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Abstract
An initial-value problem for a Fokker-Planck type equation on an unbounded space
domain is discretized in time by an implicit Euler scheme and in space by a Galerkin
scheme. It is shown that this scheme conserves mass, positivity and decay of the
entropy. The approximation properties are investigated and numerical experiments

are provided.

1 Introduction

1.1 Basic notations, motivation

In this paper we consider the following initial-value problem for the real-valued function
p(t,z), t>0, € R%:

% = div[DVp + p(DVA+ F)] for z eR? ¢>0, (1.1)
p(t=0,z) = po(x) for x € R%. (1.2)

Here d > 1 holds, and div denotes the divergence operator considered with respect to the

space variable z. Moreover, the functions
D(z) € R4 with D(z) = D(z)", D(z) positive definite uniformly ¥ z € R,
A(z) € R, F(t,z) € RY, po(z) € R for t >0, z € RY,

are given. More conditions on the diffusion matrix D(z), the potential A, the vector field

F' and the initial function pg are given below.

The drift-diffusion equation of the form (1.1) with F' = 0 is known as Fokker-Planck
equation (Risken [12], Soize [13]). It arises, for example, in the mathematical modeling
of Brownian motion of particles (see again [12], [13]) or the light-induced orientation pro-
cess of dye-liquid-crystal systems, see Palffy-Muhoray, Kosa and E [10]. Drift-diffusion
equations of the form (1.1) may also arise as part of a Gummel iteration for the numer-
ical solution of van Roosbroecks equation which models the charge carrier transport in

semiconductor devices (see e.g. Gajewski and Gértner [5] and the references there).
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1.2 Properties of solutions

We next recall some well-known results on existence, uniqueness and basic properties of
solutions to the Fokker-Planck type equation (1.1)-(1.2). If the coefficients of the con-
sidered equation (1.1) are sufficiently smooth and decay sufficiently rapidly for |z|s =
(Zzzl 22)1/2 — 0o and if pg € L'(R?) is satisfied, then there exists a strong solution p
of (1.1)-(1.2) which satisfies p(t,-) € L'*(R?) and p(t,-) € L'(R?) for each ¢t > 0, and
this solution is unique within that class of functions. Additionally, positivity of the initial
function pg implies positivity of that solution p (cf. e.g., Friedman [4] for more details) and
we have conservation of mass, i.e., [pq p(t,2)dx = [pq po(x)dz, t > 0, holds (which results

from an integration of (1.1) with respect to x). We now consider the following function,
Poo() := exp(—A(z)) for x € RY, (1.3)

and assume for a moment that div[poF(t,-)] = 0 holds for each ¢ > 0 (below we will
consider a weak formulation). If the functions p., and py are integrable on R¢ and
Jga po(z)dx = [pa poo(x)da is satisfied, then the considered solution p converges to the
steady state poo of (1.1) as t — oo. The corresponding speed of convergence to the steady
state can be measured in terms of certain convex functionals and decays exponentially,

respectively. For more details see e.g., Arnold et. al. [1] or Section 4 of this paper.

For the numerical solution of problems of the form (1.1), certain time-discrete schemes
and its properties like conservation of positivity and mass as well as speed of convergence
of the approximate states towards equilibrium are investigated recently, see e.g. Arnold
and Unterreiter [2] or Jordan, Kinderlehrer and Otto ([6], [7]). In the present paper we
consider a standard numerical scheme for (1.1)—(1.2) which is discrete both with respect

to time and space and has similar conservation properties.

1.3 Formulation of assumptions

For the numerical solution of the Fokker-Planck type equation (1.1)-(1.2), the unknown
function p in (1.1)-(1.2) is scaled as follows,

u(t,z) = p(t,x)/poo () for z € RY t>0,

which leads to the following initial value problem for the function w,

pw% = div(peoDVu) + div(pooul) for z €RY, ¢ >0, (1.4)
u(t=0,2) = po(x)/poc(x) for z € R%. (1.5)

As a further preparation we introduce weighted L2- and weighted Sobolev spaces of real-

valued functions:

sz(Rd) = {u:RdHR:/d|u|2poodx<oo},
R
H;W,D(Rd) = {u € Lioo (Rd) : V'u- D - Vupsodr < oo },

Rd
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which are equipped with the following inner products,

(u,v)Lg / UV PoodT for u,v e L%OO (R,

(u, v) 1 = / UVPodr + V' - D - Vopsodz for u,v e H;oo p(RY),
poo Rd Rd ’

,D

respectively. Here, all derivatives are understood in a weak sense, and in addition the

following assumptions are imposed:
A1 DY2(:) € [Lo°(RH)] =,
A2 D Y2()F(t,-) € [L=®(RY)]? uniformly for t > 0;

A3 pe € LY(RY), po € LY(RY), Jga po(x)dz = [pa poo(x)de.

Conditions A.1 and A.2 are needed below for a weak formulation of an iterative scheme
to solve the scaled Fokker-Planck type equation (1.4)-(1.5). The first assumption in A.3
implies that constant functions belong to L%OO (R9), and on the other hand it excludes the
case A =0, i.e., the consideration of the classical diffusion equation. We finally note that
for nonnegative functions pg, the mass identity in A.3 can always be obtained by replacing

the potential A with A + ¢ for an appropriate real number c.

We additionally suppose that div[peoF' (¢, )] = 0 holds for each ¢t > 0 in the following weak

sense,

A4 / oV F(t, )psods = 0 Vo€ H) pRY, >0
Rd

This weak formulation is obtained by multiplying div|ps F'(¢, )] with the function v? and
employing a partial integration then. Note that it follows from assumption A.2 that the

integral in A.4 in fact exists.

1.4 A numerical scheme

In the sequel we consider a discretized version of the initial-value problem for the scaled
Fokker-Planck type equation (1.4)-(1.5). We suppose that the three assumptions A.1 — A.3
are satisfied, and then the time derivative % on the left-hand side of the scaled Fokker-
Planck type equation (1.4) is replaced by backward differences. For the resulting method

we consider a weak formulation, and for this purpose let
SCH)_ pRY, u’ e S, (1.6)

with 4% ~ pg/peo, and S is supposed to be a linear subspace. The resulting scheme is of

the following form: determine functions «™ for m = 1,2,... with

u™ e S, / uMpsodr = / u Yopedr — At V'u™ . D Vupsdz
Rd R4 Rd
- At/ U™V v - F(mAL, ) pooda YveS,
R4

m=1,2..., (17
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with the intention
P =1 poo = p(MAL,-) for m=0,1,... . (1.8)

The special situation S = H;WD(]Rd) and u = po/peo € H;WD(]Rd) with u® > 0 on
RY is considered in Arnold and Unterreiter [2]. There, with similar assumptions as in
A.1-A 4 existence, uniqueness, nonnegativity and convergence towards the steady state is
shown for the approximations p" = 4" ps with u™ € H;W’D(Rd) form=1,2,... . In the
present paper we derive similar results for a finite-dimensional setting which is obtained by
considering linear subspaces S C H ;oo, p(R?) with dim S < occ. In addition we will consider

the approximation properties of the scheme (1.7) at fixed times ¢ > 0, respectively.

2 DMatrix version of the numerical scheme, mass conserva-

tion

In the sequel we suppose that the four assumptions A.1 — A.4 are satisfied and consider
the scheme (1.7) with a finite-dimensional subspace S C H ;OO’ p(R%). Using the notation

N :=dim S, we assume that
$1,82,...,SN € S is a basis (2.1)

of the subspace §. With the notations
N
u™ = Za?sb a™ = (af")e=1.n €RY for m=0,1,..., (2.2)
(=1

the scheme (1.7) can be written in the following form,
(G 4+ AH(B + Cp))a™ = Ga™ ' for m=1,2,... . (2.3)
Here, the matrices G € R¥*N and B € RY*N are defined as follows,
gir -+ 91N

G = o : with gy = / S¢Sk Pood,
Rd

gN1 " gNN

and

bir -+ bin

B = Do with by, = / Visp- D Vsppoodr. — (2.4)
Rd

byt -+ byn

Moreover, the matrix C,, is defined as follows,

C,, = Do : with ¢} = / sszsk-F(mAt,~)poodx.
R4



Obviously, the matrix G € RY*N is symmetric and positive definite, and the matrix
B € RV*N is symmetric and positive semidefinite. In addition, for each m the matrix
C,n € RNXN defines an alternating quadratic form, i.e., we have a'Cp,a > 0 for each
a € RY which in fact follows from assumption A.4. This implies that the matrix G +
At(B + Cy,) € RN in the implicit iteration scheme (2.3) is nonsingular.

We now consider mass conservation of the iterates p™ = u™py, with ™ determined by
the scheme (1.7). For this purpose we suppose that 1ga € S holds, where 1ps : R? — R

denotes the characteristic function on R%, i.e.,
lpa(z) =1 for x € R%

An application of the identity (1.7) with the constant function v = 1ga € S then yields
fRd U poodr = fRd um_lpoodm for m = 1,2,... . We summarize these results in the

following proposition.

Proposition 2.1 Let A.1 — A.} and (1.6) be satisfied, and let the linear subspace S C
H;OO p(RY) be finite-dimensional. Then the iterates u™ considered in (1.7) exist and are
uniquely determined for m = 1,2,... . If additionally 1pa € S holds, then for the approz-

imations p" = u" pso there holds

/ pldr = / pOdx for m=0,1,... .
R4 Rd

The starting vector o € RY for the matrix-vector-version (2.3) of the scheme (1.7) can

be determined, e.g., by solving the following linear system of equations,
Ga® = b with b= ({po/poo; k)12 Jk=1.N € RY. (2.5)

Then  is the Lf)oo—orthogonal projection of the function py/ps onto the considered finite
element space §. We then have fRd wWpsodr = f]Rd podx provided that 1pa € S holds. On
the other hand, pg > 0 does not necessarily implies o > 0 in (2.5) even under canonical
assumptions on the basis functions. At the end of Section 3, another strategy for choosing

the starting function will be considered which guarantee nonnegativity.

3 Non-negativity of the approximations

In the sequel we suppose that the conditions (1.6) and (2.1) are satisfied, and additionally
we assume that there exists some parameter h = h(S) representing the grid size such that

the following conditions are satisfied:
N
0 < s <1 for £=1,2,...,N, D se=1pq, (3.1)
(=1

bre < _%/T Tpoodm for k#£/¢ with 7y := supp(sy), (3.2)
kM7
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where by is as in (2.4), and ¢; > 0 denotes some constant which is independent of the
finite element space S. Additionally, supp(sy) in (3.2) denotes the support of the function

s¢. We need two more natural assumptions:

%2 on 7y for k=1,2,...,N, (3.3)

/skpoodac > 03/ Poodr for k=1,2,...,N, (3.4)
R4 T

\Vskh

IN

with some positive constants ca and c¢3 which are independent of S. In (3.3), the notation
|z]1 = ZZZI |2 | for z = (2;) € R is used. If the Fokker-Planck type equation (1.1) is
considered with F' = 0 then the two assumptions (3.3) and (3.4) in fact can be discarded.

We next present an example where the conditions (3.1)—(3.3) are satisfied.

Remark 3.1 In the two-dimensional case d = 2 and if D is the identity matrix, then the
conditions (3.1)—(3.3) are satisfied, for example, if the subspace S C H;w,D(RQ) is a space

of continuous functions on R? with the following properties:

(i) There exists a convex bounded domain € of R? with a polygonal boundary as well
as a quasiuniform triangulation of this set 2. All inner angles of triangles belonging

to that triangulation are obtuse, i.e., they are smaller than 90 degrees.

(ii) On each triangle of the considered triangulation, the elements of S are linear func-

tions, respectively.

(iii) The considered basis functions si,sa,...,sy are standard hat functions on €, re-

spectively.
(iv) Outside the considered domain €, each element of S is a constant function.

For more details about triangulations and linear splines on two-dimensional bounded do-
mains, see e.g., Knabner and Angermann [9]. The one-dimensional case d = 1 is considered

in the numerical tests, cf. Section 6.

We consider some elementary consequences of the assumptions in (3.1):

]-Rd € S, (35)

N N
Zbkz = 0, ngz = / SkPoodx for k=1,2,...,N, (3.6)
=1 =1 T
N
ZC@ = VTskF(mAt, )Poodx for k=1,2,...,N, (3.7)
=1 T

0 < g < / Poodx for k,/=1,2,...,N. (3.8)

TxNT,

We next show that the iteration matrix G + At(B + C),) is an M-Matrix for appropriate
choices of the time stepsize At. Recall (see, e.g., [11]) that a matrix A = (ag) € RV*V is
by definition an M-Matrix if the following holds:



(a) The matrix A is regular, with an inverse that has nonnegative entries, A= > 0.

(b) All entries of the matrix A, except for those on the diagonal, are nonpositive, i.e.,
ape < 0 for all indices k, £ with k # £.

In the sequel we use the notation |z|s = maxg=1, . q|2x| for z = (2;) € R4,

Theorem 3.2 Let the assumptions A.1 — A.4 be fulfilled and the conditions (1.6), (2.1)
and (3.1)-(3.4) be satisfied. Moreover we suppose that there exists a constant 0 < L < oo
such that for each t > 0 there holds |F(t,2)|oo < L for a.e. x € R%. Then for each time
stepsize At satisfying

Cq

~h, (3.9)
with the constants cq4 = c3/ca and c5 = (1+c3)/c1, the matriz G+ At(B+ Cy,) considered

in the implicit iteration scheme (2.3) is an M-Matriz.

csh? < At <

Proof. 1t is sufficient (see [11]) to show that the following holds for the considered matrix
G + At(B + Cy,) with time stepsizes At satisfying (3.9): the matrix is strictly diagonal
dominant, all off-diagonal entries are nonpositive, and all diagonal entries are positive.
In fact, for a fixed index k, each off-diagonal element in the kth row of the matrix G +
At(B + Cy,) is nonpositive:

—

*) At At
At(b m < 1 — c1— L— ol

*
IN %
X

0 for k #¢.

Here, estimate (x) follows from (3.2), (3.3) and (3.8), and estimate (xx) is a consequence of
the time stepsize condition (3.9). Additionally, for the considered values of h and At, the
sum of the modulus of all off-diagonal elements in the kth row of the matrix G+At(B+C,)

is smaller than the diagonal element in the kth row:

Z \gke + At(bge +cpg)| = Z { —gre — At(bre + o)}
¢=1,..,N ¢=1,..,N
£k £k
W gk + At(bkr + cpp) — / Sppocdr — At V'siF(mAt, ) peode
R R

(%)

< gkk + At(bkk + CZZ,)
Here, the identity (x) follows easily from (3.6) and (3.7), and the estimate () follows from
the conditions (3.3) and (3.4). These statements hold for each k so that G + At(B + C),)
is in fact an M-Matrix. O

As an immediate consequence of Theorem 3.2 we obtain the following result.

Corollary 3.3 In addition to the assumptions in Theorem 3.2 (including time stepsize

condition (3.9)), let the initial function u® € S be nonnegative. Then the approzimations

p

m

=u"poo, m=1,2,... obtained by the scheme (2.2)-(2.3) are nonnegative, respectively.
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We conclude this section with some remarks.

Remark 3.4 1. A starting function u’ € S such that the states p™ = u™py for m =

1,2,... preserve nonnegativity and mass, respectively, can be obtained as follows.

(i) For a given initial function py which satisfies pg > 0, at a first step determine a
nonnegative approximation @’ € S to the scaled function pg/pso > 0. For spaces S

consisting of linear splines this can be obtained, e.g., by interpolation.

0 =ca’ € Swherec = [p4 podr/ [pa @’ pocde.

(ii) At asecond step, compute the function u
The property pg > 0 then necessarily implies u° > 0, and in addition there holds

Jpa u0poscdr = [ga poda.

2. In the situation F' = 0, the statements in Theorem 3.2 and Corollary 3.3 remain valid
without the conditions (3.3) and (3.4), respectively, and the condition (3.9) on the stepsize

reduces to
12
Eh < At, (3.10)

with ¢; as in (3.2).

4 Large time asymptotics

For a fixed function ps, of the form (1.3) with po, € L'(R?), we now consider the following
convex functional,
e(plpss) = / w(i>poodac for p/pec € Lioo (RY), p>0, (4.1)
Rd  NPoo

with the generating function
Y(o) = oclno — (o —1) for o >0, P(0) =1, (4.2)

c.f. Arnold et. al. [1]. From the elementary inequality 0 < ¢(c) < (0 — 1)2 for ¢ > 0 it
follows that the functional e(p|ps) is well-defined and satisfies

0 < e(plpos) < /Rd(p — Poo)’ P (p/pso € L _(RY), p>0). (4.3)

Remark 4.1 There exist different terminologies. For example, in Arnold et. al. [1],
Arnold and Unterreiter [2] or Dolbeault and Illner [3] the number e(p|p~) is denoted
as relative logarithmic entropy of the state p. If in addition fRd pdxr = fRd Poodx holds

then e(p|poo) also can be written as follows,

e(plpso) = /delnpdx + /Rd pAdz. (4.4)

In the case F' =0 and D = I, the number e(p|ps) in (4.4) is known as the free energy of
the state p. The first integral on the right-hand side of the identity in (4.4) is known as
an energy of the state p, and the second integral is the negative of the Gibbs-Boltzmann
entropy (cf. Jordan, Kinderlehrer and Otto [6]). In the sequel the number e(p|po) in (4.4)
will be simple denoted as the free energy of the state p.



Under certain conditions on the involved functions there exists a solution p of the Fokker-
Planck type equation (1.1) such that the free energies (4.1) of its states decay exponentially

as t — oo, i.e.,
0 < elp(ts-)lpeo) < e(polpoc)e™  for t>0 (4.5)

for some parameter A > 0, see e.g., Arnold et. al. [1] for the details. A semidiscrete
version of (4.5) can be found in Arnold and Unterreiter [2] where in fact the scheme (1.7)
is considered with S = H;OO’ p(R9). In this section a discrete version of (4.5) is considered
for the approximations p™ = 4™ ps which is obtained by the scheme (1.7) with a finite-
dimensional subspace S C H;oo, D(]Rd). As a preparation we suppose that the following

Poincaré inequality is satisfied:

A.5 There exists a real constant A > 0 with

2
HUH%% < X/ V- D-Vopsdz Yve lewD(IR{d) with / Vpsodx = 0. (4.6)
o Rd Rd

For example, in the case D = I the Poincaré inequality (4.6) is satisfied if the potential A

is uniformly convex on R
We now present a first result on the exponential time decay of the approximations.

Proposition 4.2 Let assumptions A.1-A.5 and (1.6) hold, and additionally let 1ga € S
and fRd upoodr = fRd Poodr be satisfied. Then for the approzimations p"™ = u pse with
the iterates u™ obtained by the scheme (1.7), the following estimate holds,

/ (0™ = poo)?poade < (1+ AAt)"”/ (0° = poo)’ o da
R4

R4
for m=0,1,... . (4.7)
Proof. We begin with the following calculations:
N L RO [P
pPoo Rd

> - tlly -2 07 L)@ - " s
o R

O - 12, + 2At/

V™. D - Vu™psdx
Rd

+ 2At/ A VAR F(mAt,-)poodx for m=1,2,... .
R4

Here, (x) follows from the identity (1.7) applied with the function v = u" — 1za € S,
c.f. (3.5). From assumption A.4 applied with the function v = u™ we conclude that the

last integral in the previous calculations vanishes:

/ u™V U™ - F(mAL, ) peodz = 0 for m=1,2,... . (4.8)
Rd
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We now consider the Poincaré inequality (4.6) applied with the function v = u™—1pa € S,
which is possible due to Proposition 2.1 on the mass conservation. From this and the

estimate (4.8) we finally obtain

m—1

Y

|

Ll el 286 [ V0D Vs

R4
> (1 + AAY[u™ — 1ga|3. for m=1,2,... .
pPoo

This statement is equivalent to

/ (0™ = poo)pocdz < (14 AAE)T! / (0" = poo)?podr for m=1,2,...,
R4 R4

and the statement of the theorem now follows by mathematical induction. |

Remark 4.3 In the situation F' = 0, the factor (1+AAt)~"/2 in (4.7) can be replaced by
the factor (1 + AA¢/2)~™. This follows by using a different technique, details are omitted

here.

We continue to consider the large time behavior of the approximations p” = u"ps ~
p(mAt,-). In fact, as an immediate consequence of Proposition 4.2 and inequality (4.3)

we obtain the following estimate:

Corollary 4.4 In addition to the assumptions in Proposition 4.2 we suppose that the
conditions (3.1)-(3.4) are satisfied and that the initial function u® for the iteration scheme
(1.7) is nonnegative. Let the time stepsize At be chosen according to (3.9) (or according
to (3.10), if F =0 holds). Then there holds

0 < e(pP™poc) < c(14+AAE)™™ for m=0,1,... (4.9)

with the constant ¢ = [pa(p° — poo)?paa d.

Remark 4.5 (a) If the function p°/p.. is bounded then the constant ¢ in (4.9) can be

estimated as follows,

¢ < 2{ sup [p°/poo|}e(p”]poc)- (4.10)
zeRI

This follows from the fact that the generating function v considered in (4.2) satisfies the
elementary inequality (o) > ﬁ(a —1)2 for 0 < o < 0g with o9 > 0. Estimate (4.10)
implies that the free energy decay of the approximations p™ = u™ps, m = 1,2,... can
be estimated in terms of the free energy of the initial state p® = u%p..
(b) Convex functionals e(-|pso) of the form (4.1) with generating functions of the form
(o) =0 —1—plo—1) for o >0 (1 < p < 2) admit estimates which are similar to
(4.3) (c.f. Arnold et. al. [1]) as well as (4.9). The verification is also similar and details

are therefore omitted here.
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5 Approximation properties at fixed times

5.1 Preparations

For the sake of completeness, in this section the approximation properties of the scheme
(1.7), (1.6) are considered. We continue to suppose that the assumptions A.1-A.5 are
satisfied, and for technical reasons we restrict the considerations to time-independent

vector fields F, i.e.,
F(x)=F(t,x) for = eRY t>0. (5.11)

The condition (5.11) in fact guarantees that differentiation and the Ritz projector R

considered below commute.

5.2 A Ritz projection

Under the conditions stated in Section 5.1 we consider the bilinear form a : H ;Co, p(RY) x
H;M’D(Rd) — R given by

a(u,v) = » V' - D - Vopsds + /Rd uV'v - Fpaodz, (5.12)

u,v € H;WD(IR{d).

The bilinear form a(-,-) given by (5.12) is elliptic with respect to all those functions v €
H;OO p(R?) which have a weighted mean zero, cf. (4.6) and assumption A.4. The conditions
A.1-A.2 imply continuity of the bilinear form a with respect to the space H ;Co, D(Rd).

For a given finite-dimensional subspace S C H ;Co, p(R?) and for u € H;oo, p(R?) we consider

the Ritz projection Ru € S determined by the following two conditions:
a(Ru,v) = a(u,v) YveS with / Vpodr = 0, (5.13)
R4
/ (Ru)poodr = / UPood. (5.14)
Rd Rd

For each element u € H;OO D(]Rd), the Ritz projection Ru € S determined by the two

conditions (5.13) and (5.14) in fact exists and is unique.

5.3 Error estimate

For solutions of the scaled Fokker-Planck type equation (1.4)-(1.5) which are sufficiently
smooth, e.g., for a twice continuously differentiable function u : [0,00) — H;OO p(RY)
(with the notation u(t) = u(t,-)) the following error estimate can be obtained by standard

techniques, see, e.g., Knabner and Angermann [9], Theorem 6.13:

mAt mAt
=m0l < [ Rl ds + A [ W)l ds

+ Ju® = Ru(0)l gz + (I = Rju(mAt)]z (5.15)
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for m = 0,1,... . We now consider convergence w.r.to x, and for this purpose let
So, 81, - .. be a sequence of finite-dimensional subspaces of the Sobolev space H ;007 D(Rd)
with Un—o1,. Sy being dense in H;OO’ D(Rd), and the corresponding approximations in
(1.7) are denoted by u}; instead of u"™. As a consequence of the error estimate (5.15) we
obtain convergence in the following sense:

Juf — u(mAt)|2 < C(inf |v —u(mAL)|m + At)
poo UGSN poc,D

for m,N=0,1,..., mAt < T, (5.16)

where T' > 0 is fixed, and C' denotes some real positive constant which is independent of

N,m and At, and inf,cs, |v — u(mAt)| ;1 , — 0holds as N — co. As initial function
pPoo;

“9\/7 the Ritz projection or the Lf)oo—orthogonal projection of the original initial function

P0/Poo may be considered.

6 Numerical Experiments

Numerical tests are employed for the one-dimensional setting d = 1, the potential A(z) =
22 /2, the constant diffusion coefficient D = 1, and the function F vanishes, F' = 0. The

Poincaré inequality is satisfied then with A = 2.

For the Galerkin scheme (1.7) we use spaces of linear splines with respect to grid points

—0o< T << ... <N <00,

S = {u R—R: u continuous on R, w is linear on [zp_1,xy] for
k=2,3,...,N, wuconst. on (—oo,z1] and on [zy,00), resp..}.

As basis functions we use hat functions s, € S with sg(xy) = 1 and sy(xg) = 0 for

k#4¢ (k,4=1,2,...,N). Moreover, the functions s, vanish outside the interval [z1, zx],

with the two exceptions sj(x) = 1 for x € (—o0,z1], and sy(zx) =1 for x € [xn,00). In

the numerical experiments we use a uniform space grid
xp = a+(k—1)h for k=1,2,...,N, h = (b—a)/(N —1),

with a = —4,b = 6 and N = 41. The conditions (3.1)-(3.2) then are satisfied with ¢; = 1.
We consider the time step size At = 0.07 so that the condition (3.10) is satisfied then. The
entries of the considered matrices B and G are computed by using sufficiently accurate
quadrature formulas. Experiments are employed using the interactive program system

Octave (see the URL http://www.octave.org). We consider two different initial functions.

Example 6.1 We first consider po(x) = cexp(—22/2 + 2x) as initial function, with the
constant ¢ chosen such that ffooo podr = ffooo Poodx holds, i.e., ¢ &~ 7.3941. As initial
function u° the L%ooforthogonal projection of the original initial function pg/po onto the
finite element space S is considered. It turns out in the numerical experiments that the
initial function u® for the iteration scheme (1.7) is nonnegative, and then all functions u™

for m > 1 are nonnegative (see Corollary 3.3). Graphical illustrations are given in Figures
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Figure 1: Plots of the initial function pg, the approximation p; = uj1p at the first time

level t = 0.07, and the equilibrium p,, Example 6.1.

Figure 2: Plots of the initial function pg, the approximation p'® = u!'®p,, at time level
t = 15At = 1.05, and the equilibrium p.,, Example 6.1.

1, 2 and 3, respectively. In Figure 4, the free energies of the states of Example 6.1 are
shown for the first 60 time steps. Additionally we illustrate the statement of Corollary 4.4

and present in Table 1 the free energies e(p™|poo) for some values of m.

Example 6.2 In a second numerical experiment we consider po(z) = (1 + z) exp(—x2/2)
as initial function. This function has also negative values and therefore no free energies
are considered here. As initial function u° again the L%ooforthogonal projection of pg/pec
onto the space S is considered. The numerical results for the large time asymptotics w.r.t.

the L2-norm are shown in Table 2.

7 Conclusions

For an initial-value problem for a Fokker-Planck type equation on an unbounded space
domain we considered a discretization in time by an implicit Euler scheme, and as space
discretization a Galerkin scheme is considered. It is shown that, without restrictive as-
sumptions on the geometry of the triangulation, we have conservation of mass, positivity
and exponential decay of the free energy. The approximation properties at fixed times are

investigated and numerical experiments are provided.
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Figure 3: Plots of the initial function pg, the approximation p** = u%p., at time level
t = 40At = 2.80, and the equilibrium p.,, Example 6.1.
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Figure 4: The free energy e(p™|poo) with p™ = u™pe for m = 0,1,...,60, Example 6.1.
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