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Abstract

In an earlier study it was proven and experimentally confirmed on a 2D Euler code
that fixed point iterations can be differentiated to yield first and second order derivatives of
implicit functions that are defined by state equations. It was also asserted that the resulting
approximations for reduced gradients and Hessians converge with the same R-factor as the
underlying fixed point iteration.

A closer look reveals now that nevertheless these derivative values lag behind the functions
values in that the ratios of the corresponding errors grow proportional to the iteration counter
or its square towards infinity. This rather subtle effect is caused mathematically by the
occurrence of nontrivial Jordan blocks associated with degenerate eigenvalues. We elaborate
the theory and report its confirmation through numerical experiments.

1 Introduction and Assumption

The effect to be analyzed arises in the context of design optimization by what has been called
piggy-back optimization [2]. Design optimization problems are distinguished from general non-
linear programming problems (NLP) by the fact that the vector of variables x is a priori par-
titioned into a state vector y ∈ Y and a set of design variables u ∈ U . For application of this
scenario in computational fluidynamics see for example [7], [5], [6], and [4]. Throughout we
assume that the ”user” has provided an iteration function

G : Y × U → Y

that is contractive with respect to an inner product norm on Y so that for all u ∈ U and y, ỹ ∈ Y

‖G(y, u) − G(ỹ, u)‖ ≤ % ‖y − ỹ‖.

Here % < 1 may vary continuously as a function of the design u and its exact size will usually
not be available to a practical algorithm.

As an immediate consequence it follows by the Banach fixed point theorem that for fixed u
and any initial y0 ∈ Y the sequence {yk} generated by

yk+1 = G(yk, u)

must converge to the unique fixed point y∗ = y∗(u) with y∗ = G(y∗, u). In other words, the
assumptions made so far ensure that one can obtain for any u a solution y∗(u), a process which
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one may call ”simulate” the underlying system. In a practical simulation the variables u and y
will often be restricted to open subsets of the spaces U and Y , respectively.

In order to progress from simulation to design we require more smoothness of G, namely,
that it is at least once continuously differentiable in the joint variable vector (y, u). The same
assumption will be made for the objective function

f : Y × U → IR,

which is meant to be minimized. Provided at least f ∈ C 1(Y,U), one can obtain in a completely
automated fashion the adjoint iteration function

Ḡ(y, ȳ, u) ≡ ȳ Gy(y, u) + fy(y, u). (1)

Here subscripts denote partial differentiation and ȳ like the gradient fy is considered a row-
vector belonging to the dual space of Y , which we identify with the Hilbert space Y itself. Then
we have in the induced matrix and operator norm

%(u) = max
y∈Y

‖Gy(y, u)‖ ≤ % < 1

so that also in the dual norm

‖Ḡ(y, ȳ, u) − Ḡ(y, ỹ, y, u)‖ ≤ %‖ȳ − ỹ‖

for any two row-vectors ȳ, ỹ ∈ Ȳ ≡ Y .

2 Piggy-Back Convergence of Adjoints

Throughout the remainder of this paper we consider u as constant and may therefore omit it
occasionally as an argument in analyzing the simultaneous iteration

[

yk+1

ȳk+1

]

=

[

G(yk, u)
Ḡ(yk, ȳk, u)

]

(2)

Even if G is merely C1 and thus Gy(y) = Gy(y, u) continuous with respect to y it follows from
yk → y∗ that Gy(yk, u) → Gy(y∗, u) and hence the adjoint iterates ȳk converge to ȳ∗ the unique
solution of the adjoint equation

ȳ∗ = ȳ∗Gy(y∗, u) + fy(y∗, u) (3)

The vector ȳ∗ can be used to compute the so called reduced gradient

ū∗ = ȳ∗Gu(y∗, u) + fu(y∗, u) (4)

This row vector represents the total derivatives of f with respect to u, after the elimination of
the state vector y using the implicit function theorem. In order to be more specific about the
rate of convergence we assume that Gy and fy are Lipschitz continuous with respect to y so that
for some ν > 0

‖Gy(ỹ, u) − Gy(y, u)‖ ≤ ν‖ỹ − y‖ ≥ ‖fy(ỹ, u) − fy(y, u)‖.
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Then we find immediately for the discrepancies ∆yk ≡ yk − y∗ and ∆ȳk ≡ ȳk − ȳ∗ that

‖∆ȳk+1‖ ≤ ‖ȳkGy(yk, u) − ȳ∗Gy(y∗, u)‖ + ‖fy(yk, u) − fy(y∗, u)‖

= ‖∆ȳk Gy(yk, u) + ȳ∗(Gy(yk, u) − Gy(y∗, u))‖ + ν‖yk − y0‖

≤ %‖∆ȳk‖ + ‖∆yk‖(‖ȳ∗‖ + 1)ν

Consequently we have for any weighted error combination

εk ≡ ‖∆yk‖ + ω‖∆ȳk‖

the recurrence

εk+1 ≤ %‖∆yk‖ + ω(%‖∆ȳk‖ + ν(‖ȳ∗‖ + 1)‖∆yk‖)

= (% + ων(‖ȳ∗‖ + 1))‖∆yk‖ + ω%‖∆ȳk‖

≤ (% + ων(‖ȳ∗‖ + 1))εk

This implies for any ω < (1 − %)/(ν(‖ȳ∗‖ + 1)) the Q-linear convergence result

lim sup
k→∞

εk+1/εk ≤ % + ων(‖ȳ∗‖ + 1) < 1

By standard arguments one derives the R-linear convergence results

lim sup
k→∞

k
√

‖∆ȳk‖ ≤ lim
k→∞

k
√

εk/ω ≤ % + ων(‖ȳ∗‖ + 1) < 1

Taking the infimum over all ω > 0 one finally obtains as in [1]

lim sup
k→∞

k
√

‖∆ȳk‖ ≤ % ≥ lim sup
k→∞

k
√

‖∆yk‖.

Here the inequality on the right was just added for comparison. Since these convergence speed
cannot be improved under our assumptions (namely Gy has maximal norm % and is Lipschitz
continuous with respect to y) one may arrive at the conclusion that the sequences {yk} and
{ȳk} converge essentially at the same speed. In fact this claim has been made repeatedly in the
literature and the present author has suffered from the same impression for a long time. On the
other hand there has been the persistent notion that the convergence of derivatives is lagging
behind those of the underlying fixed point iterates.

3 Relative Convergence Speed of First Adjoints

In the remainder of this paper we require that Y ≡ IRn and U ≡ IRm are finite dimensional
Euclidean spaces so that all linear operators can be identified with their matrix presentation.
Assuming furthermore, that G and f are twice Lipschitz-continuously differentiable, we may
rewrite the recurrence (2) as

[

yk+1

ȳk+1

]

=

[

G(yk, u)
Ny(yk, ȳk, u)

]

(5)

Here we have expressed the Ḡ from (3) as the gradient of the function

N(y, ȳ, u) ≡ ȳ G(y, u) + f(y, u)
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with respect to y. Notice that this function N differs from the familiar Lagrange function L of
the optimization problem Minf(y,u) s.t. G(y, u) − y = 0 by the shift

ȳ y = N(y, ȳ, u) − L(y, ȳ, u)

Consequently, we have

Ny = Ly + ȳ and Nȳ = Lȳ + y but Nu = Lu

and, for the subsequent analysis more importantly, all second derivatives are identical:

Nyy = Lyy, Nyu = Lyu, Nuu = Luu

Differentiating (5) we obtain the block-triangular Jacobian

Jk ≡
∂(yk+1, ȳk+1)

∂(yk, ȳk)
=

[

Gy(yk, u) 0
Nyy(yk, ȳk, u) GT

y (yk, u)

]

Obviously we have the characteristic polynomial

det(Jk − λI) = det2(Gy(yk, u) − λI)

which means that Jk has the same eigenvalues as Gy(yk, u) but all of them with the multiplicity
2. Moreover, unless the corresponding left and right eigenvectors of Gy happen to be conjugate
w.r.t. the Hessian Nyy these eigenvalues will be defective and thus generate a Jordan block of
dimension 2 or bigger. As a consequence one can deduce a linear-geometric decline in the adjoint
error as follows.

Linearizing about the fixed point (y∗, ȳ∗) we obtain the Taylor expansion

[

∆yk+1

∆ȳk+1

]

=

[

A 0
B AT

] [

∆yk

∆ȳk

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2)

where A ≡ Gy(y∗, u) and B ≡ Nyy(ȳ∗, y∗, u). From this it follows by induction using the R-linear
convergence of ‖∆yk‖ + ‖∆ȳk‖ that for any k and j > 0

[

∆yk+j

∆ȳk+j

]

=

[

A 0
B AT

]j [

∆yk

∆ȳk

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2) (6)

Similarly it can be easily verified by induction that

J j
∗ ≡

[

A 0
B AT

]j

=





Aj 0
j

∑

i=1
(AT )i−1BAj−i (AT )j



 (7)

To simplify the matrix on the bottom left we assume that A = Gy is real diagonalizable so that

A = TΓT−1 with Γ = diag(γj)
n
j=1,

where

%∗ ≡ max
1≤j≤n

|γj | ≤ % < 1
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Then we can perform a two stage reduction to obtain the Jordan-like representation
[

A 0
B AT

]

=

[

T 0
0 T−T

] [

Γ 0
T T BT Γ

] [

T−1 0
0 T T

]

=

[

T 0
0 T−T

] [

I 0
CT I

] [

Γ 0
D Γ

] [

I 0
C I

] [

T−1 0
0 T T

]

(8)

Here D is the (real) diagonal of T T BT and C = −CT is the antisymmetric solution of the
Liapunov equation

ΓC − CΓ = T T BT − D.

It is well known that the linear mapping from C to ΓC − CΓ has the n2 eigenvalues γi − γj

and the eigenvectors eie
T
j for 1 ≤ i, j ≤ n, so that the Liapunov equation must be solvable if all

eigenvalues of A are distinct, as we will assume for simplicity. Then it follows immediately that
the j-th power of J∗ is given by

[

A 0
B AT

]j

=

[

T 0
(CT−1)T T−T

] [

Γj 0
j DΓj−1 Γj

] [

T−1 0
CT−1 T T

]

(9)

Thus we see that unless the diagonal D of B happens to vanish there might be a pretty strong
growth in the adjoint error component ∆ȳk. To compare it to the original error ∆yk itself we
firstly have to analyze its recurrence a bit more carefully. Using the Lipschitz constant ν one
finds by standard estimates

‖∆yk+1 − A∆yk‖ ≤ ν‖∆yk‖
2.

Abbreviating
∆ỹk+1 ≡ T−1∆yk+1 and κ ≡ ‖T‖‖T−1‖

one has consequently
‖∆ỹk+1 − Γ∆ỹk‖ ≤ νκ‖∆ỹk‖

2.

Using this estimate and the assumption that there is only one eigenvalue, say γ1 with the
maximal modulus %∗ = |γ1| one can show that the angle between ỹk and the first Cartesian basis
vector e1 satisfies a recurrence that has exactly one stable fixed point namely 0. Thus we we
have generically

lim
k→∞

|eT
1 ∆ỹk|

‖∆ỹk‖
= 1 and lim

k→∞

‖∆ỹk‖

%k
∗

= c∗ ∈ (0,∞).

From (6) and (9) it then follows that

T T ∆ȳk+j = [CT Γj + jDΓj−1 + ΓjC]∆ỹk + ΓjT T ∆ȳk + O(‖∆yk‖
2 + ‖∆ȳk‖

2)

Assuming finally that the first diagonal element d1 of D does not vanish we find that the second
term in the above expansion dominates as j grows and we get the limit exactly

lim
k→∞

1

k

‖T T ∆ȳk‖

‖T−1∆yk‖
=

d1

%∗
(10)

so that obviously

lim
k→∞

1

k

‖∆ȳk‖

‖∆yk‖
≤ κ

d1

%∗
and approximately

‖∆ȳk‖

‖∆yk‖
∼ k

Hence we see that the convergence of the adjoint vectors ȳk really lags behind that of the
underlying iterates yk even though both sequences have the same R-factor %∗.
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4 Convergence of Second Order Adjoints

The above analysis can be extended to second derivatives representing products of the projected
Hessian with certain direction vectors. More specifically, after picking a direction u̇ ∈ U we may
append (2) by the iterations

ẏk+1 ≡ Ġ(yk, ẏk, u, u̇) ≡ Gy(yk, u)ẏk + Gu(yk, u)u̇ (11)

and

˙̄yk+1 ≡ ˙̄G(yk, ȳk, ẏk, ˙̄yk, u, u̇) ≡ ˙̄ykGy + ȳkGyy ẏk + fyyẏk + ȳkGyuu̇ + fyuu̇ (12)

= ˙̄ykGy(yk, u) + Nyy(yk, ȳk, u)ẏk + Nyu(yk, ȳk, u)u̇

where all derivatives of G and f are evaluated at the current argument (yk, u). Then an analysis
along the lines of Section 3 shows that the ẏk and ˙̄yk also converge R-linearly to respective fixed
points ẏ∗ and ˙̄y∗ solving

ẏ∗ = Ġ(y∗, ẏ∗, u, u̇) and ˙̄y∗ ≡
˙̄G(y∗, ȳ∗, ẏ∗, ˙̄y∗, u, u̇).

The vector ẏ∗ represents the feasible direction in state space associated with the variation u̇ in
the design space. The vector ˙̄y∗ can be used to compute

˙̄u∗ ≡ ˙̄y∗Gu(y∗, u) + Nuy(y∗, ȳ∗, u)ẏ∗ + Nuu(y∗, ȳ∗, u)u̇ (13)

which represents the product of the reduced Hessian with the direction u̇. To analyze the speed
of convergence more carefully let us consider the extended Jacobian

∂(yk+1, ȳk+1, ẏk+1, ˙̄yk+1)

∂(yk, ȳk, ẏk, ˙̄yk)
=









Gy(yk, u) 0 0 0
Nyy(yk, ȳk, u) GT

y (yk, u) 0 0

P (yk, ẏk, u, u̇) 0 Gy(yk, u) 0
H(yk, ȳk, ẏk, ˙̄yk, u, u̇) P (yk, ẏk, u, u̇)T NT

yy(yk, ȳk, u) GT
y (yk, u)









where

P (y, ẏ, u, u̇) ≡ Gyy(y, u)ẏ + Gyu(y, u)u̇

H(y, ȳ, ẏ, ˙̄y, u, u̇) ≡ ˙̄yGyy(y, u) + Nyyy(y, ȳ, u)ẏ + Nyyu(y, ȳ, u)u̇.

We notice that the matrix H is symmetric, while P is general and the values of these two square
matrices at the fixed point (y∗, ȳ∗, ẏ∗, ˙̄y∗) are independent of each other as well as A and B.

We are looking now for estimates of the corresponding discrepancies ∆ẏk = ẏk − ẏ∗ and
∆ ˙̄yk ≡ ˙̄yk − ˙̄y∗ in addition to the ∆yk and ∆ȳk considered before. Similarly to (6) we obtain the
linearization









∆yk+j

∆ȳk+j

∆ẏk+j

∆ ˙̄yk+j









=









A 0 0 0
B AT 0 0
P 0 A 0
H P T B AT









j 







∆yk

∆ȳk

∆ẏk

∆ ˙̄yk









+ O(‖∆yk‖
2 + ‖∆ȳk‖

2 + ‖∆ẏk‖
2 + ‖∆ ˙̄yk‖

2)
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Using the same transformation as in (8) the j-th power can be rewritten as following









A 0 0 0
B AT 0 0
P 0 A 0
H P T B AT









j

=









T 0 0 0
T−T CT T−T 0 0

0 0 T 0
0 0 T−T CT T−T

















Γj 0 0 0
jDΓj−1 Γj 0 0

P̃j 0 Γj 0

H̃j P̃ T
j jΓj−1D Γj

















T−1 0 0 0
CT−1 T T 0 0

0 0 T−1 0
0 0 CT−1 T T









where with P̃ ≡ T−1PT and H̃ ≡ T T HT

[

P̃j 0

H̃j P̃ T
j

]

=

j
∑

i=1

[

Γi−1 0
(i − 1)Γi−2D Γi−1

] [

P̃ 0

H̃ P̃ T

] [

Γj−i 0
(j − i)Γj−i−1D Γj−i

]

Here we used the relation (7) once again. Hence we have the expressions

P̃j =
j

∑

i=1
Γi−1P̃Γj−i

H̃j =
∑j

i=1(i − 1)Γi−2DP̃Γj−i + Γi−1H̃Γj−i + (j − i)Γi−1PΓj−i−1D

Taking norms we obtain for constants c1 and c2

‖P̃j‖ ≤ c1 j ρj−1
∗ and ‖H̃j‖ ≤ c2 j2 ρj−2

∗

The later inequality is true because Γ has like A the spectral radius ρ∗ < 1. Thus we can
estimate all four error components as follows.

‖∆yk+j‖ ≤ ρj
∗c11‖∆yk‖ + O(‖∆yk‖

2)

‖∆ȳk+j‖ ≤ ρj
∗ [c22‖∆ȳk‖ + c21 j |∆yk‖] + O(‖∆yk‖

2 + ‖∆ȳk‖
2)

‖∆ẏk+j‖ ≤ ρj
∗ [c33‖∆ẏk‖ + c31 j ‖∆yk‖] + O(‖∆yk‖

2 + ‖∆ẏk‖
2)

‖∆ ˙̄yk+j‖ ≤ ρj
∗

[

c44‖∆ ˙̄yk‖ + c41j
2‖∆yk‖ + c42j(‖∆ȳk‖ + ‖∆ẏk‖

]

+ O(‖∆yk‖
2 + ‖∆ȳk‖

2 + ‖∆ẏk‖
2 + ‖∆ ˙̄yk‖

2)

Using the assumption (10) one can actually obtain the proportionality relations

‖∆ẏk‖ ∼ k ‖∆yk‖ ∼ k ρk
∗ and ‖∆ ˙̄yk‖ ∼ k2 ‖∆yk‖ ∼ k2 ρk

∗

This means in particular that the second derivatives lag behind the first derivatives by a factor
of order k and thus behind the original iteration by a factor of order k2. A closer analysis of
the propagation constants in the above system of bounds might allow an optimized decision of
when to start propagating first and second derivatives. If this is done too early the error ‖∆yj‖
might still be so large that no reduction in the derivative errors occurs at all.

7



-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0  200  400  600  800  1000  1200  1400  1600  1800

ln
(s

te
p-

no
rm

)

iterations k

convergence history

"sec-adj_.state"
"adjoint_state"
"direct._state"

"original_state"

5 Numerical Results

The following results were obtained on the boundary control problem

∆xy(x) + ey(x) = 0 for x = (x1, x2) ∈ [0, 1]2

with the periodic and Dirichlet boundary conditions

y(0, ζ) = y(1, ζ), y(ζ, 0) = sin(2πζ), y(ζ, 1) = u(ζ) for ζ ∈ [0, 1]

The function u is viewed as a boundary control that can be varied to minimize the objective
function

f(y, u) =

∫ 1

0

[

∂y(η, ζ)

∂η

∣

∣

∣

∣

η=0

− 4 − cos(2πζ)

]2

dζ + σ

∫ 1

0

[

u(ζ)2 + u′(ζ)2
]

dζ

In the following calculations we used σ = 0.001 and set constantly u(ζ) = 2.2. This value is not
all that far from the fold point where solutions cease to exist.

We use a central difference discretization with the mesh-width 1/12.0 so that the resulting
algebraic system involves 144 equations in as many variables. Since the nonlinearities occur only
on the diagonal one can easily implement Jacobi’s method to obtain the basic function G(y, u).
For this simple example we also coded by hand the corresponding derived functions Ḡ, Ġ and

even ˙̄G as defined in (1, 11) and (12), respectively. The results were later confirmed using the
automatic differentiation tool ADOL-C [3].

As can be seen in Fig.1 the convergence of the Jacobi method is rather slow with the common
R-factor being about (1 − 1/300). The lowest curve represents the natural logarithms of the
Euclidean norm ratios ‖yk+1 − yk‖/‖y1 − y0‖, which provide some indication of the norm ratios
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‖∆yk‖/‖∆y0‖. In view of the very slow convergence this relation need certainly not be very
close. Nevertheless the theory is basically confirmed with the first direct and adjoint derivatives
‖ẏk+1 − ẏk‖/‖ẏ1 − ẏ0‖ and ‖ȳk+1 − ȳk‖/‖ȳ1 − ȳ0‖ lagging somewhat behind and the second
derivatives ‖ ˙̄yk+1 − ˙̄yk‖/‖ ˙̄y1 − ˙̄y0‖ coming in last. The ratio between these derivative quantities
and the original iterates themselves is plotted in Fig. 2. After an initial transition phase one sees
quite clearly a growth proportional to k and k2 for the first and second derivatives, respectively.
While the adjoints were defined as in (3) by the gradient of f , the direct differentiation was
performed simultaneously with respect to all components of the discretized u so that the quantity
u̇ occurring in (11) and (12) was in fact the identity matrix of order 12. Consequently, ẏk and
˙̄yk had also 12 times as many components as the underlying yk and ȳk, which are of the same
size.

6 Summary, Conclusion and Outlook

We studied the convergence behavior of fixed point iterations for derivatives of implicit func-
tions. These recurrences are generated in a completely mechanical fashion from a user supplied
contractive fixed point solver for evaluating the implicit function. While the contractivity and
thus the asymptotic convergence rate is inherited by the derived solvers there is a certain time
lag. This is not really surprising since the equations for the adjoints ȳ and those for the feasible
directions ẏ are dependent on y and both in turn impact the second order adjoint equation for ˙̄y.
Mathematically we obtain Jordan blocks of size 2 for the double eigenvalues of the first deriva-
tive systems and of size 3 for the quadruple eigenvalues of the second order adjoint system. One
does not obtain blocks of size 4 since the (3, 2) sub-block in the big Jacobian system vanishes
identically. Otherwise it would connect the two first derivative systems.

Generally if one were to iteratively evaluate derivatives of order d one can expect that the
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relative errors compared to those of the underlying function iteration grows like kd, where k
is the iteration counter. In the context of constrained optimization one can expect that the
correct values of reduced gradients (4) and Hessians (13) are obtained slower than feasibility so
that optimality will be arrived at in the tangential fashion that is familiar from SQP calculations
[8, 9, 10]. In fact when the state equation only be solved by a slowly convergent fixed point solver
as we have assumed throughout it makes little sense to apply an SQP type algorithms. Instead
one will prefer a so-called one-shot optimization strategy [11], where feasibility and optimality
is achieved at the same time. We are currently investigating a piggy-back optimization scheme,
where a third iteration updating the design variables u on the basis of approximate reduced
gradient information is appended to (3).
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