
APS/123-QED

Stability, critical fluctuations and 1/fα-activity of neural fields involving transmission

delays

A. Hutt∗

Weierstrass-Institute for Applied Analysis and Stochastics
Mohrenstr.39, 10117 Berlin, Germany†

T.D. Frank‡

Institute for Theoretical Physics, University of Münster,
Wilhelm-Klemm-Str. 9, 48149 Münster, Germany

(Dated: July 15, 2004)

This work studies the stability and the stochastic properties of neural activity evoked by external
stimulation. The underlying model describes the spatiotemporal dynamics of neural populations
involving both synaptic delay and axonal transmission delay. We show, that the linear model
recasts to a set of affine delay differential equations in spatial Fourier space. Besides a stability
study for general kernels and general external stimulation, the power spectrum of evoked activity
is derived analytically in case of external Gaussian noise. Further applications to specific kernels
reveal critical fluctuations at Hopf- and Turing bifurcations and allow the numerical detection of
1/fα-fluctuations near the stability threshold.
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I. INTRODUCTION

Random fluctuations have been reported in spatially-
extended systems in biology, chemistry and physics [1–
3]. These fluctuations origin from thermal activity or
unpredictable chaotic activity [4] and may yield novel
effects as stochastic or coherence resonance [5] or noise-
induced transitions [6]. In neural systems, background
fluctuations are supposed to originate from spontaneous
synaptic activity [7], while their spectral properties de-
fine the responsiveness of the neurons in the system [8].
In this context, several studies showed the importance
of 1/fα-noise on both microscopic [9, 10] and macro-
scopic level [11, 12]. There are various effects of fluc-
tuations on neural properties and we mention stochastic
resonance enhancement measured in neocortical pyrami-
dal cells [13] and modeled by induced 1/f noise [14] and
more general distributed noise sources [15]. In addition,
noise may facilitate the detection of subthreshold neural
activity [16, 17]. The origins of long memory activity
as 1/fα-noise is not fully understood yet. However, sev-
eral mechanisms have been found [18], for example the
superposition of relaxation processes [19], noise in diffu-
sion processes [20], clustering of signal pulses [21] and
nonlinear processes with fractal characteristics [22]. Fur-
ther Usher and Stemmler [9] explained 1/f-fluctuations
in neural systems by pattern formation in neural popu-
lations subject to uncorrelated noise.

In addition to the spectral properties of fluctuations,
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some studies examined the change of their statistical
properties while changing experimental conditions. For
instance, Wallenstein et al. [23] examined electroen-
cephalographic data obtained during a triggered motor
coordination experiment, which reveals a phase transi-
tion in finger movements [24]. Examinations of the occur-
ing fluctuations revealed large fluctuation variances near
the phase transition threshold both in the brain signals
and the behavioral data. These critical fluctuations are
well-known from the theory of phase transitions. Several
studies have modeled successfully this macroscopic phase
transition and the corresponding critical fluctuations by
mesoscopic population models [25–27]. Apart from these
findings, further previous studies also indicate large-scale
coherent phenomena in neural pathologies, which origi-
nate from mutual neural population activity. Examples
are the hand tremor in Parkinson disease [28], epileptic
seizures [29] or hallucinations [30]. The latter in some
cases exhibits a shift of the neural state to an instability
by increased neuronal excitation [31]. Some studies ex-
plained visual hallucination patterns by stability loss in
neural populations at bifurcation points [32, 33]. How-
ever, the mentioned neural models only treat a single
time scale, namely the synaptic delay time. In con-
trast more recent approaches examine the stability of
neural population fields involving constant delayed feed-
back [34–36] or axonal transmission delay [37–42]. To
our best knowledge, most of the latter stability studies
neglect random fluctuations. However, these mesoscopic
fluctuations may yield 1/fα-activity or explain macro-
scopic critical fluctuations as mentioned above and thus
are necessary for realistic descriptions of neural systems.

The present work complements previous studies by
considering a population model involving transmission
delay subjected to external fluctuations. The subsequent
section introduces the neural field model and discusses
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briefly its properties. Section III discusses the stability
and the power spectrum of the field for general connec-
tivity kernels. In the subsequent section, we examine
specific synaptic kernels and find critical fluctuations in
case of Hopf and Turing instabilities. Further, long mem-
ory activity is detected for excitatory diffusive fields. The
last section discusses the obtained results and closes the
work.

II. THE FIELD MODEL

The present work treats activity in a spatially-
extended field of neural populations, which gives the neu-
ral activity coarse-grained in space and time [43, 44].
This approach is reasonable for slow synapses at temporal
scales ∼ 5−10ms, high firing rates >∼ 200Hz and a meso-
scopic spatial scale of a few millimeters [45]. Our model
assumes a single neuron type and excitatory and in-
hibitory chemical synapses with corresponding efficacies
ge and gi, respectively, while the transmission delay along
dendritic structures is negligible. The synapses sum up
all lateral contributions weighted by the synaptic con-
nectivity kernels fe and fi for excitatory and inhibitory
connections, respectively. These kernels represent prob-
ability density distributions of synaptic connection and
thus are normalized to unity. Furthermore finite axonal
speeds ve,i yield the transmission delay ∆e,i = |x−y|/ve,i

between two locations x and y. Since chemical synapses
respond to incoming activity by temporal delay, the exci-
tatory and inhibitor post-synaptic potentials Ve,i at spa-
tial position x and time t obey

Ve,i(x, t) =

∫ t

−∞
dτh(t − τ ) ×

[

ge,i

∫

Γ

dy fe,i(x − y)S[V (y, τ − ∆e,i)] + Ie,i(x, τ )

]

,

(1)

with the synaptic impulse response function h(t), V =
Ve −Vi and the external excitatory and inhibitory inputs
Ie and Ii, respectively. The transfer function S[V ] origi-
nates from the statistical distribution of firing thresholds
and owns a sigmoidal shape in case of unimodal distri-
butions. Eventually post-synaptic potentials sum up at
the soma and the final model equation for the somatic
membrane potential V reads

V (x, t) = Ît

∫

Γ

dy Ke(x − y)S[V (y, t − ∆e)]

−Ki(x − y)S[V (y, t − ∆i)] + Ît I(x, t),

(2)

with Ke = gefe, Ki = gifi, I = Ie − Ii and the con-
volution operator Ît acting on the test function f(t) like

Îtf(t) =
∫ t

−∞ dτh(t − τ )f(τ ).
Most cortical areas are part of neural modular net-

work and receive external connections from other brain

areas. Well-known examples are the cortico-thalamical
subnetwork [46] studied in the context of sleep cycles
and the projection from the lateral geniculate nucleus to
the visual cortex important in visual perception. First
we assume external excitatory stimulation I0 constant
in space and time. Then, the stationary constant field
V (x, t) = V0 obeys V0 = (ge − gi)S[V0] + I0. Considering
the external stimulus I0 as control parameter, the cor-
responding bifurcation diagram exhibits either hysteresis
with two stable and one unstable state or owns a single
stable state V0 (cf. [39]). We mention the similarity to
the cusp catastrophy [47].

Now, we considering small deviations u(x, t) =
V (x, t)−V0 � V0 about the stationary solution V0 and as-
sume the additional external stimulus s(x, t) � I0. Thus
Eq. (2) reads

u(x, t) = Ît γ

∫

Γ

dy Ke(x − y)u(y, t − ∆e)

−Ki(x − y)u(y, t − ∆i) + Ît s(x, t). (3)

Here, γ = δS/δV at V = V0 depends implicitly on I0,
while δ/δV denotes the functional derivative. Hence γ
represents the control parameter for the linear case. The
external stimulus s(x, t) may correspond to a determin-
istic driving force, e.g. originating from sensoric per-
ception. Alternatively, s(x, t) may describe a fluctuating
force acting on the neural field caused by synaptic fluc-
tuations. In fact, in Sec. IV we will use Eq. (3) to study
the stochastic evolution of u(x, t) under the impact of a
fluctuating force.

Since

Ke,i(x − y)u(y, t − ∆e,i) =
∫ t

−∞
dτ Ke,i(x − y)δ(t − τ − ∆e,i)u(y, τ )

=

∫ t

−∞
dτ ne,i(x − y, t − τ )u(y, τ ),

where δ(·) denotes the delta distribution, the Fourier
transform of Eq. (3) reads

ũ(k, t) =
1√
2π

∫ +∞

−∞
dx u(x, t)e−ikx

= Ît

[

γ
√

2π

∫ ∞

0

dτ ñ(k, τ )ũ(k, t − τ ) + s̃(k, t)

]

.

(4)

Here, ũ, s̃ and ñ represent the Fourier transforms of u, s
and n = ne − ni, respectively. Hence, in the linear
regime the spatio-temporal dynamics of the neural field
decouples into single modes in k-space, while the space-
dependant propagation delay transforms to a distribution
of constant delays.
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Finally assuming a symmetric kernel Eq. (4) reads

ũ(k, t) = Ît 2γ

∫ ∞

0

dτ (veKe(veτ ) cos(kveτ )

−viKi(viτ ) cos(kviτ ))ũ(k, t − τ )

+Ît s̃(k, t) (5)

III. STABILITY ANALYSIS AND POWER

SPECTRUM FOR GENERAL KERNELS

In this section, we set Ki = 0, Ke = K and ve =
v without loss of generality. Let us assume the inverse
operator Î−1

t = L̂(∂/∂t) exists, such that

L̂(∂/∂t) h(t) = δ(t),

while h(t) is taken from (1). Then Eq. (5) becomes an
affine delay differential equation with distributed delays

L̂(∂/∂t)ũ(k, t) = 2vγ

∫ ∞

0

dτ K(vτ ) cos(kvτ )ũ(k, t − τ )

+s̃(k, t) . (6)

Its general solution is

ũ(k, t) = ũh(k, t) +

∫ +∞

−∞
dt′ G(k, t− t′)s(k, t′) , (7)

where ũh(k, t) represents the homogeneous solution of (6)
and G(k, t−t′) represents the Greens function. Applying
standard techniques in linear response theory, the Greens
function is given by

G(k, t) =
1

2π

∫ +∞

−∞
dω

e−iωt

L(iω) − K̄(k, iω)
, (8)

where L̂ exp(−iωt) = L(iω) exp(−iωt) and

K̄(k, iω) = 2vγ

∫ ∞

0

dτ K(vτ ) cos(kvτ )eiωτ .

Extending the real domain of ω to the complex plane and
applying the residue theorem, it is

G(k, t) = Θ(t)

[

i

m
∑

l=1

Resl(e
−iΩlt)

]

= Θ(t)

m
∑

l=1

rle
λl(k)t

. (9)

with the Heaviside function Θ(·). Here, m denotes the
number of complex roots Ωl(k) ∈ C of the denominator
in (8), it is λl(k) = iΩl(k) and Resl denotes the residue
of the numerator in Eq. (8) at root Ωl(k). The constants
rl ∈ C are fixed by the corresponding residues. We re-
mark that the vanishing denominator in (8) corresponds
to the characteristic equation known from theory of de-
layed differential equations. Further, infinite transmis-
sion speed leads to

L(iΩ) = 2γ

∫ ∞

0

K(s) cos(ks)ds

and m is given by the order of L̂.

Eventually, inserting Eq. (9) into Eq. (7), the solution
of (6) reads

ũ(k, t) = ũh(k, t) +

m
∑

l=1

rl

∫ t

0

dt′ eλl(k)(t−t′)s̃(k, t′),

(10)

assuming the stimulus onset at t = 0. If all roots are
located in the lower complex plane, i.e. Im(Ωl(k)) =
Re(λl(k)) < 0, Eq. (10) owns stable solutions for
bounded deterministic stimuli and random fluctuations
described by a Lévy process in case of finite kernels [48].

As mentioned in the introduction, 1/fα-fluctuations
have been found in neural populations. To detect this be-
havior in our model, the subsequent part discusses briefly
the temporal power spectrum of the resulting field u(x, t).
The Fourier back transformation of (10) yields

u(x, t) = ũh(x, t)

+
1√
2π

m
∑

l=1

rl

∫ t

0

dt′
∫ ∞

−∞
eλl(k)(t−t′)s̃(k, t′)eikxdk,

while ũh(x, t) represents the homogeneous solution of
Eq. (3). Now considering external uncorrelated Gaus-
sian noise with 〈s̃(k, t)〉 = 0 and 〈s̃(k, t)s̃(k′, t′)〉 =
Qδ(k − k′)δ(t − t′), the autocorrelation function reads

C(t, τ ) = 〈u∗(x, t)u(x, τ )〉

=
Q

2π

m
∑

l=1

rl

∫ ∞

−∞
Pl(k)eλl(k)|τ−t|dk (11)

with

Pl(k) = −
m

∑

j=1

r∗j
λ∗

j (k) + λl(k)
.

Here, Q measures the overall strength of the fluctuation
force, 〈·〉 represents the ensemble average and ∗ denotes
the complex conjugate. In addition, Eq. (11) assumes
t, τ → ∞. Now, according to the Wiener-Khinchine the-
orem [49] the power spectrum reads

S2(ω) =
−2Q
√

2π
3

m
∑

l=1

rl

∫ ∞

−∞

λl(k)

ω2 + λ2
l (k)

Pl(k)dk. (12)

The function Pl(k) gives the distribution of time scales
1/λl(k). Recalling the origins of 1/fα-activity [18], these
multiple time scales may yield regimes of S2(ω) ∼ 1/ωα.
Subsequently, the presence of 1/fα-activity in the present
system depends mainly on the synaptic connectivity ker-
nels Ke,i and the synaptic and axonal intrinsic time scales
defined by h(t) and ve,i, respectively. Closer investiga-
tions follow in subsection IV C for specific kernels.
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IV. SPECIFIC SYNAPTIC CONNECTIVITY

AND STOCHASTIC FORCE

The present section discusses the case of the expo-
nential impulse response h(t) = exp(−t/τ ), i.e. L̂t =
∂/∂t + τ . The parameter τ represents the synaptic time
scale. Furthermore, we assume that the neural field is
driven by a fluctuating force. That is, we put

s(x, t) =
√

QΓ(x, t) , (13)

where Γ(x, t) corresponds to a Gaussian distributed fluc-
tuating force that is uncorrelated in space and time like
〈Γ(k, t)〉 = 0, 〈Γ(k, t)Γ(k′, t′)〉 = 2δ(t − t′)δ(k − k′) [49].
The parameter Q represents the noise amplitude.

A. Hopf bifurcation

In a first case, we specify the synaptic connectivity to
local excitation at a short range and lateral inhibition at
a fixed distance, i.e. the kernels in (3) read

Ke(x) =
ge

2
√

D
e−|x|/

√
D , Ki(x) =

gi

2
δ(x − |R|).

Here,
√

D and R represent the excitatory and inhibitory
spatial scale, respectively. For

√
D � 1 and

√
D/ve � τ ,

the excitatory propagation delay is negligible yielding [50]

∫ +∞

−∞
dy Ke(x − y)u(y, t − ∆e)

≈
(

1 +
1

2

∫ ∞

−∞
dz K(z)z2 ∂2

∂x2

)

u(x, t)

=

(

1 + D
∂2

∂x2

)

u(x, t).

Hence, the local excitatory coupling is equivalent to dif-
fusive coupling with diffusion coefficient D.

Following the analysis steps in section II the corre-
sponding delay differential equation in Fourier space be-
comes

∂

∂t
ũ(k, t) =

[

γge(1 − Dk2) − τ
]

ũ(k, t)

− γgi cos(kR)ũ(k, t − t0) +
√

Q Γ(k, t)

(14)

with the delay t0 = R/vi. Thus the system includes two
time scales, namely the synaptic delay time τ and the
propagation delay time t0. Introducing the parameters

a(k) = τ − γge + γgeDk2 , b(k) = γgi cos(kR) , (15)

Eq. (14) can be written as

∂

∂t
ũ(k, t) = −a(k)ũ(k, t) − b(k)ũ(k, t − t0) +

√

QΓ(k, t).

(16)

That is, we deal with a linear stochastic delay differential
equation for the Fourier amplitudes ũ(k, t) that involves
k-dependent parameters. Let us discuss Eq. (14) in the
context of the emergence of oscillatory behavior. To this
end, we first examine the behavior of the spatially homo-
geneous Fourier mode with k = 0. We have a(0) = τ−γge

and b(0) = γgi. For k = 0 and a(0) ≥ b(0) > 0 Eq.
(16) describes a stable system both in the deterministic
(Q = 0) [51, 52] and the stochastic case (Q > 0) [53–56].
Therefore, we assume that b(0) > a(0) > 0. Then, for
k = 0 and Q = 0 the linear model (16) exhibits a stable
(unstable) fixed point ũst(0) = 0 for delays t0 smaller
(larger) than the critical delay

t0,c =
1

√

b(0)2 − a(0)2
arccos

(

−a(0)

b(0)

)

. (17)

At t0 = t0,c there is a Hopf bifurcation [51, 52]. Likewise,
for k = 0 and Q > 0 Eq. (16) exhibits stationary distri-
butions for delays t0 < t0,c, whereas for delays t0 > t0,c

stationary distributions do not exist [53–56]. The sta-
tionary distributions for t0 < t0,c correspond to Gaus-
sian distributions with vanishing mean and variance σ2

defined by

σ2 =
Q

2

[1 +
√

b2(0) − a2(0)]−1b(0) sin[
√

b2(0) − a2(0)t0]

a(0) + b(0) cos[
√

b2(0) − a2(0)t0]
,

(18)
It is clear from Eq. (18) that σ2 becomes infinite at the

bifurcation point. Furthermore, from Eq. (16) it follows
that the first moment M1 = 〈ũ(0, t)〉 evolves like

d

dt
M1(t) = −a(0)M1(t) − b(0)M1(t − t0) . (19)

Eq. (19) can be treated just as Eq. (16) for Q = 0. That
is, Eq. (19) describes a Hopf bifurcation and for t0 > t0,c

the first moment M1 oscillates with a gradually increas-
ing amplitude. Next, let us consider Fourier modes with
nonvanishing k-values. To this end, we need to distin-
guish between two cases: |k|R ≤ π/2 and |k|R > π/2.
In the first case, we have a(k) > a(0) and b(k) < b(0).
Consequently, if the homogeneous Fourier mode is stable,
then all Fourier modes with |k|R ≤ π/2 are stable. In
the second case, we assume that the diffusion coefficient
D satisfies the inequality geDk2 ≥ gi for |k|R > π/2,
which implies that a(k) > b(k) holds (e.g. one may
choose D = 4giR

2/[geπ
2]). Then, the Fourier modes

with |k|R > π/2 are stable as well.
Taking a neurophysiological point of view, it is of par-

ticular interest to study the impact of the control param-
eter γ (see Sec. II). From Eq. (17) it follows that the
critical parameter γc is given by

t0

√

γ2
c g2

i − (τ − γcge)2 = cos

(

−τ − γcge

γcgi

)

. (20)

In sum, for delays t0 < t0,c or control parameters
γ < γc all Fourier modes described by Eq. (16) cor-
respond to stable modes that have in the determinis-
tic case stable fixed points at ũst(k) = 0 and exhibit
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in the stochastic case Gaussian stationary distributions
with vanishing mean and variance

σ2(k) =
Q

2

1 + w−1(k)b(k) sin[w(k)t0]

a(k) + b(k) cos[w(k)t0]
(21)

where w(k) is defined by

w(k) =
√

b2(k) − a2(k) (22)

(note that Eq. (21) holds even if w corresponds to an
imaginary value [57]). As a result, the neural field is spa-
tially homogeneous. For t0 → t0,c or γ → γc the variance
of the amplitude of the homogeneous Fourier mode with
k = 0 becomes infinite, whereas the variances of all other
Fourier amplitudes are still finite, see also Fig. 1. In this
sense the neural field exhibits critical fluctuations at the
bifurcation point. If t0 = t0,c + ε or γ = γc + ε with ε
positive and small, then the amplitude ũ(0, t) and am-
plitudes ũ(k, t) with small k-values become unstable and
the first moments M1(k, t) = 〈ũ(k, t)〉 of these modes os-
cillate with gradually increasing amplitudes, see Fig. 2.
Consequently, constant oscillations emerge in the neural
field and we deal with critical fluctuations at the bifur-
cation point of constant waves.

Insert Figures 1 and 2 about here.

B. Turing bifurcation

Now, we discuss the case of local excitation and lateral
inhibition in intracortical fields (cf. [38]). That is, we use

Ke(x) =
ge

2re
e−|x|/re , Ki(x) =

gi

2ri
e−|x|/ri ,

where re,i denote the excitatory and inhibitory spatial

ranges with re < ri. Using L̂t = ∂/∂t+τ and ve = vi = v,
Eq. (6) becomes

∂

∂t
ũ(k, t) = −τ ũ(k, t)

+vγ

∫ ∞

0

dτ

[

ge

re
e−vτ/re − gi

ri
e−vτ/ri

]

cos(kvτ )ũ(k, t − τ )

+
√

QΓ(k, t) . (23)

The ansatz ũ(k, t) = uk exp(λt) yields the characteristic
equation

λ+τ = γ

[

ge
1 + λre/v

(1 + λre/v)2 + r2
ek2

− gi
1 + λri/v

(1 + λri/v)2 + r2
i k

2

]

,

(24)
which corresponds to a polynomial of 5th order. The first
moments M1(k, t) = 〈ũ(k, t)〉 evolve like

∂

∂t
M1(k, t) = −τM1(k, t)

+vγ

∫ ∞

0

dτ

[

ge

re
e−vτ/re − gi

ri
e−vτ/ri

]

cos(kvτ )M1(k, t−τ ) .

(25)

In the following, we will discuss the model (23) in the
context of a Turing bifurcation [38]. In order to illus-
trate our main objective, it is sufficient to study a par-
ticular parameter set for which the Lyapunov spectrum
λ(k) exhibits at the critical control parameter γc a pair
of vanishing Lyapunov exponents λ(k) with k = ±kc and
kc > 0. Figures 3 and 4 show such a spectrum. In
line with our general consideration in section III, we can
assume that for γ < γc the system is stable. Due to
the linearity of the problem, it is reasonable to assume
that the amplitudes ũ(k, t) are distributed like Gaussian
distributions with vanishing mean values and finite vari-
ances. For γ → γc the variances of the critical Fourier
amplitudes ũ(±kc, t) become infinite, see also Fig. 5. Fi-
nally, for γ slightly larger than γc the Fourier amplitudes
ũ(±k, t) with k ≈ ±kc become unstable. Since we deal
with a Turing bifurcation point at which the imaginary
parts of λ(±kc) vanish, from Eq. (25) it follows that the
first moments M1(k, t) with k ≈ ±kc increase monoton-
ically with time, see Fig. 6. In sum, we deal here with
the emergence of a Turing pattern in the neural field and
with critical fluctuations at the Turing bifurcation point.

Insert Figures 3, 4, 5, 6 about here.

C. 1/fα-fluctuations

Finally, this section discusses the power spectrum of
the resulting spatiotemporal field according to the results
in section III. The assumed connectivity is local and ex-
citatory with K(x) = Ke(x) taken from section IV A
and it is v = ve. In addition, suitable spatial bound-
ary conditions limit the spatial frequency spectrum to
−k0 ≤ k ≤ k0. As has been observed in section IV A,
this coupling model is equivalent to a diffusion model
with diffusion coefficient D.

For large transmission speeds v � |ω
√

D|, the quan-
tities in Eq. (12) read m = 1, r = 1, Ω(k) = −i(1 −
gγ/(Dk2 + 1)), P (k) = −(Dk2 + 1)/2(Dk2 + 1 − gγ).
Here, the maximum time scale occurs at k = 0 with
λ(0) = −(1 − γg). That is γc = 1/g represents the criti-
cal control parameter. The power spectrum reads

S2(ω) =
Q

π
√

2πD

∫ k̄

−k̄

(u2 + 1)2

ω2(u2 + 1)2 + (u2 + 1 − gγ)2
du

(26)

with k̄ = k0/
√

D. Figure 7 shows S2(ω) for two con-
trol parameters. For ω < 1, the plot reveals colored
noise S2(ω) ∼ 1/ω0.19 at the stability threshold γ ≈ γc,
while γ � 1/g yields white noise with S2(ω) ∼ 1/ω0.
That is near the stability threshold the autocorrelation
exhibits a power law C(t, t + τ ) ∼ τ−0.81. For ω → ∞
the power spectrum shows Brownian fluctuations with
S2(ω) ∼ 1/ω2 for both control parameters.

In addition, for vanishing spatial coupling
√

D → 0 the
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power spectrum reads

S2(ω) =
2Qk0

πD
√

2π

1

ω2 + (1 − gγ)2
. (27)

That is white noise with S2(ω) ≈ const occurs for ω → 0
and Brownian motion with S2 ∼ 1/ω2 is present for large
ω � |1− gγ|.

Insert Figure 7 about here.

V. DISCUSSION

The previous sections discuss the stability and stochas-
tic properties of evoked neural activity. First we show
that the transmission delay in the spatial domain reduces
to a distribution of constant delays in the corresponding
Fourier domain. Hence, the linear neural field evolves in
Fourier-space according to affine delay differential equa-
tions. Further investigations on the evoked response to
external stimulation reveal that only the characteristic
roots of the delay differential equations determine the
field stability. In addition, the temporal spectrum of the
evoked activity turns out to depend mainly on the distri-
bution of occuring temporal time scales. These findings
are valid for general connectivity kernels. In order to
learn more about the evoked response to random fluc-
tuations, we discuss the stability and temporal power
spectrum in case of specific synaptic connectivities. In
a first example, it is shown that short-range excitation
is equivalent to diffusive interaction. An additional dis-
crete inhibitory interaction yields a Hopf-bifurcation for
the spatially constant mode. We derive the variance of
the stationary activity distribution for all Fourier modes
and find a divergent fluctuation variance at the bifurca-

tion threshold of the constant mode. Hence, we showed
the occurence of critical fluctuations at the oscillatory
bifurcation threshold. Similar constant oscillations have
been found in deterministic neural networks [58], while
the critical fluctuations have been found experimentally
in oscillatory neural activity [23]. Further treatments
of intracortical fields also reveal critical fluctuations at
the threshold of a Turing bifurcation. Eventually, the
power spectrum of purely diffusive fields reveals 1/fα-
fluctuations for small frequencies near the bifurcation
threshold, i.e. fractional Gaussian noise. Thus the cor-
responding autocorrelation obeys a power law. For large
frequencies, the spectrum corresponds to a Brownian mo-
tion dynamics. Remarkably the noise properties are dif-
ferent far from the bifurcation threshold, where fluctua-
tions show white noise behavior for small frequencies and
Brownian motion properties for large frequencies.

Several studies pointed out that 1/fα-fluctuations oc-
cur in case of multiple time scales. In the present work,
these time scales originate from multiple spatial scales.
In addition, our work reveals 1/fα-fluctuations near the
bifurcation threshold only, though the neural system ex-
hibits multiple time scales for a large range of control
parameters. This finding points to the importance of
criticality in a system [22]. Further the succesful mod-
eling of critical fluctuations in the presence of propaga-
tion delay in nonlocal neural models shows accordance to
experimental findings and thus supports our mesoscopic
model based on neural populations. Future work may in-
clude further important neural mechanisms as temporal
feedback delay and may focus on neural models of more
specific brain areas, e.g. related to motor-coordination
experiments.
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Figure captions

Fig. 1: Variance σ2 as a function of k for several
parameters of γ as computed from Eq. (21). For γ → γc

the variance of the critical mode with kc = 0 tends to
infinity, whereas the variances of all other modes remain
finite. Control parameters (from bottom-up): γ = 1.00,
γ = 1.02, γ = 1.04. Other parameters: τ = 1.0, t0 = 1.0,
ge = 0.2, gi = 2.0, Q = 1.0, R = 10, D = 4giR2/[geπ

2]
and γc = 1.05.

Fig. 2: Evolution of the first moment M1(t) of the
critical mode kc = 0 computed from Eq. (19) for two
cases: γ = 0.9 < γc (dashed line) and γ = 1.1 > γc (solid
line). Other parameters as in Fig. 1.

Fig. 3: Real part of the Lyapunov spectrum λ(k) at
the bifurcation point γ = γc as obtained from Eq. (24)
for a particular set of parameters. Critical modes with
λ(k) = 0 occur at k = ±kc and kc > 0. Parameters:
τ = 1.0, ge = 1.0, gi = 0.2, re = 0.2, ri = 1.0, v = 1.0,
and γc = 1.158.

Fig. 4: Upper band of Fig. 3. The critical modes
are at k = ±kc and kc ≈ 1.2. The homogeneous Fourier
mode is stable at the critical point (i.e. λ(0) < 0).

Fig. 5: Variance σ2(k) as obtained by solving Eq. (23)
numerically for γ = 1.0 and γ = 1.1 (from bottom-up)
using an Euler forward scheme [49]. The variance
has a maximum at the critical mode kc = 1.2. Other
parameters as in Fig. 3.

Fig. 6: Evolution of the first moment M1(kc, t) of the
critical mode with kc = 1.2 computed from Eq. (25) for
γ = 1.0 < γc (dashed line) and γ = 1.17 > γc (solid
line). For γ = 1.17 > γc the first moment M1(0, t) of the
homogeneous Fourier mode is shown as well (diamonds).
The homogeneous Fourier mode is stable, whereas the
critical mode is unstable. Other parameters as in Fig. 3.

Fig. 7: The log-log-plot of the power spectrum from
Eq. (26) for two parameter sets. Further parameters are

k0/
√

D = 200.0, Q/2π
√

2πD = 1.0.
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