issued without liability. Software/Data: HAFAS 5.00.DB.4.5 - 20.05.03 [5.00.DB.4.5/v4.05.p0.13_data:59e79704]

Fig. 11. Symmetric timetables in practice

Köln-Deutz, the train from Berlin arrives at minute 09, which is two minutes before
its departure at minute 11. The opposite direction leaves Köln-Deutz at minute 51.
Hence, they sum up to zero, modulo the period time of sixty minutes. Notice that
this line has one of its meeting points at minute 00 between Köln-Deutz and Wup-
pertal Hbf.

For the arrival or departure event of a directed line at a certain station, we denote
by its complementary event the departure or arrival, resp., of the opposite line at
the same station. Trivially, under the assumptions made, symmetry is equivalent to
the fact that the times π ∈ [0, T ) assigned to two complementary events sum up to
either 0 or the period time T .

Here, one can think of time 0 as a symmetry axis. But of course, other symmetry
axes are possible. Since trains of the two opposite directions of the same traffic line
meet each other twice within their period time T , for the symmetry axis s we have
w.l.o.g s ∈ [0, T

2 ). In this more general case, symmetry is fulfilled, if

(πa + πd) mod T

2
= s. (4)
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Anyway, for ease of notation we assume s = 0 throughout this article.
To define a counterpart of condition (4) for the tension formulations (1), we de-

fine two antiparallel arcs a = (i, j) and b = (j, i) to be complementary, if events i

and j are complementary and we have `a = `b and ua = ub. We then consider the
following simple condition on their slack variables

x̃a = x̃b. (5)

Trivially, if ensured for every complementary pair of nodes or arcs, respectively,
the two conditions (4) and (5) are equivalent, except that only the node formulation
explicitly fixes the symmetry axis of the system to a specific point of time. Surely,
one can introduce a certain tolerance ∆ on the symmetry requirement. But notice
that in this case, condition (5) has to be blown up by a new integer variable.

If the line plan of a traffic network is connected, then we are able to give a more
compact characterization of symmetry. Given that complementary stopping activities
show identical extensions of their minimal stopping times, then a periodic timetable
is symmetric, if and only if for every pair of complementary connections, these have
identical changeover times.

Some practitioners consider this property to be an important advantage of sym-
metric timetables. Even though this might depend on personal preferences, we do
not consider this really to be a striking argument for symmetry. Actually, there are
examples which prove that symmetric timetables are only suboptimal, even if the
input data is symmetric ([13]).

Apparently there are not yet many discussions on symmetric timetables available.
But among further motivations for symmetry, as they can be found in Liebchen [13],
the most convincing one seems to be that symmetry halves the complexity of an in-
stance. This can in particular be useful if there are complex interfaces to international
trains or to regional traffic, and when planning is performed manually. However, this
argument should become less important in the future, as PESP solvers hopefully
achieve some more progress in performance, and hence find their way into practice.

Let us finally mention, that it is unlikely to integrate symmetry requirements into
the PESP framework ([13]). Rather, we will have to add constraints of type 5 to the
MIP formulations of a PESP instance. Nevertheless, in particular when designing
periodic timetables for national railway companies, the symmetry requirement has
to be ensured, because we made the experience that it is really a knockout criterion
there.

Hence, besides a linear objective function, symmetry is the second important
requirement arising in the practice of periodic railway timetabling, by which the
initial PESP model should be extended. Fortunately, MIP solvers are able to profit
from the addition of symmetry constraints, in particular in formulation (5) ([13]).
Notice that such a generalized MIP model inherits large parts of the structure of a
pure PESP model. In particular, the important cycle inequalities (3) remain valid.
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5 Further Planning Steps Covered by the PESP

In the following, we will demonstrate that the modeling capabilities of the PESP are
not limited only to periodic timetabling. Rather, central aspects of both preceeding
and succeeding planning steps in the sense of Figure 1 can be integrated.

We start this discussion with the well-established technique of minimizing the
number of vehicles required to operate a periodic timetable by penalizing waiting
times of vehicles. Hereafter, we provide first ideas for the integration of important
decisions of line planning. We close this section by proposing a way to model some
specialized decisions as they arise in network planning.

5.1 Aspects of Vehicle Scheduling

Almost all companies in public transportation have in common that they want to
minimize the amount of rolling stock required to serve their network. Notice that the
quality of the vehicle schedule for a fully periodic timetable, i.e. with no peak trips
included, is largely determined by the timetable.

Consider for example the hourly line displayed in Figure 12 (a). Assume the
minimal travel times between the two endpoints to be 235 minutes for each direction.
Given strict minimal turnover times of 45 and 60 minutes, respectively, the minimal
number of vehicles required to operate this line is precisely

N :=

⌈

1

60
(235 + 235 + 45 + 60)

⌉

= 10.

A timetable which lets the trains leave at the full hour from Frankfurt and Am-
sterdam can indeed be operated with only 10 trains, at least if the stopping times
are extended only moderately. On the contrary, a timetable in which only the trains
starting at Frankfurt depart at minute 00, but the trains from Amsterdam leave at
minute 30 will require at least 11 vehicles. Hence, the amount of vehicles depends
on the timetable.

We will analyze in which special cases pure PESP constraints are able to control
the number of trains required. After that, we show that a linear objective function
covers many more of the practical cases.

Proposition 2 (Nachtigall [18]). Consider a fixed traffic line with period time T . If
we assume trains always to serve only this line, and if we do not allow to insert addi-
tional stopping time, then there exist upper bounds u for the turnover activities, such
that the only feasible timetables are those which can be operated with the minimal
amount of trains.

Proof. We present a proof of this simple fact, both in order to provide the notation
used in the following paragraphs, and because it avoids modulo-notation.

Denote the endpoints of the line by A and B. Let `AB denote the minimal travel
time from A to B, i.e. the sum of the minimal stopping and running times of the
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activities of this directed traffic line. Moreover, denote by `B the minimal amount of
time a train has to stay in endpoint B between two consecutive trips.

The minimal number N of trains required to operate this line is precisely

N =

⌈

`AB + `B + `BA + `A

T

⌉

.

Notice that from the cycle periodicity property (2) we know that every feasible
timetable x fulfills

xAB + xB + xBA + xA = zT, (6)

for some z ∈ � . Hence, we must ensure z = N . To that end, consider the slack

s := NT − (`AB + `B + `BA + `A)

of this traffic line, implying (xA − `A)+(xB − `B) = s. But since s < T , by setting

uA := `A + s (7)

we even ensure xAB + xB + xBA + xA < (N + 1)T , q.e.d. ut

Let us now analyze the case in which additional stopping times may be inserted,
i.e. uAB > `AB . We will show that together with the constraints (7), some timetables
which require an additional train may become feasible.

On the one hand, consider a timetable for which we have x ≡ ` for all activities,
except for the turnover time in one endpoint. Obviously, this timetable can still be
operated with the minimal number of trains, showing that decreasing the value (7)
for uA would cut off timetables we seek for.

On the other hand, assume xAB = uAB and xBA = uBA. If

(uAB − `AB) + (uBA − `BA) + s ≥ T, (8)

then we can extend x to a timetable that still respects (7), but which requires at
least one additional train. For instance, if inequality (8) is tight, then x ≡ u yields
xAB + xB + xBA + xA = (N + 1)T .

The above dilemma is our main motivation for the need of a linear objective function.
Such a function takes advantage of equation (6): By assigning a value M to the arcs
modeling a traffic line, every additional train pays M · T to the objective function
value. Of course, if suffices to consider arcs with positive span, cf. Figure 12 (b). If
the value for M is chosen relatively large compared to the passenger weights, the
objective function essentially models the piecewise constant behavior of the cost of
the rolling stock for operating the railway network.

From a more local perspective, we just penalize idle time of trains. But this can
even be done without knowing a priori the circulation plan of the trains. Although
an exact model involves a quadratic objective function, Liebchen and Peeters [15]
report that a simple linear relaxation yields results of high quality.
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Amsterdam

Frankfurt

Utrecht

Duisburg

Köln−Deutz

K öln-Deutz

Duisburg

Utrecht

[`a, ua], wa

[3, 8], M

[2, 5], M

[2, 5], M

[45, 164], M

[2, 5], M

[2, 5], M

[3, 8], M

[60, 179], M

Fig. 12. Modeling aspects of vehicle scheduling: (a) line plan; (b) PESP constraints measuring
the number of trains required to operate the line

5.2 Aspects of Line Planning

Our main idea for letting PESP solvers even take decisions of line planning is to
combine — or match — pre-defined line-segments. To that end, we will make in-
tensive use of disjunctive constraints. Unfortunately, we will only be able to ensure
symmetric line plans if we require symmetry also within the stations where lines are
matched.

We are aware of only one other approach for integrating the planning phases of
line planning, timetabling and vehicle scheduling ([25]). Whereas that approach is
based on the assumption that the line plan contains no cycles, our ideas do not require
any restrictive assumptions on the topology of the network. Rather, we are able to
keep even very important technical restrictions such as single tracks.

Notice that bad decisions at the level of line planning may cause very bad re-
sults also for vehicle scheduling. Consider the four line segments displayed in Fig-
ure 13. We assume a period time of T = 60 minutes and a minimal turnover time of
30 minutes at each of the four terminal stations. The time for a one-way trip from the
matching station to one of the endpoints is indicated at the corresponding edge.

In fact, the vehicle schedule is fixed due to the distinct endpoints. Combining the
south-west segment with the north-east segment causes this line to require at least

⌈

1

60
(60 + 95 + 30 + 95 + 60 + 30)

⌉

=

⌈

370

60

⌉

= 7 trains.

The other line of the same matching requires seven trains, too.
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95
matching

station

85
60

80

?

Fig. 13. Line segments where only one matching provides good vehicle schedules

In contrast, the other matching implies seven trains only for the northern line. But
the other line can be operated with only six trains. Hence, already the line plan has a
major impact on the cost of operation. Zwanefeld et al [5] consider this phenomenon
in their approach for constructing cost-optimal line plans.

However, they omit the important intermediate linking step of computing a
timetable. Therefore, their approach must also consider possible constellations in
which there is no feasible timetable using only six trains for the southern line. This
would be the case, if there was a single track with travel time 25 minutes for every
direction just at the end of the south-east segment. The same holds if it is required
that the two lines together form an exact half-hourly service along the backbone of
the network.

We consider a track which has to be served in the same direction by n directed lines
which are operated by trains of identical type. We denote the matching station by S.
It has to reside in between of the two endpoints of the common track. We consider
n line segments La

1 , . . . , L
a
n which have station S as their common endpoint, and

n line segments Ld
1, . . . , L

d
n having station S as their common starting point. Any

(bipartite) matching between the arriving and the departing line segments induces a
line plan.

But from the perspective of timetabling, there are only n arrival events a1, . . . , an

as well as n departure events d1, . . . , dn visible. Hence, we must deduce only from
their arrival times πai

and their departure times πdj
which arriving line segment La

i

should be matched with which departing line segment Ld
j .

This can be done in a canonic way, if we choose the matching station S such that
it has only one track in the direction of the line segments we consider. If necessary,
we add an artificial station in the middle of some track. Then, at most one train can
be in S at the same time. Timetables respecting this constraint can be characterized
very easily.

Definition 1 (Alternating timetable). For a fixed station S and a fixed direction,
a periodic timetable π with n pairwisely different arrival times 0 ≤ πa1

< · · · <

πan
< T and n pairwisely different departure times 0 ≤ πd1

< · · · < πdn
< T

is called alternating at S, if either πai
≤ πdi

< πai+1
for every i = 1, . . . , n, or

πdi
< πai

≤ πdi+1
for every i = 1, . . . , n, where we define π·n+1

:= π·1 + T .

Lemma 3. A timetable π ensures that there is always at most one train at station S

if and only if it is alternating at S.
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Hence, for an alternating periodic timetable, we will combine the arriving line seg-
ment La

i with the departing line segment Ld
j , if and only if the latter marks the unique

first possible departure. In the sequel, we will give PESP constraints ensuring every
feasible timetable to be alternating at S. Thus, every feasible timetable will encode
some unique matching and the associated line plan.

The first two sets of constraints will ensure the minimal headway d in front of
and behind the matching station S:

∀ i, j ∈ {1, . . . , n} : πaj
− πai

∈ [d, T − d]T , (9)

∀ i, j ∈ {1, . . . , n} : πdj
− πdi

∈ [d, T − d]T . (10)

Obviously, (9) and (10) can only be fulfilled, if 0 ≤ d ≤ T
n

. Moreover, we relate
arrival events to departure events by the following disjunctive constraints

∀ i, j ∈ {1, . . . , n} : πdj
− πai

∈ [0, T − d + h]T , (11)

∀ i, j ∈ {1, . . . , n} : πdj
− πai

∈ [d, T + h]T , (12)

where we denote by h the maximal stopping time for a train at station S. Notice that
constraints (11) and (12) together yield

(πdj
− πai

) mod T ∈ [0, h] ∪̇ [d, T − d + h]. (13)

Trivially, 0 ≤ h < d is necessary for every feasible timetable π to be alternating
at S.

Theorem 2. Let π be a timetable respecting constraints (9) to (12). Then for every
departure event j, there exists a unique arrival event ai satisfying

πdj
− πai

∈ [0, h]T , (14)

if and only if h < (n + 1)d − T .

Notice that from h < (n + 1)d − T and d ≤ T
n+1 it would follow that h < 0, which

makes no sense. Hence, we have 0 ≤ h < d and T
n+1 < d ≤ T

n
.

Proof. “⇒”: We assume h ≥ (n + 1)d − T . Since d = T
n

would imply h ≥ d,
we must only investigate the case that d < T

n
. We will construct a timetable which

respects the constraints (9) to (12), but which contradicts (14).
Define πai

:= (i−1)d, for all i = 1, . . . , n, and πdj
:= j ·d, for all j = 1, . . . , n.

By construction, all the constraints are satisfied. However, since πan
+ h < n · d =

πdn
, for departure πdn

none of the arrival events fulfills (14), q.e.d.
“⇐”: We assume there exists a timetable π having one departure event d 0 such

that
∀ i = 1, . . . , n : (πd0

− πai
) mod T > h,

but which respects the constraints (9) to (12). We may assume w.l.o.g. that for the
cyclic predecessor arrival a1 of d0 we have πa1

= 0. As π is feasible, it satisfies (13).
From our assumption, we conclude d ≤ πd0

and πd0
+ (d − h) ≤ πa2

, and hence
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πa2
− πa1

≥ 2d − h. By defining πan+1
:= T , we have πai+1

− πai
≥ d, for

all i = 2, . . . , n. By construction, we know that

n
∑

i=1

(πai+1
− πai

) = πan+1
− πa1

= T.

Summing up the lower bounds yields T ≥ (n + 1)d − h, which contradicts the
hypothesis of Theorem 2. ut

Corollary 1. If h < (n + 1)d − T , then every timetable which respects constraints
(9) to (12) is an alternating timetable.

In Figure 14, we provide an example for the easiest case, namely matching two
lines. As usual, we assume the period time to be 60 minutes.

Amsterdam

Dortmund

Basel

Stuttgart

Duisburg

Mannheim

Köln−Deutz?

K öln-Deutz
[22, 38]

[3, 5]

[0, 43]

[22, 65]

[`a, ua]

Fig. 14. Modeling aspects of line planning: (a) line segments; (b) PESP constraints ensuring
the segments to be matched

Remark 1. There are of course alternating periodic timetables in the case d ≤ T
n+1 .

PESP solvers are able to detect even those, if we were able to pre-define sufficiently
many empty slots. By an “empty slot”we understand an artificial line which we have
to schedule in the same way as the original lines, hereby separating the lines before
and after the empty slot.

In more detail, let us assume that T
n∗+1 < d ≤ T

n∗
for some n∗ > n, and

that h satisfies the assumptions of Theorem 2 for n∗. We then introduce n∗ − n

artificial dummy arrival and departure events ai and di, i = n+1, . . . , n∗. To prevent



26 C. Liebchen, R.H. Möhring

the original line segments from being matched with an artificial event, we require
πdi

− πai
∈ [0, h] for all i = n + 1, . . . , n∗.

By construction, the only feasible timetables will let the original arrivals and
departures alternate. However, optimally balanced timetables, i.e. πai

:= (i − 1)T
n

,
will be infeasible under these settings if n∗ < 2n, since they do not provide n∗ − n

empty slots.

Recall that so far we have considered only one direction. Hence, there is no mech-
anism yet to bind the matching of one direction to that of the opposite direction. But
the matchings of opposite directions must fulfill the symmetry assumption that we
gave at the beginning of section 4.2. Otherwise, the trains from direction A could
pass the matching station S in order to continue towards B, but the trains from B

pass S before continuing in direction C. Thus, it would not be possible to commu-
nicate the line plan in the way customers are used to, because it may no more be
visualized by an undirected graph. However, limited asymmetries in operation are
accepted in practice.

Example 1 (S-Bahn Berlin GmbH). We consider the line S2 serving the route Blan-
kenfelde-Lichtenrade-Buch-Bernau. Between Lichtenrade and Buch, a 10 minutes
frequency must be offered, for the remaining parts 20 minutes suffice.

In the current timetable ([1]), this line is served in an asymmetric way. In order
to cope with the single tracks (which are present at both endpoints) to limit the total
amount of stopping time, and to ensure an efficient employment of the rolling stock,
an asymmetric service is offered, and we present it in table 2.

Blankenfelde dep | 10:09 | arr o 11:14 |
Lichtenrade dep ↓ 10:15 10:25 arr o 11:05 11:15
Buch arr o 11:06 11:16 dep ↑ 10:14 10:24
Bernau arr o 11:21 | dep | | 10:10

Table 2. Asymmetric service of line S2 (Berlin)

In order to ensure symmetric line plans, we have to guarantee the following con-
dition. If we combine the arrival event ai with the departure event dj in one direction,
then in the opposite direction the complementary arrival event a′

j must be combined
with the departure event d′

i. More precisely, when considering the corresponding
tension variables xaidj

and xa′

j
d′

i
, they must fulfill

xaidj
∈ [0, h] ⇔ xa′

j
d′

i
∈ [0, h]. (15)

Of course, this condition is quite similar to the symmetry constraints (5). What
makes things more complicated is the fact that we must not predict in advance for
which pairs (i, j) requirement (15) has to hold, and for which pairs it may be vio-
lated. Hence, we propose to guarantee property (15) for the matched pairs by impos-
ing symmetry requirements on every pair of complementary junctions. But it is clear
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that this approach cuts off feasible timetables for symmetric line plans just because
such timetables need not to be symmetric, see e.g. example 2.

Example 2 (S-Bahn Berlin GmbH). Consider the current timetable ([1]) of the ring
subnetwork of S-Bahn Berlin GmbH, of which we provide an excerpt in table 3.
Obviously, the line plan is symmetric. But the timetable is not symmetric. This can

Direction A
Line S45 S46 S8 S9 S47 S8
Origin BFHS BKW BGA BFHS BSPF BZN
Schöneweide dep ↓ xx:01 xx:06 xx:10 xx:13 xx:15 xx:18
Baumschulenweg arr o xx:03 xx:09 xx:13 xx:16 xx:17 xx:21
Destination BHMS BGS BPKR BZOO BWES BPKR

Direction B
Line S8 S46 S9 S47 S8 S45
Origin BPKR BGS BZOO BWES BPKR BHMS
Baumschulenweg dep ↓ xx:02 xx:06 xx:08 xx:13 xx:14 xx:19
Schöneweide arr o xx:05 xx:08 xx:10 xx:15 xx:17 xx:21
Destination BGA BKW BFHS BSPF BZN BFHS

Table 3. Symmetric line plan but asymmetric timetable

be seen by calculating the symmetry axes of lines S47 and S9 at station Schöneweide.
Departure and arrival of line S47 sum up to 30, hence the trains of this line meet at
times 5 and 15. For line S9 the sum yields 23, providing a symmetry axis of 1.5. An
easier argument for asymmetry is that the sequence of the trains in direction B is not
the inverse of the one in direction A.

There are two main objectives for the matching approach. First, we want to offer
direct trips for as many passengers as possible. Second, the timetable should require
only few trains for operation.

For the second criterion, in the case h = 0, no additional weight on arcs within
the matching node is required in order to minimize the amount of rolling stock re-
quired to operate the timetable. In the case h > 0, one could put the vehicle weight
on the arcs with feasible interval [0, T − d + h]. But this would no longer yield
the desired exact piecewise-constant behavior of the objective, because some double
counting can appear.

For maximizing the number of direct travelers, we consider the number of pas-
sengers wij starting their trip before the common track on a train covering line seg-
ment La

i , and finishing their trip after the common endpoint on a train covering line
segment Ld

j . The value wij will be added to the weight of the arc a = (ai, dj)
with `a = 0 and ua = [0, T −d+h]. Obviously, the resulting cost coefficients in the
objective function make even sense for pairs of line segments which are not matched,
because in that case long changeover times of many passengers are penalized.
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Notice that the values wij are only well-defined if the two line segments do not
serve a second matching station. This shows that the decisions to be taken within a
matching station are of a rather local nature.

Summarizing, there are important scenarios in which the PESP can successfully inte-
grate relevant aspects of line planning into a model suited for timetabling and key is-
sues of vehicle scheduling. This is in particular the case, if symmetric timetables and
balanced sequences along the common tracks, i.e. d > T

n+1 , are requested for their
own sake. Moreover, we observed that the larger the distance between two matching
stations, the more reliable the passenger cost coefficient obtained with the weights
we propose.

We think that in particular fast train networks of European agglomerations, such
as Frankfurt, Munich, or Paris (RER), should be interesting candidates for this ap-
proach. There, many passengers might have their origin or destination somewhere on
the backbone route, and balanced sequences must be ensured due to the large number
of lines per period.

5.3 Aspects of Network Planning

We propose to also model two questions which arise in network planning within
the PESP: the extension of existing tracks, and thus lines, beyond their current end-
points, and the construction of faster tracks as substitution for existing ones. Taking
into account that, in these questions, we have to select one option out of a small
number of disjoint options, it is evident that we will make intensive use of disjunc-
tive constraints. We will only discuss the construction of faster tracks in detail. But
the reader will have no difficulty to adapt our suggestions to the very similar task of
the extension of tracks.

In Figure 15, we provide a constraint graph which offers the option of a new track
between Aachen and Köln, being then part of the European high-speed line PBK (Pa-
ris-Brussels-Köln). Notice that we have to take into account three different types of
objectives: The number of customers c who profit from a new track by shorter travel
times, the trains whose shorter travel times may reduce the number of trains required,
and the cost M ′ of the investment. Obviously, it will be an absolutely non-trivial
management decision to derive an hourly cost coefficient M ′ from the total cost of
the investment.

Similarly to line planning, investments into infrastructure will only make sense
if they are effected for both directions at the same time. Again, we will ensure sym-
metric investments by requiring the timetable to be symmetric.

Let us now analyze the situation in which several lines have the option of using the
same new, faster track. Of course, we want to ensure that infrastructure is only paid
once in terms of the objective function. Hence, we have to partition the total cost
onto all of the concerned lines. But what if a PESP solver decides to route only one
line over the new track?

Obviously, a reasonable allocation of the total costs is only possible, if we know
in advance how many lines will have to use the new track. Unfortunately, we are only
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Köln−Deutz

Köln

Hbf
Aachen Hbf

high−speed track
optional

K öln-Deutz

existing tracks

optional tracks

[21, 21], 0

[2, 2], 0

[15, 15], 0

[26, 38], M + c

[38, 86], M ′

[`a, ua], wa

Fig. 15. Modeling aspects of network planning: (a) infrastructure including optional high-
speed track; (b) PESP constraints taking into account the two infrastructural alternatives

able to ensure this with constraints of the types already introduced, if all the lines
must use the same track. This would e.g. be the case when analyzing two mutually
exclusive variants of constructing a new track.

We can guarantee that all the lines use the same track simply by enforcing the
same running time for each line. This is achieved by introducing constraints of
type (5). But notice that in this case we cheat a bit, because those constraints no
longer relate only pairs of complementary arcs to each other. . . Anyway, the MIP
formulation of this even slightly more extended model incorporates many of the
computational aspects of the pure PESP model.

6 Conclusion

Our discussion of the PESP model shows that it has a great modeling power and ex-
tendability. We have demonstrated that many non-standard requirements for periodic
timetables and also important aspects of other – traditionally separate – planning
phases can be integrated into the PESP. Figure 16 displays the gain by this modeling
power over the traditional use of the PESP displayed in Figure 1.

Interestingly, this integration into the PESP has been possible without seemingly
complicating it too much. In all cases, we obtained mixed integer programs that still
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Network Planning

Line Planning

Timetabling

Vehicle Scheduling

Crew Scheduling

PESP model

Fig. 16. Planning phases covered by the PESP with our contribution

have the characteristics of a PESP. Hence we believe that these extended models
stay computationally tractable also for networks of relevant sizes. So far, our belief
is confirmed by a confidential study for S-Bahn Berlin GmbH for two of its three
major subnetworks.

We therefore hope that these models, through their integrative approach to vehi-
cle scheduling, timetabling, line planning, and infrastructure planning, will eventu-
ally lead to better decision making in practice.
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2003/42 Marco E. Lübbecke: Dual Variable Based Fathoming in Dynamic Programs
for Column Generation
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