How to Whack Moles*

Sven O. Krumke!**, Nicole Megow?, and Tjark Vredeveld®

! Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Department Optimization,
Takustr. 7, D-14195 Berlin-Dahlem, Germany.
{krumke,vredeveld}@zib.de
2 Technische Universitit Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany.
nmegow@math.tu-berlin.de

Abstract. In the classical whack-a-mole game moles that pop up at
certain locations must be whacked by means of a hammer before they
go under ground again. The goal is to maximize the number of moles
caught. This problem can be formulated as an online optimization prob-
lem: Requests (moles) appear over time at points in a metric space and
must be served (whacked) by a server (hammer) before their deadlines
(i-e., before they disappear). An online algorithm learns each request
only at its release time and must base its decisions on incomplete infor-
mation. We study the online whack-a-mole problem (WHAM) on the real
line and on the uniform metric space. While on the line no deterministic
algorithm can achieve a constant competitive ratio, we provide compet-
itive algorithms for the uniform metric space. Our online investigations
are complemented by complexity results for the offline problem.

1 Introduction

In the popular whack-a-mole game moles pop up at certain holes from under
ground and, after some time, disappear again. The player is equipped with a
hammer and her goal is to hit as many moles as possible while they are above
the ground. Clearly, from the viewpoint of the player this game is an online
optimization problem since the times and positions where moles will peek out
are not known in advance. She has to decide without knowledge of the future
which of the currently visible moles to whack and how to move the hammer into
a “promising” position. What is a good strategy for whacking moles (if there
exists any)? How much better could one perform if one had magical powers
and knew in advance where moles will show up? How hard is it to compute an
optimal solution offline? In this paper we investigate all of the above questions.

The whack-a-mole problem with popup duration T > 0 (WHAM7) can be
formulated in mathematical terms as follows: We are given a metric space M =
(X,d) with a distinguished origin 0 € X and a sequence o = (r1,...,7) of
requests. A server (hammer) moves on the metric space M at unit speed. It
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starts in the origin at time 0. Each request r; = (¢;,p;,n;) specifies a release
time t; and a point (hole) p; € X where n; moles pop up. A request r; is served
if the server reaches the point p; in the time interval [t;,t; + T']. We will refer
to t; + T as the deadline of the request. The goal is to whack as many moles as
possible. If no confusion can occur we write only WHAM instead of WHAM .
An online algorithm learns about the existence of a request only at its release
time. We evaluate the quality of online algorithms by competitive analysis [5],
which has become a standard yardstick to measure the performance. An algo-
rithm ALG for WHAM is called c-competitive if for any instance the number of
moles whacked by ALG is at least 1/c¢ times the number of moles caught by
an optimal offline algorithm OpPT. The first two of the questions raised above
amount to asking which competitive ratios are achievable by online algorithms.
In this paper we mainly study the WHAM on two different metric spaces: the
line and the uniform metric space. The line is the classical setup for the whack-
a-mole game. The motivation for studying the uniform metric space (a complete
graph with unit edge weights) is that “in practice” it does barely matter between
which points the hammer is moved: the main issue is whether the hammer is
moved (and to which point) or whether it remains at its current location.

Related work. The WHAM falls into the class of online dial-a-ride problems. In
an online dial-a-ride problem objects must be transported between points in
a metric space by a server of limited capacity. Transportation requests arrive
online, specifying the objects to be transported and the corresponding source and
destination. If for each request its source and destination coincide, the resulting
problem is usually referred to as the online traveling salesman problem (OLTSP).
The WHAM is the OLTSP with the objective to maximize the (weighted) number
of requests served before their deadlines.

The OLTSP has been studied for the objectives of minimizing the makespan
[1,2,7], the weighted sum of completion times [7,13], and the maximum/average
flow time [9,14]. Since dial-a-ride problems (where sources and destinations
need not coincide) can be viewed as generalizations of scheduling problems (see
e.g. [1]), lower bounds for scheduling problems carry over. In [3], Baruah et al.
show that no deterministic algorithm can achieve a constant competitive ra-
tio for the scheduling problem of maximizing the number of completed jobs.
Kalyanasundaram and Pruhs [11] show that for every instance at least one of
two deterministic algorithms is constant competitive, and thus they provide a
randomized algorithm which is constant competitive. However, it is not clear
whether and how their results carry over to the more general class of dial-a-ride
problems.

The WHAM has also been investigated in [10] under the name “dynamic
traveling repair problem”. The authors give two deterministic algorithms for
the WHAM7p in general metric spaces with competitive ratios that are formu-
lated in terms of the diameter of the metric space. Their ratios translated into
the notation used in this paper and restricted to the uniform metric space are

TB—TQ and 4 [TQ—Q] ({TQ—Q—I + 1), respectively. We improve these results in several



ways for the case of the uniform metric space. For instance, for popup duration
T = 2, our algorithm IWTM achieves a competitive ratio of 3, while the results
in [10] yield a ratio of 80. Moreover, for T = 1 our algorithms are the first
competitive ones, since the bounds of [10] cannot be applied. The paper [10]
also shows that there is a metric space in which no deterministic algorithm can
achieve a constant competitive ratio. We show that this results is already true
on the real line.

|P0pup durati0n|upper bound lower bound |

[1T/2) +T]
T>2 T €B 2
(see Figure 2)
1<T <2 2N 2
T=1 2 (for all ¢; integral) |2 (for all ¢; integral)
2N (for general t;)|2N (for general t;)

Table 1. Competitiveness results for the WHAM7 on the uniform metric space where
each mole stays T units of time above ground. Here, N denotes the maximum number
of moles (possibly stemming from different requests) that are peeking out of the same
hole, simultaneously, for a positive amount of time.

Our contribution. The contributions of this paper are twofold. First, we pro-
vide complexity results for the offline problem OFFLINE-WHAM. We derive a
dynamic program for the OFFLINE-WHAM on unweighted graphs with integral
release times and deadlines, which runs in time O(nm(T +m)(A +1)27), where
n is the number of nodes in the space, m denotes the number moles and A is
the maximum degree. The algorithm runs in polynomial time, if (A + 1)%7 is
bounded by a polynomial in the input size. We complement our solvability result
by NP-hardness results for some special cases of the OFFLINE-WHAM.

Our main contribution lies in the analysis of the online problem wHAM. We
show that no deterministic algorithm for the WHAM on the line can achieve
a constant competitive ratio. From the viewpoint of the whack-a-mole player,
the situation is much better on the uniform metric space. Our results for this
case are summarized in Table 1. In particular, we provide the first competitive
algorithm for short popup durations 7' = 1 and substantially decrease the known
competitive ratio for T' > 1. Our competitiveness results are complemented by
lower bounds on the competitive ratio of arbitrary deterministic algorithms.
The upper bounds hold against the most powerful adversary, whereas the lower
bounds are shown against the non-abusive adversary [14], which is the most
restricted adversary that we consider.

2 The complexity of offline whack-a-mole

In this section we investigate the complexity of the offline problem OFFLINE-
WHAM where all moles and their respective release dates are known in advance.



We first give a polynomial-time algorithm for a special class of the problem.
Then, we show that OFFLINE-WHAM is NP-hard on the line and on the star
graph. In this section we slightly diverge from the notation used for the online
problem in allowing more general deadlines d; > t; for the requests than just
dj =t; +T, where T' is the popup duration. In this more general context 7" will
denote the maximum popup duration of any mole.

2.1 When whacking is easy

We consider the following scenario: The metric space M = (X, d) has n points
and is induced by an undirected unweighted graph G = (V, E) with V = X i.e.,
for each pair of points from the metric space M we have that d(z,y) equals the
shortest path length in G between vertices x and y. We also assume that for
each mole the release date ¢t; > 1 and the deadline d; are integers.

Theorem 1. Suppose that the metric space is induced by an unweighted graph
of mazimum degree A. Then, the OFFLINE-WHAM with integral t; and d; can be
solved in time O(nm(T +m)(A + 1)*T), where T := maxi<j<m(dj — t;) is the
longest time a mole stays above the ground; n denotes the number of vertices in
the graph and m is the number of requests.

Proof. The time bound claimed is achieved by a simple dynamic programming
algorithm. Let 0 < t; < tg < -+ <ty with & < m be the (distinct) times where
moles show up. We set ¢y := 0.

The idea for a dynamic programming algorithm is the following: For each
relevant point ¢ in time and each vertex v € V we compute the maximum
number of moles caught subject to the constraint that at time ¢ we end up at v.
Essentially the only issue in the design of the algorithm is how one keeps track of
moles that have been whacked “on the way”. The key observation is that for any
time ¢ that we consider the only moles that need to be accounted for carefully
are those ones that have popped up in the time interval [t — T, t]. Any mole that
popped up before time ¢ — T will have disappeared at time ¢t anyway. This allows
us to use a limited memory of the past.

Given a vertex v, a history track is a sequence s = (v1,v2,...,05 = )
of vertices in G such that for ¢ = 1,...,k we have d(v;,v;41) = 1 whenever
v; # viy1. We define the time-span of the history track s to be d(s) = k.
The history track s encodes a route of starting at vertex v; at some time ¢,
walking along edges of the graph and ending up at v at time t + d(s) with the
interpretation if v; = v;11 we remain at vertex v; for a unit of time. Notice that
in an unweighted graph with maximum degree at most A, there are at most
(A + 1)L history tracks of length L € N ending at a specific vertex v.

Given the concept of a history track, the dynamic programming algorithm
is straightforward. For t € {to,...,tx}, v € V and all history tracks s, with
d(s) = min(t,T), ending in v at time ¢, we define M[t, v, s] to be the maximum
number of moles hit in any solution that starts in the origin at time 0, ends in v
at time ¢, and follows the history track s for the last d(s) units of time.



The values M [0, v, s] are all zero, since no mole raises its head before time 1.
Given all the values M [t, v, s] for all t = to,...,t;_1, we can compute each value
MTt;, v, s] easily.

Assume that t; < t;_1 + 7. Then, from the history track s we can determine
a vertex v’ such that v" must have been at vertex v’ a time t;_;. This task can
be achieved in time O(T) by backtracking s. The value M]t;, v, s] can now be
computed from the O((A + 1)T) values M|t;_1,v’,s'] by adding the number of
moles whacked and subtracting the number of moles accounted for twice. The
latter task is easy to achieve in time O(T +m) given the history tracks s and s’.
Hence, the time needed to compute M|t;, v, s] is O((T + m)(A +1)T).

It remains to treat the case that t; > ¢;_1+7T. Let t :=t;_1 + 7. Notice that
no mole can be reached after time ¢ and before time ¢;, since all moles released
no later then ¢;_; will have disappeared by time ¢. Any solution that ends up at
vertex v at time t; must have been at some vertex v’ at time ¢. We first compute
the “auxiliary values” M[t,v’,s'] for all v’ € V and all history tracks s by the
method outlined in the previous paragraph. Then, the value M[t;, v, s] can be
derived as the maximum over all values M|[t,v’, s’], where the maximum ranges
over all vertices v’ such that v can be reached by time ¢; given that we are at v’
at time ¢ and given the histories s and s’ (which must coincide in the relevant

part).
Since the dynamic programming table has O(nm(A +1)T) entries, the total
time complexity of the algorithms is in O(nm(T + m)(A + 1)?7T). o

The above dynamic program can easily be adjusted for metric spaces induced
by weighted graphs with integral edge weights. Each edge e is then replaced by
a path of w(e) vertices, where w(e) denotes the length of edge e. The time
bound for the above procedure becomes then O(am(T + m)(A + 1)2T), where
n=n+Y .cp(wle) —1). Hence, whenever (A + 1)27 is pseudo-polynomially
bounded, OFFLINE-WHAM can be solved in pseudo-polynomial time on these
weighted graphs.

2.2 When whacking is hard

It follows from Theorem 1 that OFFLINE-WHAM can be solved in polynomial
time if (A + 1)?7 is bounded by a polynomial in the input size. On the other
hand, the problem on a graph with unit edge weights, all release times zero and
all deadlines equal to n, the number of holes, contains the Hamiltonian Path
Problem as a special case. Thus, it is NP-hard to solve, see e.g. [15].

Another special case of the OFFLINE-WHAM is obtained when at most one
mole is in a hole at a time, the metric space is the line and release dates as well
as deadlines are general. Then this problem is also NP-hard by a reduction from
PARTITION, as mentioned in [6].

The first case we consider is the weighted version of OFFLINE-WHAM on the
line where multiple moles remain above ground for a fixed time.

Theorem 2. OFFLINE-WHAM on the line is NP-hard even if all moles stay above
ground is equal for all moles, i.e., d; —t; = d; —t; for all requests r;,r;.



Proof. We show the theorem by a reduction from PARTITION, which is well known
to be NP-complete to solve [12,8]. An instance of PARTITION consists of n items
a; €ZT,i=1,...,n, with >; a; = 2B. The question is whether there exists a
subset S C {1,...,n}, such that >, _ga; = B.

Given an instance of PARTITION, we construct an instance Iy for OFFLINE-
WHAM, with m = 3n requests. Let B = %ZZ a; and K = B + 1. The time
each mole stays above ground is T" = 2B. There are 2m requests r;r and r;,
i =1,...,mwhere i is released at time (2i—1)K and has deadline (2i—1)K+T.
The position of r;” is K +a; with weight K +a;, and the position of ;" equals —K
with weight K. Finally, there are m requests 70 in the origin, where ¥ is released
at time 2:K, has deadline 2K + T', and weight K.

We claim that at least 2nK + B moles can be whacked if and only if I is a
YES-instance for PARTITION.

Let S be a partition of I, i.e., > ,.ga; = B. Then whacking the moles of
requests in the order (r{*,79,... ,r& %) where a; = + if i € S and a; = — if
1 &€ S, is feasible and yields the desired bound, as tedious computation can show.

Suppose conversely that there exists a route for the whacker such that it
reaches at least 2nK + B moles. Notice that as the locations of the holes of
requests r;" and r; are at least 2K > 2B apart, the whacker can whack at
most one of these requests. The moles of requests rj and ;" pop up after time
t | + T, and therefore the whacker cannot catch the moles of request ;" | and
r;r at the same time. The same is true for requests 77 ; and r?. Suppose the
whacker moves to the hole of 7 or 7, after first whacking the moles of 79. The
earliest possible arrival time in the mole is at least 2i K + K = (2i+ 1)K and by
this time the moles of 7" and r;” have gone down again. Hence, when whacking
) and either 7 or r; , the request ;" or 7;” need to be whacked before r¥. Not
whacking the moles of r{ or none of r;" and 7;, results in a tour in which at
most (2n — 1)K + 2B < 2nK + B can be caught. Therefore, the whacker needs
to reach all moles popping up in the origin and for each i it also needs to whack
all moles of either r;r or r; . Hence, by the above considerations we know that
when at least 2nK + B moles are whacked, the whacker needs to hit first the
moles of r;" or r;” and then those of 7{ before going to the hole of request rf
or T, 1.

Let S = {i : moles of r] are whacked} be the set of requests served in the
positive part of the line. We claim that ), a; = B. Obviously > .. qa; > B
since the number of moles whacked is at least 2n/K + B. Suppose that Zz‘e ga; >
B and let S’ C S be the smallest subset of S such that if ¢,j € S with ¢ < j and
j €5 theni € S"and ) ;cq a; > Bandlet k = max S’ Then } ;g 1y @i < B.
The whacker leaves the origin for request r} at time 2(k—1)K +2 Zies,\{k} a; <
2(k — 1)K + 2B < t{. The next time the whacker reaches the origin is 2kK +
Y ics @i > 2kK 4+ 2B and by then the moles of request 7Y have gone under
ground. Hence, it cannot reach the moles of request ) and is not able to whack
2nK + B moles. ad

Our next hardness result concerns the case of a star graph.



Theorem 3. OFFLINE-WHAM is NP-hard on a star graph with arbitrary edge
lengths. This result holds, even if at any moment in time at most one mole is
peeking out of hole.

Proof. Let (a1,...,a,) be an instance for PARTITION and let B = 1 3. a;. We
construct a star graph with n + 1 leaves. The length of the center to leaf i is
equal to a;, for i = 1,...,n and the length of the (n+ 1)st leg is equal to 1. The
request sequence is as follows. At time ¢ = 0, a single mole is released in each of
the leaves j = 1,...,n. The popup duration of each mole is equal to 4B + 2. At
time 2B + 1 a mole appears in leaf n + 1 with zero popup duration. Finally, at
time 4B + 2 a mole pops up in the center, also with zero popup duration.

If we have a YES-instance of PARTITION, i.e., there exists a subset S C
{1,...,n} such that ) ,_ga; = B, the whacker can catch all moles on the
following route. First she whacks the moles in the leaves ¢ € S in an arbitrary
order and arrives at the center at time 2B. Then, she whacks the mole in leaf
n+ 1 after which all the remaining leaves can be visited and the whacker returns
in the center at time 2 + " a;, at which she can whack the mole that pops up
there.

If there exists a route in which the whacker can reach all moles, then by
time 2B + 1 she needs to be in leaf n + 1. Therefore, no later than time 2B
she needs to be in the center. Let S be the set of moles whacked before this
time. After whacking the mole in leaf n + 1 and returning to the origin, there is
still 23", a; — 2B time left to whack all the unwhacked moles and return in the
center. Therefore, it must hold that Zie ga; = B. a

3 Whack-a-mole on the line

In this and the following section we investigate the existence of competitive al-
gorithms for the WHAM. Our results are not only established for the standard
adversary, the optimal offline algorithm, but also for the more restricted adver-
saries of [4,14], which we recall briefly.

The optimal offline algorithm is often considered as an adversary, that spec-
ifies the request sequence in a way that the online algorithm performs badly.
Besides the ordinary adversary that has unlimited power, there exist several
adversaries in the literature that are restricted in their power. The fair adver-
sary, introduced by [4], may move at any time only within the convex hull of all
requests released so far. An even more restricted adversary is the non-abusive
adversary of [14]. This adversary is defined on the line, and it may only move
into a certain direction if there is still a pending request in this direction. For
WHAM we extend this definition by restriction that the adversary may only move
in the direction of a request that it can reach before the deadline of this request.
A natural extension to other metrics is an adversary that may only move on a
direct path to a pending request, which deadline can be met.

Theorem 4. Let T > 0 be arbitrary. No deterministic online algorithm can
achieve a constant competitive ratio for WHAM7 on the line.



Proof. Consider an online algorithm ALG and assume w.l.o.g. that its position
at time T is parc(T) < 0. The sequence consists of one mole, which pops up at
time T at position 7'+ 1. As the adversary can be at position T by time T, it
has killed the mole by time T+ 1. ALG, on the other hand, can not be in 7'+ 1
before time 27+ 1 and by then the mole has gone under ground again. ad

In the proof above the adversary abuses its power in the sense that it moves
to a point where a mole will pop up without revealing this information to the
online whacker. Theorem 4 can be extended to both, the fair and the non-abusive
adversary as is shown in the following theorem.

Theorem 5. Let T > 0 be arbitrary. No deterministic online algorithm can
achieve a constant competitive ratio for the WHAMp on the line against a non-
abusive adversary.

Proof. Consider an arbitrary deterministic online algorithm. At time 0 two moles
appear: one in 7" and the other in —7', both going down at time 7. If the online
whacker does not reach any mole by time T then the sequence stops. Otherwise,
we assume w.l.o.g. that the online whacker is in position p,.¢(T) = —T at time T
ADV is at that time in position T'. Then, from time ¢ = T onwards a request
is given in t + 1 at each integral time T,T + 1,7 4 2,.... The adversary can
whack all these moles, whereas the online whacker is not able to meet any of the
deadlines. a

4 Whack-a-mole on the uniform metric space

Recall that the uniform metric space is induced by a complete graph with unit
edge weights. The number of vertices in this graph is n. Observe that for 7' < 1
trivially no deterministic algorithm can be competitive against the standard or
fair adversary. In case of the non-abusive adversary, the situation is trivial again,
since the adversary can never catch any mole except for those in the origin.

4.1 How well we can’t whack

We remark that a lower bound of 2 for the WHAM on the uniform metric space
has been derived in [10]. Our construction uses fewer nodes in the metric space
and, more important, there is no positive amount of time where more than one
request is available at a single hole. Also, note that the lower bounds are shown
against the most restricted adversary of those defined in the previous section.

Theorem 6. Let n > 3T + 2, that is, T < (n — 2)/3. No deterministic online
algorithm for the WHAMp can achieve a competitive ratio smaller than 2 against
a non-abusive adversary.

Proof. At each time ¢t = 0,...,7 — 1 the adversary releases two moles: one in
pt1 = 2t + 1 and the other in py o = 2t + 2. At time ¢t =T,7T +1,. .. three moles



are released: two moles are released in empty holes p; ;1 and p; o and the third
mole, either, in p; 3 = pr_72 if ALG is in p;_71 at time ¢, or, in pr3 = pr_71,
otherwise. Note that at time ¢, at most 37T moles have deadline at least ¢, and
as n > 31 + 2, there are at least two holes left with no moles at time t.

ALG cannot whack more than one mole per time unit, whereas ADV can kill
two moles at a time from time ¢ = T onwards. a

In the sequel the maximum number of moles available at a single hole will
play a crucial role. We define N to be the maximum number of moles peeking out
of the same hole for a positive amount of time. Notice that with this definition,
there might be a moment in time, where in fact 2N moles are above ground at
the same place. Consequently, an algorithm might whack up to 2N moles in a
single step.

Theorem 7. If at most N moles can be in the same hole for a positive amount
of time, then any deterministic online algorithm for the WHAM1 against a non-
abusive adversary has a competitive ratio no less than 2N .

Proof. After an initial step, a non-abusive adversary constructs a sequence con-
sisting of phases such that in each phase it whacks at least 2N times as many
moles as ALG does. Each phase starts at a time ¢ when the adversary arrives in
a hole. We denote by ¢’ the latest deadline of the moles that are in this hole at
time ¢. Note that ¢t < ¢’ < t + 1, since the popup duration is 1. There are two
possible positions for ALG to be at time t:

Case (a) ALG is in a vertex point different from the position of ADV;
Case (b) ALG is on an edge.

Moreover, if there are at the beginning of the phase some pending requests
released before time ¢ then ALG cannot reach any of them.

In Case (a), two moles are released at time ¢ in holes where neither ALG nor
ADV are. If ALG does not immediately go to one of these moles, it cannot whack
any of them, whereas the adversary catches one of these moles. Otherwise, at
time ¢ = max{t’,t + 1/2} the adversary releases N moles in his current position
and N moles in a hole v that is not incident to the edge on which ALG is. Thus,
ALG cannot whack any of them. Hence, it whacks at most one mole, whereas ADV
reaches 2N moles by remaining in his position until time ¢ and then moving to v.

In Case (b), ALG is in the interior of an edge and thus, it cannot reach any
vertex point which is not incident to this edge by time ¢ + 1. The adversary
releases one mole in a free hole, i.e., a vertex point where no mole is and which
is not incident to the edge on which ALG is. Hence, ALG does not whack any
mole, and ADV hits one mole.

An initial sequence consisting of two requests in two different holes each
releasing a single mole ensures that we end up either in Case (a) or Case (b).
This completes the proof. a

Note that in the proof of the above lower bound we use the fact that the
release dates may be non-integral. As we see in the next section, this restriction
is essential, because for integral release dates we are able to show that there
exists a 2-competitive algorithm.



4.2 How well we can whack

In this section we propose simple algorithms for WHAM and give performance
guarantees for the online problem on a uniform metric space.

First Come First Kill (fcfk)

At any time ¢, move to a hole which contains a request with earliest
release date, breaking ties in favor of the point where the most moles are
above ground. If none of the moles that are above ground can be killed
by the algorithm, then the whacker does not move.

Theorem 8. Let T > 1. Consider the WHAMp with at most N moles peeking
out of one hole for a positive amount of time. FCFK is 2N -competitive, which is
tight.

Proof. Partition the input sequence into maximal subsequences, such that each
subsequence consists of requests that FCFK serves continously, i.e., it is constantly
moving between holes. We show that OPT whacks at most 2N times as many
moles as FCFK does for each subsequence from which the theorem follows.
Consider such a subsequence o’. We denote by C}'“ the time where algo-
rithm ALG whacks request r;. If r; is not caught, then we set C'}"“ = oco. Define

tmax = max{ C;"" :r; € ¢’ and C7"™" < o0 }.

We define tyin such that tmax — tmin is integral and minjeor t; < tmin <
minje, t; + 1. In each interval (¢,¢+ 1] for t = tmin, - - . , tmax — 1, FOFK hits at
least one mole and OPT cannot whack more than 2N moles. It remains to show
that the moles which are reached by OPT before ¢,,;, can be compensated for by
FCFK.

If FcFK whacks its last mole of o’ no later than time t,,,, then OPT catches
at most N moles in the interval (fmax — 1, tmax] since no new request can be
released at ., due to the maximality of the subsequence o’. Moreover, OPT
can kill at most IV moles in the interval (minjegr t;, tmin). Therefore, the number
of moles reached by OPT during the period before ¢,;, can be accounted for by
the moles caught in the last interval by OPT and thus, sum up to at most 2/V.

On the other hand, if FCFK still whacks a mole from ¢’ after time t,,, the
number of moles caught by OPT during the first period is at most N times the
number of moles hit by FCFK after ¢y ax.

Lemma 1 implies that the competitive ratio of 2N is tight for FCFK. a

Lemma 1. Let T > 1 be an integer. Consider the WHAMp with at most N moles
peeking out of one hole for a positive amount of time. FCFK has no competitive
ratio less than 2N against a non-abusive adversary.

Proof. At time t = 0, the adversary releases T requests in holes 1,...,7T, each
of them with weight 1. At time ¢ = 1/2, in hole 27 + 1, a request is released
with N moles. At time ¢, for t =1,...,T — 1, one request in hole T + ¢ is given
with one mole and at time ¢+ 1/2 a request with N moles is given in 27+ 1+ ¢.



At time ¢, for t = T,T + 1, ..., one mole is popping up in hole 1 + (T + ¢ —1)
mod 27'. And at time ¢+ 1/2 two requests are given, each with N moles: one in
2T+ 1+ (¢t mod T) and one in 37+ 1+ (¢ mod T'). This sequence is visualized
in Figure 1.

Up to time T, FCFK whacks the moles released at time 0. After time T' it
moves to the hole with the earliest released request that it can reach. As the
requests with N moles are released 1/2 time unit later than the requests with
a single mole, FCFK is not able to whack any of the higher weighted requests.
Hence, it catches in each unit length time interval one mole. In each unit length
interval from time T 4 1/2 onwards, there is one hole where a request with NV
moles has its deadline and a new request with IV moles is released. Hence, ADV

can whack 2N moles in every unit length time interval after time 7T'. a
hole

T T+2 2T 2T + 2 3T + 1 AT

23 e T -1 T+1 See- 2T —1 27 41 <... 3T 3T 4+2 ---- 4T — 1

S J : 11'

time

Fig. 1. Lower bound sequence for FCFK. Each request is represented by a vertical line
between the release date and deadline. Thick lines illustrate requests with N moles,
the thin lines depict requests with single moles. The line segment is dashed after the
request has been served by ADV, and dash-dotted after being served by FCFK and ADV.
Notice that from time 7" onwards, FCFK serves all its requests by their deadlines.

Recall that no deterministic online algorithm can be better than 2-competitive
(Theorem 6). Hence, by Theorem 8 we know that FCFK is optimal in the un-
weighted setting, i.e., at most one mole can be peeking out of a single hole for a
positive amount of time. Also, in the weighted case with T' = 1, FCFK is optimal
by Theorem 7. For the special case of integral release dates and T' = 1, FCFK
obtains a competitive ratio of 2 even in the weighted setting.



Theorem 9. Consider the WHAM; where each mole stays T = 1 time unit above
ground. FCFK is 2-competitive if all release dates are integral.

Proof. Due to the integral release dates, both, OPT and FCFK are in holes at
integral points in time. Moreover, OPT serves at most two requests released at
the same time because of the unit popup duration. FCFK on the other hand,
whacks at least the moles of one request released at a certain time and by
definition it chooses the request with the highest number of moles. Therefore, it
reaches at least half of the moles whacked by the optimal offline algorithm. O

Obviously, FCFK’s flaw lies in ignoring all requests with a later deadline even
though they could contribute with a higher weight to the objective value. In order
to overcome this drawback we consider an other algorithm which we call Ignore
and Whack the Most (twTM). In this algorithm, we divide the time horizon in
intervals of length [ = |2, and we denote these intervals by I; = ((i — 1)l,il),
for : = 0,1,2,..., L, where I, is the last interval in which moles are whacked.
We say that at time ¢, the current interval is the interval I; for which t € I;.
Note that these intervals only have a positive length for 7" > 2.

When formulating the algorithm twTMm we allow the algorithm to whack only
a subset of the moles available at a certain hole. Although our problem definition
would force all moles at v to be whacked, this condition can be enforced within
the algorithm by keeping a “virtual scenario”.

Ignore and Whack the Most (iwtm)
At any time when the whacker is at a hole, it moves to the hole with
the highest number of pending moles released before the current interval

that can still be reached in time. Only those moles will be whacked at
the hole.

Theorem 10. Let T' > 2 and ¢ = % IWTM s c-competitive for the
WHAMT.

Proof. Let k; denote the number of moles released in interval I;, whacked by OPT,
and let h; denote the number of moles whacked by IWTM during interval I;. Then

oPT(0) =» ki, and  IWTM(0) =Y hi. (1)

Moreover, since no moles are released in the last interval Iy, it follows that
kr = 0.

First note that IwTM is at integral time points always in a hole. Therefore,
during interval I;y; it can visit [ holes. If it visits less than [ holes, then the
number of requests released in interval I; is less than [. Hence, OPT cannot kill
more than h;41 moles of those released in ;.

Conversely, suppose that IWTM visits exactly [ holes during I;4;. The op-
timum can visit at most [I + T'| holes of requests released in interval I;. By
definition TWTM serves the [ holes with the highest weight of pending requests



released at or before time il. Therefore, h; 11 > (I/[l + T'|)k;. Hence, by Equa-
tions (1), we know that

IWTM(o) > (I/[l + T])oPT(0o).

Recall that [ = |T/2]. For T ranging from 2 to 20, the values of the competitive
ratio are depicted in Figure 2. O

Fig. 2. Competitive ratio for IwTM for T € [2, 20].

5 Concluding remarks

We have provided the first competitive algorithms for the WHAM on the uniform
metric space for small popup duration and improved known competitiveness
results for larger values. For the case of non uniform popup durations a natural
extension of the FCFK algorithm would be the Whack the Wimp algorithm:
always move to a hole containing a request with earliest deadline (breaking ties
just as in FCFK). If all popup durations are at least 1, then using the same
analysis as for FCFK we can show the same bounds on the uniform metric space.
In the case that there are popup durations less than 1, no deterministic algorithm
can be constant competitive.

Our lower bound results show that the situation on the real line is hopeless
in terms of competitiveness, at least for deterministic algorithms. This raises the
question whether randomized algorithms can do better.
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