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1 Introduction

It is well known that standard finite element methods may become unstable when
differential equations involving very small coefficients are solved. A recent thorough
study of a simple parameter-dependent elliptic model problem is due to Havu and
Pitk”aranta [7]. Such difficulties commonly arise in numerical approaches to thin
curved mechanical structures like arches, curved rods or shells (cf. Chenais and
Paumier [4], Chenais and Zerner [5], Chapelle [3], Havu and Pitk”aranta [8, 9]).
They are know under the general term “locking phenomenon”, and they are due
to a parametric error amplification. Especially, if the discretization parameters
are of the same order as the small parameter in the equation, then the obtained
numerical results may be meaningless, deviating very much from the true solution
of the problem. An example for this behavior may be found in Chenais and Paumier
[4].

In this work, we aim to show that a careful modification of the bilinear functional
governing the variational problem ensures the stability of the numerical scheme, even
in the presence of very small parameters. This rather general idea has also been used
by other authors (compare Chapelle [3], Havu and Pitk”aranta [7]), but its successful
realization strongly depends on the characteristics of the given problem. We also
stress the fact that our approach can be adapted to many other applications (see
Remark 3.3).

The problem under study is a linear model for three-dimensional clamped elastic
curved rods that has been introduced in Ignat, Sprekels and Tiba [10]. It extends
similar models of Reddy and Arunakirinathar [11] and Chapelle [3], in the sense that
we also admit a deformation of the cross section of the rod. Our model involves nine
unknown functions, while in the literature six unknowns are generally considered.
Moreover, our smoothness assumptions on the parametrization of the geometry of
the curved rod ( W 2,∞ instead of C3 ) are lower than those in the available literature.

In Section 2, we introduce the “right” modification of the elliptic bilinear form in
several steps. We also prove that both the original and the modified equations lead
asymptotically to the same solution as the small parameter converges to zero.

In Section 3, it is proved that the convergence properties of the discretized solutions
are independent of the small parameter appearing in the original problem. To obtain
this, it will be essential to use the modified bilinear form. We note that a similar
result was established by Chenais and Paumier [4] for the case of two-dimensional
arches having constant curvatures. We underline that our approach makes it possible
to use the simplest piecewise linear and continuous finite elements for the numerical
solution, while in the literature higher order elements have to be used, in general.

The last part of the paper is devoted to some numerical experiments. We also
provide a comparison with the standard technique which proves the importance of
finding alternative methods for this type of stiff differential equations.
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2 The model and its approximation

We start with an abstract scheme that puts into evidence our basic ideas in the
approximation of the curved rods model (which is introduced later). We denote
by d > 0 a “small” parameter, by V a Hilbert space, and by Ad : V × V → R ,
ad : V × V → R , two bilinear bounded functionals depending on d > 0 . In the
subsequent analysis of the curved rods model, Ad will be the original bilinear func-
tional according to Ignat, Sprekels and Tiba [10], while ad is its first modification.
A subsequent modification of ad , denoted αd , will be constructed as well.

We generally assume that

Ad(v, v) ≥ Cd2|v|2V , ∀ v ∈ V, (2.1)

|Ad(v, w)− ad(v, w)| ≤ K d3 |v|V |w|V , ∀ v, w ∈ V, (2.2)

where C, K are some positive constants, independent of d > 0 . From (2.1), (2.2)
it immediately follows that there is some c > 0 such that for any sufficiently small
d > 0 it holds

ad(v, v) ≥ c d2 |v|2V , ∀ v ∈ V. (2.3)

We compare the unique solutions Xd ∈ V , xd ∈ V , of the variational equations

Ad(Xd, w) = (fd, w)V×V ∗ , ∀ w ∈ V , (2.4)

ad(xd, w) = (fd, w)V×V ∗ , ∀ w ∈ V, (2.5)

which exist thanks to the Lax–Milgram lemma. Here, fd ∈ V ∗ is given and
(·, ·)V×V ∗ is the pairing in V × V ∗ .

Proposition 2.1 Assume that |fd|V ∗ ≤ c d2 . Then there are some d0 > 0 and
some M > 0 , independent of d ∈]0, d0[ , such that

|Xd − xd|V ≤ Md . (2.6)

Proof. We have:

0 = Ad(Xd, w)− ad(xd, w) = Ad(Xd − xd, w) + Ad(xd, w)− ad(xd, w) .

From (2.2), we infer that

|Ad(Xd − xd, w)| = |Ad(xd, w)− ad(xd, w)| ≤ K d3 |xd|V |w|V , ∀ w ∈ V .

For w = Xd − xd , we obtain from (2.1) that

|Xd − xd|V ≤
K

C
|xd|V d .

The hypothesis on fd , and (2.2), (2.5), show that {xd} is bounded in V . To-
gether with the above inequality, we obtain (2.6), which finishes the proof of the
assertion. 2
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Remark 2.1 The assumption on the order of fd is justified by the linearity of (2.4),
(2.5) and by the subsequent applications. Proposition 2.1 shows that it suffices to
solve (2.5) instead of (2.4), provided that d is sufficiently small.

In the applications to clamped curved rods d > 0 is a measure for the area of the
cross section of the rod, and it is well known that for “small” d the locking problem
appears.

The bilinear form Ad : V × V → R , V = H1
0 (0, L)9 ( L > 0 being the length of

the rod) was introduced in Ignat, Sprekels and Tiba [10] as follows:

Ad(ū, v̄) = λ

∫

Ω

3∑
i,j=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄)

+
(
τ
′
i (x3) + x1N

′
i (x3) + x2B

′
i(x3)

)
h3i(x̄)

]

×
[
Mj(x3)h1j(x̄) + Dj(x3)h2j(x̄) +

(
µ
′
j(x3) + x1M

′
j(x3) + x2D

′
j(x3)

)
h3j(x̄)

]

×
∣∣∣ det J(x̄)

∣∣∣dx̄ + µ

∫

Ω

∑
i<j

[
Ni(x3)h1j(x̄) + Bi(x3)h2j(x̄) +

(
τ ′i(x3) + x1N

′
i(x3)

+ x2B
′
i(x3)

)
h3j(x̄) + Nj(x3)h1i(x̄) + Bj(x3)h2i(x̄) +

(
τ
′
j(x3) + x1N

′
j(x3)

+ x2B
′
j(x3)

)
h3i(x̄)

][
Mi(x3)h1j(x̄) + Di(x3)h2j(x̄) +

(
µ
′
i(x3) + x1M

′
i (x3) (2.7)

+ x2D
′
i(x3)

)
h3j(x̄) + Mj(x3)h1i(x̄) + Dj(x3)h2i(x̄) +

(
µ
′
j(x3) + x1M

′
j(x3)

+ x2D
′
j(x3)

)
h3i(x̄)

]∣∣∣ det J(x̄)
∣∣∣ dx̄

+ 2µ

∫

Ω

3∑
i=1

[
Ni(x3)h1i(x̄) + Bi(x3)h2i(x̄)

+
(
τ
′
i (x3) + x1N

′
i (x3) + x2B

′
i(x3)

)
h3i(x̄)

][
Mi(x3)h1i(x̄) + Di(x3)h2i(x̄)

+
(
µ
′
i(x3) + x1M

′
i (x3) + x2D

′
i(x3)

)
h3i(x̄)

]∣∣∣ det J(x̄)
∣∣∣ dx̄ .

Here, Ω = ω × ]0, L[ with ω ⊂ R2 , meas(ω) = d , being the area of the cross
section of the rod, λ ≥ 0 and µ > 0 are the Lamé constants of the material,
(τi, Ni, Bi)i=1,3 ∈ H1

0 (0, L)9 are the unknowns, and (µi,Mi, Di)i=1,3 ∈ H1
0 (0, L)9 are

arbitrary test functions.

The coefficients (hij)i,j=1,3 depend on d > 0 and are obtained from the geometry
of the curved rod as explained below.

We denote by θ̄ ∈ W 2,∞(0, L)3 the parametrization of the line of centroids of the
curved rod (which is assumed to be a unit speed curve) and by t̄, n̄, b̄ ∈ W 1,∞(0, L)3

the corresponding local frame. It differs, in general, from the classical Frenet or
Darboux frames (cf. Cartan [2]), since our (regularity) assumptions are very weak.
A new specific construction under such conditions is reported in [10]. The curved
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rod Ω̃ is given as the image of the cylinder Ω under a transformation F : Ω → Ω̃ ,

Ω̃ = F (Ω) , (2.8)

(x1, x2, x3) = x̄ ∈ Ω 7→ Fx̄ = x̃ = (x̃1, x̃2, x̃3)

= θ̄(x3) + x1n̄(x3) + x2b̄(x3), ∀ x̄ ∈ Ω . (2.9)

Then J(x̄) = DF (x̄) is the Jacobian of F , and the relation (hij(x̄))i,j=1,3 = J(x̄)−1

yields the coefficients in (2.7). More precisely, it holds

J(x̄)−1 =




ni − c ti x2

1− β x1 − a x2

bi +
c ti x1

1− β x1 − a x2

ti
1− β x1 − a x2




i=1,3 .

(2.10)

A thorough construction of Ad and the proof of (2.1), starting from the linear
elasticity system, was performed in Ignat, Sprekels and Tiba [10]. Moreover,

det J(x̄) = 1− β(x3)x1 − a(x3)x2, ∀ x̄ ∈ Ω . (2.11)

The presence of (x1, x2) ∈ ω in (2.10), (2.11) shows the dependence of (2.9) on
d > 0 .

Above, β , c and a ∈ L∞(0, L) are “curvatures” of the line of centroids (recall that
we are not using the classical Frenet frame) that may be obtained via the “equations
of motion” of the local frame:

t̄
′
(x3) = a(x3) b̄(x3) + β(x3) n̄(x3) ,

b̄
′
(x3) = −a(x3) t̄(x3) + c(x3) n̄(x3) , (2.12)

n̄
′
(x3) = −β(x3) t̄(x3) − c(x3) b̄(x3) .

Relations (2.12) are a simple consequence of

|t̄(x3)|2R3 = |n̄(x3)|2R3 = |b̄(x3)|2R3 = 1 .

We continue now with the construction of the modified bilinear form ad(·, ·) , and we
also prove the condition (2.2). We notice that Ad in (2.7) consists of three different
sums (or terms) which we denote by S1, S2, S3 (in the order they appear in (2.7)).
The functional ad is obtained by modifying each of the terms S1, S2, S3 , and can
be put in the form

ad(u, v) = da0(u, v) + d2a1(u, v) + d3a2(u, v), ∀ u, v ∈ V. (2.13)

By inspecting (2.10) and (2.7), we see that it is possible to approximate just
[det J(x̄)]−1 by

1

1− βx1 − ax2

∼= 1 + βx1 + ax2 + (βx1 + ax2)
2 , (2.14)
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in order to get only polynomial coefficients in x1, x2 . This will be used in Section
4, in the applications, to perform all integrations over the cross section ω exactly.
Moreover, the terms in S1, S2, S3 which already have a “simple” structure will not be
modified according to (2.14) and will be preserved as they are. The approximation
properties for ad are improved in this way. It readily follows from (2.14) that (2.2)
is fulfilled.
A lengthy, but elementary, calculation based on the above ideas leads to the following
approximations (we write just the part corresponding to S3 which is the shortest
one):

[S3]a = 2µ

L∫

0

3∑
i=1

{
NiMi(n

2
i C00 + c2 t2i C02 + c2 t2i β2 C22 + c2 t2i a2 C04)

+ (Ni Di + Bi Mi)(ni bi C00 − 2c2 t2i a β C22) + Bi Di(b
2
i C00 + c2 t2i C20

+ c2 t2i β2 C40 + c2 t2i a2 C22) + (Mi τ
′
i + Ni µ

′
i)(ni ti C00 − c t2i aC02)

+ (Bi µ
′
i + Di τ

′
i )(bi ti C00 + c t2i β C20) − 2(Ni M

′
i + N

′
i Mi)c t2i a β C22

+ (Bi M
′
i + N

′
i Di)c t2i (C20 + β2 C40 + a2 C22) − (Ni D

′
i + Mi B

′
i)c t2i

× (C02 + β2 C22 + a2 C04) + 2 (Bi D
′
i + B

′
i Di)c t2i a β C22 + τ

′
i µ

′
i t

2
i (C00

+ β2 C20 + a2 C02) + τ
′
i µ

′
i t

2
i (C00 + β2 C20 + a2 C02) + (τ

′
i M

′
i + µ

′
i N

′
i )

× t2i β C20 + (τ
′
i D

′
i + µ

′
i B

′
i) t2i aC02 + 2 (N

′
i D

′
i + B

′
i M

′
i ) t2i a β C22

+ N
′
i M

′
i t2i (C20 + β2 C40 + a2 C22) + B

′
i D

′
i t

2
i (C02 + β2 C22

+ a2 C04)
}

dx3 . (2.15)

Here, Cij =
∫
ω

xi
1 xj

2 dx1 dx2 and C00 =
∫
ω

dx1 dx2 = d , in particular. That is, the

integration over ω is already performed in (2.15). The forms of [S1]a and of [S2]a
are much more complicated than (2.15).

Notice that C00 is of order d, C02 and C20 are of order d2 , and C22, C04, C40 are
of order d3 , due to their definition. Then, we may introduce the bilinear forms
a0(·, ·), a1(·, ·), a2(·, ·) by “collecting” from [S1]a , [S2]a , and [S3]a , respectively, the
terms containing C00 or C02, C20 or C22, C04, C40 . In relation (2.16) below, we
show just the form of a0(u, u) which is the shortest one. Recalling that u =
(τ1, τ2, τ3, N1, N2, N3, B1, B2, B3) ∈ H1

0 (0, L)9 , we obtain that

a0(u, u) = λ

∫ L

0

[ 3∑
i=1

(Ni ni + Bi bi + τ
′
i ti)

]2

dx3

+ µ

L∫

0

∑
i<j

(
Ni nj + Nj ni + Bi bj + Bj bi + τ

′
i tj + τ ′j ti

)2

dx3 (2.16)

+ 2 µ

L∫

0

3∑
i=1

(
Ni ni + Bi bi + τ

′
i ti

)2

dx3 .

6



In view of Proposition 2.1, this provides a stable (with respect to d ) approxima-
tion to the equation (2.4), as well. Using (2.13), and invoking the hypothesis of
Proposition 2.1, we can rewrite (2.5) in the form

ad(xd, v) = (`, v)V×V ∗ , (2.17)

where ` = d−2fd ∈ V ∗ and ad(·, ·) = d−2ad(·, ·) . By (2.3), we have ad(v, v) ≥ c |v|2V ,
for every v ∈ V . Moreover, (2.16) shows that a0 is positive. It is not strictly
positive. Indeed, introducing the set

G = {w ∈ V ; a0(w, v) = 0 , ∀ v ∈ V } , (2.18)

we have:

Lemma 2.2 G 6= {0} .

Proof. Clearly, (2.18) may be rewritten as G = {w ∈ V ; a0(w,w) = 0} . Then
u = (τ1, τ2, τ3, N1, N2, N3, B1, B2, B3) ∈ G if and only if

tiτ
′
i + biBi + niNi = 0 , (2.19)

tjτ
′
i + tiτ

′
j + biBj + bjBi + niNj + njNi = 0 , (2.20)

for i, j = 1, 3 . The contribution of the first term in (2.16) is already covered via
the last one in (2.19). We consider (2.19), (2.20) as a linear algebraic system with
principal unknowns τ ′1, τ

′
2, τ

′
3, N1, N2, B1 and secondary unknowns N3, B2, B3 . Its

determinant is ∣∣∣∣∣∣∣∣∣∣∣∣

t1 0 0 n1 0 b1

0 t2 0 0 n2 0
0 0 t3 0 0 0
t2 t1 0 n2 n1 b2

t3 0 t1 n3 0 b3

0 t3 t2 0 n3 0

∣∣∣∣∣∣∣∣∣∣∣∣

= (−t2n3 + n2t3)t3 . (2.21)

It may be supposed nonzero (otherwise another determinant may be chosen—this
point is explained in Section 4 as well). Therefore, the principal unknowns may be
expressed as linear combinations of the secondary unknowns, with coefficients de-
pending on the coefficients in (2.19), (2.20). If N3, B2, B3 ∈ H1

0 (0, L) are arbitrarily
chosen, then N1, N2, B1 remain in H1

0 (0, L) . Here, it is important to notice that
the coefficients in (2.19), (2.20) belong to W 1,∞(0, L) under the given regularity
hypotheses. For τ

′
1, τ

′
2, τ

′
3 , we still have to perform an integration with two null

boundary conditions for each one (in 0 and in L ).

This would impose just three scalar conditions on N3, B2, B3 which shows that
G is even infinite dimensional (compare with (2.28) below). Assuming that the
determinant (2.21) is nonzero, one can easily solve (2.19), (2.20) to obtain that (we
use the notation [xy]ij = xiyj − xjyi for arbitrary vectors x, y ∈ R3 ):

τ
′
3 = − n3

t3
N3 − b3

t3
B3 = I3 , (2.22)
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τ
′
2 = − n2

t3
N3 +

[nb]23

[tn]23

B2 − n2

t3

[tb]23

[tn]23

B3 = I2 , (2.23)

τ
′
1 = − n1

t3
N3 − t2

(t1[nb]23 − n1[tb]23

[tn]23

+ b1

)
B2 +

(t2
t3
· [tn]12 [tb]23

[tn]23

+ [tb]13

)
B3 = I1 ,

(2.24)

N2 =
t2
t3

N3 − [tb]23

[tn]23

B2 +
t2
t3

[tb]23

[tn]23

B3 , (2.25)

N1 =
t1
t3

N3 + n2

(n1 [tb]23 − t1 [nb]23

[tn]23

+ b1

)
B2 +

1

t3

(
n2

[tn]12 · [tb]23

[tn]23

+ n3 [tb]13

)
B3 ,

(2.26)

B1 = − b2

(t1 [nb]23 − n1 [tb]23

[tn]23

+ b1

)
B2 +

1

t3

(
b2

[tn]12 · [tb]23

[tn]23

+ b3 [tb]13

)
B3 .

(2.27)
In order to ensure that τi ∈ H1

0 (0, L), i = 1, 3 , we have to impose separately

L∫

0

Ii dτ = 0 , i = 1, 3 . (2.28)

Relations (2.22)–(2.28) give an alternative definition of the subspace G ⊂ H1
0 (0, L)9 ,

starting with any N3, B2, B3 ∈ H1
0 (0, L) .

The new bilinear functional αd : H1
0 (0, L)3×H1

0 (0, L)3 → R is obtained from ad as
follows. If z ∈ H1

0 (0, L)3 , we construct z̃ ∈ H1
0 (0, L)9 by identifying the vector z

with (N3, B2, B3) and fixing in z̃ the corresponding N1, N2, B1 as given in (2.25)–
(2.27). For the components of z̃ corresponding to τ1, τ2, τ3 we modify (2.22)–(2.24)
as below.

τi(s) = −
s∫

0

Ii dτ +
s

L

L∫

0

Ii dτ, i = 1, 3 . (2.29)

Moreover, we add to the functional a penalization of order 1
d

of the relations (2.28).
That is, for any z, w ∈ H1

0 (0, L)3 , we have

αd(z, w) = ad(z̃, w̃) +
1

d

3∑
i=1

L∫

0

Ii(z) dτ ·
L∫

0

Ii(w) dτ . (2.30)

Notice that αd has the same type of “singularity” as ad (compare with (2.13),
(2.17)). The coercivity of αd is clear,

αd(z, z) ≥ ad(z̃, z̃) ≥ C |z̃|2H1
0 (0,L)9 ≥ C |z|2H1

0 (0,L)3 , (2.31)
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by the coercivity of ad . Then, there is a unique x̂d ∈ H1
0 (0, L)3 such that

αd(x̂d, z) = (`, z̃)H1
0 (0,L)9×H−1(0,L)9 , ∀ z ∈ H1

0 (0, L)3 . (2.32)

In (2.32), we also use that the correspondence z 7→ z̃ as defined above between
H1

0 (0, L)3 and H1
0 (0, L)9 is linear and bounded, which is obvious by (2.22)–(2.27).

Let us also define x0 ∈ G ⊂ H1
0 (0, L)9 by

a1(x
0, w) = (`, w)H1

0 (0,L)9×H−1(0,L)9 , ∀ w ∈ G . (2.33)

The existence and uniqueness of x0 ∈ G is a consequence of the identity

a1(x, w) = ad(x,w) − d a2(x,w) , ∀ w ∈ G , (2.34)

as a0(x,w) = 0 for x ∈ G and w ∈ H1
0 (0, L)3 (see (2.18)). The boundedness of a2

(by construction) shows that a1 is coercive on G , equipped with the same norm as
H1

0 (0, L)9 , for d ≤ d0 .

Proposition 2.3 If d ↘ 0 then xd → x0 and x̃d → x0 strongly in H1
0 (0, L)9 .

Here x̃d is obtained from x̂d (and not from xd !) by the mapping x 7→ x̃ defined
from H1

0 (0, L)3 to H1
0 (0, L)9 as in (2.25)–(2.27) and (2.29).

Proof. As both statements are proved in a similar way, we limit our argument to
x̃d . From (2.31), (2.32) it follows that {x̂d} is bounded in H1

0 (0, L)3 and {x̃d}
is bounded in H1

0 (0, L)9 . We may assume that x̂d → x̂ weakly in H1
0 (0, L)3 and

x̃d → x̃ weakly in H1
0 (0, L)9 , on a subsequence. Moreover, x̃ is obtained from

x̂ via (2.25)–(2.27) and (2.29), due to the linearity of these relations and to the
fact that all the coefficients appearing there may be assumed in L∞(0, L) by our
regularity conditions on the geometry of the curved rod.

We multiply (2.32) by d , and we take d ↘ 0 :

a0(x̃d, w̃) + d a1(x̃d, w̃) + d2 a2(x̃d, w̃) +
3∑

i=1

L∫

0

Ii(x̂d) dτ

L∫

0

Ii(w) dτ

= d(`, w̃)H1
0 (0,L)9×H−1(0,L)9 , ∀ w ∈ H1

0 (0, L)3.

We obtain that

a0(x̃, w̃) +
3∑

i=1

L∫

0

Ii(x̂) dτ

L∫

0

Ii(w) dτ = 0 , ∀ w ∈ H1
0 (0, L)3 . (2.35)

By fixing w = x̂ (and w̃ = x̃ consequently) in (2.35), it follows that x̃ ∈ G . Let
us now choose in (2.32) z ∈ H1

0 (0, L)3 such that z̃ ∈ G . Then a0(x̃d, z̃) = 0 and
Ii(z) = 0 , i = 1, 3 . We obtain the relation

a1(x̃d, z̃) + d a2(x̃d, z̃) = (`, z̃)H1
0 (0,L)9×H−1(0,L)9 . (2.36)

9



Passing to the limit in (2.36), and using that x̃ ∈ G , we infer that x̃ satisfies (2.33),
i.e. x̃ = x0 , by the uniqueness of the solution in (2.33).

The strong convergence follows again from the coercivity (2.31). By P3 : H1
0 (0, L)9 →

H1
0 (0, L)3 we denote the projection on the three components corresponding to

N3, B2, B3 . We have

0 ≤ C|x̃d − x0|2
H1

0 (0,L)9
≤ ad(x̃d − x0 , x̃d − x0)

≤ αd(x̂d − P3 x0 , x̂d − P3 x0) = αd(x̂d, x̂d)− 2αd(x̂d, P3x
0) + αd(P3x

0, P3x
0)

= (`, x̃d)H1
0 (0,L)9×H−1(0,L)9 − 2 (`, x0)H1

0 (0,L)9×H−1(0,L)9 + a1(x
0, x0)

+ d a2(x
0, x0) → 0 .

Above, we have also repeatedly used (2.32) and (2.30). 2

Remark 2.3. Proposition 2.3 shows that, for d > 0 “small”, the equation (2.32)
provides a good approximation for the solution of (2.5) or, equivalently, of (2.4).

3 Discretization and uniform approximation

We first define the subspace Gα ⊂ H1
0 (0, L)3 given by

Gα =
{

x̄ ∈ H1
0 (0, L)3 ;

L∫

0

Ii(x̄) dτ = 0 , i = 1, 3
}

. (3.1)

Clearly, Gα has codimension three in H1
0 (0, L)3 , and Gα 6= {0} . It plays the same

role as the subspace G defined in Section 2, here applied to αd instead of to ad .

We denote by Vh ⊂ H1
0 (0, L) , h > 0 , the usual discretization space of piecewise

linear and continuous functions. Clearly,
⋃

h>0

(Vh)
3 is dense in H1

0 (0, L)3 , in this

norm, Ciarlet [6]. We also denote Gh = Gα ∩ (Vh)
3 . We then have

Gh ⊂ (Vh)
3 ⊂ H1

0 (0, L)3, Gh ⊂ Gα , ∀ h > 0 . (3.2)

Proposition 3.1
⋃

h>0

Gh is dense in Gα in the norm of H1
0 (0, L)3 .

Proof. Take any v̄ ∈ Gα ⊂ H1
0 (0, L)3 . Then Ii(v̄) = 0 , i = 1, 3 . Take v̄h ∈ (Vh)

3

such that v̄h → v̄ strongly in H1
0 (0, L)3 , which is always possible.

Consider now some ṽ ∈ H1
0 (0, L)3 whose three components attain the value 1 in

L/2 and are linear in both
[
0, L

2

]
and

[
L
2
, 0

]
.

Clearly, we may assume that ṽ ∈ (Vh)
3,∀ h > 0 , that is, any subdivision of [0, L]

that we construct has to contain the point L/2 .

10



Denote by ci = Ii(ṽ) , and assume (without loss of generality) that ci 6= 0 , i = 1, 3 .
If this is not fulfilled, one may choose another example of ṽ such that ṽ ∈ (Vh)

3

remains true. Denote as well ch
i = Ii(v̄h) , i = 1, 3 . Clearly, ch

i → 0 , as v̄h → v̄
strongly in H1

0 (0, L)3 and Ii(v̄) = 0 , i = 1, 3 .

Define v̂i
h =

ch
i

ci
vi , i = 1, 3 . Then

v̂h = (v̂1
h, v̂

2
h, v̂

3
h) ∈ (Vh)

3 , ∀ h > 0 ,

v̂h → 0 in H1
0 (0, L)3 ,

as ch
i → 0 . Moreover, v̄h − v̂h ∈ Gh , as v̄h − v̂h ∈ Gα . This follows from the

relation

Ii(v̄h − v̂h) = ch
i −

ch
i

ci

Ii(vi) = 0 , i = 1, 3 .

This concludes the proof of the assertion. 2

Remark 3.1 The definition of Gα via integral conditions makes the result of Propo-
sition 3.1 possible. In the case of the subspace G , defined pointwisely, this property
is not valid (cf. Chenais and Paumier [4]), and other methods have to be used.

We introduce now the discretized problem

αd(x
h
d , vh) = (`, ṽh)H1

0 (0,L)9×H−1
0 (0,L)9 , ∀ vh ∈ (Vh)

3 . (3.3)

The existence of a unique solution xh
d ∈ (Vh)

3 for (3.3) follows from (2.30) and the
Lax–Milgram lemma.

Proposition 3.2 For any δ > 0 there are d(δ) > 0 and h(δ) > 0 such that for
any h ∈ ]0, h(δ)[ and any d ∈ ]0, d(δ)[ , it holds

∣∣xh
d − x̂d

∣∣
H1

0 (0,L)3
< δ . (3.4)

Proof. By (2.31), we have

c
∣∣x̂d − xh

d

∣∣2
H1

0 (0,L)3
≤ αd(x̂d − xh

d , x̂d − xh
d)

= αd(x̂d − xh
d , x̂d) = αd(x̂d − xh

d , x̂d − v̄h) , (3.5)

for any v̄h ∈ (Vh)
3 , by the known orthogonality property αd(x̂d−xh

d , v̄h) = 0 , ∀ v̄h ∈
(Vh)

3 . Then

c
∣∣x̂d − xh

d

∣∣2
H1

0 (0,L)3

≤ αd(x̂d − v̄h, x̂d − v̄h) + αd(v̄h − xh
d , x̂d − xh

d) + αd(v̄h − xh
d , x

h
d − v̄h)

≤ αd(x̂d − v̄h, x̂d − v̄h) + αd(v̄h − xh
d , x̂d − xh

d)

= αd(x̂d − v̄h, x̂d − v̄h) , (3.6)
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again by the above orthogonality property.

If v̄h = w̄h ∈ Gh ⊂ (Vh)
3 ⊂ H1

0 (0, L)3 , then v̄h ∈ Gα by (3.2) and Ii(w̄h) =
0 , i = 1, 3 . Denoting by w̃h ∈ H1

0 (0, L)9 , the usual “extension” of w̄h as defined
by (2.22)–(2.27), then w̃h ∈ G by (2.22) - (2.28), and we can write

αd(x̂d − w̄h, x̂d − w̄h) = ad(x̃d − w̃h, x̃d − w̃h) =
1

d
a0(x̃d, x̃d)

+
1

d

3∑
i=1

( L∫

0

Ii(x̂d) dτ

)2

+ a1(x̃d − w̃h, x̃d − w̃h) + d a2(x̃d − w̃h, x̃d − w̃h), (3.7)

where x̃d was defined in Proposition 2.3. Moreover, from (2.32) we get that

1

d
a0(x̃d, x̃d) +

1

d

3∑
i=1

( L∫

0

Ii(x̂d) dτ

)2

= (`, x̃d)H1
0 (0,L)9×H−1(0,L)9 − a1(x̃d, x̃d) − d a2(x̃d, x̃d)

→ (`, x0)H1
0 (0,L)9×H−1(0,L)9 − a1(x

0, x0) = 0 , (3.8)

by Propostion 2.3 and (2.33). Relation (3.8) shows that there is some d1(δ) > 0
such that

0 ≤ 1

d
a0(x̃d, x̃d) +

1

d

3∑
i=1

( L∫

0

Ii(x̂d) dτ

)2

<
δ

3
, for d < d1(δ) . (3.9)

By the triangle inequality, we obtain that

ai(x̃d − w̃h, x̃d − w̃h) ≤ Ci |x̃d − w̃h|2H1
0 (0,L)9

≤ Ci

[ ∣∣x̃d − x0
∣∣
H1

0 (0,L)9
+

∣∣x0 − w̃h

∣∣
H1

0 (0,L)9

]2

, i = 1, 2 . (3.10)

The constants Ci > 0 , i = 1, 2 , in (3.10) are the boundedness constants for the
bilinear functionals ai(·, ·) , i = 1, 2 .

Proposition 2.3 gives |x̃d − x0|H1
0 (0,L)9 < δ/3 if d < d2(δ) , and Proposition 3.1 allows

to choose w̄h ∈ Gh such that |w̃h − x0|H1
0 (0,L)9 < δ/3 if h < h(δ) . By (3.6)–(3.10),

we get (3.4) with the same h(δ) and with d(δ) = min{d1(δ), d2(δ), d0} . 2

Proposition 3.3 For any d̂ > 0 , we have

lim
h→0

sup
d̂≤d≤d0

∣∣xh
d − x̂d

∣∣
H1

0 (0,L)3
= 0 . (3.11)

Proof. By (3.5), (3.6), we get

c
∣∣x̂d − xh

d

∣∣2
H1

0 (0,L)3
≤ αd(x̂d − xh

d , x̂d − xh
d) ≤ αd(x̂d − v̄h, x̂d − v̄h) , ∀ v̄h ∈ (Vh)

3 .
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Using (2.30) and the continuity properties of the bilinear functionals a0, a1, a2 and
of the linear functionals I1, I2, I3 , we can write

c
∣∣x̂d − xh

d

∣∣2
H1

0 (0,L)3
≤ M

d
|x̃d − ṽh|2H1

0 (0,L)9

≤ M1

d
|x̂d − v̄h|2H1

0 (0,L)3 ≤
M1

d̂
|x̂d − v̄h|2H1

0 (0,L)3 . (3.12)

As
⋃

h>0

(Vh)
3 is dense in H1

0 (0, L)3 , we may choose in (3.12) v̄h(d) → x̂d in H1
0 (0, L)3

and (3.11) follows. 2

Remark 3.2 By combining Proposition 3.2 and Proposition 3.3 we see that
lim
h→0

(xh
d − x̂d) = 0 uniformly with respect to d > 0 in H1

0 (0, L)3 .

Remark 3.3 A similar reduction method may be applied in many problems.
For instance, in the arch equation considered in Chenais and Paumier [4], Chenais
and Zerner [5], one can eliminate w1 via the Proposition 4 and also obtain uniform
convergence properties for the discretization for nonconstant curvature c .

4 Numerical experiments

We have considered the three-dimensional curve (spiral or helix) parametrized by

θ̄(t) =
(

cos
t√
2

, sin
t√
2

,
t√
2

)
, t ∈

[
0,

π

2

]
.

By Arnăutu, Sprekels and Tiba [1], § 8, if we choose the functions ϕ(t) = π
4

and
ϕ(t) = π

2
+ t√

2
, then it is possible to show that the tangent and the normal vectors

to θ̄(t) are given by (sin ϕ cos ψ , sin ϕ sin ψ , cos ϕ) and (cos ϕ cos ψ , cos ϕ sin ψ ,
− sin ψ) , respectively. In particular, assumption (2.21) is fulfilled.

The cross section of the curved rod is assumed to be a disk of radius R > 0 , and the
parameter d = πR2 is the area of the cross section. In the numerical experiments,
we have used the values 0.3, 0.1, 0.05, 0.01 and 0.001 for R , and d varies from
2.827433 · 10−1 to 3.1415927 · 10−6 .

The finite element method was applied by dividing the interval [0, π
2
] by an equidis-

tant grid with 100 subintervals, giving h = 0.157 . For the integrals over the cross
section, the usual change of variables to polar coordinates was applied. This allows
the computation of iterated integrals by numerical integration methods correspond-
ing to the discrete grid. For the bilinear functionals ad, αd it was possible to compute
them exactly. See (2.15), (2.22)–(2.24) and the definition of Cij in Section 2.

The obtained algebraic linear system was solved by the Gauss algorithm. The
bilinear functional ad has been numerically generated by using (2.14).
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Example 4.1 We fix the force in the right-hand side to be of the form f = (0, 0, f3)
with

f3(z) =





10 z ∈
[
0,

π

4

]
,

−10 z ∈
(π

4
,
π

2

]
.

The displacements (for R between 0.3 and 0.01) are shown in Figure 1. In order
to give a clear representation of the displacement vector, we have used the scaling
factor 3 in the first three cases and 0.15 in the last one. The figure has been produced
with Matlab.

Example 4.2 We choose a “torsional”-type force

f(x, y, z) =





50(−y, x, 0), z ∈
[
0,

π

4

]
,

50(y,−x, 0), z ∈
(π

4
,
π

2

]
.

In Figure 2 the obtained displacement is represented with a scaling factor 100. The
notations are as in Fig. 1.

It should be noticed that for R = 0.3, 0.1, 0.05, 0.01 the three bilinear forms Ad, ad

and αd produce numerical results that are very close and therefore we did not
specify the used bilinear form in the two examples above.

However, for R = 0.001 (which corresponds to d ≈ 10−6 and is the critical case)
there is a relevant difference between the results obtained with αd and the results
obtained with Ad or ad (which remain very close).

In Table 1, the error and the relative error in the `2 norm are listed, between
the solutions obtained by Ad, ad , respectively αd , for R = 0.001 and for τ̄ =
(τ1, τ2, τ3) .

Ad versus ad ad versus αd

abs. error rel. error abs. error rel. error
τ1 6.191 · 10−15 1.003 · 10−6 1.743 · 10−11 2.831 · 10−3

τ2 5.431 · 10−15 5.785 · 10−7 3.062 · 10−11 3.260 · 10−3

τ3 2.365 · 10−15 2.162 · 10−7 3.103 · 10−11 2.839 · 10−3

Table 1

According to the theoretical results from Section 3, the bilinear functional αd has to
be taken into account. The experiments show that this is also important for small
values of the parameter d .
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