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Optimization of Capacity Expansion in Potential-driven
Networks including Multiple Looping

– A comparison of modelling approaches

Ralf Lenz1, Kai Helge Becker1

Zuse Institue Berlin, Takustr.7, 14195 Berlin, Germany

Abstract

In commodity transport networks such as natural gas, hydrogen and water net-
works, flows arise from nonlinear potential differences between the nodes, which
can be represented by so-called “potential-driven” network models. When op-
erators of these networks face increasing demand or the need to handle more
diverse transport situations, they regularly seek to expand the capacity of their
network by building new pipelines parallel to existing ones (“looping”). The
paper introduces a new mixed-integer non-linear programming (MINLP) model
and a new non-linear programming (NLP) model and compares these with ex-
isting models for the looping problem and related problems in the literature,
both theoretically and experimentally. On this basis, we give recommendations
about the circumstances under which a certain model should be used. In partic-
ular, it turns out that one of our novel models outperforms the existing models.
Moreover, the paper is the first to include the practically relevant option that
a particular pipeline may be looped several times.

Keywords: Nonlinear programming, MINLP, Potential-driven networks,
Network expansion, OR in energy

1. Introduction

Operators of commodity transport networks such as natural gas, hydrogen
and water networks regularly have to face both increasing demand and the
need to handle more diverse transport situations. To deal with these challenges
without having to resort to the expensive options of setting up new pipeline
corridors or of demolishing pipelines and replacing them by larger ones, they
must expand the capacity of the existing network. Without using compressor
stations to increase the pressure in the pipelines, this can only be achieved
by building pipelines parallel to existing ones, a process that is referred to as
“looping” in the terminology of the industry. Due to the high costs involved
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there has long been research about finding the cost minimal way of looping an
existing network, i.e. of determining both the pipelines that are to be looped
and the diameters of the pipelines to be built.

Commodity flows such as flows in gas and water networks arise from friction-
induced potential differences between the nodes in the network, which leads to a
type of nonlinear network model that is referred to as potential-driven network
in the literature (Birkhoff & Diaz (1956), Raghunathan (2013), Robinius et al.
(2018)). Apart from the nonlinear character of potential-driven networks, a
specific difficulty in finding optimal loops arises from the fact that the diameters
of the pipelines typically have to be selected from a discrete set of commercially
available diameters (André et al. (2009), Hansen et al. (1991), Fasold (1999)),
which additionally imparts to the problem a combinatorial flavour. For these
reasons the problem of capacity expansion in potential-driven networks belongs
to the family of mixed-integer nonlinear programming (MINLP) problems.

As a consequence, a large body of the literature on the topic is concerned
with developing sophisticated special-purpose algorithms geared at finding lo-
cally optimal solutions or approximating a global optimum, partly based on
novel ways of modelling the capacity expansion problem. While this research
focus has certainly advanced our ability to solve this problem, it has also led to
a variety of mathematical models for the looping problem that remain uncon-
nected in the literature. In view of the recent advances in the development of
general-purpose solvers for NLP and MINLP problems that allow for an efficient
implementation of models that is significantly faster than implementing one of
the special-purpose algorithms developed, it seems to be useful for practitioners
involved in the design of networks to shift the research focus to the modelling
stage. For this reason, the present paper discusses various models for finding
optimal loops in potential-driven networks.

In particular, it brings together, for the first time, the diversity of existing
models in the literature and compares these, both theoretically and experi-
mentally. For this comparison we choose a broad approach that includes two
different strands of research on the problem that are referred to as the discrete
approach and the split-pipe approach (see below), and also takes into account
literature that does not explicitly focus on the looping problem, but addresses
closely related problems. Moreover, the present paper also presents two novel
models for the looping problem, one of which will turn out to yield particularly
favourable computational results. Finally, in discussing these models, the pa-
pers goes beyond the existing literature by including, throughout the paper, the
practically highly relevant case that a particular pipeline may be looped several
times.

In the remainder of this section we will discuss the existing literature on the
topic to clarify in detail how the present paper is related to it and will give an
outline of the structure of the paper.

During the past 40 years of research on capacity problems in potential-driven
networks, three different modelling approaches have been considered for the
looping problem (cf. Shiono & Suzuki (2016)): (i) a direct approach where the
optimal diameters for the loops are chosen from the set of commercially avail-
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able diameters (discrete approach), (ii) a continuous approach where continuous
diameters are typically used to approximate the problem and (iii) an extended
approach where the entire length of the pipeline to be looped is split into several
segments of variable lengths each of which may have its own diameter from the
discrete set of available diameters (split-pipe approach).

In the following discussion of the literature about these three approaches,
we will not only look at papers addressing the looping problem (in fact, to the
best of our knowlegdge, there are so far, apart from the present paper, only two
papers, namely André et al. (2009) and Pietrasz et al. (2008), that solely focus
on the looping problem), but will also consider papers about two closely related
problems: the network design problem, which looks for the optimal diameters of
pipelines between given unconnected nodes or determines both the location of
nodes and the optimal pipelines between these, and the network expansion prob-
lem, which is about the optimal placement of new network elements of different
types (such as pipelines, compressors, valves, etc.) at pre-defined (previously
connected or unconnected) locations in the network.

(i) Discrete diameters. One of the first solution approaches using mathe-
matical optimization techniques for this NP-hard problem (Yates et al. (1984))
has been proposed by Jacoby (1968). The author solves a nonlinear model using
a gradient approximation method where the resulting continuous diameters are
finally rounded to the nearest discrete-valued pipe diameters. The approach
was tested on a small water network that contains seven pipelines and two cy-
cles. Other early work where the discrete approach is used for networks with
a simple structure include Liang (1971), who solved a gunbarrel system using
dynamic programming, and Rothfarb et al. (1970), who used a serial and par-
allel merge algorithm to design tree shaped networks. Later, Gessler (1985)
applied selective enumeration techniques to tackle a small sized network with
two cycles.

In the 1990s a class of approaches was developed that relies on meta heuris-
tics, such as genetic algorithms, see e.g. Simpson et al. (1994) and Savic & Wal-
ters (1997) for water networks, and Boyd et al. (1994) and Castillo & González
(1998) for gas networks.

In the past decade, different papers applied a MINLP formulation to de-
termine discrete pipe sizes, e.g. André et al. (2009), Bragalli et al. (2012) and
Robinius et al. (2018). While André et al. (2009) solve the problem heuristi-
cally in two stages, where a first step identifies pipes to be looped by solving the
continuous relaxation and a second step determines discrete-valued diameters
for these selected pipes using Branch and Bound, Bragalli et al. (2012) solve
the model directly with an MINLP solver using a continuous reformulation of
the cost function. Robinius et al. (2018) determine discrete arc sizes in the
context of tree shaped networks, which allows flows on arcs to be fixed and thus
simplifying the MINLP model to an Mixed Integer Programming model.

The nonlinear nature of the problem has led to a number of different MINLP
models and approaches: Raghunathan (2013) presents a disjunctive program
together with a convex relaxation, which is then solved to global optimality and
Borraz-Sánchez et al. (2016) propose a new solution approach by presenting
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a new model together with a second-order cone relaxation. Humpola (2014)
formulates a model that is solved to global optimality using convex reformulation
techniques, special tailored cuts.

In this paper, we investigate the different existing MINLP approaches and
propose a new model for the discrete looping problem.

(ii) Continuous diameters have been considered e.g. by Bhaskaran &
Salzborn (1979a), Rowell & Barnes (1982), Bhave (1985), De Wolf & Smeers
(1996), De Wolf & Bakhouya (2012), Babonneau et al. (2012) and André et al.
(2013). Continuous diameters typically have been used in the literature to
approximate the discrete diameters that are commercially available. Hansen
et al. (1991), for example, use successive linear programming with a trust region
strategy, where the algorithm adjusts the continuous diameters in each iteration
to elements in the set of available discrete diameters. Osiadacz & Górecki (1995)
apply sequential quadratic programming to the continuous relaxation of a gas
network design problem and round the solution to the closest available diameter
size. Shiono & Suzuki (2016) introduce an analytic approach that calculates the
optimal diameter costs for the pipe-sizing problem of a tree-shaped gas network
with continuous diameters, which are then heuristically converted to discrete
pipe diameters. As in the present paper is concerned with models that lead to
exact solutions we will not further consider this line of research here.

(iii) Split-pipe approach. This approach, where the pipes can be split
into several segments with different diameters each, combines features of both
the discrete and the continuous approaches: while the diameters are chosen
from the discrete set of available diameters, the option to split pipes at arbi-
trary points into sections of different diameters leads, as we will see in the next
section, to a situation that is equivalent to choosing diameters from a continu-
ous set. This concept was first used in designing networks with a tree structure,
which allows the flows in the pipelines to be treated as constants and leads to a
linear programming model (e.g. Karmeli et al. (1968) and Gupta et al. (1972)
for water networks, and, independently, Bhaskaran & Salzborn (1979b) for gas
networks). The first paper to attempt the split-pipe version of the capacity ex-
pansion problem as a non-linear problem for general networks was Alperovits &
Shamir (1977), who introduced the linear programming gradient (LPG) method,
a two-stage heuristic that alternates between solving the linear program with
fixed flows from Karmeli et al. (1968) for obtaining the pipeline diameters and
modifying these flows on the basis of a sensitivity analysis of the solution of the
first stage. This idea stimulated a number of subsequent papers (e.g. Quindry
et al. (1981), Fujiwara & Khang (1990) and Kessler & Shamir (1989)) that
improved on the method. Starting with Eiger et al. (1994), a strand of gen-
uinely NLP-based global solution methods emerged, with further contributions
by Zhang & Zhu (1996) and Sherali et al. (2001), for example. Surprisingly,
despite 50 years of research on the split-pipe approach, all these contributions
proceed from the very same basic model that goes back to the linear model
by Karmeli et al. (1968). For this reason, the present paper presents a novel,
alternative model for the split-pipe approach and compares it to the split-pipe
model in the literature.
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We have now sketched the history of research on the three different ap-
proaches to our looping problem and closely related problems. In the light of
the variety of models and optimization methods for these problems, it is as-
tonishing that there is nearly no research that brings together the discrete and
the split-pipe approaches and compares the models proposed in the literature.
In fact, to the best of our knowledge, the very early paper by Bhaskaran &
Salzborn (1979b) with its linear model for a tree-shaped network is the only
paper to compare the split-pipe approach with the discrete approach, albeit for
very small trees with 9 and 14 nodes. The present paper addresses this gap and
presents comparisons of all models discussed in the literature.

Another important aspect of the looping problem that has not been ad-
dressed in the literature is multiple looping, where each pipeline may be rein-
forced with several parallel piplines of different diameters. This is a practically
highly relevant problem as multiple looping can first replace large diameters
that are commercially not available; may second lead to cost savings by substi-
tuting several parallel pipelines with smaller diameters for one pipeline with a
large diameter; may third, as we will see in Section 2.3, allow for pipe charac-
teristics that cannot be realized with single loops; and can finally provide a tool
for strategic planning where several stages of successively looping a given net-
work are to be considered. For these reasons we will take into account multiple
looping throughout the paper.

The remainder of the paper is organized as follows: In the next section
we formalize the looping problem in potential-driven networks, show some of
its basic properties and explain our approach of dealing with multiple loops. In
Section 3, we present a new model for the discrete looping problem and contrast
it with the existing models in the literature. The subsequent Section 4 turns
to the split-pipe approach of the looping problem. Again we present a new
model and address its relationship with the split-pipe model that can be found
in the literature. Moreover, we discuss the way in which the feasible regions
of all models presented so far are related to each other. In Section 5 we carry
out extensive computational experiments on instances of both natural gas and
water networks that allows us to compare the performance of all models and give
recommendations regarding their use. The paper ends with some concluding
remarks in section 6.

2. The expansion planning problem

Let us begin by formally defining the planning problem that this paper
discusses.

2.1. Problem statement

Let G = (V,A) be a directed graph with node set V and arc set A ⊆ V ×V.
The nodes can be partioned into supply nodes (sources), consumption nodes
(sinks) and and transshipment nodes. In this paper, we restrict to passive
and connected networks, where the only arc type are pipes that are needed to
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transport the commodities. We are given a demand vector b ∈ R|V| where bv > 0
denotes injection into the network at source v ∈ V and bv < 0 withdrawal at
sink v ∈ V. Since we work with stationary and isothermal models, the demand
vector is balanced, i.e.

∑
v∈V bv = 0. With each arc a ∈ A, flow variables

xa ∈ [xa, xa] are associated. Positive values of xa indicate flow along the arc
a = (v ,w) from v to w , where as negative values indicate flow in the reversed
direction. As in classical network flow problems, flow conservation is required
at every node i.e.

∑
a∈δ+(v) xa −

∑
a∈δ−(v) xa = bv with δ+(v) := {(v ,w) ∈ A}

and δ−(v) := {(w , v) ∈ A}. In potential based networks, the physical state is
additionally described by nonnegative potential variables πv ∈ [πv ,πv ] at each
node v ∈ V.

In applications such as water transport problems the nodal potentials πv
correspond to hydraulic heads, i.e. the sum of the elevation head, velocity head
and pressure head (Walski et al. (2001)), while they respresent squared pressure
variables in gas transport problems (Koch et al. (2015)).

The flow along a pipe a = (v ,w) depends on the potential difference at its
adjacent nodes, the pipe length La > 0, a physical parameter Ra > 0 respre-
senting phenomena such as friction and density, and the diameter da > 0. The
potential difference

πv − πw = Φ(da, xa) ∀a = (v ,w) ∈ A, (1)

is given by a function Φ(da, .) : R → R that is strictly increasing, Φ(da, .) ∈ C1

and antisymmetrical, i.e. Φ(da,−xa) = −Φ(da, xa), and typically takes the form

Φ(da, xa) =
LaRa

dβa
sgn(xa)|xa|α. (2)

with α > 0. In line with most authors in the literature, we model Ra as a
constant and assume the pipes to have zero slope, i.e. there is no influence of
gravity on the potential drop πv − πw (e.g. Zhang & Zhu (1996), André et al.
(2009), Babonneau et al. (2012)). The value of α depends on the commodity and
the type of approximation used for modelling the copmmodity flow. In water
transport problems, the potential loss function is typically given by the equa-
tions of Darcy-Weisbach with α = 2 or Hazen-Williams with α = 1.852 (Walski
et al. (2001)), whereas in gas transport problems eq. (2) takes the shape of the
Weymouth equation with α = 2 (Weymouth (1912)). In the approximations
proposed by Darcy-Weisbach and Weymouth, the exponent of the diameter is
β = 5, while it is β = 4.87 in the case of the approximation by Hazen-Williams.

The solution of the capacity expansion problem involves two decisions: (a)
which pipelines a ∈ A should be looped? and (b) what pipeline diameters
da should be used for the loops? As we wish to solve the problem to global
optimality and any preselection of certain pipes are looping candidates would
be a heuristic procedure, we will allow all pipes to be looped.

For the diameters da we have in the discrete case da ∈ Da := {da,0, da,1, ..., da,ka},
where da,0 refers to the diameter of the already existing pipe and da,ka denotes
the maximal possible diameter when looping. In the continuous case the domain
of the diameter is given by da ∈ Da := [da,0, da,ka ]. While the present paper is
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not concerned with the continuous looping problem due to its approximative
nature, we will see in Section 2.3 that a continuous interval of diameters can
also be interpreted as representing diameters in the split-pipe problem.

The general looping problem then reads

min
xa, da, πv

∑
a

c(da)La (3a)

s.t. πv − πw = Φ(da, xa) ∀ a = (v ,w) ∈ A (3b)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V (3c)

πv ≤ πv ≤ πv ∀ v ∈ V (3d)

xa ≤ xa ≤ xa ∀ a ∈ A (3e)

da ∈ Da ∀ a ∈ A (3f)

Note that even when no particular bounds xa and xa on the flow variables xa
are given, flow bounds are implied by the bounds on πv and da by virtue of
equation 1.

To provide the reader with some intuition for the problem statement of
the expansion planning problem, let us briefly demonstrate that we can al-
ways find a solution to the problem provided that there is no flow bound (3e),
that the intersection of the bounds of the potential variables is non-empty, i.e.
∩v∈V [πv ,πv ] = [π,π] with π ≤ π and that we can choose sufficiently large
pipeline diameters.

Let b the overall network inflow, i.e. the sum of all flows that enter the
network at the entry nodes, which is clearly an upper bound on any flow along
any arc in the network. We now select for each arc a ∈ A a diameter da such
that LaRa/d

β
a sgn(x)|x |α ≤ (π − π)/|A|.

Let (πv , xa)v∈V ,a∈A be a corresponding solution of problem (3a) – (3c) when
the values for da are fixed. The solution has unique flow values and the potential
values are uniquely determined up to a constant shift (cf. Collins et al. (1978),
Humpola (2014) for the existence of such a solution), which obviously satisfies

πv − πw =
LaRa

d̃βa
sgn(xa)|xa|α ≤

LaRa

d̃βa
sgn(xa)|xa|α ≤

π − π
|A|

∀a = (v ,w) ∈ A.

Summing up these inequalities along any path −−→v0vk between two connected
nodes v0 and vk yields:

|πv0 − πk | = |
∑k−1

i=0
πvi − πvi+1 | = |

∑k−1

i=0

Li ,i+1Ri ,i+1

d̃βi ,i+1

sgn(xi ,i+1)|xi ,i+1|α|

≤
∑k−1

i=0

Li ,i+1Ri ,i+1

d̃βi ,i+1

sgn(x i ,i+1)|x i ,i+1|α ≤
∑k−1

i=0

π − π
|A|

k ≤ |A|
≤ π − π.

We now choose a node v0 with the highest potential in our solution and shift
this node’s potential by a constant r ∈ R such that it is equal to the upper
bound π, i.e. such that we have π̃v0 := πv0 + r = π for the new potential of the
node v0. If we shift the potentials πv of all other nodes by the same constant r ,
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all our potentials are guaranteed to satisfy (3d).

2.2. Convexity analysis

In the previous section we have seen that the we can model the expansion
planning problem as a Mixed-Integer Nonlinear Program (MINLP) for discrete
looping decisions and as a Nonlinear Program (NLP) for the split-pipe approach.
We will now show that the feasible regions of the discrete and continuous (or
split-pipe) capacity expansion planning problem are non-convex.

When neglecting loop expansions, i.e. da = da,0 for all pipes a ∈ (A), the
continuous and the discrete problem (3) reduce to the same existence problem
of validating a given demand scenario for feasibility. The feasible region of
the resulting problem is convex (Maugis (1977) and Collins et al. (1978)), even
though it comprises nonlinear nonconvex constraints of type (3b). However, this
property does not hold for the feasible regions of the continuous and discrete
expansion planning problem. While the feasible region of the discrete problem
is obviously disconnected and thus nonconvex, we give an explicit example for
the continuous (or split-pipe) problem.

Proposition 1. The feasible regions of the continuous and discrete expansion
planning problems are nonconvex.

Proof. Consider a network of two pipes a1, a2 in parallel with adjacent nodes v
and w . For given α,β > 0, let a demand situation bv = 1001/α = −bw , and
pipe properties ya := (LaRa/d

β
a ) ∈ [0.01, 1] with da ∈ [da, da] for both pipes a ∈

{a1, a2} be given. Then the flow distribution among the parallel pipes is unique,
where both pipes have the same flow direction, i.e. sgn(xa1 ) = sgn(xa2 ), and
thus (2) reduces to πv −πw = ya1x

α
a1

= ya2x
α
a2

. Then s := (xa1 , xa2 , ya1 , ya2 ,πv ,πw )

= (1002/α/(1+1001/α), 1001/α/(1+1001/α), 0.01, 1, 100, 100−100/(1+1001/α)α)
is a solution of problem (3) and by symmetry another solution exits when swap-
ping the pipe characteristics of both pipes, i.e. s̃ := (x̃a1 , x̃a2 , ỹa1 , ỹa2 , π̃v , π̃w ) =
(1001/α/(1 + 1001/α), 1002/α/(1 + 1001/α), 1, 0.01, 100, 100−100/(1 + 1001/α)α).
But there exists an infeasible convex combination of both solutions, namely
s∗ := 0.5(s + s̃), because for α 6= −1 (recall we have α > 0) the point s∗ violates
eq. (3b):

π∗v − π∗w 6= y∗a1
(x∗a1

)α ⇔ 100

(1 + 1001/α)α
6= 0.505

(
1002/α + 1001/α

2(1 + 1001/α)

)α
⇔ 100 6= 0.505

(
(1002/α + 1001/α)/2

)α
.

2.3. Loop diameters

After our general outline of the extension planning problem and some of its
basic characteristics, we will now describe how the diameters used for looping
pipelines are represented in the discrete models and the split-pipe to be discussed
in the present paper. In doing so, we will go beyond the existing literature and
allow that each pipeline a may be looped several times. Our starting point is
a finite set D := {d1, ... , dn} of commercially available diameters for looping.
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Figure 1: Available diameters D = {d1, ... , dn} with cost factors (left). On the right: con-
struction of the efficient frontier of dominating equivalent diameters.

These diameters in D are associated with costs c1 < ... < cn per unit of pipeline
length, see left Figure 1.

It is well known in the literature (see Katz (1959) and André et al. (2009)
for the case of gas networks and Bragalli et al. (2012) for the case of water
networks, for example) that two parallel pipelines with diameters d1 and d2

can be replaced, without changing any physical properties of the network, by a
single pipeline with diameter Dd1,d2 (called equivalent diameter) by virtue of

D
β/α
d1,d2

= d
β/α
1 + d

β/α
2 .

It is easy to see that for looping an arc a of length L with existing diameter da
multiple (k) times with (not necessarily distinct) diameters di1 , di2 , ..., dik ∈ D,
this relationship can be extended to

D
β/α
da,di1 ,....,dik

= dβ/αa + d
β/α
i1

+ ... + d
β/α
ik

, (4)

where this multiple loop is associated with costs∑k

j=1
cijL. (5)

This equation implies that when allowing for multiple loops, we can not only
choose among the discrete set of commercially available diameters, but we have
at our disposal the much larger discrete set of equivalent diameters that result
from all possible combinations of available loops. This is the approach that we
choose in our discrete models.

A type of equivalent diameter also exists for the case of two serial pipelines
with no source or sink inbetween. Assume we have two pipelines, one from node
v to node w and the other one from w to z , with diameters d1 and d2, the same
physical parameter R := R1 = R2, a total length of L from v to z , and with λL
being the length of the first pipeline from v to w , where 0 < λ < 1. Then, due
to (1) and (2), the total potential loss along the flow x from v to z is given by

(πv − πw ) + (πw − πz) =
λLR1

dβ1
sgn(x)|x |α +

(1− λ)LR2

dβ2
sgn(x)|x |α.
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The same potential loss can be achieved with a single pipeline of length L when
its diameter D is given by πv − πz = LR/Dβ sgn(x)|x |α. This and the previous

equation imply that the equivalent diameter satisfies D−β = λd−β1 +(1−λ)d−β2 .
Analogously we have for the case of k serial pipeline segments with diameters
d1, d2, ... , dk and lengths λ1L,λ2L, ... ,λkL, where

∑k
i=1 λi = 1 with λi ≥ 0:

D−β =
∑k

j=1
λid
−β
i with associated costs L

∑k

j=1
λici . (6)

For practical purposes, relationship (6) implies that, when looping pipelines,
we are not restricted to the discrete set of equivalent diameters that results
from multiple loops with the commercially available diameters according to (4).
Instead we can decide to split a pipeline into several segments of lengths λiL
and have different, possibly multiple loops, i.e. loops with different equivalent
diameters, on all segments. In this way, (6) allows us to realize in the network
all diameters in the (continuous) interval between the smallest and the largest
possible equivalent diameters. This is the approach that our split-pipe models
use and it enables us to benefit, despite the limited number of commercially
available pipeline diameters, from having the flexibility of a continuous set of
equivalent diameters at our disposal.

We will allow a single pipe a to be looped up to r times, i.e. in the capacity
expansion problem we have to pick up to r diameters for each existing pipeline of
the network. With

(
n+k−1

k

)
being the number of k-combinations with repetitions

from the diameter set D, we obtain
∑r

k=0

(
n+k−1

k

)
equivalent diameters for each

pipe. To avoid a factorial growth of the number of variables in our models,
we apply a model reduction technique to our split-pipe models that has been
introduced in the literature for the case of single looping several times (e.g.
Bhaskaran & Salzborn (1979b), Fujiwara & Dey (1987), Zhang & Zhu (1996)).
We will briefly outline this method for the general case of multiple loops.

Our aim is to compare all potential equivalent diameters resulting from both
parallel pipelines (multiple loops) and serial pipelines (split-pipe setting) with
respect to their costs and to incorporate into our models only those equivalent
diameters that are not dominated by equivalent diameters with lower costs. To
this end, we place all pairs of equivalent diameters D generated according to
(4) and their corresponding costs per unit of pipeline length cD according to
(5) into a coordinate system where the horizontal axis depicts the exponentiated
equivalent diameter D−β and the vertical axis the cost cD , i.e. we consider the
points (D−β , cD). In this coordinate system, the D−β coordinate of each convex

combination of points (D−βi , cDi ) represents, due to (6), an equivalent diameter
that results from splitting a looped pipe into several sections with equivalent
diameters Di each, while the cD coordinate of such a convex combination indi-
cates, also due to (6), the corresponding cost of such a split-pipe arrangement.
This is illustrated on the right side of Fig. 1. It shows for an arbitrary pipeline
the original diameter d−βa of the pipeline, which has zero cost (solid circle); all

equivalent diameters D−βda,di
, that result from looping the existing pipeline once,

at cost ci (dots in our diagram); all equivalent diameters (D−βda,di1 ,di2
, that result
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from looping the existing pipeline twice, at cost ci1 + ci2 (plus signs in the dia-

gram); and finally, all equivalent diameters D−βda,di1 ,di2 ,di3
, that result from triple

looping, at cost ci1 + ci2 + ci3 , which are represented by crosses in the diagram.
This setting allows us to identify those equivalent diameters among the

equivalent diameters generated by (4) that are crucial for our models, namely
those equivalent diameters that are represented by the extreme points of the
“efficient frontier” on the right side of Fig. 1 (circled in the diagram). All points
on the line that represent the efficient frontier in our figure correspond to con-
vex combinations of two equivalent diameters, i.e. a split-pipe setting where
the pipeline is split into two segments, and these points represent the cost min-
imal ways of equipping a particular arc of the network with a certain equivalent
diameter. As a consequence, for finding an optimal solution to the capacity
extension problem, it suffices to incorporate into our split-pipe models only the
equivalent diameters that correspond to the extreme points of the efficient fron-
tier and to discard all others. As we will see when introducing the models this
will greatly reduce the number of variables.

In the case of the discrete capacity extension problem, we cannot use convex
combinations of equivalent diameters and have to get along with the equivalent
diameters given by (4). Unfortunately however, we cannot possibly use all
equivalent diameters depicted on the right of Fig. 1 for all arcs of the network
as this would make the problem computationally intractable. For this reason, we
will restrict our models to the equivalent diameters that result from looping an
existing pipeline once and, additionally, to those equivalent diameters that result
from looping an existing pipeline several times and are extreme points of the
efficient frontier described above. In this way we may have to do without some
potentially cost-minimal diameters, but will keep our models at a reasonable
size and will, due to having incorporated the option of multiple looping, still
achieve better results than the approaches presented in the literature.

In the following we denote the set of equivalent extension diameters of pipe a
that we use in our models by {Da,0, ...,Da,ka} (sorted in ascending order), where
Da,0 represents the (unlooped) original diameter da of the existing pipe, and the
corresponding cost factors by ca,0 < ... < ca,ka .

3. Discrete Loop Expansions

In this section, we present different approaches to model discrete loop expan-
sions. We will begin with the model that is closest to our generic formulation
of the capacity expansion problem (3).

3.1. Discrete looping with potential function constraints (Model A)

To formulate a MINLP on the basis of our generic formulation (3) of the
looping problem, which can be found, in its discrete version, in several recent
papers (e.g. André et al. (2009); Bragalli et al. (2012); Robinius et al. (2018)),
we have to specify the way in which the discrete values of the diameter variables
are selected. Here this happens in a straight forward way by means of binary

11



variables λa,i each of which represents one diameter Da,i ∈ {Da,0, ... ,Da,ka}. Con-
straint (7c) ensures that exactly one diameter is chosen for each arc a ∈ A, and
in constraint (7b) the potential function has been rewritten in a way such that
the chosen diameter is used for modelling the potential loss. With these vari-
ables λa,i the objective function is a direct consequence of (5) in conjunction
with the generic objective function (3a), while all other constraints are identical
with the generic model.

minimize
λ,x ,π

∑
a∈A

La

ka∑
i=0

λa,ica,i (7a)

subject to πv − πw = LaRa

(
ka∑
i=0

λa,i

Dβ
a,i

)
sgn(xa)|xa|α ∀ a = (v ,w) ∈ A (7b)

ka∑
i=0

λa,i = 1 ∀ a ∈ A (7c)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V (7d)

πv ≤ πv ≤ πv ∀ v ∈ V (7e)

xa ≤ xa ≤ xa ∀ a ∈ A (7f)

λa,i ∈ {0, 1} ∀ a ∈ A ∀i ∈ [ka] (7g)

3.2. Discrete looping with flow direction variables (Model B)

This model is based on an approach by Raghunathan (2013) to tackle the
network design problem. The main difference to the previous model is that we
split the flow variable xa into two sets of variables x+

a,i and x−a,i , which repre-
sent the flow on arc a with diameter Da,i in forward and backward direction,
respectively (see constraint (8e)), and correspondingly, variables ∆+

a , ∆−a that
describe the potential drop along the arcs according to the flow direction (see
constraints (8b) and (8c)). The idea behind this formulation is that constraint
(7b) uses two non-linear functions, namely the power function and the sign func-
tion, and by splitting the variable xa into a part for a forward flow and a part
for a backward flow, we are able to do without the latter function. This comes
at a price, however, as we have to introduce additional binary variables za to
choose between the two flow directions ((8g) and (8h)).

In his paper Raghunathan (2013) develops his own solution algorithm to
the network design problem, where he uses a convex relaxation of the prob-
lem by relaxing the potential constraint function (1) to ∆+

a ≤ Φ(Da,i , x
+
a,i ) and

∆−a ≤ Φ(Da,i , x
−
a,i ) ∀a ∈ A,∀i ∈ [ka]. In our context here, to model the expansion

problem in an exact way, our aim is to enforce these equations with equality. In
general, this can be done in different ways, such as using big-M constraints for
modelling the disjunctions ∨kai=0∆+

a = Φ(Da,i , x
+
a,i ) and ∨kai=0∆−a = Φ(Da,i , x

−
a,i )

or introducing the following constraints: ∆+
a =

∑ka
i=0 Φ(Da,i , x

+
a,i ) and ∆−a =∑ka

i=0 Φ(Da,i , x
−
a,i ) for all a ∈ A. Preliminary computational tests revealed that
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the best performance is achieved with Balas’s convex hull formulation Balas
(1985), i.e. when resolving these disjunctions by explicitly modelling the poten-
tial drop along arc a for diameter Da,i with the variables ∆+

a,i , ∆−a,i . The model
then reads as follows:

minimize
λ,x ,π,∆,z

∑
a∈A

La
∑ka

i=0
λa,ica,i (8a)

subject to πv − πw =
∑

i∈[ka]

(
∆+

a,i −∆−a,i

)
∀ a = (v ,w) ∈ A (8b)

∆+
a,i =

LaRa

Dβ
a,i

(x+
a,i )

α
∆−a,i =

LaRa

Dβ
a,i

(x−a,i )
α ∀ a ∈ A ∀i ∈ [ka] (8c)

∑ka

i=0
λa,i = 1 ∀ a ∈ A ∀i ∈ [ka] (8d)∑

a∈δ+(v)

∑
i∈[ka]

(x+
a,i − x−a,i )−

∑
a∈δ−(v)

∑
i∈[ka]

(x+
a,i − x−a,i ) = bv ∀ v ∈ V (8e)

0 ≤ x+
a,i ≤ xa,iλa,i 0 ≤ x−a,i ≤ xa,iλa,i ∀ a ∈ A ∀i ∈ [ka] (8f)

x+
a,i ≤ xa,iza x−a,i ≤ xa,i (1− za) ∀ a ∈ A ∀i ∈ [ka] (8g)

0 ≤ ∆+
a,i ≤ ∆

+

a za 0 ≤ ∆−a,i ≤ ∆
−
a (1− za) ∀ a ∈ A ∀i ∈ [ka] (8h)

πv ≤ πv ≤ πv ∀ v ∈ V (8i)

λa,i ∈ {0, 1} ∀ a ∈ A ∀i ∈ [ka] (8j)

with ∆
+

a := πv − πw and ∆
−
a := πw − πv . Eqs (8f) - (8h) model that non-

negative flow of arc a takes only place along a given direction for the selected
diameter Da,i inducing the corresponding potential drop. To provide another
upper bound on the potential loss on the arcs, Raghunathan (2013) introduces

further constraints, which in our case read ∆−a,i ≤ LaRa/D
β
a,i (xa,i )

α−1x−a,i and

∆+
a,i ≤ LaRa/D

β
a,i (xa,i )

α−1x+
a,i .

3.3. Discrete looping with potential difference variables (Model C)

The model presented in this section is a novel approach to tackle the non-
linearities of the problem. Instead of introducing variables for the flow direction
as in the previous model, the idea here is to reduce the two-dimensional function
Φ(da, xa) to a one-dimensional function φ(xa). This is achieved by shifting the
loop diameters from the term that represents the flow towards the potential
loss term (see eq. (9b)). To this end, we introduce variables ∆a,i to model the
potential loss that corresponds to the loop diameter chosen (constraint (9c))
and use the binary variables λa,i not to choose the diameters, but to select the
potential loss. As a trade-off we have to introduce big-M constraints (9d) to
determine the potential loss variables ∆a,i .

minimize
λ,x ,π,∆

∑
a∈A

La
∑ka

i=0
λa,ica,i (9a)
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subject to sgn(xa)|xa|α −
∑ka

i=0

Dβ
a,i

LaRa
∆a,i = 0 ∀ a ∈ A, (9b)∑ka

i=0
∆a,i = πv − πw ∀ a = (v ,w) ∈ A, (9c)

M
(1)
a,i λa,i ≤ ∆a,i ≤ M

(2)
a,i λa,i ∀a ∈ A ∀i ∈ [ka], (9d)∑ka

i=0
λa,i = 1 ∀ a ∈ A, (9e)∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V, (9f)

πv ≤ πv ≤ πv ∀ v ∈ V, (9g)

πv − πv ≤ ∆a,i ≤ πv − πv ∀a ∈ A ∀i ∈ [ka] (9h)

xa ≤ xa ≤ xa ∀ a ∈ A, (9i)

λa,i ∈ {0, 1} ∀a ∈ A ∀i ∈ [ka] (9j)

3.4. Further approaches for discrete looping in the literature

There are two further models in the literature for the network design prob-
lem, both of which are not intended as “stand-alone-models“, but as starting
points for solution algorithms. While we will not go into the details of the
models here because preliminary computational experiments have demonstrated
that they do not perform particularly well (see Section 5.2), the approaches still
deserve mentioning.

Borraz-Sánchez et al. (2016) present an MINLP formulation that is similar
to the model developed by Raghunathan (2013) (Section 3.1) in the sense that
it distinguishes between forward and backward flow directions. Here, however,
this is achieved by binary variables z+

a , z−a that are then used to model the

potential loss function in product form λa,i (z
+
a − z−a )(πv − πw ) = LaRa/D

β
a,ix

α.
Humpola (2014) uses indicator constraints to select arcs a in the network

design problem (or diameters Da,i in the context of our expansion problem), i.e.
constraint of the form λa,i = 1 ⇒ πv −πw = Φ(da,i , xa) and λa,i = 0 ⇒ xa,i = 0,
which may be represented by big-M constraints in a MINLP model.

3.5. Equivalence of the discrete models

To finish our section on discrete models for the capacity expansion problem,
we show that the models presented so far are equivalent. In this context we
denote the feasible regions of the discrete models as: XA for Model A, XB for
model B and XC for model C. Note that when we use the subset relation “⊆“ for
these feasible regions in the following, this relation is not meant to be understood
literally since the different model formulations do not share the same variables.
Instead, we understand the subset relation to mean that a suitable mapping of
feasible points exists.

Proposition 2. The discrete models A, B and C are equivalent, i.e. XA =
XC = XB .
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Proof. “XA ⊆ XC”: Let (x̃a, π̃v , λ̃a,i )a∈A,v∈V ,i∈[ka] ∈ XA be a solution of model A.

We set for all a ∈ A, v ∈ V and ∀i ∈ [ka] : xa := x̃a, πv := π̃v and λa,i := λ̃a,i .
Then (9e)-(9g) and (9i), (9j) follow right away. For pipe a let ǐa ∈ [ka] be such
that λ̃a,̌ia

= 1. We define

∆a,i :=

{
0 ∀i ∈ [ka] \ ǐa
LaRa

Dβ
a,i

sgn(xa)|xa|α i = ǐa.

Then (9b) follows by construction, (9c) equals (7b), (9d) holds by setting M
(1)
a,i :=

Φ(Da,̌ia
, xa),M

(2)
a,i := Φ(Da,̌ia

, xa) and (9h) follows from (9c) and (9g).
“XC ⊆ XA”: Let (xa,πv ,λa,i , ∆a,i )a∈A,v∈V ,i∈[ka] ∈ XC be a solution of model C.

We set for all a ∈ A, v ∈ V and ∀i ∈ [ka] : x̃a := xa, π̃v := πv and λ̃a,i := λa,i .
Then equation (7b) follows from (9b) – (9d) and (7c) - (7g) equals (9e) - (9g),
(9j) - (9i).

“XA ⊆ XB”: Let (x̃a, π̃v , λ̃a,i )a∈A,v∈V ,i∈[ka] ∈ XA be a solution of model A. We

set for all a ∈ A, v ∈ V and ∀i ∈ [ka] : πv := π̃v and λa,i := λ̃a,i . For pipe a let
ǐa ∈ [ka] be such that λ̃a,̌ia

= 1. We set x+
a,i , x

−
a,i , ∆+

a,i , ∆−a,i := 0∀i ∈ [ka] \ ǐa.
Case 1: if x̃a ≥ 0, define x+

a,̌ia
:= x̃a, x−

a,̌ia
= 0 and ∆+

a,̌ia
:= π̃v − π̃w .

Case 2: if x̃a < 0, define x+
a,̌ia

= 0, x−
a,̌ia

:= −x̃a and ∆−
a,̌ia

:= π̃w − π̃v . Then in

both cases (8b) - (8j) hold.
“XB ⊆ XA”: Let

(
x+
a,i , x

−
a,i , za,πv ,λa,i , ∆+

a,i , ∆−a,i

)
a∈A,v∈V ,i∈[ka]

be a solution

of model B. Set for all a ∈ A, v ∈ V ∀i ∈ [ka] : π̃v := πv λ̃a,i := λa,i and
x̃a :=

∑
i∈ka(x

+
a,i − x−a,i ) then the equations of model A are satisfied.

4. Split-Pipe Loop Expansions

In this section we present two equivalent modelling approaches for contin-
uous loop expansions. The first one is a model common in the literature (e.g.
Alperovits & Shamir (1977), Zhang & Zhu (1996)), while the second one is a
novel approach.

4.1. Split-pipe looping with length variables (Model D)

This split-pipe model is identical to the first discrete model A, except that
the indicator variables λa,i ∈ {0, 1} have been relaxed to continuous length
variables λa,i ∈ [0, 1] here, turning the MINLP of Section 3.1 into a NLP. As
explained in Section 2.3, these length variables denote the proportion of pipe
a that is looped with diameter Da,i , i.e. for each arc a, the pipline consists of
segments of those equivalent diameters Da,i for which λa,i > 0.

minimize
λ,x ,π

∑
a∈A

La
∑ka

i=0
λa,ica,i (10a)

(7b)− (7f) (10b - 10f)

λa,i ∈ [0, 1] ∀ a ∈ A ∀i ∈ [ka] (10g)
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4.2. Split-pipe looping with efficient-frontier constraints (Model E)

In the previous section we modelled the efficient frontier of equivalent diame-
ters using length variables λa,i to express convex combinations of the equivalent
diameters Da,i that are the extreme points of the frontier. In the present section,
the efficient frontier is modelled explicitly by using linear constraints.

As the efficient frontier consists of points (D−β , c) (cf. Section 2.3), we
introduce new continuous variables ya to model the exponentiated diameter
(see constraints (11g) and (11b)) and variables ca that represents the costs per
unit length of pipe a for the equivalent diameters (see (11h) and the objec-
tive function). On this basis the effcient frontier can be represented by linear
constraints (11d), each of which models the frontier between a pair of adja-
cent extreme points (cf. the right side of Fig. 1). The parameters sa,i and

ta,i can be calculated in advance as sa,i = (ca,i − ca,i+1)/(D−βa,i − D−βa,i+1) and

ta,i = −sa,iD
−β
a,i+1 + ca,i+1.

minimize
y ,c,x ,π

∑
a∈A

Laca (11a)

subject to πv − πw = LaRaya sgn(xa)|xa|α ∀ a = (v ,w) ∈ A (11b)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V (11c)

ca ≥ sa,iya + ta,i ∀a ∈ A ∀i ∈ [ka − 1] (11d)

πv ≤ πv ≤ πv ∀ v ∈ V (11e)

xa ≤ xa ≤ xa ∀ a ∈ A (11f)

y
a
≤ ya ≤ y a ∀ a ∈ A (11g)

ca ≥ 0 ∀ a ∈ A (11h)

Note that the bounds in (11g) can be calculated as y
a

= D−βa,ka
and y a = D−βa,0 .

4.3. Equivalence of the split-pipe models

The feasible region of model D is a subset of the feasible region of model E
due to the inequality constraints (11d). But since the objective is to minimize
the cost for building loops, solutions of both models are forced to be on the
efficient frontier. The following proposition formalizes this argument.

Proposition 3. Both model formulations D and E are equivalent in the sense
that we can use one model to solve the respective other model to optimality.

Proof. It suffices to show that each optimal solution in one model can be mapped
to a feasible solution of the respective other model with the same objective
function value.

(i) Let
(
x∗a ,π∗v ,λ∗a,i

)
a∈A,v∈V ,i∈[ka]

be an optimal solution of model D. Accord-

ing to Fujiwara & Dey (1987), an optimal solution has the property that each
arc consists of at most two pipe segments, where the corresponding equiva-
lent diameters correspond to adjacent extreme points of the efficient-frontier
{D−βa,i , ca,i}kai=0. Hence, for all a ∈ A there exists a unique i0 ∈ [ka − 1] such that
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0 ≤ λ∗a,i0
,λ∗a,i0+1 ≤ 1 with λ∗a,i0

+ λ∗a,i0+1 = 1 and λ∗a,i = 0 ∀i ∈ [ka] \ {i0, i0 + 1}.
Define

ỹa := λ∗a,i0D
−β
a,i0

+ λ∗a,i0+1D
−β
a,i0+1 and c̃a := λ∗a,i0ca,i0 + λ∗a,i0+1ca,i0+1.

Set x̃a := x∗a , π̃v := π∗v , then (x̃a, π̃v , ỹa, c̃a)a∈A,v∈V ,i∈[ka] obviously fulfill the vari-
able bounds (11e) - (11g) and equation (11c). From (10b) and the definition of
ỹ follows (11b). We now show that (11d) holds: From our definition of ỹa we
obtain

ỹa = λa,i0 (D−βa,i0
− D−βa,i0+1) + D−βa,i0+1 (12)

⇔ λa,i0 (ca,i0 − ca,i0+1) =
ca,i0 − ca,i0+1

D−βa,i0
− D−βa,i0+1

(ỹa − D−βa,i0+1) (13)

⇔ λa,i0ca,i0 + λa,i0+1ca,i0+1 =
ca,i0 − ca,i0+1

D−βa,i0
− D−βa,i0+1

(ỹa − D−βa,i0+1) + ca,i0+1 (14)

⇔ c̃a = sa,i0 ỹa + ta,i0 . (15)

Since the objective is to minimize and the slopes sa,i in (11d) are decreasing
for increasing i , we have c̃a = sa,i0 ỹa + ta,i0 = maxi∈[ka−1] sa,i ỹa + ta,i which
implies c̃a ≥ sa,i ỹa + ta,i for all a ∈ A and for all i ∈ [ka − 1], and hence the
solution of model D satisfies (11d). Therefore, all optimal solutions of model D
are feasible for model E. The optimal objective function value of model D is∑

a∈A La(λ∗a,i0
ca,i0 + λ∗a,i0+1ca,i0+1) and equals

∑
a∈A Lac̃a by construction.

(ii) Let (x∗a ,π∗v , y∗a , c∗a )a∈A,v∈V be an optimal solution of model E. Con-

sider i0 ∈ [ka] such that D−βa,i0+1 ≤ y∗a ≤ D−βa,i0
. Then there exist unique 0 ≤

λa,i0 ,λa,i0+1 ≤ 1 with λa,i0 + λa,i0+1 = 1 such that y∗a = λa,i0D
−β
a,i0

+ λa,i0+1D
−β
a,i0+1

for all a ∈ A. We set λa,i := 0 ∀i ∈ [ka] \ {i0, i0 +1}, and xa := x∗a ,πv := π∗v ∀a ∈
A,∀v ∈ V, then (xa,πv ,λa)a∈A,v∈V ,i∈[ka] fulfills (10b) - (10g). Therefore, all op-
timal solutions of model E are feasible for model D.

From (11d) we have c∗a = sa,i0y
∗
a +ta,i0 . However, rearranging y∗a = λa,i0D

−β
a,i0

+

λa,i0+1D
−β
a,i0+1 as in (12) to (14) yields λa,i0ca,i0 +λa,i0+1ca,i0+1 = sa,i0y

∗
a +ta,i0 , hence∑

a∈A La(λa,i0ca,i0 + λa,i0+1ca,i0+1) =
∑

a∈A Lac
∗
a .

4.4. Comparison of relaxations

In this section, we consider the continuous relaxations of the discrete mod-
els. As solvers relax the combinatorial part during the solution procedure, the
tightness of the continuous relaxation plays a major role for the performance of
the models.

In the following, we denote the feasible region of the Model D by XD and
the feasible regions of the continuous relaxations of the discrete Models B and
C by XB, rel and XC, rel, respectively. Clearly, XD is the feasible region of the
continuous relaxation of Model A.

Proposition 4. The following relationships hold for the continuous relaxation
of Models A, B and C:

1. XD ⊆ XC, rel but XC, rel 6= XD , i.e. the continuous relaxation of model C
is weaker than the continuous model D, but the reverse is not true.
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Prop. 2:

Prop. 4:

XC XA XB

XD

XC ,rel XB,rel

=

⊆

⊆

=

⊆
*,⊇

*,+

*,+

Figure 2: Relation of feasible regions. The highlighted relations in gray are proven as proposi-
tions. The other relations XA ⊆ XD , XC ⊆ XC, rel and XB ⊆ XB, rel are the canonical continu-
ous relaxations of the corresponding discrete models. Proposition 2 also implies XC ,XB ⊆ XD .
Thus, the split-pipe model can be seen as a relaxation of Models A, B and C.

2. XD * XB, rel and XB, rel * XD

3. XC,rel * XB, rel and XB, rel * XC,rel

Proof. 1: “XD ⊆ XC, rel”: Let
(
x̃a, π̃v , λ̃a,i

)
a∈A,v∈V ,i∈[ka]

∈ XD be a solution of

model D. We show, that it can be transformed to a point in XC, rel. If we set for

all pipes a ∈ A: xa := x̃a, πv := π̃v and λa,i := λ̃a,i ∀i ∈ [ka], equations (9e) - (9h)
and (9j) hold. By defining

∆a,i := λa,i sgn(xa)|xa|αLaRaD
−β
a,i ∀a ∈ A ∀i ∈ [ka] (16)

⇒
∑ka

i=0
∆a,i

(16)
= sgn(xa)|xa|α

∑ka

i=0
λa,iLaRaD

−β
a,i

(10b)
= πv − πw ∀a ∈ A,

the potential loss constraint (9c) and the bounds of ∆a,i (9h) are satisfied. We

then set M
(1)
a,i ≥ Φ(Da,i , xa), M

(2)
a,i ≤ Φ(Da,i , xa), where the big M-formulation (9d)

holds by construction. Equation (9b) also holds, since

(16)⇒ λa,i sgn(xa)|xa|α =
Dβ

a,i

LaRa
∆a,i ∀a ∈ A ∀i ∈ [ka],

⇒
ka∑
i=0

λa,i sgn(xa)|xa|α =
ka∑
i=0

Dβ
a,i

LaRa
∆a,i

(9e)⇒ sgn(xa)|xa|α =
ka∑
i=0

Dβ
a,i

LaRa
∆a,i ∀a ∈ A,

hence XD ⊆ XC, rel.
The remaining relations between the continuous relaxations of the discrete

models are shown by counter examples. Throughout we consider a single pipe
a = (v ,w) with LaRa = 1,Dβ

a,0 = 1,Dβ
a,1 = 2 for given α > 0 and β > 0.

“XC, rel * XD ,XB, rel * XD”: Let bv =
α
√

100, bw = − α
√

100 and πv ,πw ∈
[0, 3600] be given. Then (λa,0,λa,1,πv ,πw , xa) := (0.5, 0.5, 3600, 3500,

α
√

100) /∈
XD , but (λa,0,λa,1,πv ,πw , xa, ∆a,0, ∆a,1) := (0.5, 0.5, 3600, 3500,

α
√

100, 100, 0) ∈
XC, rel and (λa,0,λa,1,πv ,πw , x+

a,0, x+
a,1, x−a,0, x−a,1, za, ∆+

a,0, ∆+
a,1, ∆−a,0, ∆−a,1) := (0.5,

0.5, 3600, 3500,
α
√

100, 0, 0, 0, 1, 100, 0, 0, 0) ∈ XB, rel.
“XD * XB, rel,XC, rel * XB, rel”: Now slightly change the above example to

bv =
α
√

1000 =: −bw and πv ,πw ∈ [0, 10000]. Then (λa,0,λa,1, πv ,πw , xa) :=
(0.5, 0.5, 7500, 0,

α
√

1000) ∈ XD , but (λa,0,λa,1,πv ,πw ) := (0.5, 0.5, 7500, 0) /∈
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XB, rel, and (λa,0,λa,1,πv ,πw , xa, ∆a,0, ∆a,1) := (0.5, 0.5, 7500, 0,
α
√

1000, 5000,
2500) ∈ XC, rel.

“XB, rel * XC, rel”: We now choose bv :=
α
√

75 =: −bw and πv ,πw ∈
[0, 3600]. Then (λa,0,λa,1,πv ,πw , x+

a,0, x+
a,1, x−a,0, x−a,1, za, ∆+

a,0, ∆+
a,1, ∆−a,0, ∆−a,1) :=

(0.75, 0.25, 3600, 375,
α
√

55,
α
√

20, 0, 0, 1, 3025, 200, 0, 0) ∈ XB, rel, but (λa,0,λa,1,
πv ,πw , xa) := (0.75, 0.25, 3600, 375, 75) /∈ XC, rel.

5. Computational Study

In this computational study we first investigate the performance of the dis-
crete models and then compare the split-pipe models. In a third step we analyze
the difference in the performance of the discrete versus the split-pipe models.
Especially from the point of view of practical applications, it is important to
see whether the split-pipe approach can lead to significant cost-savings when
compared to the discrete looping approach.

5.1. Experimental Setup

The experiments were conducted on a cluster of 64-bit Intel Xeon CPU
E5-2670 v2 CPUs at 2.5GHz with 25MB cache and 128GB main memory. In
order to safeguard against a potential mutual slowdown of parallel processes, we
bind the processes to specific cores and run at most 4 jobs per node. We solve
the split-pipe and discrete expansion planning problems to global optimality
using the nonconvex MINLP solver SCIP version 5.0.1 with CPLEX 12.7.1 as
LP solver and Ipopt 3.12.6 as NLP solver. In all experiments, we ran SCIP
with default settings and set a time limit of four hours. This timelimit seems
reasonable for practial purposes since expansion planning is carried out with a
long-term perspective and decisions on short notice are not required as in daily
operations. We solve the instances to ε-global optimality with a gap limit of
ε = 10−4. As performance measure, we use the number of solved instances, the
runtime and the number of Branch-and-Bound nodes. In order to reduce the
impact of very easy or hard instances in the mean values, we report the shifted
geometric mean ( n

√∏
(ti + s) − s) for values t1, ..., tn with a shift of s = 10 for

the runtime in [sec] and s = 100 for the number of branch and bound nodes.
Additionally, we report the arithmetic mean of the computation time to indicate
the time required for applications in practice.

The computational study was carried out on different data sets that vary
in size and structure and are based on two major types of potential-driven
networks: gas networks and water networks. As the starting point we used the
Belgian gas network from the GAMS model library, which has a simple, almost
tree-shaped structure (with the only exception being 5 arcs that have 2 parallel
pipelines) and is of a rather smaller size. We continued our computational
experiments on the GasLib-40 network (Schmidt et al. (2017)), to test the
models on a network that is considerably larger and more complex. As the basis
for our water instances, the well-known New York network (library of instances
at the operations research group in Bologna) was employed. Finally, to focus
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Table 1: Used networks in the computational study. The diameters describe an aggregated
number of the extension candidates for all pipes in the network.

# Nodes # Sources # Sinks # Arcs Cycle rank # Diameters
|V| |A| |A| − |V|+ 1 Split-Pipe Models Discrete Models

Belgian 20 5 9 24 5 308 418
GasLib-40 34 3 29 39 6 488 678
New York 20 1 20 21 2 191 327
Belgian + (2, 4, 6, 8, 10) arcs 20 5 9 26, 28, 30, 32, 34 7, 9, 11, 13, 15 332, 356, 380, 404, 428 452, 486, 520, 554, 588

not only on computational difficulties that arise from the size of the network,
we systematically investigate the impact of cycles on the model performance
and generated extended versions of the Belgian networks by adding 2 to 10
additional arcs. The details about the different networks can be found in Table 1
and Figure 3. We note that originally the Belgian and the GasLib-40 network
contain a small number of compressor stations the treatment of which is outside
the scope of this paper. In the case of the Belgian network we used data
available in the GAMS model library to model these as normal pipelines, while
arcs representing compressor stations had to be contracted in the case of the
GasLib-40 network due to lack of available data.

For each network, we generated instances that cover a wide range of possible
network demands. It is known in practice that increasing the overall network
demand typically results in more complex transport situations that stress the
networks. Practicioners therefore use the so-called “transport moment” to de-
tect severe demand situations by approximating the transport load in the net-
work (cf. Hiller et al. (2018)). It can even be observed in many computational
experiments that higher network demands tend to slow down the model perfor-
mance, provided that the transport situations are not trivially infeasible. Hence,
to test the performance of the models in diverse and severe situations, we con-
sider different demand loads that represent the whole spectrum from “easier”
instances with lower demands up to “harder” instances with higher demands
for each network.

Throughout, we randomly generated scenarios for each given total network
demand T according to a random uniform distribution of the demand at sources
and sinks. More precisely speaking, for all sources and for all sinks we generated
uniformly distributed independent random numbers rv ∈ [0, 1) and then normal-
ize the source and sink flows to calculate the demand as Xv = Trv/

∑
v∈W rv .

For each given total demand and for each network we generated 500 scenarios
because preliminary tests indicated that this sample size leads to sufficiently
stable results for the given distribution with respect to model performances.
Including preliminary tests, we calculated about 300000 instances. Due to this
large number and variety of instances we can assume that the results provide
us with a representative picture for model comparisons. Here, we present a
selection of 5500 different demand scenarios and a total of 40000 instances that
represent the major effects observed.

Throughout the data sets, the expansion capacities of all instances are given
by the diameter candidates {Da,0, ...,Da,ka} resulting from at most triple loops,
i.e. in the discrete case each arc of the network may consist of up to three
pipelines in parallel, while in the split-pipe case up to three parallel pipelines
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are possible for each arc segment.
In our experiments, we use a quadratic cost function as this is the most

common form in practical applications, (see e.g. De Wolf & Smeers (1996);
Parker (2005)). The data points for the cost function used for the gas related
instances is shown on the left Fig. 1 and were provided to us by practicioners,
and for the water instances it was part of the New York network data. (Cost
functions from linear to cubic can also be found in the literature, see Osiadacz
& Górecki (1995) and Babonneau et al. (2012), for example, and were used as
part of our preliminary tests.)

Summarizing, with the maximum number of parallel loops fixed to 3 and the
quadratic cost function being given, one instance is characterized by the choice
of network and demand scenario.

The computational results for the comparison of the discrete models can
be found in Tables 2 – 5 and for the comparsion of the split-pipe models in
Tables 6 – 8. The tables are structured as follows: each column contains the
results of 500 instances with the only variable parameter being the total net-
work demand T . The computational results within a column are grouped into
three categories: (i) In the section All instances, we provide a summary of the
results of all 500 instances and indicate the number of solved instances (

∑
#

solved), which includes the optimal solved instances (# opt) and the instances
that were detected as infeasible (# infeas). Moreover, we state the number of
instances, where at least one feasible solution was found within the time limit
(# sol found), no matter whether optimality was shown for this solution. For
all remaining instances no feasible solution was found within the time limit nor
was infeasibility proved. (ii) The section All opt reports data for all instances
for which all models under comparison have found an optimal solution. (iii) In
the section Only opt by we compare the models with respect to the instances
that they alone were able to solve to global optimality.

In all three cases we report computational time by means of the shifted
geometric mean (sgm) and the arithmetic mean (amm). For instances that
are solved to optimality by all models, we additionally present the sgm of the
number of Branch-and-Bound nodes.

5.2. Comparison of discrete models (Models A, B and C)

We begin our computational experiments with the Belgian gas network,
which has frequently been used as a tool in research about network optimization
(see e.g. De Wolf & Smeers (1996), De Wolf & Smeers (2000) and Babonneau
et al. (2012)). Our computational results for the network can be found in Ta-
ble 2. Demands are given in 106 m3/day and computational time in seconds. We
first consider the performance of our models as depending on the demand. For
the lowest demand T = 100 about all instances are solved to optimality within a
couple of minutes. With increasing demand, computational time increases and
a number of instances solved to optimality decreases. However, at a demand of
T = 1000, we have reached a point where an optimum has been found for less
than a quarter of instances and more of 60 % of the instances are detected as
infeasible. As a consequence of the high number of infeasibilities, the number of
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Figure 3: Belgian (a) and GasLib-40 (b) and New York networks (c) in schematic
view, being illustrated by the bold lines. Dotted lines indicate the Belgian network
with +2,+4,+6,+8,+10 additional arcs.

solved instances has increased and computational time decreased. This pattern
suggests that the range of demand used here is sufficient to obtain an overview
of the general behaviour of the models and that it is not necessary to test the
models for a demand of less than T = 100 and greater than T = 1000. Due
to this typical pattern, which was frequently observed also during our prelimi-
nary computational experiments, we will generally use a test range from a low
demand to a high demand with a large number of infeasibilities.

Table 2: Comparison of discrete models. Belgian network with different demand scenarios

Test Set demand 100 demand 200 demand 500 demand 1000

Models A B C A B C A B C A B C

A
ll

in
st

an
ce

s

# opt 499 500 493 492 496 467 344 365 218 84 111 55
# infeas 0 0 0 0 0 0 5 5 5 310 310 309∑

# solved 499 500 493 492 496 467 349 370 223 394 421 364

# sol found 500 500 500 500 500 500 495 495 489 189 189 188

time (amm) 80.4 69.7 446.9 552.9 552.2 1652.4 6093.5 5962.8 9187.8 3480.6 3307.6 4319.1
time (sgm) 9.1 39.1 20.3 41.4 159.9 106.7 1424.6 2380.3 3691.8 88.4 151.0 113.2

A
ll

op
t

# opt 493 464 209 48

time (amm) 29.8 64.4 248.7 136.8 336.0 741.2 582.5 1632.7 2548.0 784.9 2783.5 3602.1
time (sgm) 7.8 37.6 17.7 27.0 134.3 71.4 155.4 634.0 673.9 301.5 1248.8 1055.0

nodes (sgm) 293 305 564 2047 2140 5015 33296 26614 151517 99209 60268 364978

O
n
ly

op
t

b
y # opt 0 1 0 1 8 0 45 73 0 9 33 0

time (amm) 14400.0 363.7 14400.0 13034.9 3784.9 14400.0 11433.0 8876.4 14400.0 12937.6 8447.2 14400.0
time (sgm) 14400.0 363.7 14400.0 11638.7 1880.6 14400.0 9591.8 6634.3 14400.0 12117.4 7048.4 14400.0

We observe that, with respect to the sgm, model A is the fastest model
throughout, up to a factor 4.3 faster than model B for a demand of T = 100,
while B is the fastest with respect to the amm. This is due to the fact that
model B has a high number of instances that were solved fast (see e.g. those
instances that were only solved by B). Model B also solves the largest number of
instances. We note though that here model B does not stand out with respect
to the infeasible instances discovered and instances for which a feasible solution
has been found.

Let us remark in passing that during our preliminary tests of the two models
mentioned in Section 3.4, which were carried out on the rather simple Belgian
network, the model in Humpola (2014) ran into the time limit at a demand of
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Table 3: Comparison of discrete models. Gaslib-40 network

Test Set demand 50 demand 100 demand 500 demand 1000

Models A B C A B C A B C A B C

A
ll

in
st

a
n
ce

s
# opt 500 500 496 302 283 9 0 0 0 0 2 0
# infeas 0 0 0 0 0 0 0 0 0 144 158 139∑

# solved 500 500 496 302 283 9 0 0 0 144 160 139

# sol found 500 500 500 500 499 498 474 491 491 148 242 112

time (amm) 9.9 119.7 203.4 7781.9 9681.5 14245.3 14400.0 14400.0 14400.0 10264.6 9932.3 10391.5
time (sgm) 4.0 17.2 12.8 3923.0 7777.7 14068.8 14400.0 14400.0 14400.0 1794.8 3176.8 2085.0

A
ll

o
p
t

# opt 496 9 0 0

time (amm) 6.9 76.2 88.9 55.7 1168.0 5802.7 - - - - - -
time (sgm) 3.7 16.1 11.7 45.0 1024.7 3949.2 - - - - - -

nodes (sgm) 60 159 284 2689 14905 415265 - - - - - -

O
n
ly

op
t

b
y # opt 0 0 0 45 26 0 0 0 0 0 2 0

time (amm) - - - 9814.8 12517.3 14400.0 - - - 14400.0 8849.7 14400.0
time (sgm) - - - 7990.3 12100.7 14400.0 - - - 14400.0 8815.3 14400.0

T = 200 with about 2/3 of all instances, while the model in Borraz-Sánchez
et al. (2016) exceeded the time limit in all cases for the same demand. (In
constrast to this, the three models considered here ran into the time limit only
with 0.8% to 6.6% of the same instances.)

We now turn our attention to GasLib-40 (see Table 3). Again we can see that
model A is the fastest model, with B only having an advantage at a demand
of T = 1000 with respect to the amm. This time model A also tends to be
better with respect to the number of instances solved. Finally note, that a
demand of T = 500 is to difficult for all three models, i.e. for unfavourable
demand situations we have reached the limits of what is computational tractable.
(But obviously, this does not apply that expansion problems on more complex
networks cannot be solved for favourable demand situations.)

Table 4: Comparison of discrete models. New York network

Test Set demand 100 demand 200 demand 500

Models A B C A B C A B C

A
ll

in
st

an
ce

s

# opt 0 142 0 9 412 58 0 0 0
# infeas 0 0 0 36 79 73 500 500 500∑

# solved 0 142 0 45 491 131 500 500 500

# sol found 500 500 500 384 421 348 0 0 0

time (amm) 14400.0 12781.4 14400.0 13227.5 1768.0 11639.1 0.0 0.3 0.0
time (sgm) 14400.0 12183.0 14400.0 8759.6 1000.0 7465.9 0.0 0.3 0.0

A
ll

op
t

# opt 0 8 0

time (amm) - - - 2917.1 734.3 1470.1 - - -
time (sgm) - - - 563.3 537.6 881.1 - - -

nodes (sgm) - - - 126220 8918 109148 - - -

O
n
ly

op
t

b
y # opt 0 142 0 0 355 0 0 0 0

time (amm) 14400.0 8903.2 14400.0 14400.0 2190.2 14400.0 - - -
time (sgm) 14400.0 8185.9 14400.0 14400.0 1570.5 14400.0 - - -

The famous New York network is of particular interest for the capacity
expansion problem as it is the only network in the water library where the arcs
are already laid out with given diameters. Introduced by Schaake & Lai (1969),
this instances has been used extensively (see e.g. Quindry et al. (1981); Bhave
(1985); Bragalli et al. (2012)). On this network, model B clearly performs best,
both regarding the number of instances solved and the runtime (Table 4). We
note that we have instances here where model C performs better than model A
in terms of both solved instances and runtime (T = 200 m3/s).

It is well known that optimization problems on potential-driven networks
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Table 5: Comparison of discrete models. Increasing the cycle rank of the Belgian network

Test Set +0 Arcs +2 Arcs +4 Arcs +6 Arcs +8 Arcs +10 Arcs

Models A B C A B C A B C A B C A B C A B C

A
ll

in
st

a
n

ce
s

# opt 499 500 493 393 416 227 251 364 127 307 297 214 326 262 245 372 248 299
# infeas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0∑

# solved 499 500 493 393 416 227 251 364 127 307 297 214 326 262 245 372 248 299

# sol found 500 500 500 500 500 500 498 479 500 500 381 500 499 357 500 500 316 500

time (amm) 80.4 69.7 446.9 4688.8 4726.2 9094.5 8489.5 7306.5 11352.2 7018.2 9003.2 9463.2 6719.1 9817.5 8613.4 5123.6 9969.2 7151.8
time (sgm) 9.1 39.1 20.3 1368.6 2069.0 4766.3 3492.2 4329.8 6399.7 2327.2 5812.4 4357.7 2489.2 7343.8 3805.4 1443.4 6824.2 2262.1

A
ll

o
p

t

# opt 493 221 117 183 192 207

time (amm) 29.8 64.4 248.7 545.8 859.6 2632.2 753.0 1440.6 2148.4 809.8 3632.4 2276.1 1381.0 4934.4 2254.0 969.5 4870.5 1899.4
time (sgm) 7.8 37.6 17.7 249.5 585.5 1213.8 258.0 787.3 495.3 278.2 1879.5 663.9 489.2 3291.6 814.1 326.4 2712.0 510.2

nodes (sgm) 294 305 564 33817 8509 146470 20679 7216 25610 18061 16784 33299 30406 27272 37800 19120 20619 15523

O
n

ly
o
p

t
b
y # opt 0 1 0 22 39 0 24 129 0 48 36 1 62 25 6 67 3 8

time (amm) 14400.0 363.7 14400.0 11918.7 9747.6 14400.0 13283.2 8441.5 14400.0 9907.2 12030.4 14358.8 8811.9 12824.1 13859.5 5925.5 14154.0 13321.2
time (sgm) 14400.0 363.7 14400.0 10717.3 8217.9 14400.0 12488.9 7165.3 14400.0 8101.0 11101.1 14352.9 6849.8 12245.5 12989.9 3866.6 13979.7 11744.4

get more difficult to solve the more cycles they contain because the existence of
cycles leads to more complex patterns of flow directions (cf. the literature review
in Shiono & Suzuki (2016)). To systematically test our models also with respect
to this type of difficulty, we successively increase the cycle rank by adding up
to ten new pipelines to the Belgian network, which results in five new networks
Belgium + (2, 4, 6, 8, 10) arcs, see Fig. 3a. Here, the intension was to add
arcs that connect different regions of the network and have a high impact on
the network topology. For the new pipelines we use in our data set an original
diameter Da,0 that is equal to the average diameter of the existing pipelines in
the network and use moderate demand scenarios with T = 200.

We observe (see Table 5) that for increasing cycle rank the number of in-
stances solved to optimality at first decreases and then increases again for models
A and C, while it continues to decrease for model B. A similar pattern applies
with respect to computational time, where the runtime at first increases for
models A and C and then decreases for the instances with 6 or more additional
arcs, while the runtime of model B increases nearly throughout. This leads to
a situation where model A turns out to have the best sgm runtime for all cycle
ranks, B solves the most instances for smaller cycle ranks, and A solves the
most instances for larger cycle ranks. Finally, while model C shows poor results
for small cycle ranks, it gains ground with increasing cycle ranks and performs
second best for the instances with Belgium + 10 arcs.

In sum, we can state that the models B and A outperform C, with A perform-
ing particularly well on problems with a higher cycle rank (including GasLib-
40 ), but depending on the particular instance to be solved model C may be a
valuable alternative.

5.3. Comparison of split-pipe models (Models D and E)

Again we start with the Belgian network (Table 6) and proceed from easily
solved instances to scenarios with a large number of infeasible instances. It
turns out that both models solve a comparable number of instances, with the
new model E being somewhat faster. It is worth noting that for a demand
of T = 500, i.e. for more difficult instances, 10% of the instances are solved
to optimality by only one of the two models, i.e. in this case both models
complement each other well.

To compare the performance on gas networks of larger sizes with a more
complex cyclic structure, we turn to the GasLib-40 network (Table 7 on the
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Table 6: Comparison of split-pipe models. Belgian network with different demand scenarios

Test Set demand 100 demand 200 demand 500 demand 1000

Models D E D E D E D E

A
ll

in
st

an
ce

s

# opt 500 500 494 496 318 315 77 82
# infeas 0 0 0 0 5 5 310 310∑

# solved 500 500 494 496 323 320 387 392

# sol found 500 500 500 500 495 495 189 189

time (amm) 1.0 0.7 256.2 169.9 5850.9 5891.4 3655.4 3533.2
time (sgm) 1.0 0.6 7.0 4.8 676.1 640.9 80.3 79.1

A
ll

op
t

# opt 500 492 269 60

time (amm) 1.0 0.7 84.0 42.0 841.4 951.2 1903.4 1657.4
time (sgm) 1.0 0.6 5.5 3.8 80.0 78.3 205.0 196.8

nodes (sgm) 24 21 240 197 16381 15153 50809 53529
O

n
ly

op
t

b
y # opt 0 0 2 4 49 46 17 22

time (amm) - - 9662.2 5916.3 8554.7 8457.3.1 10335.6 9148.2
time (sgm) - - 3106.3 415.1 4037.7 3234.6 6748.7 6067.2

left). Here, model E performs clearly better: it solves up to 11 % more instances
(demand T = 100, 1000) and requires less runtime (up to a factor of 2.5 in the
case of T = 50). To further test the performance of the split-pipe models, we
consider the New York water network again (Table 7 on the right). Here the
results are balanced: both models solve the majority of instances in at most 3
seconds (sgm).

Table 7: Comparison of the split-pipe models. GasLib-40 and New York networks

GasLib-40 New York

Test Set demand 50 demand 100 demand 500 demand 1000 demand 100 demand 200 demand 500

Models D E D E D E D E D E D E D E

A
ll

in
st

an
ce

s

# opt 499 500 371 413 237 244 206 243 500 500 421 421 0 0
# infeas 0 0 0 0 0 0 160 160 0 0 79 79 500 500∑

# solved 499 500 371 413 237 244 366 403 500 500 500 500 500 500

# sol found 500 500 500 500 500 500 340 340 500 500 421 421 0 0

time (amm) 32.4 3.2 4045.7 3071.0 9273.6 9002.8 6154.6 5477.9 3.1 2.9 1.9 2.9 0.0 0.0
time (sgm) 3.5 1.4 215.7 164.3 4832.4 4452.5 756.7 687.8 3.0 2.8 1.8 2.8 0.0 0.0

A
ll

op
t

# opt 499 354 214 186 490 417 0

time (amm) 3.6 3.2 375.3 341.7 3291.6 2738.2 5434.6 4247.7 3.1 2.9 1.3 2.4 - -
time (sgm) 3.3 1.4 40.4 37.1 1300.6 1050.9 2842.7 2226.8 3.0 2.8 1.3 2.4 - -

nodes (sgm) 42 16 4270 4040 157062 33984 338695 285031 698 677 182 176 - -

O
n
ly

op
t

b
y # opt 0 1 17 59 23 30 20 57 0 0 0 0 0 0

time (amm) 14400.0 4.5 11605.1 5349.1 10890.4 10570.0 12434.0 10905.4 - - - - - -
time (sgm) 14400.0 4.5 5266.3 1317.9 7837.6 8512.7 11240.0 10117.4 - - - - - -

Finally, we investigate the performance of the models for increasing cycle
rank. We observe (Table 8) that our novel model E consistently outperforms
D, with the ratio of the runtimes of the model becoming the more favourable
for E the higher the cycle rank, up to a factor of 13.9 for 10 additional arcs.
Similarly, model E performs significantly better with respect to the number of
solved instances, with the best ratios of solved instances reached at 16.2 for
Belgium + 8 arcs and 10.0 for Belgium + 10 arcs.

On the basis of our computational experiments for the split-pipe case, we
can clearly recommend the use of our novel model instead of the model from
the literature, particularly for networks with a more complex cyclic structure,
even though one will, of course, encounter instances where the other model is
more successful.
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Table 8: Comparison of split-pipe models. Increasing the cycle rank of the Belgian network

Test Set +0 Arcs +2 Arcs +4 Arcs +6 Arcs +8 Arcs +10 Arcs

Models D E D E D E D E D E D E

A
ll

in
st

a
n
ce

s

# opt 500 500 155 235 58 136 26 170 12 194 30 308
# infeas 0 0 0 0 0 0 0 0 0 0 0 0∑

# solved 500 500 155 235 58 136 26 170 12 194 30 308

# sol found 500 500 500 500 500 500 499 500 500 500 500 500

time (amm) 1.0 0.7 10188.8 7963.9 12928.2 10819.0 13766.4 9781.5 14087.2 9346.4 13634.8 6224.3
time (sgm) 1.0 0.6 3192.4 1173.1 9611.2 3952.4 11843.6 2790.4 12944.1 2675.5 11243.6 844.2

A
ll

o
p
t

# opt 500 101 35 22 12 29

time (amm) 1.0 0.7 761.7 477.2 1087.5 1015.0 2047.6 246.8 1364.9 172.1 1275.8 23.4
time (sgm) 1.0 0.6 91.2 34.4 258.5 37.2 237.8 14.5 160.3 32.0 194.0 10.9

nodes (sgm) 24 21 21956 4642 71439 4495.4 29888 1023 19818 2046 17299 581.7

O
n
ly

o
p
t

b
y # opt 0 0 54 134 23 101 4 148 0 182 1 279

time (amm) - - 10526.8 4762.4 12222.9 3738.5 14103.6 1256.1 14400.0 1454.7 14392.9 1289.6
time (sgm) - - 3777.5 407.2 8689.6 387.3 13637.5 155.7 14400.0 199.6 14392.4 172.6

5.4. Comparison of discrete and split-pipe models

To conclude our computational experiments, we compare the discrete with
the split-pipe approaches. As mentioned in the introduction, this is the first
time that such a comparison is carried out for networks of a practically rele-
vant size and complexity. Of course, one may expect that the split-pipe model
will perform better on average, but as our computational experiments show
(compare the results for Belgium +4, +6, and +8 arcs in Tables 5 and 8, for
example), there are data sets where the discrete approach yields more optimal
solutions within the time limit of 4 hours than the split-pipe approach. For this
reason it is unclear what size the performance gap may actually take.

In the following, we will look at two criteria: (a) potential cost savings and
(b) computational time.

Concerning cost savings, Table 9 shows the average gain of the best known
solutions of the split-pipe models over the discrete models. Here, we consider
only those instances where an expansion actually takes place and where either
at least one split-pipe and at least one discrete model have been solved to
optimality (column Optimal) or where both approaches provide at least one
solution (column Feasible). For these instances, we then consider the average
gain of the best known split-pipe over the best-known discrete one. The column
Feasible additionaly shows the percentage of instances where the best-known
solution is provided by the split-pipe models.

As Table 9 demonstrates, the split-pipe approach yields cost savings on all
data sets. While the results for the comparably simple networks of Belgium
and New York are rather low with up to 2.2%, the benefit of realizing a split-
pipe solution can be considerable for networks with a complex cyclical structure.
Figure 4 shows that the best solution of these instances were nearly always found
by the split-pipe models, in particular by our novel model E. In fact, further
analysis of the data in the tables reveals that the split-pipe models optimally
solve or detect (in)feasibibilty for all but 1 (model E) or 2 (model D) instances,
whereas the number of instances with unknown status is much higher for the
discrete models, namely 318 (model A), 578 (model B) and 348 (model C) out
of the 8000 instances we have calculated per model. In view of the much larger
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Table 9: Gain of Split-Pipe over Discrete Problem

Optimal Feasible

Network Test Set Gain [%] # instances Gain [%] # instances
SP better on

# instances [%]

Belgium demand: 100 2.2 500 2.2 500 100.0
Belgium demand: 200 1.6 498 1.6 500 100.0
Belgium demand: 500 1.1 332 1.2 495 100.0
Belgium demand: 1000 1.3 74 1.4 189 100.0

GasLib-40 demand: 50 321.5 147 321.5 147 100.0
GasLib-40 demand: 100 2.1 326 3.7 500 100.0
GasLib-40 demand: 500 - 0 10.7 498 100.0
GasLib-40 demand: 1000 0.7 2 8.0 175 100.0

New York demand: 100 1.0 142 1.1 500 100.0
New York demand: 200 0.8 413 0.8 415 100.0
New York demand: 500 - 0 - 0 -

Belgium+2 arcs Cycle Rank 1.6 268 1.5 500 99.8
Belgium+4 arcs Cycle Rank 8.2 151 5.3 499 96.4
Belgium+6 arcs Cycle Rank 14.1 169 12.1 498 98.8
Belgium+8 arcs Cycle Rank 17.4 185 14.5 498 99.6
Belgium+10 arcs Cycle Rank 71.0 284 50.7 490 100.0
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Figure 4: Percentage of instances for
which the best solution was found

number of feasible solutions by the split-pipe models, the economic benefit of
these models goes well beyond the cost savings depicted in Table 9.

To compare the overall runtime performance of all discrete and split-pipe
models, we use a performance profile (Dolan & Moré (2002)). It is based on
the performance ratio, i.e. the runtime of a particular data set with the model
under consideration divided by the best runtime for that data set with any of
the five models. The performance profile describes on the y-axis the fraction of
instances among all solved (i.e. optimal or infeasible) instances that the model
could solve with a performance ratio of up to the corresponding number on the
x-axis. Clearly, models are to be preferred when their profile shows higher y-
values for fixed x-values and lower x-values for fixed y-values. To exclude trivial
cases, we disregard instances that were not solved by any model and those that
were solved by all models in less than 1 second CPU time.
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Figure 6: Performance on different data sets.

As we can see, the runtime of model E dominates the runtime of all other
models across the sprectrum of performance ratios (Fig. 5). Further insights
about the model performances for the different data sets can be gathered from
Fig. 6, which depicts the sgm of the runtime of all instances for different network
types and confirms the dominance of the split-pipe models.

To conclude this section, our computational experiments suggest the fol-
lowing recommentations: First, practitioners should aim at using the split-pipe
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approach whenever possible. Second, when doing so, Model E should be pre-
ferred. Third, when the split-pipe approach is not possible, Models A or B are
likely to be the most useful. Fourth, among these two models, Model A should
be tried out first on networks with a more complex cyclical structure. Finally,
Models C and D may be useful complements when dealing with instances that
happen to be particularly hard for the other models.

6. Conclusion

We studied the problem of capacity expansion of potential-driven networks
using loops. We showed properties of the looping problem, such as its non-
convexity, and, building on an existing method of selecting cost-minimal loop
diameters a priori, we presented a model reduction approach for multiple loops.
On this basis we introduced new models for both discrete and split-pipe looping
and contrasted these with existing models for the looping problem and related
problems in the literature, both theoretically and empirically. This was also the
first time that discrete and split-pipe approaches were compared for networks
of a practically relevant size and complexity. The performance of the models
was analyzed in an extensive computational study with a large set of demand
vectors and diverse networks of different sizes and topologies, including network
variations for different cycle ranks, and led to recommendations regarding the
use of the different models. In particular, our experiments showed that our
novel split-pipe model outperforms the existing models.

An interesting avenue for further research would be to improve our split-
pipe model E by generating the efficient frontier dynamically. Instead of adding
all constraints for the frontier globally to the model, they could be generated
dynamically during the solving process whenever the frontier is violated by the
current LP solution. This could drastically reduce the model size, depending
on the number of arcs and extreme points of the efficient frontier.

Moreover, while we allowed all arcs to be looped, we could reduce the model
size by a heuristic pre-selection of the arcs that are most likely to be looped.
Such an approach could gather the pipes that have a higher expected potential
loss along the pipe, which could be determined by simple auxiliary models.

Finally, further work could also include loop expansion planning in the con-
text of time-dynamic commodity transport.
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