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Abstract

A 1D coupled drift-diffusion dissipative Schrödinger model (hybrid model), which
is capable to describe the transport of electrons and holes in semi-conductor devices
in a non-equilibrium situation, is mathematically analyzed. The device domain is
split into a part where the transport is well-described by the drift-diffusion equations
(classical zone) and a part where a quantum description via a dissipative Schrödinger
system (quantum zone) is used. Both system are coupled such that the continuity
of the current densities is guaranteed. The electrostatic potential is self-consistently
determined by Poisson’s equation on the whole device. We show that the hybrid
model is well-posed, prove existence of solutions and show their uniform boundedness
provided the distribution function satisfy a so-called balance condition. The current
densities are different from zero in the non-equilibrium case and uniformly bounded.
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1 Introduction

A basic model for carrier transport in semi-conductors was originated in 1950 by van
Roosbroeck [46]. It describes the transport of electron and holes by drift and diffusion
processes in a self-consistent electrical field. This so-called drift-diffusion model was firstly
used by Gummel, cf. [26], to calculate diodes. Since that time drift-diffusion models
were intensively studied and there is an extensive literature on it, see [22, 41, 47] and
references therein. However, modern semi-conductor devices inherently employ quantum
effects in their operations like tunneling [15, 17, 49] which are well described by stationary
or transient Wigner- or Schrödinger-Poisson systems [1, 9, 10, 12, 27, 28, 29, 33, 34, 35, 36,
38, 39, 43, 44, 45, 48]. Unfortunately, the numerical treatment of Wigner- or Schrödinger-
Poisson systems is fairly expensive compared to classical models like drift-diffusion models.
However, for several devices like resonant tunneling diodes [13, 14, 21, 42] the quantum
effects occur only in some small spatial parts while other parts admit a quite reasonable
description by approved “classical models” like drift-diffusion models etc. So one looks
for a model which combines a quantum description in parts where it is necessary with
a classical description in other parts. The aim is to obtain a model which allows an
effective and fast numerical treatment, but describes the transport of electrons and holes
in the semi-conductor device sufficiently accurate. Models of that type are usually called
hybrid models, cf. [2, 6, 7, 16]. Numerical calculations carried out in [2, 16] for resonant
tunneling diodes show that hybrid models are in a quite good agreement with experiments,
in particular, the phenomenon of negative differentiable resistance reproduces well. In the
following we are interested in an analytical treatment of such models under quite general
assumptions but in a dissipative approximation.

In particular, we consider an one dimensional stationary hybrid model which consists
of a stationary drift-diffusion model in the so-called “classical zone” and a stationary
Schrödinger-Poisson system in the “quantum zone”. Both systems are coupled by the
conditions that the Fermi energies of the quantum zone are given by the electro-chemical
potentials of the classical zone, the current densities are continuous at the interface points
and the Poisson equation holds on the whole device domain.

The hybrid model approach evokes, however, several problems. In fact, if one is interested
in a current density which is continuous over the whole device, then one has to consider an
open system. Indeed, for Schrödinger operators with self-adjoint boundary conditions the
current density is always zero since such operators commute with the complex conjugation.
Thus, a continuous non-trivial net current flow through the interface between quantum and
classical zones is impossible in this case. Consequently, hybrid models enforce at least non-
selfadjoint boundary conditions for the Schrödinger operator to describe the particles in the
quantum zone. Such models were introduced in [30, 31, 32]. Further, a non-trivial current
density arises in the quantum zone only if the statistical behaviour of the quantum system
is described by a density matrix which is different from those of the thermo-dynamical
equilibrium. Hence, one has to find suitable non-equilibrium density matrices.

In more detail, we divide the one dimensional device domain ∆ = [a0, b0] ⊆ R into three
subregions Σa = [a0, a], Ω = (a, b) and Σb = [b, b0], a0 < a < b < b0, where Σ :=
Σa ∪ Σb is called the classical zone and Ω is the quantum zone. In Σ we consider a
stationary one dimensional drift-diffusion system, in short DD-system, without generation
or recombination, [40]. That means, the carrier and current densities u±ν and J±ν , ν = a, b,
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for electrons “-” and holes “+” are given by the state equations

u±ν (x) := f±ν
(
γ±ν (x)

)
, and J±ν (x) := −µ±ν u±ν (x)

d

dx
z±ν (x), (1.1)

for x ∈ Σν , ν = a, b, where γ±ν are the chemical energies, z±ν denote the electro-chemical
potentials (energies) and µ±ν are the mobilities of the carriers in Σν , ν = a, b. The electro-
chemical potentials z±ν and the chemical energies γ±ν are related by

z±ν = ±ϕ+ γ±ν + E±ν , ν = a, b, (1.2)

where ϕ denotes the electrostatic potential and E±ν are the band edge-offsets in Σν , ν = a, b.
In the following we choose the Boltzmann distribution

f±ν (s) = N±ν es/kBT , s ∈ R, (1.3)

where N±ν , ν = a, b, are the effective density of states, kB is the Boltzmann constant, and
T the temperature, which is assumed to be constant. In order to keep the notation as
simple as possible we scale the factor kBT to one in the following. Very often instead of
the electro-chemical potentials z±ν the so-called quasi Fermi potentials φ±ν := ±z±ν are used
which we prefer to use also. In terms of quasi Fermi potentials one gets for the carrier and
current densities the expressions

u±ν = N±ν e∓(ϕ−φ±ν ±E
±
ν ) and J±ν = ∓µ±ν u±ν

d

dx
φ±ν , ν = a, b. (1.4)

Since we exclude generation and recombination in this paper the current densities J±ν ,
ν = a, b, satisfy the continuity equations

d

dx
J±ν = 0, ν = a, b, (1.5)

which yields that the current densities J±ν are constant on Σν , ν = a, b. Finally, one has
to add boundary conditions

φ±a (a0) = φ±a0
∈ R, and φ±b (b0) = φ±b0 ∈ R, (1.6)

to the continuity equations (1.5).

To have a mathematically meaningful description the continuity equations require bound-
ary conditions at the end points a and b of the classical zones Σa and Σb, too. However,
for the hybrid model a and b are not boundary points but interface points at which the
coupling of the drift-diffusion system with the quantum subsystem is realized. Hence the
coupling conditions have to replace the boundary conditions at these interface points. We
will develop these interface conditions later in the text.

In the quantum zone a dissipative Schrödinger system, in short a DS-system, is adopted,
cf. [3, 30] and Appendix A.5, which is derived from a quantum transmitting Schrödinger
system, in short QTS-system, see [4, 8] and Appendix B.1, B.3 and B.4. Dissipative
Schrödinger systems, in short DS-systems, consist of two dissipative Schrödinger-type op-
erators h±[κ±a ,κ

±
b , v

±], cf. [31, 32] and Appendix A.1, arising from the differential expres-
sions

h±[κ±a ,κ
±
b , v

±] = −1
2
d

dx

1
m±

d

dx
+ v± (1.7)
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with
v± := w± ± ϕ, w± ∈ L∞

R
(Ω), ϕ ∈ CR(Ω), (1.8)

on the Hilbert space h = L2(Ω), where the index R of the function spaces indicates real-
valued functions. The operators h±[κ±a ,κ

±
b , v

±] are supplemented by the boundary con-
ditions

1
2m±a

g′(a) = −κ±a g(a), and
1

2m±b
g′(b) = κ

±
b g(b), (1.9)

where w± are the band-edge offsets of the quantum zone and κ±a ,κ
±
b ∈ C+ := {z ∈ C :

Im(z) > 0}. The other important ingredients of dissipative Schrödinger systems are the so-
called density matrices ρ± ∈ L∞(R,B(C2)). Dissipative Schrödinger systems are indicated
by the quadruple {h±[κ±a ,κ

±
b , v

±], ρ±} = {h+[κ+
a ,κ

+
b , v

+], h−[κ−a ,κ
−
b , v

−], ρ+, ρ−} in the
following. To dissipative Schrödinger systems one assigns carrier and current densities, cf.
[3, 30] and Appendix A.3, A.4.

In contrast to [3, 30] where the coefficients κ±a ,κ
±
b were assumed to be constant we choose

them now potential dependent,

κ
±
a (ϕ) := i

√
s±(ϕ)−v±(a)

2m±a
,

κ
±
b (ϕ) := i

√
s±(ϕ)−v±(b)

2m±b
,

(1.10)

ϕ ∈ CR(Ω), where i denotes the imaginary unit, i.e. i2 = −1,

v±(a) := ±ϕ(a) + E±a , v±(b) := ±ϕ(b) + E±b (1.11)

and
s±(ϕ) := v±max(ϕ) + δ±0 , δ±0 > 0, (1.12)

with
v+
max(ϕ) := max{v+(a), v+(b)},

v−max(ϕ) := max{v−(a), v−(b)}
(1.13)

where δ±0 are given positive constants. Notice that Im(κ±a (ϕ)) > 0 and Im(κ±b (ϕ)) > 0
for all ϕ ∈ CR(Ω). Hence the operators h±[ϕ] := h±[κ±a (ϕ),κ±b (ϕ), w± ± ϕ] are maximal
dissipative ones such that the multiplicity of their minimal self-adjoint dilations is two, cf.
[32].

The density matrices ρ±Λ [ϕ] of the DS-system are determined by

Λ±[ϕ] := [v±max(ϕ), v±max(ϕ) + δ±), 0 < δ±0 < δ± ≤ ∞, (1.14)

and

ρ±(λ) := ρ±Λ±[ϕ] =
(
f±(λ− ε±b ) 0

0 f±(λ− ε±b )

)
χΛ±[ϕ](λ), λ ∈ R, (1.15)

where f± are statistical distribution functions, cf. Appendix B.4. The real parameters
A := {δ±0 , δ}, 0 < δ±0 < δ± ≤ ∞, are called the approximation parameters. The interest
to the semi-intervals Λ±[ϕ] is due to the fact that only energies above v±max(ϕ) contribute
to the current densities, cf. [30]. In the following we call them the current thresholds.
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With each DS-system {h±[ϕ], ρ±} one assigns carrier and current density operators N±ρ± [ϕ]
and j±ρ± [ϕ], see [3, 30] as well as Appendix A.3 and A.4. These operators define carrier
densities u±Q := N±ρ± [ϕ] and current densities j± := j±ρ± [ϕ] for given electrostatic potentials
ϕ ∈ CR(Ω) in the quantum zone. We recall that the current densities of the DS-system are
constants for a given electrostatic potential, cf. [3, 30].

In a next step one couples the DS-system {h±[ϕ], ρ±} to the drift-diffusion system by
choosing the Fermi energies ε±a and ε±b in appropriate manner and demanding current
continuity, i.e.

J±a = j± = J±b . (1.16)

To find the correct Fermi energies εa and εb one regards the semi-intervals (−∞, a) and
(b,∞) as carrier reservoirs which are characterized by carrier densities u±a and u±b and
reservoir potential energies v±a and v±b , respectively. Carrier densities u±a and u±b and
reservoir potential energies v±a and v±b determine the Fermi energies ε±a and ε±b of these
reservoirs. For the choice u±a = u±a (a), u±b = u±b (b), cf. (1.4) and v±a = v±(a) and
v±b = v±(b), cf. (1.11), it turns out that the Fermi energies of the reservoirs are determined
by

ε±a = z±a (a) = ±φ±a (a) and ε±b = z±b (b) = ±φ±b (b). (1.17)

which yields the density matrices

ρ±(λ) =
(
f±(λ∓ φ±b (b)) 0

0 f±(λ∓ φ±a (a))

)
χΛ±[ϕ](λ), λ ∈ R. (1.18)

In a forthcoming paper we give a rigorous derivation of the relations (1.17) which is called
the Fermi coupling. With respect to the current continuity condition (1.16) the problem
arises whether under the Fermi coupling for a given electrostatic potential ϕ the condition
(1.16) can be always satisfied.

The arising compound system consisting of DD- and DS-systems is called a dissipative
hybrid system, in short DH-system. If in addition the electrostatic potential ϕ satisfies the
Poisson equation

− d

dx
ε
d

dx
ϕ(x) = C(x) + u+(x)− u−(x), x ∈ ∆, (1.19)

with boundary conditions

ϕ(a0) = ϕa0 ∈ R and ϕ(b0) = ϕb0 ∈ R, (1.20)

where the carrier densities u± are given by

u±(x) :=


u±a (x), x ∈ Σa,
u±Q(x), x ∈ Ω,
u±b (x), x ∈ Σb,

(1.21)

then the DH-system is called a dissipative hybrid model, in short DH-model. By ε and C
the dielectric permittivity and the doping profile of the device are denoted, respectively. In
fact, the Poisson equation for determining the electrostatic potential is non-linear. Notice
that the quantum carrier densities depend non-locally on the potential.

A more advanced model is the so-called quantum transmitting hybrid model, in short QTH-
model, which arises if one couples the drift-diffusion system to the quantum transmitting
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system, cf. Appendix B.1. The dissipative hybrid model is an approximation of QTH-
model which one obtains replacing the quantum transmitting Schrödinger system (in short
QTS-system) entering into the QTH-model in certain manner by a dissipative Schrödinger
system, cf. Appendix B.3 and B.4. It has the advantage that a lot of quantities can be
calculated in an explicit manner but nevertheless it preserves with an certain accuracy the
mathematical problems of QTH-models. Finally, DH-models have an interest in its own.
Indeed, the numerical treatment of QTH-models requires a discretization in the energy
parameter λ which naturally leads to a finite collection of DH-models, see Appendix B.3.

The final aim of this paper is to show that the proposed DH-model admits a solution
under natural assumptions for any choice of the approximation parameters A. The paper
is organized as follows. In Section 2 we investigate the stationary drift-diffusion system on
the disconnected set Σ = Σa∪Σb provided the current densities are given and equal on the
different intervals Σa and Σb. This leads to certain restrictions on the current densities,
cf. Lemma 2.2. Section 3 is devoted to the rigorous setup of the dissipative Schrödinger
system used in the quantum zone. The dissipative hybrid model is defined in Section 4.
In Section 4.1 the so-called Fermi coupling is explained. Using the Fermi coupling it is
shown in Section 4.2 that the stationary DD-system and the DS-system admit a current
coupling. This result is in fact non-trivial and is based on Proposition 4.1. Using the
results of Section 4.2 in Section 4.3 the dissipative hybrid system is rigorously introduced.
Finally, in Section 4.4 the dissipative hybrid system is coupled to the Poisson equation
which yields the dissipative hybrid model. The problem to find a solution of the DH-model
is reformulated in Section 4.4 as a fixed point problem. In Section 5 we show that the
fixed point problem admits a solution. The existence proof is based on the Leray-Schauder
fixed point theorem. Important for this step is that a certain balance condition for the
distribution functions has to be satisfied, that means, the growth of the hole distribution
function at minus infinity and the decay of electron distribution function at plus infinity
and vice versa have to be related, cf. Assumption 5.6. The standard Boltzmann and Fermi
distributions satisfy this balance condition. Uniqueness is not shown and not expected
by physical reasons; however, it turns out that all solutions are uniformly bounded by a
bound which is determined by the data of the problem but independent of the choice of
the approximation parameters A. Moreover, the current densities are non-trivial in the
non-equilibrium case. We end up with some comments in Section 6. In Appendix A we
give an introduction to dissipative Schrödinger systems and prove some continuity results
for the carrier and current density operators. The derivation of the DS-system used in
the quantum zone from the QTS-model is exposed in the Appendix B, in particular, in
Appendix B.3 and B.4 .

Notation: By Lp(O, X,m) 1 ≤ p < ∞ we denote the space of m-measurable and p-
integrable functions over Borel sets O ⊆ R with values in a Banach space X where usually
O = Ω,Σ,∆. By L∞(O, X,m) the space of essentially bounded functions is denoted. If m
is the Lebesgue measure, then we write Lp(O) = Lp(O,C,m) and Lp

R
(O) := Lp(O,R,m),

1 ≤ p ≤ ∞. For closed sets O ⊆ R we denote by C(O) and CR(O) the spaces of continuous
complex- or real-valued functions on O equipped with the supremum norm, respectively.

The norm of a Banach or Hilbert space X is indicated by ‖ · ‖X or simply by ‖ · ‖, the
scalar product of a Hilbert space X by (·, ·)X or simply by (·, ·) where the first argument
is the linear one. The dual space is indicated by X∗. By B(X,Y ) the space of all linear
bounded operators from the Banach space X to the Banach space Y is denoted with norm
‖ · ‖B(X,Y ). If X = Y , then B(X,X) = B(X) and ‖ · ‖B(X,Y ) = ‖ · ‖B(X). If X is a Hilbert
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spaces, then B1(X) denotes the space of trace class operators. For a densely defined linear
operator A : X −→ Y we denote by A∗, spec(A) and res(A) its adjoint, spectrum and
resolvent set, respectively.

Furthermore, for O = (a0, b0) or O = (a, b) we denote by W 1,2(O) the usual Sobolev spaces
of complex-valued functions on O. The subspace of elements with homogeneous Dirichlet

boundary conditions at the end points of the interval O ⊆ R is denoted by
o

W 1,2 (O). Its

dual with respect to the L2-pairing is denoted by
o

W−1,2 (O) =
(

o

W 1,2 (O)
)∗

. If we have

in mind only real-valued functions, then we write W 1,2
R

(O) and
o

W 1,2
R

(O).

Moreover, in the following we distinguish between variable and parameter dependence using
the convention: if we have in mind a variable dependence, then we put the variable into
parentheses, if a parameter dependence, then the parameter is put into brackets, see above
(1.7), (1.10), (1.12), (1.14). It happens, that a parameter dependence becomes a variable
one what means the parameter is now included into parentheses. The superscripts “+”
and “-” always indicate quantities related to holes and electrons, respectively.

2 Classical zone

In this section we consider the stationary drift-diffusion equations (1.4) and (1.5) on the
disconnected set Σ with boundary conditions (1.6). The boundary conditions at a and
b are replaced by the conditions that (i) the current densities at a and b are equal and
(ii) these current densities are given. We show in this section that the DD-system is
well-posed and admits solutions provided the given current densities are located in some
interval around zero which depends on the fixed electrostatic potential ϕ. Later on the
given current densities will be the quantum current densities for a fixed potential ϕ which
is finally determined self-consistently by the Poisson equation.

We suppose that the carrier and current densities u±(·) and J±ν , ν = a, b, are given by
(1.4). We make the following assumptions.

Assumption 2.1

(C.1) The effective carrier mobilities µ±ν are positive constants on Σν , ν = a, b.

(C.2) The effective density of states N±ν are positive constants on Σν , ν = a, b.

(C.3) The band-edge offsets E±ν are real constants on Σν , ν = a, b.

(C.4) Generation and recombination are absent.

By (C.4) we obtain the continuity equations (1.5) which implies that J±(x) := J±ν (x) is
the same current density on Σν , ν = a, b. In particular, one has

J±(x) = J±a (a), x ∈ Σa, and J±(x) = J±b (b), x ∈ Σb. (2.1)

Therefore, one gets that

J−a (a) = µ−a N
−
a

e−φ
−
a0 − e−φ−a (a)∫ a

a0
dy e−ϕ(y)+E−a

(2.2)
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and

J−b (b) = µ−b N
−
b

e−φ
−
b (b) − e−φ

−
b0∫ b0

b
dy e−ϕ(y)+E−b

. (2.3)

In the same manner we verify that

J+
a (a) = µ+

aN
+
b

eφ
+
a0 − eφ+

a (a)∫ a
a0
dy eϕ(y)+E+

a

(2.4)

and

J+
b (b) = µ+

b N
+
b

eφ
+
b (b) − eφ

+
b0∫ b0

b
dy eϕ(y)+E+

b

. (2.5)

Lemma 2.2 Let the electrostatic potential ϕ ∈ CR(∆) be given. There are solutions φ−ν ∈
C1
R
(Σν), ν = a, b, of (1.4) and (1.5) satisfying the boundary conditions (1.6) and J−a (a) =

J−b (b) = J− if and only if J− ∈ (J−min[ϕ], J−max[ϕ]) where

J−min[ϕ] := −µ−b N
−
b

e−φ
−
b0∫ b0

b
dy e−ϕ(y)+E−b

, J−max[ϕ] := µ−a N
−
a

e−φ
−
a0∫ a

a0
dy e−ϕ(y)+E−a

. (2.6)

Similarly, there is a solution φ+
ν ∈ C1

R
(Σν), ν = a, b, of (1.4) and (1.5) satisfying the

boundary conditions (1.6) and J+
a (a) = J+

b (b) = J+ if and only if J+ ∈ (J+
min[ϕ], J+

max[ϕ])
where

J+
min[ϕ] := −µ+

b N
+
b

eφ
+
b0∫ b0

b
dy eϕ(y)+E+

b

, J+
max[ϕ] := µ+

aN
+
a

eφ
+
a0∫ a

a0
dy eϕ(y)+E+

a

. (2.7)

Proof. From (2.2) and (2.3) one gets

J−a (a) < µ−a N
−
a

e−φ
−
a0∫ a

a0
dy e−ϕ(y)+E−a

= J−max[ϕ] (2.8)

and

J−b (b) < −µ−b N
−
b

e−φ
−
b0∫ b0

b
dy e−ϕ(y)+E−b

= J−min[ϕ]. (2.9)

If we assume that J−a (a) = J−b (b) = J−, then (2.8) and (2.9) imply J− ∈
(J−min[ϕ], J−max[ϕ]). Conversely, if J− ∈ (J−min[ϕ], J−max[ϕ]), then the definitions

φ−a [J−, ϕ](x) := − ln
(
e−φ

−
a0 − J−

µ−a N
−
a

∫ x

a0

dy e−ϕ(y)+E−a

)
, x ∈ Σa, (2.10)

and

φ−b [J−, ϕ](x) := − ln

(
e−φ

−
b0 +

J−

µ−b N
−
b

∫ b0

x

dy e−ϕ(y)+E−b

)
, x ∈ Σb, (2.11)
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make sense.

Similarly, we prove that J+ ∈ (J+
min[ϕ], J+

max[ϕ]) has to be satisfied. Moreover, if J+ ∈
(J+
min[ϕ], J+

max[ϕ]), then the definitions

φ+
a [J+, ϕ](x) := ln

(
eφ

+
a0 − J+

µ+
aN

+
a

∫ x

a0

dy eϕ(y)+E+
a

)
, x ∈ Σa, (2.12)

and

φ+
b [J+, ϕ](x) := ln

(
eφ

+
b0 +

J+

µ+
b N

+
b

∫ b0

x

dy eϕ(y)+E+
b

)
, x ∈ Σb, (2.13)

are correct. If in accordance with (1.4) we set

u±ν [J±, ϕ](x) := N±ν e
∓(ϕ(x)−φ±ν [J±,ϕ](x)±E±ν ), x ∈ Σν , ν = a, b, (2.14)

then a straightforward computation shows that

J± = ∓µ±ν u±ν [J±, ϕ](x)
d

dx
φ±ν [J±, ϕ](x), x ∈ Σν , ν = a, b, (2.15)

which completes the proof. �

It is convenient to introduce sets of pairs {J±, ϕ}

E− :=

{J−, ϕ} ∈ R× CR(∆) :
0 < e−φ

−
a0 − J−

µ−a N
−
a

∫ a
a0
dx e−ϕ(x)+E−a

0 < e−φ
−
b0 + J−

µ−b N
−
b

∫ b0
b
dx e−ϕ(x)+E−b

 (2.16)

and

E+ :=

{J+, ϕ} ∈ R× CR(∆) :
0 < eφ

+
a0 − J+

µ+
aN

+
a

∫ a
a0
dx eϕ(x)+E+

a

0 < eφ
+
b0 + J+

µ+
b N

+
b

∫ b0
b
dx eϕ(x)+E+

b

 . (2.17)

To prevent confusion we note that the curly brackets in (2.16) and (2.17) indicate pairs in
the sense of set theory.

Notice that the definitions (2.10), (2.11), (2.12) and (2.13) make sense if {J±, ϕ} ∈ E±.
We note that φ±a [J±, ϕ](a0) = φ±a0

and φ±b [J±, ϕ](b0) = φ±b0 for {J±, ϕ} ∈ E±. According
to (1.4) and (2.14) we obtain

u−a [J−, ϕ](x) = N−a e
ϕ(x)−E−a

{
e−φ

−
a0 − J−

µ−a N
−
a

∫ x
a0
dy e−ϕ(y)+E−a

}
, x ∈ Σa,

u−b [J−, ϕ](x) = N−b e
ϕ(x)−E−b

{
e−φ

−
b0 + J−

µ−b N
−
b

∫ b0
x
dy e−ϕ(y)+E−b

}
, x ∈ Σb,

(2.18)

for {J±, ϕ} ∈ E− and

u+
a [J+, ϕ](x) = N+

a e
−(ϕ(x)+E+

a )
{
eφ

+
a0 − J+

µ+
aN

+
a

∫ x
a0
dy eϕ(y)+E+

a

}
, x ∈ Σa,

u+
b [J+, ϕ](x) = N+

b e
−(ϕ(x)+E+

b )
{
eφ

+
b0 + J+

µ+
b N

+
b

∫ b0
x
dy eϕ(y)+E+

b

}
, x ∈ Σb,

(2.19)
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for {J+, ϕ} ∈ E+ which clearly shows that the densities u±ν [J±, ϕ], ν = a, b, are positive if
{J±, ϕ} ∈ E±. The classical carrier density operators D± : E± −→ L1

R
(Σ) are defined by

D±[J±, ϕ] :=

{
u±a [J±, ϕ], x ∈ Σa,

u±b [J±, ϕ], x ∈ Σb,
(2.20)

where dom(D±) = E±. Of course, the carrier densities are not only from L1 but in fact
continuous. However, in Section 3 we see that for the quantum densities the adequate
function space is L1(Ω). This suggests to demand here the same.

3 Quantum zone

In this section we rigorously define the dissipative Schrödinger system
{h±[κ±a (ϕ),κ±b (ϕ), ρ±} defined by (1.7)-(1.15) for ϕ ∈ CR(∆) under the following
general assumptions.

Assumption 3.1

(Q.1) The effective masses m± are positive and obey m±, 1
m± ∈ L

∞
R

(Ω).

(Q.2) The effective masses m±a and m±b outside the interval [a, b] are positive and constant.

(Q.3) The band-edge offsets w± belong to L∞
R

(Ω).

(Q.4) The distribution functions f± : R −→ R+ are continuously differentiable and non-
increasing, i.e d

dxf
±(x) ≤ 0 for x ∈ R, such that

D±(s) := sup
λ∈[s,∞)

f±(λ)
√

1 + λ2 <∞, s ∈ R, (3.1)

F±(s) :=
∫ ∞
s

dλ f±(λ) <∞, s ∈ R, (3.2)

A DS-system consists of two dissipative Schrödinger-type operators h±[τ±] on h = L2(Ω),

τ± := {κ±a ,κ±b , v
±} ∈ T+ := C+ × C+ × L∞R (Ω), (3.3)

and two density matrices ρ± ∈ L∞(R,B(C2)) with values in the set of non-negative self-
adjoint two-by-two matrices. We recall that the superscripts “+” or “-” corresponds to
holes and electrons, respectively. The dissipative Schrödinger-type operator h±[τ±] are
defined in the Hilbert space h = L2(Ω) by

dom(h[τ±]) =

g ∈W 1,2(Ω) :

1
m± g

′ ∈W 1,2(Ω),
1

2m±(a)g
′(a) = −κ±a g(a),

1
2m±(b)g

′(b) = κ
±
b g(b)

 , (3.4)

and
(h±[τ±]g)(x) = (l±[v±]g)(x), g ∈ dom(h[τ ]), (3.5)
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where
(l±[v±]g)(x) := −1

2
d

dx

1
m±(x)

d

dx
g(x) + v±(x)g(x). (3.6)

The dissipative operators h±[ϕ] used in the following are defined by h±[ϕ] := h±[τ±(ϕ)]
where

τ±(ϕ) := {κ±a (ϕ),κ±b (ϕ), w± ± ϕ} ∈ T+, ϕ ∈ CR(∆) (3.7)

and κ±a (ϕ), κ±b (ϕ) are given by (1.10). Together with the density matrices

ρ±[ε±a , ε
±
b , ϕ](λ) :=

(
f±(λ− ε±b ) 0

0 f±(λ− ε±b )

)
χΛ±[ϕ](λ), λ ∈ R, (3.8)

ϕ ∈ CR(∆), cf. (1.15), this leads to the dissipative Schrödinger system
{h±[ϕ], ρ±[ε±a , ε

±
b , ϕ]} where ε±a , ε

±
b are called the Fermi energies of the reservoirs.

In accordance with Appendix A.2 and A.3 one associates with the dissipative Schrödinger
system {h±[ϕ], ρ±[ε±a , ε

±
b ]} carrier density operators N±[ε±a , ε

±
b , ·] : C∞

R
(∆) −→ L1

R
(Ω) and

current density operators j±[ε±a , ε
±
b , ·] : C∞

R
(∆) −→ R defined by

N±[ε±a , ε
±
b , ϕ] := N±

ρ±[ε±a ,ε
±
b ,ϕ]

[τ±(ϕ)], ϕ ∈ CR(∆), (3.9)

and
j±[ε±a , ε

±
b , ϕ] := j±

ρ±[ε±a ,ε
±
b ,ϕ]

[τ±(ϕ)], ϕ ∈ CR(∆), (3.10)

see also [3, 32]. For us it is important that the carrier density operators admit the estimate

‖N±[ε±a , ε
±
b , ϕ]‖L1(Ω) ≤ (3.11)

Cρ±[ε±a ,ε
±
b ,ϕ]

(
3 +

[
8 + 4

√
‖m±‖L∞(Ω)(b− a)

]√
1 + ‖v±−‖L∞(Ω)

)
where

v±−(x) := max{0,−v±(x)}, x ∈ Ω, v± := w± ± ϕ, (3.12)

and
Cρ±[ε±a ,ε

±
b ,ϕ] := sup

λ∈R
‖ρ±[ε±a , ε

±
b , ϕ](λ)‖B(C2)

√
1 + λ2, (3.13)

cf. Proposition A.2 of Appendix A.2. Further, it is crucial that the current density opera-
tors j±[ε±a , ε

±
b , ϕ] have the representations

j±[ε±a , ε
±
b , ϕ] =

∫
R

dλ tr
(
ρ±[ε±a , ε

±
b , ϕ](λ)C±[ϕ](λ)

)
(3.14)

where C±[ϕ] are the so-called current density observables given by

C±[ϕ](λ) :=
1

2π
(
PaΘ±[ϕ](λ)Pb − PbΘ±[ϕ](λ)Pa

)
Θ±[ϕ](λ)∗, λ ∈ R, (3.15)

and Θ±[ϕ] := Θ±[τ±(ϕ)] denote the so-called characteristic functions of the maximal
dissipative operators h±[ϕ], see Appendix A.1. By Pa and Pb are indicated projections on
the Hilbert space C2 given by

Pa := (·, ea)C2 ea, Pb := (·, eb)C2 eb, (3.16)

where

eb =
(

1
0

)
, ea =

(
0
1

)
(3.17)

and (·, ·)C2 is the scalar product in C2.
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4 Hybrid model

Next we are going to couple the DS-system {h±[ϕ], ρ±[ε±a , ε
±
b , ϕ]} to the DD-system. This

coupling is done in two steps.

4.1 Fermi coupling

Fermi coupling means to choose the Fermi energies ε±a and ε±b in an appropriate manner.
In the following we choose the Fermi energies in accordance with (1.17). In a forthcoming
paper we legitimize this choice. Inserting the expressions (2.10)-(2.13) for the quasi Fermi
potentials into (3.8) one gets the density matrices

ρ±[ε±a , ε
±
b , ϕ] = ρ±[J±, ϕ](λ) := (4.1)(
f±(λ ∓ φ±b [J±, ϕ](b)) 0

0 f±(λ ∓ φ±a [J±, ϕ](a))

)
χΛ±[ϕ](λ),

λ ∈ R. We note again explicitly that the density matrices ρ±[J±, ϕ] are only well defined
if {J±, ϕ} ∈ E±, cf. (2.16) and (2.17). Inserting the expression (4.1) into equations (3.9)
and (3.10) the carrier and current density operators of the dissipative Schrödinger system
{h±[ϕ], ρ±[J±, ϕ]} transform into

N±[ε±a , ε
±
b , ϕ] = N±[J±, ϕ] := N±ρ±[J±,ϕ][τ

±(ϕ)], ϕ ∈ CR(∆), (4.2)

and
j±[ε±a , ε

±
b , ϕ] = j±[J±, ϕ] := j±ρ±[J±,ϕ][τ

±(ϕ)], ϕ ∈ CR(∆). (4.3)

4.2 Current coupling

The DS-system {h±[ϕ], ρ±[J±, ϕ]} includes the classical current densities J± as a free
parameter provided J± ∈ (J±min[ϕ], J±max[ϕ]), cf. (2.6) and (2.7). In following we are going
to eliminate this free parameter by the current continuity condition (1.16) which takes the
form

J± = j±[J±, ϕ], {J±, ϕ} ∈ E±. (4.4)

We show that for each fixed electrostatic potential ϕ ∈ CR(∆) the equations (4.4) admit
unique solutions J± ∈ (J±min[ϕ], J±max[ϕ]).

Proposition 4.1 If the Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(∆)
the equations (4.4) admit unique solutions J±[ϕ] such that {J±[ϕ], ϕ} ∈ E±.

Proof. Using (3.14), (3.15) and (4.1) we get

j±[J±, ϕ] =
1

2π

∫
R

dλ tr
(
ρ±[J±, ϕ](λ)

(
PaΘ±[ϕ](λ)Pb − PbΘ±[ϕ](λ)Pa

)
Θ±[ϕ](λ)∗

)
or

j±[J±, ϕ] =
1

2π

∫
Λ±[ϕ]

dλ
(
f±(λ ∓ φ±a [J±, ϕ](a)|(eb,Θ±[ϕ](λ)ea)C2 |2−

f±(λ ∓ φ±b [J±, ϕ](b))|(ea,Θ±[ϕ](λ)eb)C2 |2
)
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where ea, eb are given by (3.17). From [32, Section 3] we know that (eb,Θ±[ϕ](λ)ea)C2 =
(ea,Θ±[ϕ](λ)eb)C2 . Introducing the transmission coefficients

t±[ϕ](λ) :=
∣∣(eb,Θ±[ϕ](λ)ea)C2

∣∣2 , λ ∈ R, ϕ ∈ CR(∆), (4.5)

we obtain the representations

j±[J±, ϕ] = (4.6)
1

2π

∫
Λ±[ϕ]

dλ t±[ϕ](λ)
(
f±(λ∓ φ±a [J±, ϕ](a))− f±(λ∓ φ±b [J±, ϕ](b))

)
.

Since the considerations for holes and electrons are the same we restrict ourselves in the
following to holes. We consider only the current continuity equation J+ = j+[J+, ϕ],
{J+, ϕ} ∈ E+. The characteristic function Θ+[ϕ](z) is holomorphic and contractive in
z ∈ C−. Hence, the function (eb,Θ+[ϕ](z)ea)C2 is holomorphic and bounded by one in
z ∈ C−. We note that the limit (eb,Θ+[ϕ](λ)ea)C2 = limβ↑0(eb,Θ+[ϕ])](λ− iβ)ea)C2 exist
for all λ ∈ R and is bounded by one. Using the uniqueness theorem for H∞-function, cf.
Corollary II.4.2 of [25], we find that this limit is different from zero for a.e λ ∈ R. Hence
the function t+[ϕ](λ) is different from zero and obeys the estimate

0 ≤ t+[ϕ](λ) ≤ 1, ϕ ∈ CR(∆), (4.7)

for a.e. λ ∈ R. Inserting (2.12) and (2.13) into (4.6) we find

j+[J+, ϕ] =
1

2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+

(
λ− ln

(
eφ

+
a0 − J+

µ+
aN

+
a

∫ a

a0

dy eϕ(y)+E+
a

))
−

1
2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+

(
λ− ln

(
eφ

+
b0 +

J+

µ+
b N

+
b

∫ b0

b

dy eϕ(y)+E+
b

))

Since d
dxf

+ ≤ 0 one gets ∂
∂J+ j

+[J+, ϕ] ≤ 0. Hence, if ϕ is fixed, then the function
j+[J+, ϕ] is non-increasing in J+. By Lemma 2.2 one has {J+, ϕ} ∈ E+ ⇐⇒ J+ ∈
(J+
min[ϕ], J+

max[ϕ]). If J+ ↑ J+
max[ϕ], then φ+[J+, ϕ](a)→ −∞. Using the estimate∫

Λ+[ϕ]

dλ t+[ϕ](λ)f+(λ− φ+
a [J+, ϕ](a)) ≤

∫ ∞
v+
max−φ+

a [J+,ϕ](a)

dλ f+(λ),

we find
lim

J+↑J+
max[ϕ]

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+(λ− φ+
a [J+, ϕ](a)) = 0

which gives

j+[J+
max[ϕ], ϕ] := lim

J+↑J+
max[ϕ]

j+[J+, ϕ] = (4.8)

− 1
2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+

(
λ− ln

(
eφ

+
b0 +

J+
max[ϕ]
µ+
b N

+
b

∫ b0

b

dy eϕ(y)+E+
b

))
.

Similarly, if J+ ↓ J+
min[ϕ], then φ+

b [J+, ϕ](b)→ −∞. Hence

lim
J+↓J+

min[ϕ]

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+(λ− φ+
b [J+, ϕ](b)) = 0
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which yields

j+[J+
min[ϕ], ϕ] := lim

J+↓J+
min[ϕ]

j+[J+, ϕ] = (4.9)

1
2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)f+

(
λ− ln

(
eφ

+
a0 − J+

min[ϕ]
µ+
aN

+
a

∫ a

a0

dy eϕ(y)+E+
a

))
.

Since j+[J+, ϕ] is continuous and non-increasing in J+ as well as j+[J+
min[ϕ], ϕ] > 0 and

j+[J+
max[ϕ], ϕ] < 0 one immediately gets that the equation J+ = j+[J+, ϕ] admits a unique

solution J+[ϕ] for each ϕ ∈ CR(∆) which satisfies {J+[ϕ], ϕ} ∈ E+. Similarly, one shows
that the equation J− = j−[J−, ϕ] admits a unique solution J−[ϕ] for each ϕ ∈ CR(∆) such
that {J−[ϕ], ϕ} ∈ E−. �

4.3 Dissipative hybrid system

If J±[ϕ] is the solution of Proposition 4.1 for given ϕ ∈ CR(∆), then it makes sense to
introduce the following quantities of the dissipative hybrid system (DH-system):

φ±ν [ϕ] := φ±ν [J±[ϕ], ϕ], ν = a, b, cf. (2.10), (2.11), (2.12), (2.13),

ρ±[ϕ] := ρ±[J±[ϕ], ϕ], cf. (4.1),

N±[ϕ] := N±[J±[ϕ], ϕ], cf. (4.2),

D±[ϕ] := D±[J±[ϕ], ϕ], cf. (2.20).

(4.10)

Moreover, it makes sense to introduce carrier density operators for the DH-system:

Definition 4.2 Let the Assumptions 2.1 and 3.1 be satisfied. The carrier density operator
U±[·] : CR(∆) −→ L1

R
(∆) of the dissipative hybrid system is defined by

U±[ϕ](x) :=

{
D±[ϕ](x), x ∈ Σ,

N±[ϕ](x), x ∈ Ω,
(4.11)

cf. (4.10).

In this section we verify certain properties of the quantities (4.10) which are needed later
for the existence proof. In the following lemma we give an L∞-estimate of the quasi Fermi
potentials φ±[ϕ] which is uniform in ϕ ∈ CR(∆).

Lemma 4.3 If the Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(∆) one
has

max{|φ±a [ϕ](x)|, φ±b [ϕ](x)|} ≤ η±, x ∈ Σ, (4.12)

where
η± := max

{∣∣φ±a0

∣∣ , ∣∣φ±b0∣∣} (4.13)

Proof. Assume that J+[ϕ] ≥ 0. Since J+[ϕ] solves the equation (4.4) one gets from (4.6)
that

f+(λ− φ+
a [ϕ](a)) ≥ f+(λ− φ+

b [ϕ](b)), λ ∈ Λ+[ϕ].
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Taking into account the monotonicity of f+ we find that

−φ+
a [ϕ](a) ≤ −φ+

b [ϕ](b).

If J+[ϕ] ≥ 0, then −φ+
ν [ϕ](x), x ∈ Σν , ν = a, b, is non-decreasing. That means we have

−φ+
a [ϕ](a0) ≤ −φ+

a [ϕ](a) and − φ+
b [ϕ](b) ≤ −φ+

b [ϕ](b0).

Hence
−φ+

a [ϕ](a0) ≤ −φ+
a [ϕ](a) ≤ −φ+

b [ϕ](b) ≤ −φ+
b [ϕ](b0).

which shows that

max{|φ+
a [ϕ](a)|, |φ+

b [ϕ](b)|} ≤ max{|φ+
a [ϕ](a0)|, |φ+

b [ϕ](b0)|}.

If J+[ϕ] ≤ 0, then from equation (4.6) one gets

f+(λ− φ+
a [ϕ](a)) ≤ f+(λ− φ+

b [ϕ](b)), λ ∈ Λ+[ϕ],

which yields
φ+
a [ϕ](a) ≤ φ+

b [ϕ](b).

Since φ+
ν [ϕ](x) is non-decreasing on Σν , ν = a, b, we find

φ+
a [ϕ](a0) ≤ φ+

a [ϕ](a) ≤ φ+
b [ϕ](b) ≤ φ+

b [ϕ](b0)

which yields

max{|φ+
a [ϕ](a)|, |φ+

b [ϕ](b)|} ≤ max{|φ+
a [ϕ](a0)|, |φ+

a [ϕ](b0)|}.

Since φ+
a [ϕ](a0) = φ+

a0
and φ+

b [ϕ](b0) = φ+
b0

we obtain (4.12) for x = a, b. We complete the
proof for holes by the remark that the quasi Fermi potentials φ+

ν [ϕ], ν = a, b, are monotone.
The proof for electrons is similar. �

We note that the constants η± are independent of the potential ϕ. With help of Lemma
4.3 we prove an estimate for the carrier density operators.

Lemma 4.4 If the Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(∆) the
carrier density operators N±[·] admit the estimates

‖N±[ϕ]‖L1(Ω) ≤ (4.14)

C±(v±max(ϕ))
(

3 +
[
8 + 4

√
‖m±‖L∞(Ω)(b− a)

]√
1 + ‖w±‖L∞(Ω) + ‖ϕ∓‖L∞(Ω)

)
where

ϕ+(x) := max{0, ϕ(x)}, and ϕ−(x) := max{0,−ϕ(x)}, x ∈ Ω, (4.15)

v±max(ϕ) is defined by (1.13),

C±(s) := D±(s− η±)(1 + η±), s ∈ R, (4.16)

D±(·) and η± are given by (3.1) and (4.13), respectively.
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Proof. From (3.11)-(3.13) we get

‖N±[ϕ]‖L1(Ω) ≤ Cρ±[ϕ]

(
3 +

[
8 + 4

√
‖m±‖L∞(Ω)(b− a)

]√
1 + ‖v±−‖L∞(Ω)

)
where Cρ±[ϕ] = supλ∈R ‖ρ±[ϕ](λ)‖B(C2)

√
1 + λ2. A simple calculation shows that

‖v±−‖L∞(Ω) ≤ ‖w±‖L∞(Ω) + ‖ϕ∓‖L∞(Ω).

Hence, we obtain

‖N±[ϕ]‖L1(Ω) ≤

Cρ±[ϕ]

(
3 +

[
8 + 4

√
‖m±‖L∞(Ω)(b− a)

]√
1 + ‖w±‖L∞(Ω) + ‖ϕ∓‖L∞(Ω)

)
.

The next step is to estimate the constant Cρ±[ϕ] by C±(v±max(ϕ)). Let us consider the case
of holes. We find

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+

b [ϕ](b)) ≤

D+(v+
max(ϕ)− φ+

b [ϕ](b)) sup
x∈R

(
1 + (x+ φ+

b [ϕ](b))2

1 + x2

)1/2

Since

sup
x∈R

(
1 + (x+ φ+

b [ϕ](b))2

1 + x2

)1/2

≤ 1 + |φ+
b [ϕ](b)|

we get

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+

b [ϕ](b)) ≤ D+(v+
max(ϕ)− φ+

b [ϕ](b))(1 + |φ+
b [ϕ](b)|).

In the same manner we prove

sup
λ∈Λ+[ϕ]

√
1 + λ2f+(λ− φ+

a [ϕ](a)) ≤ D+(v+
max(ϕ)− φ+

a [ϕ](a))(1 + |φ+
a [ϕ](a)|).

which yields

Cρ+[ϕ] ≤ max
ν∈{a,b}

{
D+(v+

max(ϕ)− φ+
ν [ϕ](ν))(1 + |φ+

ν [ϕ](ν)|)
}
. (4.17)

Since D+(·) is not increasing we complete the proof using Lemma 4.3. The proof for
electrons is similar. �

Like the carrier densities N±[ϕ] the current densities J±[ϕ] admit an estimation, too.

Lemma 4.5 If the Assumptions 2.1 and 3.1 are satisfied, then for any ϕ ∈ CR(∆) the
estimates

|J±[ϕ]| ≤ 1
π
F±(v±max(ϕ)− η±) (4.18)

are valid, where v±max(ϕ) are defined by (1.13), η± and the functions F±(·) are given by
(4.13) and by (3.2), respectively
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Proof. We consider the case of holes. Since J+[ϕ] is a solution of (4.4) one has J+[ϕ] =
j±[J+[ϕ], ϕ] where j±[J+[ϕ], ϕ] is defined by (4.3). From (4.6) and the fact that the
transmission coefficient t+[ϕ](λ), cf. (4.5), is uniformly bounded by one, cf. (4.7), we
obtain

|J+[ϕ]| ≤ 1
2π

{∫
Λ+[ϕ]

dλ f+(λ− φ+
b [ϕ](b)) + f+(λ− φ+

a [ϕ](a))

}
which yields

|J+[ϕ]| ≤ 1
2π
{
F+(v+

max(ϕ)− φ+
b [ϕ](b)) + F+(v+

max(ϕ)− φ+
a [ϕ](a))

}
.

By Lemma 4.3 we immediately get (4.18). Similarly, one handles the case of electrons. �

We are going to show the continuity of the current density operator with respect to the
electrostatic potential ϕ.

Lemma 4.6 Let the Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(∆), n ∈ N, and
limn→∞ ‖ϕn − ϕ‖L∞(∆) = 0, then limn→∞ J±[ϕn] = J±[ϕ].

Proof. We set J± := J±[ϕ] and J±n := J±[ϕn], n ∈ N. If J±n 6→ J± as n→∞, then there
is a subsequence {J±nk}k∈N such that limk→∞ J±nk = J±∞ 6= J±. This results from Lemma
4.5 which shows the uniform boundedness of {J±n }∞n∈N.

Let us show that {J±∞, ϕ} ∈ E±. Since {J±n , ϕn} ∈ E±, n ∈ N, and

lim
n→∞

J±min[ϕn] = J±min[ϕ] and lim
n→∞

J±max[ϕn] = J±max[ϕ]

one has {J±∞, ϕ} 6∈ E± if and only if either J±∞ = J±max[ϕ] or J±∞ = J±min[ϕ]. However,
this is impossible: Namely, if limk→∞ J+

nk
= J+

max[ϕ] > 0, then limk→∞ j+[J+
nk
, ϕnk ] =

j+[J+
∞, ϕ] ≤ 0, cf. (4.8). Similarly, if limk→∞ J+

nk
= J+

min[ϕ] < 0, then
limk→∞ j+[J+

nk
, ϕnk ] = j+[J+

∞, ϕ] ≥ 0, cf. (4.9) The proof for the electrons is similar.

Since {J±∞, ϕ} ∈ E± the quantities φ±ν [J±∞, ϕ], ν = a, b, and ρ±[J±∞, ϕ] are well-defined. One
gets limk→∞ φ±b [J±nk , ϕnk ](b) = φ±b [J±∞, ϕ](b) and limk→∞ φ±a [J±nk , ϕnk ](a) = φ±a [J±∞, ϕ](a)
which yields limk→∞ ρ±[J±nk , ϕnk ](λ) = ρ±[J±∞, ϕ](λ) for a.e. λ ∈ R as well as
Lρ±[J±nk ,ϕnk ] < ∞, k ∈ R, and Lρ±[J±∞,ϕ] < ∞, cf. (A.32), (3.2) and (4.1). Moreover,
we find

lim
k→∞

∫
R

dλ
(
ρ±[J±nk , ϕnk ](λ)e, e

)
C2 =

∫
R

dλ
(
ρ±[J±∞, ϕ](λ)e, e

)
C2

for each e ∈ C2. By the assumption limn→∞ ‖ϕn − ϕ‖L∞(∆) = 0 we get τ±[ϕn] → τ±(ϕ)
as n→∞, cf. (3.7). Applying Theorem A.6 we verify that

lim
k→∞

j±[J±nk , ϕnk ] = j±[J±∞, ϕ].

Since J±nk = j±[J±nk , ϕnk ] we find

J±∞ = lim
k→∞

J±nk = j±[J±∞, ϕ].

Since the solutions of these equations are unique one gets J±∞ = J±[ϕ], which proves the
continuity. �

Next, let us show that the carrier density operators U±[·] are continuous. To this end we
first prove the continuity of the dissipative carrier density operators N±[·].
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Lemma 4.7 Let the Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(∆), n ∈ N, and
limn→∞ ‖ϕn − ϕ‖L∞(∆) = 0, then limn→∞ ‖N±[ϕn]−N±[ϕ]‖L1(Ω) = 0.

Proof. We set τ± := τ±(ϕ) and τ±n := τ±(ϕn), n ∈ N, cf (3.7). Notice that limn→∞ τ±n =
τ±, cf. (A.1). Since Cρ±[ϕ] ≤ D±(v±max(ϕ) − η±) (cf. (A.23) for the definition of Cρ±[ϕ])
for any ϕ ∈ CR(∆) we get supn Cρ±[ϕn] < ∞, see proof of Lemma 4.4. Furthermore, by
limn→∞ φ±ν [ϕn](x) = φ±ν [ϕ](x), x ∈ Σν , ν = a, b, we find limn→∞ ρ±[ϕn](λ) = ρ±[ϕ](λ) for
a.e. λ ∈ R. Applying Theorem A.5 we complete the proof. �

Proposition 4.8 Let the Assumptions 2.1 and 3.1 be satisfied. If ϕ,ϕn ∈ CR(∆), n ∈ N,
and limn→∞ ‖ϕn − ϕ‖L∞(∆) = 0, then limn→∞ ‖U±[ϕn]− U±[ϕ]‖L1(∆) = 0.

Proof. Taking into account Lemma 4.7 it remains to show that

lim
n→∞

‖D±[ϕn]−D±[ϕ]‖L1(Σ) = 0.

By Lemma 4.6 one gets limn→∞ u±ν [J±[ϕn], ϕn] = u±ν [J±[ϕ], ϕ], ν = a, b, cf. (2.18) and
(2.19), which yields limn→∞ ‖D[ϕn]−D[ϕ]‖L1(Σ) = 0. �

4.4 Coupling to Poisson’s equation: dissipative hybrid model

In order to have a meaningful model for semi-conductors, the electrostatic potential has to
be self-consistently computed by a Poisson equation. In this section we pose the Poisson
equation on the whole device domain ∆, where the right hand side depends on the densities
of the DH-system. This leads to a non-linear equation for the electrostatic potential ϕ.
Moreover, we will reformulate the problem as a fixed point problem.

Concerning the data for Poisson’s equation we make the following assumptions:

Assumption 4.9

(P.1) The doping profile C belongs to
o

W−1,2
R

(∆).

(P.2) The dielectric permittivity ε is positive and obeys ε, 1
ε ∈ L∞

R
(∆). We set ε̃ :=

max{1, ‖ 1
ε ‖L∞(∆)}.

By ϕ̂ we denote the function

ϕ̂(x) :=
1∫ b0

a0
dt 1

ε(t)

{
ϕb0

∫ x

a0

dt
1
ε(t)

+ ϕa0

∫ b0

x

dt
1
ε(t)

}
, x ∈ ∆, (4.19)

where ϕa0 and ϕb0 are the boundary values (1.20) of the Poisson equation. Notice that
ϕ̂ ∈W 1,2

R
(∆), ε ddx ϕ̂ ∈W

1,2
R

(∆) and ϕ̂(a0) = ϕa0 and ϕ̂(b0) = ϕb0 . Furthermore, one has

− d

dx
ε(x)

d

dx
ϕ̂(x) = 0, x ∈ ∆.
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Definition 4.10 We define the Poisson operator P : W 1,2
R

(∆) −→
o

W−1,2
R

(∆) by

〈Pυ, ζ〉 :=
∫ b

a

dx ε(x)
dυ

dx

dζ

dx
, υ ∈W 1,2

R
(∆), ζ ∈

o

W 1,2
R

(∆) (4.20)

The restriction of P to the subspace
o

W 1,2
R

(∆) will be denoted by P0.

Definition 4.11 Assume u± ∈ L1(∆). We say ϕ ∈ W 1,2
R

(∆) satisfies Poisson’s equation

if ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(∆) and, additionally, satisfies

P0ζ = C + E1u
+ − E1u

− (4.21)

where E1 denotes the embedding operator from L1(∆) into
o

W−1,2 (∆).

By E∞ we denote further the embedding operator from W 1,2(∆) into C(∆).

Definition 4.12 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. We say an element
ϕ ∈W 1,2

R
(∆) is a solution of the dissipative hybrid model (DH-model) if

(i) the carrier densities u± ∈ L1(∆) are given by the hybrid densities, i.e. u± =
U±[E∞ϕ], cf. (4.11), and

(ii) the potential ϕ satisfies Poisson’s equation.

We note that if ϕ ∈W 1,2
R

(∆) is a solution of the DH-model, then the current densities are
given by J±[ϕ].

Let us introduce for each fixed ϕ ∈ CR(∆) the operator P[ϕ] :
o

W 1,2
R

(∆) −→
o

W−1,2
R

(∆),

P[ϕ](ζ) := P0ζ + E1

{
p−[ϕ]eζ − p+[ϕ]e−ζ

}
, (4.22)

where

p−[ϕ](x) :=


N−a e

ϕ̂(x)−E−a
(
e−φ

−
a0 − J−[ϕ]

µ−a N
−
a

∫ x
a0
dy e−ϕ(y)+E−a

)
, x ∈ Σa,

0, x ∈ Ω,
N−b e

ϕ̂(x)−E−b
(
e−φ

−
b0 + J−[ϕ]

µ−b N
−
b

∫ b0
x
dy e−ϕ(y)+E−b

)
, x ∈ Σb

(4.23)

and

p+[ϕ](x) :=


N+
a e
−(ϕ̂(x)+E+

a )
(
eφ

+
a0 − J+[ϕ]

µ+
aN

+
a

∫ x
a0
dy eϕ(y)+E+

a

)
, x ∈ Σa,

0, x ∈ Ω,
N+
b e
−(ϕ̂(x)+E+

b )
(
eφ

+
b0 + J+[ϕ]

µ+
b N

+
b

∫ b0
x
dy eϕ(y)+E+

b

)
, x ∈ Σb,

(4.24)

ϕ ∈ CR(∆). We note that p±[ϕ] ∈ L∞
R

(∆). Notice that drift-diffusion densities can be
written as

u±ν [J±[ϕ], ϕ](x) = p±[ϕ](x)e∓ζ(x), x ∈ Σν , ν = a, b,
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where ϕ = ζ + ϕ̂ and u±ν [J±[ϕ], ϕ] are given by (2.18) and (2.19).

Concerning the next Lemma and its proof we follow the terminology of [23], in partic-
ular, the notions of strong monotonicity and boundedly Lipschitz continuity are used in
accordance with Definitions III.1.1 and III.1.2 of [23].

Lemma 4.13 Let the Assumption 2.1 and 4.9 be satisfied. If ϕ ∈ CR(∆), then the operator
P[ϕ] is strongly monotone with monotonicity constant mP ,

mP :=
1

‖1/ε‖L∞(∆)
, (4.25)

and boundedly Lipschitz continuous.

Proof. We note that the operator P0 is linear, bounded and obeys

〈P0ζ, ζ〉 ≥ mP‖ζ‖2o
W 1,2
R

(∆)
(4.26)

where the constant mP is given by (4.25). Hence P0 is a strongly monotone operator with

monotonicity constant mP which maps
o

W 1,2
R

(∆) onto
o

W−1,2
R

(∆).

By Proposition 4.1 one has {J±[ϕ], ϕ} ∈ E±, hence, p±[ϕ](x) ≥ 0 for x ∈ ∆. Using this

one verifies that for each ϕ ∈ CR(∆) the nonlinear operator T [ϕ] :
o

W 1,2
R

(∆) −→
o

W−1,2
R

(∆),

T [ϕ](ζ) := E1

{
p−[ϕ]eζ − p+[ϕ]e−ζ

}
, (4.27)

is a monotone Nemytskij operator. Hence the sum P[ϕ] = P0 +T [ϕ] is a strongly monotone
operator with the same monotonicity constant mP as P0. Since P0 is bounded and linear
it is obviously Lipschitz continuous. A straightforward computation shows that T [ϕ] is
boundedly Lipschitz continuous, too. Hence the sum P[ϕ] is also boundedly Lipschitz
continuous. �

From Lemma 4.13 and Corollary III.2.3 of [23] we obtain that for ϕ ∈ CR(∆) the

operator P[ϕ]−1 :
o

W−1,2
R

(∆) −→
o

W 1,2
R

(∆) exits, is bounded and Lipschitz continu-
ous with a Lipschitz constant not bigger than 1/mP . Let us introduce the mapping
Q : CR(∆) −→W 1,2

R
(∆) defined by

Q(ϕ) := ϕ̂+ P[ϕ]−1(C − E1YN−[ϕ] + E1YN+[ϕ]) (4.28)

where ϕ ∈ dom(Q) = CR(∆) and Y : L1(Ω) −→ L1(∆) is the extension operator

(Y f)(x) :=
{

0 x ∈ Σ,
f(x) x ∈ Ω. (4.29)

We set Q∞ : CR(∆) −→ CR(∆),

Q∞ := E∞Q, dom(Q∞) := CR(∆). (4.30)
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Proposition 4.14 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. An element ϕ ∈
W 1,2
R

(∆) is a solution of the DH-model if ϕ∞ := E∞ϕ ∈ CR(∆) is a fixed point of the
mapping Q∞. Conversely, if ϕ∞ ∈ CR(∆) is a fixed point of Q∞, then there is a ϕ ∈
W 1,2
R

(∆) such that ϕ∞ = E∞ϕ and ϕ is a solution of the DH-model.

Proof. Let us assume that ϕ ∈ W 1,2
R

(∆) is a solution of the DH-model. Then ϕ∞ :=
E∞ϕ ∈ CR(∆). Further, Definition 4.12 implies

P0ζ = C − E1U−[ϕ∞] + E1U+[ϕ∞] (4.31)

where ϕ = ζ + ϕ̂. Since

−D−[ϕ∞] +D+[ϕ∞] = −p−[ϕ∞]eζ + p+[ϕ∞]e−ζ (4.32)

we find

P0ζ + E1

(
p−[ϕ∞]eζ − p+[ϕ∞]e−ζ

)
= C − E1YN−[ϕ∞] + E1YN+[ϕ∞]. (4.33)

which yields
P[ϕ∞](ζ) = C − E1YN−[ϕ∞] + E1YN+[ϕ∞]. (4.34)

Therefore we obtain

ϕ = ϕ̂+ P[ϕ∞]−1(C − E1YN−[ϕ∞] + E1YN+[ϕ∞]) (4.35)

which implies ϕ∞ = Q∞[ϕ∞].

Conversely, if ϕ∞ is a fixed point of Q, then ϕ∞ ∈ CR(∆) and

ϕ∞ = E∞
(
ϕ̂+ P[ϕ∞]−1

(
C − E1YN−[ϕ∞] + E1YN+[ϕ∞]

))
. (4.36)

Setting
ϕ := ϕ̂+ P[ϕ∞]−1

(
C − E1YN−[ϕ∞] + E1YN+[ϕ∞]

)
(4.37)

one gets ϕ∞ = E∞ϕ. Hence

P0ζ + E1

(
p−[E∞ϕ]eζ − p+[E∞ϕ]e−ζ

)
= C − E1YN−[E∞ϕ] + E1YN+[E∞ϕ] (4.38)

where ζ := ϕ− ϕ̂. However, the last equality implies

P0ζ = C − E1U−[E∞ϕ] + E1U+[E∞ϕ]. (4.39)

Hence ϕ is a solution of the DH-model. �

5 Existence

5.1 Preliminaries

Our final aim is to show that the DH-model always admits a solution. By Proposition 4.14
this is equivalent to show that the non-linear mapping Q∞ : CR(∆) −→ CR(∆) admits a
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fixed point. This will be done by applying the Leray-Schauder fixed point theorem [24,
Theorem 11.3]. To this end we consider the non-linear equation

ϑ = tQ∞(ϑ), ϑ ∈ CR(∆), t ∈ [0, 1]. (5.1)

Let us introduce the modified carrier density operators U±t [·] : CR(∆) −→ L1(∆), t ∈ [0, 1],

U±t [ϕ](x) :=

{
D±[tϕ](x)e∓(1−t)ϕ(x), x ∈ Σ,

N±[tϕ](x), x ∈ Ω.
(5.2)

We note that U±[ϕ] = U±1 [ϕ], ϕ ∈ CR(∆), cf. (4.11).

Lemma 5.1 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. If ϑ ∈ CR(∆) satisfies the
equation (5.1) for t ∈ [0, 1], then there is an element ϕ ∈ W 1,2

R
(∆) such that ϑ = tE∞ϕ

and ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(∆) satisfies the modified Poisson equation

P0ζ = C + E1U+
t [E∞ϕ]− E1U−t [E∞ϕ] (5.3)

for t ∈ [0, 1].

Proof. If ϑ satisfies (5.1), then ϑ ∈ CR(∆) and

ϑ = tE∞
(
ϕ̂+ P[ϑ]−1

(
C − E1YN−[ϑ] + E1YN+[ϑ]

))
. (5.4)

Setting
ϕ := ϕ̂+ P[ϑ]−1

(
C − E1YN−[ϑ] + E1YN+[ϑ]

)
(5.5)

we find ϑ = tE∞ϕ and

ζ := ϕ− ϕ̂ = P[tE∞ϕ]−1
(
C − E1YN−[tE∞ϕ] + E1YN+[tE∞ϕ]

)
∈
o

W 1,2
R

(∆). (5.6)

Hence
P[tE∞ϕ](ζ) = C − E1YN−[tE∞ϕ] + E1YN+[tE∞ϕ], (5.7)

which leads to

P0ζ + E1(p−[tE∞ϕ]eζ − p+[tE∞ϕ]e−ζ) = C − E1YN−[tE∞ϕ] + E1YN+[tE∞ϕ] (5.8)

By
p−[tE∞ϕ]eζ − p+[tE∞ϕ]e−ζ = D−[tE∞ϕ]e(1−t)ϕ −D+[tE∞ϕ]e−(1−t)ϕ (5.9)

one finally verifies (5.3). �

Having in mind an application of the Leray-Schauder fixed point theorem one has to show
that the mapping Q∞ is compact, i.e. continuous and maps every bounded set into a
precompact one, cf. Section 11.3 of [24]. This will be shown by the following lemmas.

Lemma 5.2 If the Assumptions 2.1, 3.1 and 4.9 are satisfied, then the mapping Q∞ is
continuous.
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Proof. Let ϕ,ϕn ∈ CR(∆), n ∈ N, such that limn→∞ ‖ϕ− ϕn‖L∞(∆) = 0. We set

ψ := C − E1YN−[ϕ] + E1YN+[ϕ]

and
ψn := C − E1YN−[ϕn] + E1YN+[ϕn], n ∈ N.

By Lemma 4.7 we find limn→∞ ‖N±[ϕn]−N±[ϕ]‖L1(∆) = 0 which yields

lim
n→∞

‖ψn − ψ‖o
W−1,2(∆)

= 0. (5.10)

Let us show that

lim
n→∞

‖P[ϕn]−1(ψn)− P[ϕ]−1(ψ)‖ o
W 1,2(∆)

= 0. (5.11)

Obviously one has

ψn − P[ϕn](P [ϕ]−1(ψ)) = ψn − ψ −
{
P[ϕn](P [ϕ]−1(ψ))− ψ

}
. (5.12)

The sequence P[ϕn] :
o

W 1,2 (∆) −→
o

W−1,2 (∆) strongly converges to P[ϕ], i.e. for each

ζ ∈
o

W 1,2 (∆) one has P[ϕn](ζ)→ P[ϕ](ζ) as n→∞. Hence

lim
n→∞

‖P[ϕn](P [ϕ]−1(ψ))− ψ‖o
W−1,2(∆)

= 0. (5.13)

From (5.10), (5.12) and (5.13) we get

lim
n→∞

‖ψn − P[ϕn](P [ϕ]−1(ψ))‖o
W−1,2(∆)

= 0. (5.14)

Using the representation

P[ϕn]−1(ψn)− P[ϕ]−1(ψ) = P[ϕn]−1(ψn)− P[ϕn]−1(P[ϕn](P[ϕ]−1(ψ)))

and (5.14) we obtain from Lemma 4.13 and Corollary III.2.3 of [23] the relation (5.11)
which yields the continuity of Q∞. �

To prove the compactness of the mapping let us introduce the following constants Γ−Σ and
Γ+

Σ ,

Γ±Σ := eη
±
{
N±a e

−E±a
∫

Σa

dx e∓ϕ̂(x) +N±b e
−E±b

∫
Σb

dx e∓ϕ̂(x)

}
(5.15)

and
ΓΣ := Γ−Σ + Γ+

Σ (5.16)

where η± is given by (4.13). Further, we introduce the constants

Γ±Ω := 3 +
[
8 + 4

√
‖m±‖L∞(Ω)(b− a)

]√
1 + ‖w±‖L∞(Ω), (5.17)

Υ±Ω := 8 + 4
√
‖m±‖L∞(Ω)(b− a). (5.18)

We set

ΓΩ(s) := C−(s)Γ−Ω + C+(s)Γ+
Ω , s ∈ R, (5.19)

ΥΩ(s) := C−(s)Υ−Ω + C+(s)Υ+
Ω , s ∈ R, (5.20)
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where the functions C±(·) are defined by (4.16). Denoting by ε1 the norm of the embedding

operators E1 : L1(∆) −→
o

W−1,2 (∆) we introduce the constants

Γ(s) := ‖ϕ̂‖W 1,2(∆) + ‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ ε1‖1/ε‖L∞(∆) (ΓΣ + ΓΩ(s)) (5.21)

and
Υ(s) := ε1‖1/ε‖L∞(∆)ΥΩ(s), (5.22)

s ∈ R. Finally, we set
Emin := min{E−a , E−b , E

+
a , E

+
b }. (5.23)

Lemma 5.3 If the Assumptions 2.1, 3.1 and 4.9 are satisfied, then the mapping Q∞ is
compact.

Proof. By Lemma 5.2 it remains to show that Q∞ maps a bounded set into a precompact
set. To this end we are going to verify that the mapping Q : CR(∆) −→ W 1,2(∆) defined
by (4.28) maps bounded sets into bounded sets. Using the definition (4.28) we get the
estimate

‖Q(ϕ)‖W 1,2(∆) ≤
{
‖ϕ̂‖W 1,2(∆) + ‖P[ϕ]−1(C − E1YN−[ϕ] + E1YN+[ϕ])‖ o

W 1,2(∆)

}
.

Since by Lemma 4.13 for each ϕ ∈ CR(∆) the operator P[ϕ] is strongly monotone with
monotonicity constant mP we obtain from Theorem 2.17 of [35], see also [23], the estimate

‖P[ϕ]−1(C − E1YN−[ϕ] + E1YN+[ϕ])‖ o
W 1,2(∆)

≤ (5.24)

≤ 1
mP
‖P[ϕ](0)− (C − E1YN−[ϕ] + E1YN+[ϕ])‖o

W−1,2(∆)

≤ ‖1/ε‖L∞(∆)‖P[ϕ](0)− (C − E1YN−[ϕ] + E1YN+[ϕ])‖o
W−1,2(∆)

,

where Lemma 4.13 was taken into account. By (4.22) one gets

P[ϕ](0) = E1{p−[ϕ]− p+[ϕ]}.

Hence

‖P[ϕ]−1(C − E1YN−[ϕ] + E1YN+[ϕ])‖ o
W 1,2(∆)

≤

‖1/ε‖L∞(∆)‖E1{p−[ϕ]− p+[ϕ]} − (C − E1YN−[ϕ] + E1YN+[ϕ])‖o
W−1,2(∆)

which yields

‖P[ϕ]−1(C − E1YN−[ϕ] + E1YN+[ϕ])‖ o
W 1,2(∆)

≤ (5.25)

‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ ‖1/ε‖L∞(∆)

∑
s=±

{
‖ps[ϕ]‖L1(Σ) + ‖N s[ϕ]‖L1(Ω)

}
.
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Using the definitions (2.10)–(2.13) as well as (4.23) and (4.24) we find the representations

p±[ϕ](x) =


N±a e

∓(ϕ̂(x)±E±a )e±φ
±
a [ϕ](x), x ∈ Σa,

0, x ∈ Ω,

N±b e
∓(ϕ̂(x)±E±b )e±φ

±
a [ϕ](x), x ∈ Σb,

and taking into account Lemma 4.3 we obtain the estimate

‖p±[ϕ]‖L1(Σ) ≤ Γ±Σ ,

which yields
‖p−[ϕ]‖L1(Σ) + ‖p+[ϕ]‖L1(Σ) ≤ ΓΣ. (5.26)

By Lemma 4.4 we find the estimate

‖N−[ϕ]‖L1(Ω) + ‖N+[ϕ]‖L1(Ω) ≤ (5.27)

C−(v−max)
(

3 +
[
8 + 4

√
‖m−‖L∞(Ω)(b− a)

]√
1 + ‖w−‖L∞(Ω) + ‖ϕ‖L∞(Ω)

)
+

C+(v+
max)

(
3 +

[
8 + 4

√
‖m+‖L∞(Ω)(b− a)

]√
1 + ‖w+‖L∞(Ω) + ‖ϕ‖L∞(Ω)

)
,

where v±max(ϕ) are given by (1.13). If ϕ ∈ BCR(∆)(r) := {ϕ ∈ CR(∆) : ‖ϕ‖L∞(∆) ≤ r}, then
v±max(ϕ) ≥ −r+Emin. Since the functions C±(·) are non-increasing we find C±(v±max(ϕ)) ≤
C±(−r + Emin) which yields

‖N−[ϕ]‖L1(Ω) + ‖N+[ϕ]‖L1(Ω) ≤ (5.28)

C−(−r + Emin)
(

3 + [8 + 4
√
‖m−‖L∞(Ω)(b− a)]

√
1 + ‖w−‖L∞(Ω) + r

)
+

C+(−r + Emin)
(

3 + [8 + 4
√
‖m+‖L∞(Ω)(b− a)]

√
1 + ‖w+‖L∞(Ω) + r

)
.

Using the notation (5.19) and (5.20) we obtain

‖N−[ϕ]‖L1(Ω) + ‖N+[ϕ])‖L1(Ω) ≤ ΓΩ(−r + Emin) + ΥΩ(−r + Emin)r1/2. (5.29)

Finally, one gets the estimate

‖Q(ϕ)‖W 1,2(∆) ≤ r0 := Γ(−r + Emin) + Υ(−r + Emin)r1/2.

Hence Q(BCR(∆)(r)) ⊆ BW 1,2(∆)(r0), i.e. the mapping Q maps bounded sets into bounded
sets of W 1,2(∆). Since Q∞(BCR(∆)(r)) = E∞Q(BCR(∆)(r)) ⊆ E∞BW 1,2(∆)(r0) and E∞ is
compact one gets that the set Q∞(BCR(∆)(r)) is precompact. �

5.2 A priori estimates

Our next aim is to investigate solutions of (5.3) and to verify certain a priori estimates for
them. By ε∞ we denote the norm of the embedding operator E∞ : W 1,2(∆) −→ C(∆).
We set

M±0 := 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ ‖ϕ̂‖L∞(Ω) + ‖1/ε‖L1(∆)Γ±Σ , (5.30)

M±1 := ‖1/ε‖L1(∆)Γ±Ω , (5.31)

M±2 := ‖1/ε‖L1(∆)Υ±Ω , (5.32)
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where Γ±Σ , Γ±Ω and Υ±Ω are defined by (5.15), (5.17) and (5.18), respectively. Further, we
set

M := max{M±0 ,M
±
1 ,M

±
2 }. (5.33)

Notice that M depends only on quantities entering into the Assumptions 2.1, 3.1 and 4.9.

Lemma 5.4 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. If ϕ ∈ W 1,2
R

(∆) and

ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

satisfies (5.3) for some t ∈ [0, 1], then

ϕ(x) ≤ M
{

1 + C+(tϕmax + E+
min)

(
1 + ‖E∞ϕ−‖1/2L∞(Ω)

)}
, (5.34)

−ϕ(x) ≤ M
{

1 + C−(−tϕmin + E−min)
(

1 + ‖E∞ϕ+‖1/2L∞(Ω)

)}
, (5.35)

x ∈ ∆, where

ϕmax := max{ϕ(a), ϕ(b)} and ϕmin := min{ϕ(a), ϕ(b)}, (5.36)

ϕ± are defined by (4.15) and E±min := min{E±a , E±b }.

Proof. Let d := P−1
0 C ∈

o

W 1,2
R

(∆). Since ζ := ϕ− ϕ̂ is a solution of (5.3) one has

P0(ζ − d) = E1u
+ − E1u

−

where u± = U±t [E∞ϕ]. Since u+ − u− ∈ L1(∆) one gets that g := ζ − d ∈
o

W 1,2
R

(∆),
εg′ ∈W 1,1

R
(∆) and

− d

dx
ε(x)

d

dx
g(x) = u+(x)− u−(x)

for a.e. x ∈ ∆. Notice that

P0(ζ − d) = −E1
d

dx
ε(x)

d

dx
g.

Let ∆0 = (x0, x1) ⊆ ∆ such that ζ(x0) = ζ(x1) = 0 and ζ(x) > 0 for x ∈ ∆0. We set

g+(x) =
∫ x

x0

dy
1
ε(y)

∫ y

x0

dz u+(z), x ∈ ∆0.

Obviously, one has
d

dx
ε(x)

d

dx
h(x) = u−(x),

for a.e. x ∈ ∆0 where h(x) := g(x) + g+(x) = ζ(x) − d(x) + g+(x), x ∈ ∆0. Using the
Maximum Principle [24, Theorem 8.1] we obtain that

sup
x∈∆0

h(x) ≤ max{h(x0), h(x1)}

which yields

ζ(x) ≤ d(x) + max{−d(x0),−d(x1) + g+(x1)}, x ∈ ∆0.



28 M.Baro, H.Neidhardt, J.Rehberg

Thus
ζ(x) ≤ 2‖E∞d‖L∞(∆) + g+(x1), x ∈ ∆0. (5.37)

Using (5.2), (4.10), (2.20), (2.19) and (2.12), (2.13) one gets

u+
ν (x) = N+

ν e
−E+

ν eφ
+
ν [tE∞ϕ](x)e−ϕ̂(x)e−ζ(x), x ∈ ∆0 ∩ Σν , ν = a, b.

By Lemma 4.3 and ζ(x) ≥ 0, x ∈ ∆0, we get

u+
ν (x) ≤ N+

ν e
−E+

ν eη
+
e−ϕ̂(x), x ∈ Σν ∩∆0, ν = a, b,

which yields the estimate∫
∆0∩Σν

dz u+
ν (z) ≤ N+

ν e
−E+

ν eη
+
∫

∆0∩Σν

dz e−ϕ̂(z), ν = a, b.

Hence, we obtain the estimate

g+(x1) ≤ ‖1/ε‖L1(∆0)

∫
∆0

dz u+(z) ≤ ‖1/ε‖L1(∆0)

∫
∆0∩Ω

dz u+(z)+

‖1/ε‖L1(∆0)e
η+
{
N+
a e
−E+

a

∫
∆0∩Σa

dz e−ϕ̂(z) +N+
b e
−E+

b

∫
∆0∩Σb

dz e−ϕ̂(z).

}
Inserting this estimate into (5.37) we find

ζ(x) ≤ 2‖E∞d‖L∞(∆) + ‖1/ε‖L1(∆0)Γ+
Σ + ‖1/ε‖L1(∆0)

∫
∆0∩Ω

dz u+(z), x ∈ ∆0.

Using the estimate

‖E∞d‖L∞(∆) ≤ ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

one gets that

ζ(x) ≤ 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ ‖1/ε‖L1(∆)Γ+
Σ + ‖1/ε‖L1(∆)

∫
Ω

dz u+(z)

holds for x ∈ ∆+ := {x ∈ ∆ : ζ(x) > 0}.

Further, let ∆0 = (x0, x1) be an interval such that ζ(x0) = ζ(x1) = 0 and ζ(x) < 0 for
x ∈ ∆0. Setting

g−(x) =
∫ x

x0

dy
1
ε(y)

∫ y

x0

dz u−(z)

yields the equation
d

dx
ε(x)

d

dx

{
−g(x) + g−(x)

}
= u+(x)

for a.e. x ∈ ∆0. Using again Theorem 8.1 of [24] we obtain the estimate

−ζ(x) ≤ 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ g−(x1), x ∈ ∆0.

Following the reasoning above we finally obtain the estimate

−ζ(x) ≤ 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ ‖1/ε‖L1(∆)Γ−Σ + ‖1/ε‖L1(∆)

∫
Ω

dz u−(z)
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for x ∈ ∆− := {x ∈ ∆ : ζ(x) < 0}.

Since u± � Ω = N±[tE∞ϕ] we obtain from Lemma 4.4

ζ(x) ≤ 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ (5.38)

‖1/ε‖L1(∆)Γ+
Σ + C+(v+

max(tϕ))
(
M+

1 + t1/2M+
2 ‖E∞ϕ−‖

1/2
L∞(Ω)

)
,

x ∈ ∆+, v+
max(tϕ) := tϕmax + E+

min, E+
min = min{E+

a , E
+
b }, and

− ζ(x) ≤ 2ε∞‖1/ε‖L∞(∆)‖C‖o
W−1,2(∆)

+ (5.39)

‖1/ε‖L1(∆)Γ−Σ + C−(v−max(tϕ))
(
M−1 + t1/2M−2 ‖E∞ϕ+‖1/2L∞(Ω)

)
,

x ∈ ∆−, v−max(tϕ) := −tϕmin + E−min, E−min = min{E−a , E−b }, where the constants M±1
and M±2 are given by (5.31) and (5.32). Since ζ(x) ≤ 0 for x ∈ ∆ \∆+ and −ζ(x) ≤ 0 for
x ∈ ∆ \∆− we obtain from (5.38) and (5.39) that in fact these relations are valid for each
x ∈ ∆.

Finally, using the estimates ±ϕ(x) ≤ ±ζ(x) + ‖E∞ϕ̂‖L∞(∆), x ∈ ∆, and t ∈ [0, 1], we
immediately obtain from (5.38) and (5.39) the estimates

ϕ(x) ≤M+
0 + C+(tϕmax + E+

min)
(
M+

1 +M+
2 ‖E∞ϕ−‖

1/2
L∞(Ω)

)
,

and
−ϕ(x) ≤M−0 + C−(−tϕmin + E−min)

(
M−1 +M−2 ‖E∞ϕ+‖1/2L∞(Ω)

)
,

for x ∈ ∆. Using the notation (5.33) we obtain the estimates (5.34) and (5.35). �

Corollary 5.5 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. If ϕ ∈ W 1,2
R

(∆) and

ζ := ϕ− ϕ̂ ∈
o

W 1,2
R

(∆) satisfies the equation (5.3) for some t ∈ [0, 1], then

‖E∞ϕ+‖L∞(Ω) ≤M
(

1 + C+(tϕmax + E+
min)

(
1 + ‖E∞ϕ−‖1/2L∞(Ω)

))
(5.40)

and

‖E∞ϕ−‖L∞(Ω) ≤M
(

1 + C−(−tϕmax + E−min)
(

1 + ‖E∞ϕ+‖1/2L∞(Ω)

))
. (5.41)

Proof. From (5.34) and (5.35) we obtain the estimates

‖E∞ϕ+‖L∞(Ω) ≤M
(

1 + C+(tϕmax + E+
min)

(
1 + ‖E∞ϕ−‖1/2L∞(Ω)

))
and

‖E∞ϕ−‖L∞(Ω) ≤M
(

1 + C−(−tϕmin + E−min)
(

1 + ‖E∞ϕ+‖1/2L∞(Ω)

))
.

Since ϕmin ≤ ϕmax one has −tϕmax ≤ −tϕmin, t ∈ [0, 1]. Taking into account the fact
that the functions C±(·) are non-increasing we obtain the estimates (5.40) and (5.41). �
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5.3 Main theorem

Using Corollary 5.5 our aim is to show that all solutions of (5.3) are included in an uniform
ball, that is, there is a r0 > 0 such that

L := {ϑ ∈ CR(∆) : ϑ = tQ∞(ϑ), t ∈ [0, 1]} ⊆ BCR(∆)(r0). (5.42)

For this last step we need the additional balance condition.

Assumption 5.6 (balance condition) Let the distribution functions f± satisfy the as-
sumption (Q.4). We say the distributions functions f± obeys the balance condition if

G(x, y) := sup
s≥0

{
D+(s+ x)D−(−s+ y)1/2 +D+(−s+ x)1/2D−(s+ y)

}
<∞

for x, y ∈ R where D±(·) are defined by (3.1).

Theorem 5.7 Let the Assumptions 2.1, 3.1 and 4.9 be satisfied. If the balance condition,
i.e. Assumption 5.6, is valid, then for any choice of the approximation parameters {δ±0 , δ±},
0 < δ±0 < δ±,

(i) a solution ϕ ∈W 1,2
R

(∆) of DH-model in the sense of Definition 4.12 exists and

(ii) there is a r0 ∈ (0,∞) independent of the approximation parameters {δ±0 , δ±} such
that any solution ϕ ∈W 1,2

R
(∆) of the DH-model obeys ‖E∞ϕ‖L∞(∆) ≤ r0.

The corresponding current densities J±[E∞ϕ] of a solution ϕ ∈W 1,2
R

(∆) of the DH-model
are different from zero if and only if the boundary values of the quasi Fermi potentials are
different, i.e. φ±a0

6= φ±b0 provided the distribution functions f±(·) are strictly decreasing.

Proof. To prove (i) it is enough to show that Q∞ has fixed point, see Proposition 4.14.
To prove this we use the Leray-Schauder fixed point theorem. Since by Lemma 5.2 and
Lemma 5.3 the mapping Q∞ is continuous and compact it remains to show that the set
L defined by (5.42) is uniformly bounded in t ∈ [0, 1]. If ϕ ∈ L, then by Lemma 5.1 it
satisfies the equation (5.3). If ϕ satisfies the equation (5.3), then the estimates of Corollary
5.5 hold.

Let us assume that ϕmax ≥ 0. Using the estimate 1 + ‖E∞ϕ±‖1/2L∞(Ω) ≤
√

2
(
1 + ‖E∞ϕ±‖L∞(Ω)

)1/2 and setting x± := 1+‖E∞ϕ±‖L∞(Ω) we obtain from Corollary
5.5 the estimates

x+ ≤ 1 +M +
√

2MC+x
1/2
− , (5.43)

x− ≤ 1 +M +
√

2MC−x
1/2
+ , (5.44)

where the abbreviations C± := C±(±tϕmax +E±min) are used. Inserting (5.44) into (5.43)
we get

x+ ≤ 1 +M +
√

2MC+
(

1 +M +
√

2MC−x
1/2
+

)1/2
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which yields

x+ ≤ 1 +M +
√

2M(1 +M)1/2C+ + 23/4M3/2C+
√
C−x

1/4
+ .

Dividing by x1/4
+ we obtain

x
3/4
+ ≤ 1 +M +

√
2M(1 +M)1/2C+

x
1/4
+

+ 23/4M3/2C+
√
C−.

Using the fact that x+ ≥ 1 we find

x+ ≤
(

1 +M +
√

2M(1 +M)1/2C+ + 23/4M3/2C+
√
C−
)4/3

.

Hence

‖E∞ϕ+‖L∞(Ω) ≤
(

1 +M +
√

2M(1 +M)1/2C+ + 23/4M3/2C+
√
C−
)4/3

− 1

≤
(
M +

√
2M(1 +M)1/2C+ + 23/4M3/2C+

√
C−
)4/3

.

By the assumption ϕmax ≥ 0 and the monotonicity of the function C+(·) defined by (4.16)
we get C+ = C+(tϕmax + E+

min) ≤ C+(E+
min), t ∈ [0, 1]. Thus we find the estimate

‖E∞ϕ+‖L∞(Ω) ≤
(
M +

√
2M(1 +M)1/2C+(E+

min) + 23/4M3/2C+
√
C−
)4/3

.

Further by the definition (4.16) we get

C+
√
C− = C+(tϕmax + E+

min)
√
C−(−tϕmax + E−min)

= (1 + η+)
√

1 + η−D+(tϕmax + E+
min − η

+)D−(−tϕmax + E−min − η
−)1/2.

Taking into account the balance condition (Assumption 5.6) and ϕmax ≥ 0 we get

C+
√
C− ≤ (1 + η+)

√
1 + η−G(E+

min − η
+, E−min − η

−)

which leads to the estimate
‖E∞ϕ+‖L∞(Ω) ≤ r1,

where

r1 :=
(
M +

√
2M(1 +M)1/2C+(E+

min)+

23/4M3/2(1 + η+)
√

1 + η−G(E+
min − η

+, E−min − η
−)
)4/3

.

Since 0 ≤ ϕmax ≤ ‖E∞ϕ+‖L∞(Ω) we have −tϕmax ≥ −t‖E∞ϕ+‖L∞(Ω) ≥
−‖E∞ϕ+‖L∞(Ω) ≥ −r1, t ∈ [0, 1]. By the monotonicity of C−(·) we obtain C−(−tϕmax +
E−min) ≤ C−(−r1). Using Corollary 5.5 we finally get

‖E∞ϕ−‖L∞(Ω) ≤ r2
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where
r2 := M

(
1 + C−(−r1 + E−min)

(
1 + r

1/2
1

))
.

Hence ‖E∞ϕ‖L∞(Ω) ≤ max{r1, r2} which shows that the LΩ := {ϕ � Ω : ϕ ∈ L} ⊆
BCR(Ω)(max{r1, r2}) provided ϕmax ≥ 0.

Let ϕmax ≤ 0. In this case we insert (5.43) into (5.44) and get

x− ≤ 1 +M +
√

2MC−
(

1 +M +
√

2MC+x
1/2
−

)1/2

.

Similarly as above we obtain

‖E∞ϕ−‖L∞(Ω) ≤
(
M +

√
2M(1 +M)1/2C− + 23/4M3/2C−

√
C+
)4/3

.

Sine ϕmax ≤ 0 we get −tϕmax + E−min ≥ E−min, t ∈ [0, 1], which yields the estimate
C− = C−(−tϕmax + E−min) ≤ C−(E−min). Hence

‖E∞ϕ−‖L∞(Ω) ≤
(
M +

√
2M(1 +M)1/2C−(E−min) + 23/4M3/2C−

√
C+
)4/3

.

By the definition (4.16) we get

C−
√
C+ = C−(−tϕmax + E−min)

√
C+(tϕmax + E+

min)

= (1 + η−)
√

1 + η+D−(−tϕmax + E−min − η
−)D+(tϕmax + E+

min − η
+)1/2.

Using again the Assumption 5.6 (balance condition) and ϕmax ≤ 0 we obtain

C−
√
C+ ≤ (1 + η−)

√
1 + η+G(E+

min − η
+, E−min − η

−)

which gives the estimate
‖E∞ϕ−‖L∞(Ω) ≤ r3,

where

r3 :=
(
M +

√
2M(1 +M)1/2C−(E−min)+

23/4M3/2(1 + η−)
√

1 + η+G(E+
min − η

+, E−min − η
−)
)4/3

.

Since ϕmax ≥ ϕmin ≥ −‖E∞ϕ−‖L∞(Ω) we have tϕmax + E+
min ≥ −t‖E∞ϕ−‖L∞(Ω) +

E+
min− ≥ −‖E∞ϕ−‖L∞(Ω) + E+

min ≥ −r3 + E+
min which implies C+(tϕmax + E+

min) ≤
C+(−r3 + E+

min). Using the estimate (5.40) we get

‖E∞ϕ+‖L∞(Ω) ≤ r4,

where
r4 := M

(
1 + C+(−r3 + E+

min)
(

1 + r
1/2
3

))
.

Obviously, we have ‖E∞ϕ‖L∞(Ω) ≤ max{r3, r4} which yields that the restricted set LΩ ⊆
BCR(Ω)(max{r3, r4}) provided ϕmax ≤ 0.



6 Comments 33

Summing up we finally get LΩ ⊆ BCR(Ω)(rmax), rmax := max{r1, r2, r3, r4}. In particular,
we have −rmax ≤ ϕmin ≤ ϕmax ≤ rmax. Using Lemma 4.20 we find

ϕ(x) ≤ r6 := M
(

1 + C+(−rmax + E+
min)

(
1 + r1/2

max

))
and

−ϕ(x) ≤ r7 := M
(

1 + C−(−rmax + E−min)
(

1 + r1/2
max

))
for x ∈ ∆. Setting r0 = max{r6, r7} we conclude that ‖E∞ϕ‖L∞(∆) ≤ r0. Hence, L ⊆
BCR(∆)(r0). Since r0 depends only on quantities entering into the Assumptions 2.1, 3.1,
4.9 and 5.6 but is independent of t ∈ [0, 1] the uniform boundedness of the set L is verified.
Hence the Leray-Schauder fixed point theorem implies the existence of a solution of DH-
model. By the way the assertion (ii) was verified.

To prove the last assertion we note that in accordance with (4.6) the current density for
holes J+[ϕ] satisfies the equation

J+[ϕ] =
1

2π

∫
Λ+[ϕ]

dλ t+[ϕ](λ)
{
f+(λ− φ+

a [ϕ](a))− f+(λ− φ+
b [ϕ](b))

}
where t+[ϕ](λ) is the transmission coefficient, cf. (4.5). Notice that t+[ϕ](λ) ≥ 0 for a.e.
λ ∈ R. If J+[ϕ] ≥ 0, then −φ+

ν [ϕ](x), x ∈ Σν , ν = a, b, is non-decreasing such that
−φ+

a [ϕ](a) ≤ −φ+
b [ϕ](b). Hence

f+(λ− φ+
a [ϕ](a))− f+(λ− φ+

b [ϕ](b)) ≥ 0.

If J+[ϕ] = 0, then
f+(λ− φ+

a [ϕ](a))− f+(λ− φ+
b [ϕ](b)) = 0

for a.e. λ ∈ Λ+[ϕ]. Since the distribution functions f±(·) are strictly decreasing one
gets φ+

a [ϕ](a) = φ+
b [ϕ](b). If J+[ϕ] = 0, then φ+

a [ϕ](a0) = φ+
a [ϕ](a) and φ+

b [ϕ](b) =
φ+
b [ϕ](b0) which yields φ+

a0
= φ+[ϕ](a0) = φ+[ϕ](b0) = φ+

b0
. Similarly we proceed if J+[ϕ] ≤

0. Conversely, if φ+
a0

= φ+
b0

and J+[ϕ] ≥ 0, then −φ+
a0

= −φ+
a [ϕ](a0) ≤ −φ+

a [ϕ](a) ≤
−φ+

b [ϕ](b) ≤ −φ+[ϕ](b0) = −φ+
b0

= −φ+
a0

which yields J+[ϕ] = 0. Similarly we act if
J+[ϕ] ≤ 0. The proof for electrons can be done in a similar manner. �

6 Comments

Let us denote by C := {µ±a , µ±b N±a , N
±
b , E

±
a , E

±
b , φ

±
a0
, φ±b0} the data of the stationary drift-

diffusion system, by Q := {m±,m±a ,m±b , w±, f±} the data of the Schrödinger system and
by P := {C, ε, ϕa0 , ϕb0} the data of the Poisson equation which respectively satisfy the
Assumptions 2.1, 3.1 and 4.9.

1. For the sake of technical simplicity the Assumptions 2.1 for C are taken rather re-
strictive. Usually, the mobilities µ±ν , the band-edge offsets E±a , E±b and the densities
of states N±n u are not independent of x as assumed. Moreover, one has in general to
take into account generation and recombination effects which are neglected here. In
the classical zone a Boltzmann statistics is assumed which is widely used for drift-
diffusion models. In principal, it is possible to consider the Fermi-Dirac case, i.e.
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the classical densities and currents are given by (1.1), where f±ν are the Fermi-Dirac
statistics given by

f±ν (s) = N±ν F1/2(s/kBT ), s ∈ R, ν = a, b,

where

F1/2(x) :=
2√
π

∫ ∞
0

dξ

√
ξ

1 + eξ−x
, x ∈ R,

and N±ν are the density of states. However, in this case one loses the explicit ex-
pression for the carrier densities (2.18), (2.19). This is the reason why we prefer the
Boltzmann statistics.

2. The Assumptions 3.1 for Q are standard and used in many papers on Schrödinger-
Poisson systems. We note that the Schrödinger system describes the purely ballistic
charge transport in the quantum zone. Collisions in the quantum system could be
taken into account by considering in addition a Pauli master equation, cf. [2, 18, 19],
which is not done here. However, if the quantum zone can be chosen sufficiently small,
then collisions can be neglected which makes the assumptions on ballistic transport
quite reasonable.

Typical distribution functions entering into the density matrices ρ±(λ), λ ∈ R, (1.15)
are the Boltzmann distribution

f±(λ) = n±e−λ/kBT , λ ∈ R,

or the Fermi-Dirac distribution

f±(λ) = n± ln
(

1 + e−λ/kBT
)
, λ ∈ R,

where n±, are the integrated density of states.

3. The Boltzmann and the Fermi-Dirac distribution satisfy the Assumption 3.1, in par-
ticular (Q.4), and the balance condition (Assumption 5.6).

Indeed, let f±(·) be the Boltzmann distribution function, i.e., f±(s) = e−s, s ∈ R.
Using the definition (3.1) we get that D±(s) = e−s

√
1 + s2, s ∈ R. A straightforward

computations shows that

G(x, y) = sup
s≥0

{
e−

s
2−x−yg(x, y, s)

}
,

x, y ∈ R, where

g(x, y, s) :=(√
1 + (s+ x)2

√
1 + (s− y)2 +

√
1 + (s− x)2

√
1 + (s+ y)2

)
.

Obviously, one has G(x, y) <∞ for x, y ∈ R.

The verification of the balance condition for Fermi-Dirac distribution functions is
easier than for Boltzmann distributions since their growth at minus infinity is linear
and not exponential as for Boltzmann distributions.
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4. The Assumptions 2.1, 3.1, 4.9 and 5.6 are valid for a large class of semi-conductor
devices which gives the possibility to compare numerical and experimental results.
However, numerical calculations carried out in [2, 16] for resonant tunneling diodes
show that they are very sensitive to the position and size of the quantum zone.
Results, which are in a good agreement with the experiment, are only achievable
if the quantum zone is chosen properly. Notice, however, that the existence of a
solution for the dissipative hybrid model does not depend on the position and size of
the quantum zone.

5. The dissipative hybrid model is a phenomenological 1D bipolar stationary model
for charge transport in semi-conductors. It is interesting to note that for any data
obeying the Assumptions 2.1, 3.1 and 4.9 and 5.6 a solution exists. The electrostatic
potential ϕ is contained in a ball of CR(∆) whose radius is determined by the data
of C, Q and P. The approximation parameters A := {δ±, δ±0 } do not enter in this
bound. In the unipolar case the balance condition (Assumption 5.6) is redundant.

6. The current densities are constant over the whole device ∆ and bounded by constants
which are – similar to the electrostatic potential – determined by the data C, Q and
P. The current densities are zero if and only if the boundary values of the quasi
Fermi potentials at a0 and b0 are equal, that is, in the case of thermo-dynamical
equilibrium.

7. The solution of the DH-model is in general not unique. However, one expects that
for the thermo-dynamical equilibrium, i.e φ±a0

= φ±b0 , and in a neighbourhood of it,
i.e. φ±a0

− φ±b0 is small, the solution is unique.

8. The DH-model presented here takes into account only carrier densities above the
current thresholds v±max(ϕ). This a certain disadvantage of the model since usually
carrier densities below the current threshold have an influence on the system, too. In
a forthcoming paper we shall overcome this disadvantage.

Appendix

A Dissipative Schrödinger systems

Let us give a short introduction into the theory of dissipative Schrödinger systems, in short
DS-systems, for details see [3, 5, 32, 30]. We start with some facts on Schrödinger-type
operators.

A.1 Schrödinger-type operators

Let the conditions 0 < m ∈ L∞
R

(Ω), 1
m ∈ L

∞
R

(Ω), 0 < ma,mb ∈ R, be satisfied and let
τ := {κa,κb, v} ∈ T+ := C+ × C+ × L∞(Ω), where C+ := {z ∈ C : Im(z) > 0}. The
Schrödinger-type operator h[τ ] is defined by

(h[τ ]g)(x) := −1
2
d

dx

1
m

d

dx
g(x) + v(x)g(x), x ∈ Ω, g ∈ dom(h[τ ]),
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where its domain is given by

dom(h[τ ]) :=

g ∈W 1,2(Ω) :

1
mg
′ ∈W 1,2(Ω),

1
2ma

g′(a) = −κag(a),
1

2mb
g′(b) = κbg(b)

 .

The operator is maximal dissipative and completely non-selfadjoint on the Hilbert space
h = L2(ω), that is, the operator does not possess self-adjoint parts. Its spectrum consists
only of discrete eigenvalues in the lower half plane. In the following we are interested in
sequences h[τn], τn = {κa,n,κb,n, vn} ∈ T+, n ∈ N. We write limn→∞ τn = τ if we have in
mind

lim
n→∞

(
|κa,n − κa|+ |κb,n − κb|+ ‖vn − v‖L∞(Ω)

)
= 0. (A.1)

A.2 Dilation and Lax-Phillips scattering

Let the boundary coefficients κa,κb ∈ C+ be represented by

κa = qa + i
α2
a

2
and κb = qb + i

α2
b

2
(A.2)

where αa, αb > 0. Since h[τ ] is maximal dissipative it admits a minimal self-adjoint dilation
K[τ ] on some dilation space K, see [20]. We choose the dilation space K,

K := L2(R−,C2)⊕ h⊕ L2(R+,C
2). (A.3)

To describe the minimal dilation K[τ ] in K we set

~g := g− ⊕ g ⊕ g+ (A.4)

where g ∈ h,

g−(x) :=
(
gb−(x)
ga−(x)

)
∈ L2(R−,C2) and g+(x) :=

(
gb+(x)
ga+(x)

)
∈ L2(R+,C

2) (A.5)

for x ∈ R− and x ∈ R+, respectively.

Theorem A.1 Let τ = {κa,κb, v} ∈ T+. Then the operator K[τ ] defined by

dom(K[τ ]) :=


~g ∈ K :

g± ∈W 1,2(R±,C2), g, 1
mg
′ ∈W 1,2([a, b])

1
2m(b)g

′(b)− qbg(b) = αb
gb−(0)+gb+(0)

2

iαbg(b) = gb+(0)− gb−(0)
1

2m(a)g
′(a) + qag(a) = αa

ga−(0)+ga+(0)

2

iαag(a) = ga−(0)− ga+(0)


(A.6)

and
K[τ ]~g := −i d

dx
g− ⊕ l[v](g)⊕−i d

dx
g+, ~g ∈ dom(K), (A.7)

is self-adjoint.
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Proof. The proof is given in [32, Theorem 4.1]. �

The operator K[τ ] is a minimal self-adjoint dilation of h[τ ], i.e.

(h[τ ]− z)−1 = PK
h (K[τ ]− z)−1|h, z ∈ C+ (A.8)

and
K =

∨
z∈C\R

(K[τ ]− z)−1h (A.9)

where PK
h is the orthogonal projection from the dilation space K onto the subspace h.

Setting
D− := L2(R−,C2) and D+ := L2(R+,C

2) (A.10)

we introduce the identification operators J±0 : K0 −→ K, K0 = D− ⊕D+ = L2(R,C2),

J− ~f := PK0
D−

~f ⊕ 0⊕ 0,

J+
~f := 0⊕ 0⊕ PK0

D+
~f,

~f ∈ K0. (A.11)

Let K0 be the differentiation operator K0 = −i ddx defined on K0. The Lax-Phillips wave
operators

W±[τ ] := s− lim
t→±∞

eitK[τ ]J±e
−itK0 , τ ∈ T+, (A.12)

always exist, see [3, 30], and are unitary.

By F : K0 −→ K̂0 = L2(R,C2) we denote the Fourier transform

(F ~f)(λ) :=
1√
2π

∫
R

dx e−ixλ ~f(x), ~f ∈ K0, λ ∈ R. (A.13)

The incoming Fourier transform of K[τ ], see [3, 32, 30], is defined by

Φ−[τ ] := FW−[τ ]∗ : K −→ K̂0, τ ∈ T+. (A.14)

It establishes a unitary equivalence between the dilation K[τ ] and the multiplication op-
erator M with the independent variable λ.

The Lax-Phillips scattering operator S[τ ] : K0 −→ K0 is defined by

S[τ ] := W+[τ ]∗W−[τ ], τ ∈ T+. (A.15)

The scattering operator commutes with K0 which yields that the operator Ŝ[τ ] : K̂0 −→ K̂0,

Ŝ[τ ] := FS[τ ]F∗ (A.16)

commutes with M . Hence the operator Ŝ[τ ] can be represented as a multiplication oper-
ator with a two-by-two matrix-valued function {Ŝ[τ ](λ)}λ∈R which is called the scattering
matrix, in particular, the Lax-Phillips scattering matrix. It turns out that the scattering
matrix can be computed directly from the operator h[τ ]. To this end let us introduce the
unclosed operator α : h→ C

2,

αf =
(

αbf(b)
−αaf(a)

)
, f ∈ dom(α) = W 1,2(Ω) (A.17)
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and the boundary operator T [τ ] : res(h[τ ]) −→ B(h,C2), τ ∈ T+, defined by

T [τ ](z)g := α(h[τ ]− z)−1g, g ∈ H, (A.18)

where res(·) denotes the resolvent set of an operator. The two-by-two matrix-valued func-
tion Θ[τ ] : res(h[τ ]∗) −→ B(C2) defined by

Θ[τ ](z) = IC2 − iαT [τ ](z)∗, (A.19)

is holomorphic, contractive on C− and unitary on R. Moreover, it satisfies the relation

S[τ ](λ) = Θ[τ ](λ)∗ (A.20)

for a.e. λ ∈ R. The matrix-valued function Θ[τ ] is called the characteristic function of
h[τ ], for definition and importance see [20, 32].

A.3 Carrier density operator

For a given maximal dissipative Schrödinger-type operator h[τ ] and a so-called density
matrix ρ it is possible to associate a carrier density operator Nρ : T+ −→ L1

R
(Ω). A density

matrix is an element of the Banach space L∞(R,B(C2)) such that it values are self-adjoint
and non-negative two-by-two matrices for a.e. λ ∈ R. With ρ one associates a bounded
multiplication operator ρ̂ : K̂0 −→ K̂0 on the Hilbert space K0 = L2(R,C2) defined

(ρ̂ ~f)(λ) := ρ(λ)~f(λ). (A.21)

Using the transformation (A.14) one defines by

%[τ ] := Φ−[τ ]∗ρ̂Φ−[τ ], τ ∈ T+, (A.22)

an operator on the dilation space K which is self-adjoint, non-negative and commutes with
the dilation K[τ ]. The operator %[τ ] is called a density operator or a steady state albeit
that %[τ ] is not a trace class operator. However, it turns out that if the additional condition

Cρ := sup
λ∈R

√
λ2 + 1‖ρ(λ)‖B(C2) <∞ (A.23)

is satisfied, then the product %[τ ]PK
h always belongs to the trace class, cf. [30]. Using

this observation in [3, 32] for a fixed density matrix satisfying (A.23) the carrier density
operator Nρ : T+ −→ L1(Ω) is defined by the L∞-L1 pairing

tr(%[τ ]M(h)) =
∫

Ω

dx Nρ[τ ](x)h(x), τ ∈ T+, h ∈ L∞
R

(Ω), (A.24)

where M(h) is the multiplication operator defined by

M(h)~g := 0⊕ hg ⊕ 0, ~g = g− ⊕ g ⊕ g+ ∈ K, (hg)(x) = h(x)g(x), x ∈ Ω,

see [32]. We note that condition (A.23) implies %[τ ]M(h) ∈ B1(K) for each h ∈ L∞
R

(Ω).
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Proposition A.2 Let τ = {κa,κb, v} ∈ T+. If the density matrix ρ ∈ L∞(R,B(C2))
satisfies the condition (A.23) and the boundary coefficients obey Re(κa) ≤ 0 and Re(κb) ≤
0, then

‖Nρ[τ ]‖L1(Ω) ≤ Cρ
(

3 +
[
8 + 4

√
‖m‖L∞(Ω)(b− a)

]√
1 + ‖v−‖L∞(Ω)

)
, (A.25)

where v−(x) := max{0,−v(x)}, x ∈ Ω, and Cρ is given by (A.23).

Proof. In [4, Lemma 6.2] the estimate

‖Nρ[τ ]‖L1(Ω) ≤ Cρ
(

3 +
[
8 + 4

√
‖m‖L∞(Ω)(b− a)

]√
1 + ‖v‖L∞(Ω)

)
was proved. The improved estimate (A.25) can be obtained checking carefully the proof of
Lemma 6.2 of [4]. Indeed, doing so one obtains that the non-negative part of the potential
v moves the spectrum of the operator h[τ ] to the right hand side which yields that it can
be neglected. �

We are going to verify the continuity of the carrier density operator in its dependence of
τ . To this end we need the following

Proposition A.3 Let τ, τn ∈ T+, n ∈ N. If τn → τ as n→∞, then

lim
n→∞

‖(K[τn]− z)−1 − (K[τ ]− z)−1‖B1(K) = 0 (A.26)

for z ∈ C \ R.

Proof. At first we show that for each ~g ∈ dom(K[τ ]) there is a sequence {~gn}n∈N such
that ~gn ∈ dom(K[κa,n,κb,n, v]), limn→∞ ~gn = ~g and limn→∞K[κa,n,κb,n, v]~gn = K[τ ]~g in
the sense of K. Let

~gn = ~g + ~hn, n ∈ N,
where

~hn := 0⊕ hn ⊕ h+,n, n ∈ N.
Furthermore, let θ(·) : R −→ [0, 1] be a smooth function which is equal to one in a
neighbourhood of zero and zero in neighbourhood of y0 := 2

∫ b
a
dt m(t). We set

hn(x) := θ

(
2
∫ x

a

dt m(t)
)
ha,n(x) + θ

(
2
∫ b

x

dt m(t)

)
hb,n(x), x ∈ Ω, n ∈ N.

where

ha,n(x) := 2Ca,n
∫ x

a

m(t)dt, x ∈ [a, b],

hb,n(x) := −2Cb,n
∫ b

x

m(t)dt, x ∈ [a, b]

and

Ca,n := (αa,n − αa)ga−(0)− (κa,n − κa)g(a)

Cb,n := (αb,n − αb)gb−(0) + (κb,n − κb)g(b).



40 M.Baro, H.Neidhardt, J.Rehberg

Notice that limn→∞ Ca,n = limn→∞ Cb,n = 0. Further we set

ha+,n(x) := ha+,n(0)e−x, x ∈ R+, and hb+,n(x) := hb+,n(0)e−x, x ∈ R+.

where

ha+,n(0) := −i(αa,n − αa)g(a), and hb+,n(0) := i(αb,n − αb)g(b), n ∈ N.

A straightforward computation shows that ~gn ∈ dom(K[κa,n,κb,n, v]), limn→∞ ~gn = ~g and
limn→∞K[κa,n,κb,n, v]~gn = K[τ ]~g.

Since the sequence {~gn}n∈N exists for each ~g ∈ dom(K[τ ]) one gets by [37, Theorem 2.1]
that

s− lim
n→∞

(K[κa,n,κb,n, v]− z)−1 = (K[τ ]− z)−1. (A.27)

The operators K[κa,n,κb,n, v], n ∈ N, and K[τ ] are self-adjoint extensions of the symmetric
operator K•[v] given by

dom(K•[v]) :=

~g ∈ K :

g± ∈W 1,2(R±,C2) g, 1
mg
′ ∈W 1,2(Ω),

g(a) = g(b) = 0,
1

m(a)g
′(a) = 1

m(b)g
′(b) = 0,

g−(0) = g+(0) = 0


and

K•[v]~g := −i d
dx
g− ⊕ l[v](g)⊕−i d

dx
g+, ~g ∈ dom(K•[v])

which has the deficiency indices {4, 4}. This fact immediately improves the strong conver-
gence (A.27) to the trace class convergence, i.e.

lim
n→∞

‖(K[κa,n,κb,n, v]− z)−1 − (K[τ ]− z)−1‖B1(K) = 0.

Since PK
h (K[τ ]− z)−1 ∈ B1(H) one gets

lim
n→∞

‖(K[τn]− z)−1(v − vn)PK
h (K[τ ]− z)−1‖B1(K) = 0.

Using the representation

(K[τn]− z)−1 − (K[κa,n,κb,n, v]− z)−1 =
(K[τn]− z)−1(v − vn)PK

h (K[τ ]− z)−1 +

(K[τn]− z)−1(v − vn)PK
h

(
(K[κa,n,κb,n, v]− z)−1 − (K[τ ]− z)−1

)
we find

lim
n→∞

‖(K[τn]− z)−1 − (K[κa,n,κb,n, v]− z)−1‖B1(H) = 0.

Finally, taking into account the representation

(K[τn]− z)−1 − (K[τ ]− z)−1 =
(K[τn]− z)−1 − (K[κa,n,κb,n, v]− z)−1 + (K[κa,n,κb,n, v]− z)−1 − (K[τ ]− z)−1

we complete the proof. �

Proposition A.3 immediately implies the continuity of the incoming Fourier transform:
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Proposition A.4 Let τ, τn ∈ T+, n ∈ N. If τn −→ τ as n→∞, then

s− lim
n→∞

Φ−[τn] = Φ−[τ ]. (A.28)

Proof. Let
W−[τn, τ ] := s− lim

t→−∞
eitK[τn]e−itK[τ ].

From Proposition A.3 we obtain that

s− lim
n→∞

W−[τn, τ ] = IK

which yields
w − lim

n→∞
W−[τn, τ ]∗ = IK.

Since W−[τn, τ ] is unitary for each n ∈ N we find

s− lim
n→∞

W−[τn, τ ]∗ = IK.

By the chain rule for wave operators we obtain

W−[τn] = W−[τn, τ ]W−[τ ], n ∈ N,

what gives
s− lim

n→∞
W−[τn]∗ = W−[τ ]∗. (A.29)

Taking into account the representation (A.14) we complete the proof. �

Using Proposition A.4 we will now verify the continuity of the carrier density operator.

Theorem A.5 Let τ, τn ∈ T+, n ∈ N. Further, suppose that there is a density matrix
ρ ∈ L∞(R,B(C2)) such that Cρ < ∞ and a sequence of density matrices {ρn}n∈N, ρn ∈
L∞(R,B(C2)), such that supn∈N Cρn <∞. If τn → τ as n→∞ and

lim
n→∞

ρn(λ) = ρ(λ) (A.30)

for a.e. λ ∈ R, then
lim
n→∞

‖Nρn [τn]−Nρ[τ ]‖L1(Ω) = 0. (A.31)

Proof. We set Φn := Φ−[τn] and Φ := Φ−[τ ] as well as

ιn(λ) := (λ− i)ρn(λ) and ι(λ) := (λ− i)ρ(λ), λ ∈ R, n ∈ N.

From (A.22) we find the representation

%n[τn]− %[τ ] = Φ∗n ι̂n Φn(Kn − i)−1 − Φ∗ ι̂Φ(K − i)−1, n ∈ N,

where Kn := K[τn] and K := K[τ ]. Notice that (K − i)−1PK
h ∈ B1(K). Hence we find the

estimate∥∥(%n[τn]− %[τ ])PK
h

∥∥
B1(K)

≤

Cρn
∥∥(Kn − i)−1 − (K − i)−1

∥∥
B1(K)

+ Cρn
∥∥(Φn − Φ)(K − i)−1PK

H

∥∥
B1(K,K0)

+∥∥(ι̂n − ι̂)Φ(K − i)−1PK
h

∥∥
B1(K,K0)

+
∥∥(Φ∗n − Φ∗) ι̂ Φ(K − i)−1PK

h

∥∥
B1(K)

.



42 M.Baro, H.Neidhardt, J.Rehberg

The first term of the r.h.s. goes to zero by Proposition A.3. The second term tends to zero
by Proposition A.4 and (K − i)−1PK

H ∈ B1(K). By s− limn→∞ ι̂n = ι̂ and (K − i)−1PK
H ∈

B1(K) the third term goes to zero. Finally, from Proposition A.4 and the isometry of the
incoming Fourier transform we get s− limn→∞Φn = Φ which yields that the fourth term
converges to zero. Hence we find

lim
n→∞

∥∥(%n[τn]− %[τ ])PK
h

∥∥
B1(K)

= 0.

Taking into account (A.24), this proves (A.31). �

A.4 Current density operator

Similar to the carrier density operator it is possible to introduce a current density operator
jρ : T+ −→ R for a given maximal dissipative operator h[τ ] and a density matrix ρ ∈
L∞(R,B(C2)) provided the density matrix satisfies the additional condition

Lρ :=
∫
R

dλ tr(ρ(λ)) <∞. (A.32)

cf. [3, 5, 32, 30]. In [30] it was shown that the current density operator admits a represen-
tation by the so-called current density observable C[τ ](λ) at energy λ ∈ R which is defined
by

C[τ ](λ) :=
1

2π
(PaΘ[τ ](λ)Pb − PbΘ[τ ](λ)Pa) Θ[τ ](λ)∗, τ ∈ T+, (A.33)

where Θ[τ ] is the characteristic function of the maximal dissipative operator h[τ ], cf. (A.19)
and [5, 30], and the projections Pa, Pb are given by (3.16). Indeed, if the density matrix
ρ satisfies the condition (A.32), then the current density operator jρ[·] : T+ −→ R admits
the representation

jρ[τ ] :=
∫
R

dλ tr(ρ(λ)C[τ ](λ)). (A.34)

Since ‖C[τ ](λ)‖B(C2) ≤ 1
2π one gets the estimate

|jρ[τ ]| ≤ 1
2π

∫
R

dλ tr(ρ(λ)). (A.35)

Theorem A.6 Let τ, τn ∈ T+, n ∈ N. Further, suppose that there is a density matrix
ρ ∈ L∞(R,B(C2)) such that Lρ < ∞, cf. (A.32), and a sequence of density matrices
{ρn}n∈N, ρn ∈ L∞(R,B(C2)), such that supn∈N Lρn < ∞. If τn −→ τ as n → ∞,
limn→∞ ρn(λ) = ρ(λ) for a.e. λ ∈ R and

lim
n→∞

∫
R

dλ (ρn(λ)e, e)C2 =
∫
R

dλ (ρ(λ)e, e)C2 , (A.36)

for each e ∈ C2, then limn→∞ jρn [τn] = jρ[τ ].

Proof. By Proposition A.3 we obtain that s− limn→∞ S[τn] = S[τ ]. This yields

lim
n→∞

∫
R

dλ
∥∥∥(S[τn](λ)− S[τ ](λ))~f(λ)

∥∥∥2

C2
= 0
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for each ~f ∈ K̂0 = L2(R,C2). Taking into account (A.20) we obtain

lim
n→∞

∫
R

dλ
∥∥∥(Θ[τn](λ)−Θ[τ ](λ))~f(λ)

∥∥∥2

C2
= 0

for each ~f ∈ K̂0. Hence

lim
n→∞

∫
R

dλ
∥∥∥(C[τn](λ)− C[τ ](λ))~f(λ)

∥∥∥2

C2
= 0 (A.37)

for each ~f ∈ K̂0. Further, we have

tr(ρn(λ)C[τn](λ))− tr(ρ(λ)C[τ ](λ)) =

tr(ρn(λ)1/2C[τn]ρn(λ)1/2)C2 − tr(ρ1/2(λ)C[τn]ρ1/2(λ))C2 =∑
ν=a,b

{
(C[τn](λ)ρn(λ)1/2eν , ρn(λ)1/2eν)C2 − (C[τ ](λ)ρ(λ)1/2eν , ρ(λ)1/2eν)C2

}
,

λ ∈ R. Setting ~fν,n(λ) := ρn(λ)1/2eν and ~fν(λ) := ρ(λ)1/2eν , ν = a, b, we get ~fν,n, ~fν ∈ K0

using ‖C[τ ](λ)‖B(C2) ≤ 1
2π , λ ∈ R, we obtain the estimate

|tr(ρn(λ)C[τn](λ))− tr(ρ(λ)C[τ ](λ))| ≤∑
i=a,b

1
2π

{
‖~fν,n(λ)‖C2 + ‖~fν(λ)‖C2

}
‖~fν,n(λ)− ~fν(λ)‖C2 +

∑
i=a,b

‖~fν(λ)‖C2‖(C[τn](λ)− C[τ ](λ))~fν(λ)‖C2 .

We note that ~fν,n, ~fν ∈ K̂0, ν = a, b, n ∈ N. Hence

|jρn [τn]− jρ[τ ]| ≤
∫
R

dλ |tr(C[τn](λ)ρn(λ))− tr(C[τ ](λ)ρ(λ))| ≤
∑
ν=a,b

‖~fν,n‖2K̂0

1/2

+

∑
ν=a,b

‖~fν‖2K̂0

1/2

∑
ν=a,b

‖~fν,n − ~fν‖2K̂0

1/2

+

∑
ν=a,b

‖~fν‖2K̂0

1/2∑
ν=a,b

∫
R

dλ ‖(C[τn](λ)− C[τ ](λ))~fν(λ)‖2
C2

1/2

which yields

|jρn [τn]− jρ[τ ]| ≤
{
L1/2
ρn + L1/2

ρ

}∑
ν=a,b

‖~fν,n − ~fν‖2K̂0

1/2

+ (A.38)

L1/2
ρ

∑
ν=a,b

∫
R

dλ ‖(C[τn](λ)− C[τ ](λ))~fν(λ)‖2
C2

1/2

.
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Since ρn(λ) → ρ(λ) for a.e. λ ∈ R as n → ∞ we find ~fν,n(λ) → ~fν(λ) for a.e λ ∈
R as n → ∞. From (A.36) we get that limn→∞ ‖~fν,n‖K̂0

= ‖~fν‖K̂0
, ν = a, b. Hence

limn→∞ ‖~fν,n − ~fν‖K̂0
= 0, ν = a, b, which yields that the first term of the r.h.s. tends to

zero as n → ∞. Taking into account (A.37) we show that the second term of the r.h.s.
goes to zero as n→∞. �

A.5 DS-systems

A dissipative Schrödinger system, in short DS-system, arises if the conditions (Q.1) and
(Q.2) of Assumption 3.1 are satisfied which allows to define two maximal dissipative op-
erators h±[τ±] for τ± = {κ±a ,κ±b , v±} ∈ T+ = C+ × C+ × L∞R (Ω) on the Hilbert space h.
If further there are two density matrices ρ± ∈ L∞(R,B(C2)) obeying both the condition
(A.23) and (A.32), then the quadrouble {h±[τ±], ρ±} = {h+[τ+], h−[τ−], ρ+, ρ−} is called
a dissipative Schrödinger system. With a DS-system one associates two carrier density
operators N±ρ± [·] : T+ −→ L1

R
(Ω) and two current density operators j±ρ± [·] : T+ −→ R, [3].

One obtains a dissipative Schrödinger-Poisson system if the DS-system is coupled to the
Poisson equation, cf. [3].

B Approximation

In the following we are going to derive the dissipative Schrödinger system, in short DS-
system, from the quantum transmitting Schrödinger system, in short QTS-system. To this
end let us briefly explain the quantum transmitting Schrödinger system, for more details
we refer to [4, 8].

B.1 Quantum transmitting Schrödinger systems

For electrons (-) and holes (+) one considers the Buslaev-Fomin operators H±[V ±], cf.
[11],

H±[V ±] = −1
2
d

dx

1
M±

d

dx
+ V ±, (B.1)

where

M±(x) :=


m±a x ∈ (−∞, a]
m±(x) x ∈ (a, b)
m±b x ∈ [b,∞)

(B.2)

are the effective masses of the electrons (-)and holes (+) and V ± their potential energies
defined by

V ±(x) :=


v±a x ∈ (−∞, a]
v±(x) x ∈ (a, b)
v±b x ∈ [b,∞)

(B.3)

with
v±(x) := w±(x)± ϕ(x), x ∈ Ω (B.4)

and
v±a := ±ϕ(a) + E±a and v±b := ±ϕ(b) + E±b . (B.5)
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where E±a , w± and E±b are given band-edges offsets in the regions (−∞, a), Ω = [a, b]
and (b,∞), respectively. The band-edge offsets on (−∞, a) and (b,∞) are assumed to be
constant. The operator H±[V ±] can be rigorously defined in the Hilbert space H := L2(R).

The Buslaev-Fomin operator H±[V ±] decomposes into a purely discrete part H±p [V ±] and
an absolutely continuous part H±ac[V

±], i.e.

H±[V ±] = H±p [V ±]⊕H±ac[V ±]. (B.6)

In the following we are only interested into the absolutely continuous part which is legiti-
mated by the fact that in applications like tunneling diodes the point spectrum is absent.
The absolutely continuous spectrum is given by σac(H±[V ±]) = [v±min,∞) where

v±min := min{v±a , v±b } (B.7)

are called the thresholds of the continuous spectrum. On [v±min, v
±
max),

v±max := max{v±a , v±b }. (B.8)

the absolutely continuous spectrum is simple while on [v±max,∞) the spectrum has the
multiplicity two, cf. [4]. Since only energies above this thresholds v±max contribute to the
current densities we call them the current thresholds, cf. [4].

The absolutely continuous part H±ac[V
±] can be realized as a multiplication operator in

the Hilbert space Ĥ := L2(R,C2). Indeed, let us denote by M the multiplication operator
with the independent variable λ and let us introduce the projection-valued function

P [v±a , v
±
b ](λ) :=

(
χ[v±b ,∞)(λ) 0

0 χ[v±a ,∞)(λ)

)
, λ ∈ R. (B.9)

If P̂ [v±a , v
±
b ] denotes the multiplication operator with the function P [v±a , v

±
b ] which is a

projection commuting with M , then MP̂ [v±a , v
±
b ] = P̂ [v±a , v

±
b ]M is unitarily equivalent to

H±ac[V
±].

The setup of a quantum transmitting Schrödinger-Poisson system is complete if one in-
dicates density operators %±QT [V ±]. As mentioned above the density operators are non-
negative self-adjoint operators commuting with the Buslaev-Fomin operators H±[V ±]. In
accordance with the spectral decompositions

H±[V ±] = H±p [V ±]⊕H±ac[V ±] (B.10)

the density operators decompose into

%±QT [V ±] := %±p [V ±]⊕ %±ac[V ±]. (B.11)

Since we are only interested in the absolutely continuous part we neglect the bounded
states and set %±QT [V ±] = %±ac[V

±]. In the spectral representation of H±ac[V
±] the operators

%±QT [V ±] are unitarily equivalent to multiplication operators ρ̂±QT arising from the density
matrices ρ±QT which are chosen by

ρ±QT (λ) =

(
f±(λ− ε±b )χ[v±b ,∞)(λ) 0

0 f±(λ− ε±a )χ[v±a ,∞)(λ)

)
, λ ∈ R, (B.12)
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cf. [4, Example 5.6]. Here f±(·) are non-negative distribution functions, for example
Boltzmann or Fermi distribution functions, and ε±b , ε±a are so-called Fermi energies.

In the following we call the quadrouble {H±[V ±], ρ±QT } = {H+[V +],H−[V −], ρ+
QT , ρ

−
QT }

the quantum transmitting Schrödinger system, in short QTS-system. With each QTS-
system one associates carrier density operators N±

ρ±QT
[·] : L∞(R) −→ L1(Ω) and current

density operators j±
ρ±QT

[·] : L∞(R) −→ R which assign to the potentials V ± ∈ L∞(Ω)

carrier densities from L1(Ω) and current densities from R for electrons “−” and holes
“+”, respectively. Putting these carrier densities into the Poisson equation supplemented
by boundary conditions one gets the so-called quantum transmitting Schrödinger-Poisson
system, in short QTSP-system, cf. [4].

The quantum transmitting hybrid system, in short QTH-system, arises if one unites the
QTS-system living on Ω and the drift-diffusion system (DD-system) on Σ by a Fermi and
current coupling. For the QTH-system one introduces in a natural way carrier density
operators defining them equal to the carrier density operators of the drift-diffusion system
on Σ and of the quantum transmitting system on Ω. If the electrostatic potential of QTH-
system satisfies the Poisson equations on the whole interval ∆, where the carrier densities
are given by the carrier density operators of QTH-system, then the arising compound sys-
tem is called the quantum transmitting hybrid model, in short QTH-model. The problem
is unsolved whether the QTH-model admits a solution for arbitrary data. However, a nu-
merical treatment of the model carried out in [2] shows that the model is appropriate for
modelling resonant tunneling diodes.

B.2 Equivalence of QTS- and DS-systems

The QTS-system can be simplified by using its equivalence to a uncountable sequence of
DS-systems. In [4] it was shown that both systems are closely related. Indeed, let us
consider the families {h±[κ±a (µ),κ±b (µ), v±]}µ∈R with boundary coefficients

κ
±
a (z) = iq±a (z) and κ

±
b (z) = iq±b (z), z ∈ C, (B.13)

where

q±a (z) :=

√
z − v±a
2m±a

and q±b (z) :=

√
z − v±b
2m±b

. (B.14)

The families consist either of self-adjoint or maximal dissipative operators. It turns out that
the Buslaev-Fomin operators H±[V ±] and the families of maximal dissipative operators
h±[κ±a (z),κ±b (z), v±] are related by

PH
h (H±[V ±]− z)−1 � h = (h±[κ±a (z),κ±b (z), v±]− z)−1, z ∈ C+. (B.15)

The families {h±[κ±a (s),κ±b (s), v±]}s∈[v±min,∞) are called the quantum transmitting bound-
ary families, in short QTB-families. Moreover, let ρ±QT be density matrices of the QTS-
system. Introducing the density matrices ρ±s ∈ L∞(R,B(C2)),

ρ±s (λ) := ρ±QT (λ)δ(s− λ), s ∈ [v±min,∞), λ ∈ R, (B.16)

where δ(·) denotes the Dirac distribution. For each s ∈ [v±min,∞) the quadrou-
ble {h±[κ±a (s),κ±b (s), v±], ρ±s } performs a dissipative Schrödinger system. In [4] it
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was shown that to handle the QTS-system {H±[V ±], ρ±QT } or the uncountable fam-
ily {h±[κ±a (s),κ±b (s), v±], ρ±s }s∈[v±min,∞) of DS-systems is the same, see Remarks 5.4
and 5.10 of [4]. Denoting the carrier and current density operators of the DS-
systems {h±[κ±a (s),κ±b (s), v±], ρ±s }s∈R, s ∈ [v±min,∞), by N±

ρ±s
[κ±a (s),κ±b (s), v±] and

j±
ρ±s

[κ±a (s),κ±b (s), v±] this means that

N±
ρ±QT

[V ±] =
∫ ∞
v±min

ds N±
ρ±s

[κ±a (s),κ±b (s), v±]

and
j±
ρ±QT

[V ±] =
∫ ∞
v±min

ds j±
ρ±s

[κ±a (s),κ±b (s), v±].

Formally, one has

{H±[V ±], ρ±QT } =
∫ ∞
v±min

ds {h±[κ±a (s),κ±b (s), v±], ρ±s }.

B.3 Approximation of QTS-systems

This last observation gives rise to a natural approximation of a QTS-system by a finite
number of DS-systems which is similar to the approximation of an improper Riemannian
integral by a finite integral sum. Let Λ± ⊆ [v±min,∞) be semi-intervals and let {Λ±j }Nj=1,
Λ±j = [λ±j−1, λ

±
j ), be finite partitions of Λ±. Further, let us choose sequences of real

numbers {s±j }Nj=1, s±j ∈ (λ±j−1, λ
±
j ). With respect to a QTS-system {H±[V ±], ρ±QT } we set

κ̃
±
a (s) :=

N∑
j=1

κ
±
a (sj)χΛ±j

(s), and κ̃
±
b (s) :=

N∑
j=1

κ
±
b (sj)χΛ±j

(s).

The functions κ̃±a (s) and κ̃±b (s) are step functions with a finite number of values approx-
imating κ±a (s) and κ±b (s) on Λ±, respectively. The families {h±[κ̃±a (s), κ̃±b (s), v±]}s∈Λ±

are called approximate QTB-families, i.e.

h±[κ±a (s),κ±b (s), v±] ≈ h±[κ̃±a (s), κ̃±b (s), v±] =
N∑
j=1

h±[κ±a (sj),κ±b (sj), v±]χΛ±j
(s).

Notice that for s ∈ Λ± the approximate QTB-families consists only of a finite number of dis-
sipative operators. Replacing in {h±[κ±a (s),κ±b (s), v±], ρ±s }s∈Λ± the QTB-families by the
approximate QTB-families we obtain the modified family {h±[κ̃±a (s), κ̃±b (s), v±], ρ±s }s∈Λ±

of DS-systems which is called an approximate QTS-system. Since the boundary conditions
of the approximate QTB-families are close to those of the QTB-families one can hope that
the carrier and current densities are also close to each other, i.e.

N±
ρ±QT

[V ±] =
∫ ∞
v±min

ds N±
ρ±s

[κ±a (s),κ±b (s), v±] ≈∫
Λ±

ds N±
ρ±s

[κ±a (s),κ±b (s), v±] ≈
∫

Λ±
ds N±

ρ±s
[κ̃±a (s), κ̃±b (s), v±]
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and

j±
ρ±QT

[V ±] =
∫ ∞
v±min

ds j±
ρ±s

[κ±a (s),κ±b (s), v±] ≈∫
Λ±

ds j±
ρ±s

[κ±a (s),κ±b (s), v±] ≈
∫

Λ±
ds j±

ρ±s
[κ̃±a (s), κ̃±b (s), v±].

Since the approximate QTB-families h±[κ̃±a (s), κ̃±b (s), v±] are constant on Λ±j one easily
verifies that the expectation values of carrier and current densities for the approximate
QTS-system remain unchanged on Λ± if we replace the density matrices ρ±s by ρ̃±s ,

ρ̃±s (λ) :=
N∑
j=1

χΛ±j
(s)ρ±

Λ±j
(λ), s ∈ Λ±, λ ∈ R,

where

ρ±
Λ±j

(λ) :=
∫

Λ±j

ds ρ±s (λ), λ ∈ R, j = 1, 2, . . . , N.

That means, we have∫
Λ±

ds N±
ρ±s

[κ̃±a (s), κ̃±b (s), v±] =∫
Λ±

ds N±
ρ̃±s

[κ̃±a (s), κ̃±b (s), v±] =
N∑
j=1

N±
ρ±

Λ±
j

[κ̃±a (s), κ̃±b (s), v±]

and ∫
Λ±

ds j±
ρ±s

[κ̃±a (s), κ̃±b (s), v±] =∫
Λ±

ds j±
ρ̃±s

[κ̃±a (s), κ̃±b (s), v±] =
N∑
j=1

j±
ρ±

Λ±
j

[κ̃±a (s), κ̃±b (s), v±].

The second equality relies on the fact that the density matrices ρ̃±s [v±] do not depend
on s ∈ Λ±j , j = 1, 2, 3, . . .. Hence, the approximate QTS-system decomposes into a finite
sequence of associated DS-systems {h±[κ±a (sj),κ±b (sj), v±], ρ±

Λ±j
[v±]}Nj=1 on Λ±. Taking

into account (B.16) we obtain

ρ±
Λ±j

(λ) = ρ±QT (λ)χΛ±j
(λ), λ ∈ R, j = 1, 2, . . . , N,

which shows that the approximate QTS-system is equivalent to a finite sequence of DS-
systems {h±[κ±a (sj),κ±b (sj), v±], ρ±QTχΛ±j

}Nj=1.

Similar to the QTS-system the approximate QTS-system can be coupled to the drift-
diffusion system. The arising compound system is called an approximate quantum trans-
mitting hybrid system, in short approximate QTH-system. If we consider in addition the
Poisson equation, then the arising system is called the approximate quantum transmitting
hybrid model, in short approximate QTH-model.
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B.4 Dissipative hybrid model

If we consider the degenerated partitions {Λ±j }1j=1, Λ±1 = Λ±, and the degener-
ated sequences {s±j }1j=1, s±1 = s± ∈ (λ±0 , λ

±
1 ), then we obtain a degenerate approxi-

mate QTS-system and approximate quantum transmitting hybrid system. In this case
the finite sequence of associated DS-systems reduces to a single associated DS-system
{h±[κ±a (s±),κ±b (s±), v±], ρ±Λ±},

ρ±Λ±(λ) = ρ±QT (λ)χΛ±(λ). λ ∈ R. (B.17)

Hence, the approximate QTH-system reduces to the coupling of one associated dissipative
Schrödinger system on Ω with drift-diffusion systems on Σa and Σb which is nothing else
as a dissipative hybrid system. Considering a Poisson equation in addition one gets that
approximate QTH-model reduces to the dissipative hybrid model, in short DH-model.

Thus we get the dissipative hybrid model of the introduction if we make the special choices
Λ± = [v±max, v

±
max + δ±), δ± > 0, and s± = v±max + δ±0 , 0 < δ±0 < δ±. The interest

to the semi-intervals Λ± = [v±max, v
±
max + δ±) is due to the fact that only energies above

the current thresholds v±max contribute to the current densities in which we are interested
in. From the view point of approximation the dissipative hybrid model is, of course, far
from the quantum transmitting hybrid model. However, from the mathematical point of
view this is not so because all main mathematical problems one meets already solving the
dissipative hybrid model.

Furthermore, the results for dissipative hybrid models admit an immediate generalization
to the approximate hybrid model since it is a finite family of dissipative hybrid models.
However, approximate hybrid models have an interest in its own since they naturally appear
by the numerical treatment of hybrid models.
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