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Instationary drift-diffusion problems with Gauss—Fermi statistics
and field-dependent mobility for organic semiconductor devices
Annegret Glitzky, Matthias Liero

Abstract

This paper deals with the analysis of an instationary drift-diffusion model for organic semicon-
ductor devices including Gauss—Fermi statistics and application-specific mobility functions. The
charge transport in organic materials is realized by hopping of carriers between adjacent ener-
getic sites and is described by complicated mobility laws with a strong nonlinear dependence on
temperature, carrier densities and the electric field strength.

To prove the existence of global weak solutions, we consider a problem with (for small den-
sities) regularized state equations on any arbitrarily chosen finite time interval. We ensure its
solvability by time discretization and passage to the time-continuous limit. Positive lower a priori
estimates for the densities of its solutions that are independent of the regularization level en-
sure the existence of solutions to the original problem. Furthermore, we derive for these solutions
global positive lower and upper bounds strictly below the density of transport states for the densi-
ties. The estimates rely on Moser iteration techniques.

1 Introduction

Organic electronics is a future-oriented green technology using carbon-based semiconductor mate-
rials. Today, devices based on these materials surround us in our everyday life, e.g., in smartphone
displays or solar cells. On the one hand, the technological adaption to other applications such as ad-
vanced lighting applications and thin-film transistors is still at an early stage. On the other hand, the
tremendously fast pace in the development of new organic materials with fine-tuned properties yields
the potential for smart three-dimensional vertical structures with desired electronic behavior.

Contrary to classical, inorganic semiconductor materials, in the organic case charge transport is re-
alized by temperature activated hopping of electrons and holes between adjacent molecules. The
random alignment of the molecules leads to a disordered system with Gaussian distributed energy
levels for the carriers. Therefore, in contrast to inorganic semiconductors (where either Fermi—Dirac
or Boltzmann statistics are used), the statistical description of the energetic distribution of the charge
carriers here has to be substituted by Gauss—Fermi statistics (see Subsection 2.1).

In the literature (e.g. [16] and the references therein), organic materials are modeled at different scales,
ranging from density functional theory for molecules, master equation approaches for carrier dynamics
in homogeneous materials, to drift-diffusion equations. However, a master equation approach for the
hopping transport with kinetic Monte-Carlo methods as proposed in [22, 15] are in general computa-
tionally very costly and are less suited for the description of complicated geometric device structures
and the inclusion of other physical effects such as heat flow. On the other hand, coarser models, such
as the p(x)-Laplace thermistor model for the electrothermal interplay in organic light-emitting diodes
considered in [19, 18], reduce the computational effort and allow to treat the full geometric device
structure but are less accurate.
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Within the hierarchy of models, the drift-diffusion modeling is most adequate for the description and
simulation of complex, multi-dimensional organic devices. E.g., to determine the behavior of advanced
organic LEDs or to identify current paths in small scale devices like vertical organic field-effect transis-
tors, a detailed description on the drift-diffusion level incorporating electron and hole currents, recombi-
nations, and heterostructures is needed. The description should be entirely based on the geometrical
structure and on the individual properties of each material layer, allowing to simulate the behavior
of the device and in perspective, to study optimization strategies for the device layout including ef-
ficient doping designs. As a milestone in this direction, stable numerical discretization schemes for
non-Boltzmann statistics have been introduced in [5]. Moreover, drift-diffusion modeling is well suited
to couple also other physical effects such as heat flow.

In the analytical treatment of drift-diffusion models for organics with Gauss—Fermi statistics we have
to overcome two new essential problems in comparison to the usual classical van Roosbroeck system
(studied e.g. in [20, 8] and the references therein):

(i) The mobility laws, which arise from fitting to kinetic Monte—Carlo simulations, exhibit strongly non-
linear dependences on the temperature 1", carrier density n and the electric field strength F' (see
Subsection 2.2). They are usually given in product form

:un(Tvn>F) = :unO(T) X gl(nﬂ T) X 92<F7 T)'

Especially the dependence of the mobility on the field strength has to be managed and requires new
arguments in the existence proof.

(i) The statistical relation in organic semiconductor materials is given by Gauss-Fermi integrals [21],
ie.

n= [ Nowa(E)I(E - Er)dE.

where Ngauss denotes a Gaussian density, E' is the Fermi energy, and f is the Fermi-Dirac occu-
pation probability. In particular, the Gauss—Fermi statistic does not satisfy the standard assumption of
monotone and unbounded statistical relations as in Gajewski/Groger [7, Eq. (2.3)] for the treatment of
non-Boltzmann statistics (see also [9, Eq. (3.5)], [12, 10, 11, 6]).

In the literature, there are only a few papers dealing with the analysis of drift-diffusion problems in
the setting of organics. They mostly concentrate on special aspects arising in photovoltaics (excitons,
polarons) and they do not take the Gauss—Fermi statistics into account. However, they consider some
field strength dependent (Poole—Frenkel) mobility laws (see e.g. [23, 2] and the references therein).

For the stationary problem, [4] gives the first existence result taking all the features of an organic drift-
diffusion model into account. The present paper now tackles the corresponding instationary problem
in two spatial dimensions. We verify existence of weak solutions as well as upper and lower bounds
for solutions.

The plan of the paper is as follows: In Section 2, we introduce the model equations and identify the cru-
cial differences to the classical van Roosbroeck system such as the carrier statistics (Subsection 2.1)
and nonlinear mobility laws (Subsection 2.2). In Section 3, we rescale the model equations, formu-
late our assumption for the analytical treatment of the problem, and give the weak formulation of
the instationary drift-diffusion system. Moreover we introduce the associated free energy functional,
give energy estimates and estimates of the electrostatic potential for weak solutions of the prob-
lem (Subsection 3.4). Section 4 is devoted to the existence of weak solutions (see Theorem 4.1).
In Subsection 4.1, we consider a problem with (for small densities) regularized state equations. lts
solvability is ensured by time discretization and passage to the limit. Positive lower a priori estimates
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energy levels

Figure 1: Hopping-transport of electrons between Gaussian distributed energy levels (centered at £,
with variance o,,) of neighboring molecules.

for the densities of its solutions that are independent of the regularization level (Lemma 4.3) ensure
the solvability of the original problem. Finally, in Section 5 we derive global positive lower bounds
(Theorem 5.1) and global upper bounds strictly less than the number of transport states (Theorem 5.2)
for the carrier densities by Moser iteration.

2 Drift-diffusion modeling of organic semiconductor devices

In organic semiconductor devices, which are based on organic molecules or polymers, the trans-
port of electrons (and holes) happens via hopping processes of charge carriers between discrete
energy levels of adjacent molecular sites, see Fig. 1. For charge carriers, there exist two energy states
on organic molecules: the Highest Occupied Molecular Orbital (HOMO, energy E'x) as well as the
Lowest Unoccupied Molecular Orbital (LUMO, energy E). The LUMO-states describe delocalized
electrons in the w-bindings, whereas the HOMO-states describe the electrons in the localized elec-
tron pair-bindings between the atoms of the molecule. By crossing the HOMO-LUMO gap (e.g. by
optical excitation) electrons in the molecule can change from the HOMO-state into the LUMO-state.
Thereby there arises a positively charged cavity in the charge cloud of the molecule which is called
a hole. Since charge carriers can move by hopping transport between energy levels of neighboring
molecules, organic semiconductor materials behave like amorphous semiconductors.

Charge transport in organic semiconductor devices, neglecting thermal effects, is described by gen-
eralized drift-diffusion models of van Roosbroeck type. The model contains continuity equations for
the densities 1 and p of electrons and holes, respectively, and a Poisson equation for the electrostatic
potential ¢ considered on the product of a time interval and a spatial domain €2:

=V - (€05, VY) = q(C —n+p),

on , .

Ggp =V dn=—al = —anpnVen, (2.1)
op . .

Gor TV dp =R jp=—a0ipVep.

Here g is the elementary charge, ¢, the relative permittivity, and I2 the recombination rate. ¢, and ¢,
denote the quasi-Fermi potentials j,, and 7, are the electron- and hole current densities that are char-
acterized by the electric mobilities (4, 11, In principle, (2.1) looks like the van Roosbroeck system for
classical inorganic semiconductors. However, there are essential differences with respect to statistical
relations and mobility functions that depend in the organic case on the gradient of the electrostatic
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potential. These cause additional difficulties in the mathematical analysis for the model. The essential
features are shortly explained in the next subsections, for a more detailed discussion see also [4].

2.1 Statistical relation between densities and chemical potentials via Gaus-
sian Disorder Model (GDM)

In organic semiconductors, the energy positions are Gaussian distributed, such that both, the electrons
and holes, can be described by a Gaussian density of state, see Fig. 1

Noase(B) = —2exp [~ (=2 ).

where N gives the total density of transport states. F/y denotes the corresponding average HOMO-
and LUMO-levels, respectively, and o their variance. o is also called the disorder parameter which
characterizes the disorder of the organic material. The density of electrons (and similarly also for
holes) is given by the Gauss—Fermi integral

N, o FE—F 2 1
n= 0 / exp <_( L;‘ qv) ) —— dE (2.2)
V2r o, J oo 207 exp ( kBTF) +1

where E;, stands for the LUMO-energy, E'r denotes the {:ermi energy, kg is Boltzmann’s constant,
and the Fermi function f(E,T) = (exp (Ek;?) + 1) gives the probability that an electron is in
the quantum state with the energy E. The shift by ¢ in the Gaussian describes the situation that an

electric field —V 1 is present in the semiconductor with a weakly spatially varying potential 1.

Thus, using the variable £ = w it follows from (2.2) that

n= exp (—= = —
V21 J oo 2/ exp (_anT§ _ Er kgg;rqw) +1
NnO > ( £2> 1
= exp | —= d 2.3
V21 J_so P 2/ exp (sn£ — nn) +1 ¢ 23)
B _Er—Eitqp g —pn) - EL _ n
— nOgsn (nn)y n = kBT - k‘BT ) Sp 1= kBT

with the dimensionless quantities s,, and 7),,.

Similar to this representation of the electron density by means of the renormalized chemical potential
of the electrons, the hole density p is given as function of the renormalized chemical potential of the
holes:

_ Ey — Q(w - SD;D) . Op

p = NpOgsp (7’]1))7 Ty - kBT , Spi= kB_T’

where E'y denotes the HOMO energy.

Next, we collect some properties of the so called Gauss—Fermi statistics G, which are useful in the
analysis performed in this paper. Since the Fermi function f takes only values between 0 and 1, (2.3)
ensures

NnO o 52
0<n=n(n) < ex (——)d — N,y Vn, €R,
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such that the carrier density in organic materials remains bounded for all values of 7,,. By partial
integration we can rewrite

2

6.0 =~ [ e (=5 )¢ fexpl—s6 + ) + D e

a 27s

Moreover, the map 7 — G,(n) is strictly monotonously increasing, Gy is differentiable and

exp(s& —n) 'S
d .
\/ 27 / exp (s€ —n)+ 1) . < ) ¢ 24)

_ 1/"0 exp ()€ d¢

T V2ms ) osexp(s€—m) + 1

gi(n

(2.5)

Note that the fraction in the first integrand takes only values between 0 and 1. Therefore,

Gi(n) € (0,1), lim Gi(n) = lim Gi(n) =0, Gi(n) = Gi(—n).

n—+00 n——00
Moreover, using exp(sf — 77) < exp(s€ — n) + 1 in the expression (2.4) for G/, we have

Gi(n) < Gs(n) VneR, Vs >0. (2.6)

The properties of the Gauss—Fermi statistics stated in the following lemma are of significant impor-
tance for the proof of upper bounds of the carrier densities n and p (strictly less than N,,q and Ny,
respectively,) of the solutions to the instationary problem (2.1).

Lemma 2.1 Forall s > 0 there are constants c(s), ¢(s) > 0 such that

97(n)| _ 3e(s)
Gl = <o)

c(s) <e"Gi(n) <e(s), €"|G{(n)] < 3e(s), foralln >s.  (27)

Moreover, G”(n) < 0 for alln > 0.

Proof. According to the expression for G.(n) in (2.4) we find for 7 > s that
exp (s

"G50 \/_/ exp exp(s§ —n) +1)2
> \/—/ exp ( dé eXp( ) c(s).

Moreover, exploiting the inequality

1
exp(s§ —n) +1 =1 (28)
we obtain
) exp (s€) I &
9l = 5= [ e (exp(sg—m T g [ ow(5) ewtoas

\/ﬂ/ exp _TS)) exp (%) d¢ =:¢(s).
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Additionally, from the expression for G'.(n) in (2.4) we calculate

52)exp (s& —n)[exp(s§ —n) —
(exp(s§ —m) 4+ 1)3

1 9
m/ exp (-5 exp s - Ul e e eI

Therefore, (2.8) results in

: 1]
gl g

exp(s€) 2exp (s6)
m/ ) ot =) 717 e = 7T
< 2(s) + 2e(s) = 3e(s),

e77 |g/l

such that also the last two assertions in (2.7) follow. Using the expression for G’ (n) in (2.5), we derive

s 1= exp(=5)€ exp(sE — n)d¢
9. (77) B 2ms / (eXP(Sf - 77) +1)2 (2.9)
_ 1 > o & exp(s€ —m)  exp(=s{—n)

V27 / fex [(eXp(8§ —n)+1)*  (exp(=s§ —n)+ 1)2] ¢

For s > 0,& > 0 and i > O we obtain from
0< (e —1)(e"—1) = et — e —e* 41
by dividing by e” that e*¢=7 4- 1 < e~ + e . This ensures the estimate

exp(sé — 1) ep(st—n)  _ exp(—sE—n)
(exp(s€ — 1) + 12~ (exp(—) + exp(s€)®  (exp(—sE — 1) + 1)

and the integrand in the second line of (2.9) is positive such that we obtain the property G”(n) < 0
forn>0. U

2.2 Mobility functions

The mobility functions 14,,, 11, for organic semiconductor materials with Gaussian density of state show
a positive feedback with respect to temperature T', density n or p, and with respect to electrical field
strength F' = |V¢|. In [4] we discussed and summarized the results of [22], [3], and [15] obtained
as extension of the Gaussian disorder model for the dependence of the charge carrier mobility. They
arise from numerical solutions of the master equation for hopping transport in a disordered energy
landscape with a Gaussian density of state to determine these dependencies. Written exemplarily for
the electron mobility, [22] ended up in the product form of the mobility

tn(Tymy F) = pino(T) X g1(n, T) X go( F,T). (2.10)

For the further analysis, we suppose as in [4] for the electron and hole mobilities that fi,, : € X
(0,00) x [0,esssup Nyl X Ry — R, p, © Q x (0,00) x [0,esssup Ny X Ry — R are
Caratheodory functions fulfilling

0<p<pn(,T,n, F), pp(+, T, p, F) < < 00

2.11
V(T,n,p, F) € [T,,00) x [0, esssup Ny x [0, esssup Nyo] x Ry a.e.in Q. @17)
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2.3 Generation-recombination term

Following the depiction in [5] and in [4], we assume for the generation-recombination term an expres-
sion of the form

q(en — ¢p)

R=r(,n,pT) (1 — exp T

>7 T('anap>T> :TO('vnvpaT) np, (212)

where 7(-,n,p, T) : ©Q x [0,esssup Nyo| x [0, esssup Ny| x (0,00) — R is a Caratheodory
function with

0<ro(-,n,p, T) <T V(n,p,T) € [0,esssup Ny X [0, esssup Ny| x (0,00) and a.a. z € €.
In case of Boltzmann statistics, this ansatz is equivalent to the widely used form

R(n,p) = C(n,p)(np — n),
where n; is the intrinsic carrier density. The expression for the rate in (2.12) is compatible with ther-

modynamic equilibrium. Especially, it reflects the fact, that in equilibrium the quasi Fermi levels of
electrons and holes have to coincide.

2.4 Boundary conditions

For the formulation of boundary conditions we decompose 92 into Ohmic contacts I'p = UL T'p;, a
gate contact I and the semiconductor-insulator interface Iy, i.e. Ohmic contacts like semiconductor-
metal interfaces are modeled by Dirichlet boundary conditions

@ZJ:@ZJ*‘FW Son:‘/z Qpp:‘/z OnR+XFDi,

where V; denotes the corresponding externally applied contact voltage at I'p;. The value 1, (at the
boundary) is defined by the local electroneutrality condition,

Q¢* - EL

T —) (2.13)

OZC_NnOgsn< knT
B

) + NpoGs, (

Due to the boundedness of the carrier densities, the solvability of (2.13) gives a restriction to the range
of the doping profile. The semiconductor-insulator interface is realized by no-flux boundary conditions

€0&rVY v =7jn-v=7Jp-v=0 onR, x Ty,

where v denotes the outer normal vector. Gate contacts are described by Robin boundary conditions
for the electrostatic potential 1) and Neumann boundary conditions in the continuity equations

c0&, VY v+ an (v —VE) =0, j,-v=3j,-v=0 onR, xTg,

where ao > 0 and V¢ is the applied gate votlage.
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3 Analysis of the instationary drift-diffusion model

3.1 Rescaling of the instationary drift-diffusion model

In Section 2, we introduced the instationary drift-diffusion problem (2.1) and discussed the relevant
statistical relations, the ansatz for the flux functions, the form of mobility laws and generation-recombi-
nation rate for problems in organic electronics in the correct physical quantities. To simplify the notation
for the analysis, we now introduce scaled quantities as follows

B The potentials ¥, @, ©p, V¢ and the applied voltage are scaled by kBT

B The band edges L', i are divided by £g’I" and we denote ¢, 1= — kBT, Cpi= kBT

B The mobility functions fi,,, 1, are multiplied by kBT

Dividing the Poisson equation as well as the continuity equations by ¢ and denoting the scaled quan-
tities by the same symbol as the original ones, we obtain in (0, 00) x

E -V jn,=—R, Jn = _n,unv@nv n= Nnogsn (¢ —¥nt C”)’ (3.1)
5tV =—R  Gy= Ve p=NuGe, (= (0= 0) +)

with
R=R(n,p,¢n, ¢p,T) =1(n,p, T)(1 — &%),

and the new coefficients in the Poisson equation and the gate boundary condition are

coerkpT Qox kBT
R T

The initial and boundary conditions read as
n(0) =n° p0)=p" inQ, (3.2)

v=9" pn=9;, wp=¢, on(0,00)xTp,
eV -v=7j,-v=7j,-v=0 on(0,00) x I'n, (8.3)
eV -v+al—99) =0, j.-v=7j,-v=0 on(0,00) x I'g.

3.2 Assumptions on the data

We work with in the Lebesgue spaces L9(£2) and the Sobolev spaces W'4((2), ¢ € [1, 00], and
HY(Q) = Wh(Q). Let G := QUT y UT¢. For ¢ € [1, 00] we denote by W, (G the closure of
the set

{vlo : ve CFRY), suppv N (G\G) =0}

in the Sobolev space Wl’q(Q) equipped with the standard norm of this space. The dual space to
Wy 9(G),1/q+ 1/¢' = 1is denoted by W~14(Q).
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Instationary drift-diffusion models for organic devices 9

In our estimates, positive constants, which may depend at most on the data of our problem, are
denoted by c. In particular, we allow them to change from line to line.

We investigate the instationary drift-diffusion model under the following assumptions:
(A1) Q€ R?bounded Lipschitz domain, I'p, 'y, I'¢ C I' =: 0N disjoint subsets
suchthat Ip UTy UT¢ = I" and mes(I'p) > 0.
(A1) Qe R? G :=QUI'y UTIgis regular in the sense of Gréger ([13]).

(A2) T = const, N,y = const, (; = const, o; = const, i = n, p.

(A3) €€ L>®(Q),0<c<cae.in(,
WP o, of € Whe(Q), ¢ € L=(Tq), a € LT (Tq).

(A4) (T, ) = Q x [0, Ny] x Ry — R, are Caratheodory functions, i = n, p,
fU|fI||Ing 0< H < Mn(',T,TL, F)v :up('?Tapa F) < E <
forall (n,p, F') € [0, Nyo] x [0, Njyo] x Ry a.e.in Q.

(A5) R =r(,n,p,T)(1— e“"”ﬂ"ﬂ), suchthat r(-,n,p,T) = ro(-,n,p,T") np, where
ro: 2% [0, Nyyo] X [0, Npyo| x (0, 00) = R is a Caratheodory function with
0 <ro(-,n,p,T) <Tforall (n,p,T) € [0, Npo| x[0, Npo] x (0,00) and a.a. x € .

(A6) n, p° € L>®(9),0 <y <n’ <7, < Npo, 0 <y <p? <7, < Ny ae.in Q.

In the following we suppress in the writing the spatial position = and the argument 7" in the mobility
functions (i, j4, and in the reaction coefficient . Moreover, in Section 4 and Section 5 the letter T°
will denote the endpoint of the time interval S := [0, 7.

3.3 Weak formulation

We introduce the following function spaces
Voi= HYG), Vi=VP, H:=VyxI*Q)x L*(Q),
Z:={ve H'(Q) x L*()*: (v;)~ € L™(Q), i =n,p},
U:={ueVyxL*Q)x L*(Q) : 0 <essinfu;, u; < Nyg, i =n,p}.

As in [7, 9], we intend to use a weak formulation in the form u’ + A(v) =0, u= E(v), u(0) =u°

with the variables v = (Uo,vn,vp) = (Y, — (pn,gpp — ), u = (uo,un,up) = ( o,n D),
0,0 .0

u’ = (ug,u), u)) == (ud,n°,p°), where (ug, w) = [(p — n)wdz, (u, w) = [(p” — n’)wdz

forallw € V. We define e; : R — (0, Ny), i = n,p,
ei(y) = NiGs,(y + G), ye€R. (3.4)

Note that the inverse e; * is well-defined on (0, Nj).

DOI 10.20347/WIAS.PREPRINT.2523 Berlin 2018
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We consider the operators Eo : v + Vo = Vi, E: 0P +V = VS A (WP +V)NZ — V7,

<E0’U0,50> = / {5Vvo : v50 — CU()} dx + / Oé(’U() — ’(ﬂG)ﬁo dF,
Q el
E(v) = (Eovo, €n(vn), €p(vp)),

(A7) = [ { =m0 [F0) V- T3, = 70) + i, [V Ty - (5, + )
+ /Q r(n,p)(1 — e %) (v, — Ty + U, + Vp) dz
= /Qun,un(un, |Vu|)V (v, — vg) - V(U — ) dx
+ [ it (V) 0, + ) - V5, + 7o) da
+ /Q 7 (Un, up) (1 — € 7%) (U, +7,) da
= [ Ao, (96T 95, + by [V01) Vi - V5,
+ /Qr(n,p) (e?r=# —1)(g, —@,)dz ¥V T, Uy, T, € Vi,
where p,, = Uy — Uy, P, =Tp + 7o and the densities have to be calculated pointwise by n = u,, =

en(vn)u p = up = ep(vp)'

For the initial state u°, we denote by 1)8 the unique solution to Eyvy = ug (E)y is strongly monotone

and Lipschitz continuous). Moreover, let v? := ¢; ' (u?), i = n, p, and v° := (v], 12, 09).

n)vp
The weak formulation of the drift-diffusion system (3.1), (3.2), (3.3) with Gauss—Fermi statistics is the
problem

u'+A(v) =0, u=FE@) aeonR,, u(0)=u’
uwe HL (R, V), v—ovP e L2 (R, V)NLE(R,, 2).

loc loc loc

3.4 Energy estimates for weak solutions

The operator E is a strictly monotone operator with the potential ® : v” +V — R,

€ € vi
@v:—/ Z|\Vuol? = = |Vl 2 = Clvg — vP) + /ei dy rdx
)= | {5IVel = SVl = Cloo =)+ 3 [ ety ay |

v

=np (3.5)

+ /F {%(US — (v§)?) = % (vo — vg)} ar.

The boundedness of e, e, implies dom ® = V' + vP. The functional ® is continuous, strictly convex
and Géateaux differentiable, hence subdifferentiable and 0® = FE. The conjugate functional of ® :
V* — R, denoted by ¥, is

U (u) == ®*(u) = sup{(u, w) — ®(w + v")}, (3.6)

weV
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Instationary drift-diffusion models for organic devices 11

see [1]. The functional W is proper, lower semicontinuous and convex. Additionally, we have u =
E(v) = 0®(v) if and only if v — vP € OWU(u). For a state u € V* the quantity ¥(u) can be
interpreted as the free energy of the state u.

By results of convex analysis, the free energy can be calculated for states u = F/(v) by
U(u) = (B(v),v —v”) — ®(v)
«
/ |V (vo — vy )|2dI—|-/ 2(v0 —vf)?dl
Q2

i 52 v; — v B exp{—(s;{—v;—(;) }+1
+_Z/ﬂ@/ Sl S A ey o we B Py v e LD

where we take advantage from the fact that vy is the unigue solution to Eyvy = ug. For more details
on the free energy functional see Appendix A.

Theorem 3.1 Let (A1) — (A6) be fulfilled. If (u,v) is a weak solution to the instationary problem (P)
then

U(u(t)) < ¥(u(0))+ct Vi>D0.

Additionally, if the Dirichlet values are compatible with thermodynamic equilibrium (meaning apiD =
const, i =n,p, vl = —va ) the free energy U (u(t)) is monotonically decreasing.

Proof. Let t € R, be arbitrarily given. We test ' + A(v) = 0 by v — v? € L?*(0,¢; V). Since
u(t) = E(v(t)) fa.a. t € S we obtain v(t) — vP € OF (u(t)) a.e. in S and the Brezis formula (cf.
[1, Lemma 3.3]) ensures the chain rule

/ / Z Vs - V(i — P dz ds

i=n,p
—/ /r(e‘p"‘%—l)(cp — ¢ — @l + D) dzds (3.7)
/ / S il V(i — D) + eV (s — D) IVP]) de ds

i=n,p

+/ /c(|\v5+vf||po)d:vds.
0 Jo

Note that the expression from the generation-recombination term

R:=(1—e”")(pn —p, — oL +¢7)
is estimated differently for the three different cases

A) —pp + ol > 0:

R< (1—e? ) (=l + D) < | — P + ¢P| = [oP + P

B) —pP +¢P <0, po <t R<O
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C) —pf + o) <0, vn > @y

R< (1—e=% ) (0 — g — 0 + D)
< (1= ) (=l +9P) < ([0 + Pllu= ).

In (3.7), we apply Young’s inequality and take into account that || VP || ;2 < c and that u; < Ny on
solutions (since u(t) = E(v(t)) f.a.a. t) and obtain W(u(t)) < W(u(0)) + ct for all ¢ > 0. The last
assertion for data compatible with thermodynamic equilibrium directly results from (3.7). [

Furthermore, the following estimates for the solution to the Poisson equation are available.

Lemma 3.1 We assume (A1) — (A6). If vy is the weak solution to the Poisson equation Eyvg = ug
with right-hand side u then there is a ¢ > 0 such that ||vo|| L~ < c. Under the additional assumption
(A1) (two spatial dimensions, G = QQ U 'y U ' regular in the sense of Gréger [13]), there are an
exponent ¢ > 2 and a constant ¢ > 0 such that ||vy || w14 < c.

If (u,v) is a weak solution to the instationary problem (P) then

llvo(t)|| e < ¢, (under (A1) ||vo(t)|lwie <¢) faateR,.

Proof. 1. Since Eyvy = uyg, regularity results for the Poisson equation with L°° right-hand side C' —
Uy + u, (note that u; < N;p, © = n,p) obtained by Moser estimates (see e.g. [4, Lemma 3.1],
applicable in the two- and three-dimensional case) give the desired L>° estimate for the electrostatic
potential.

2. Under assumption (A1’), by the regularity result of Gréger [13, Theorem 1] we can fix some ¢ =
q(€2,€) > 2 such that, if

Yw e Vp - /va -Vwdz = (g,w), g€ W M(Q), weV,
Q

then w € W, (@) and HwHWOLq < ¢||glw-1.0. Here W—14(G) means the dual of W7 (G), where
¢ denotes the dual exponent to ¢.

3. For the instationary problem (P), ||C' — u,,(t) + u,(t)]| £, (in the two-dimensional case with (A1’):
|C — w,(t) 4 u,(t)||w-1.4) is uniformly bounded, therefore we get a uniform bound for ||vg (¢)]| £,
(in 2D: H’Uo(t)le,q) faa.t >0 O

4 Global existence result

In the treatment of the instationary drift-diffusion model in the organic setting, we have to overcome
two new essential problems compared to the classical van Roosbroeck system:

(i) The dependence of the mobilities 41, , on |Vvg| has to be taken into account and needs new
arguments in the existence proof as well as in the lower estimate for the charge carrier densities. On
the one hand, in former estimates (see e.g. [7]) the inverse constant mobility was used as one factor in
applied test functions for the continuity equations. For constant mobility and constant ¢, the treatment
of drift terms was realized in this way by substituting the weak formulation of the Poisson equation at
this place. On the other hand known techniques for a uniqueness proof of solutions fail. Moreover, let
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us mention that even the techniques to prove local in time existence of solutions to the van Roosbroeck
system presented in [14] do not allow a dependence of the mobility on |V uy|.

(i) The statistical relation does not satisfy the standard assumption in Gajewski/Groger [7, (2.3)] (see
also [9, (3.5)],[12, 10, 11, 6] also for the treatment of non-Boltzmann statistics). In particular, we have
finite charge carrier densities in the Gauss—Fermi case such that we do not have the property that
lim, ;. €;(y) = +00. However, the estimate e;(y) > epe,(y) for all y € R remains true in the
case of Gauss—Fermi statistics which is of importance for the proof of lower bounds for the carrier
densities.

The guideline for the existence proof is as follows: To show the existence of a weak solution for any
arbitrarily chosen finite time interval S = [0, T'], we first discuss a regularized problem (Py) on the
finite time interval S, where the state equations as well as the reaction term are regularized (with
parameter M). We ensure the solvability of (Py) by time discretization, derivation of suitable a priori
estimates, and passage to the limit (see Lemma 4.2).

Then, we provide a priori estimates for solutions to (Py) that are independent of M (see Lemma 4.3,
here we use Moser techniques to get positive lower bounds for the carrier densities). Thus a solution
to (Py) is a solution to (P) on S, if M is chosen sufficiently large.

To cover the dependence of the mobility on |Vy|, we restrict our investigations to the spatially two-
dimensional case. Here Groger’s regularity result [13] for elliptic equations applied for the gradient
of the electrostatic potential in combination with the Gagliardo-Nirenberg inequalities in the two-
dimensional setting enable us to establish lower (positive) bounds for the carrier densities (see the
proof of Lemma 4.3).

4.1 A regularized problem (Py)

We consider any finite time interval S := [0, T']. For
M > M 1= max {fle; ()l e, e @)l oe, 02 e, 02 12 §. (4.1)

we define the lower cut off function Dy : R — [—M,00), Dy(2) := max{z, —M} and the
regularized statistical relations

U; = ei(D]\/[(Ui>) = €Mz'(Uz)> L =n,p.

For our problem, we regularize the statistical relation and the reaction term (by writing it in terms of
densities), and consider regularized operators Eyy : v2 +V — V*, Ay 1 U x (v + V) x (vP +
V) — V¥,

EM(U) = <E0U07 eMn(Un), €Mp(Up)),
<AM(u7/7707 ’U),6> = / {nlu’ﬂ(nﬂ |V60|)vg0ﬂ : v@n +p:up(p7 |v:l70|)v90p : vap} dx
Q
+ [ ralnpp(exp { = ¢ (w) = ¢ (w)} = 1) (7, ~ 7,) do.
Q
where (1, p) = (Un, Up), ©n = —Vy + Vo, Pp = v, + V. Note that our regularization of the reaction

term differs from the one in [7], its value can be estimated in terms of M since the factor with the
exponential is bounded by e + 1. We solve the problem

u' + An(u,v9,v) =0, u = Ep(v), u(0) =u’, v—oP € L*(S,V) (Pwm)
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by time discretization. For any Banach space X and &k € N we define h, = % and Cx(S, X)
as the space of all functions u : S — X being constant on each of the intervals (({—1)hy, lhy],
I =1,...,k. Let u! denote the value of u € Cy(S, X) on ((I—1)hy, lh]. Furthermore we define
the maps 75 and Ay from Cy (.S, X) into itself via

() = u! ™ (Agu)t = hi(ul —uth, 1=1,...,k,
k

with the given initial value ©°. Additionally, we introduce the continuous, piecewise linear function

t
(Kpug)(t) := u° —|—/0 (Apug)(s)ds.
The time-discrete analogon of (Py) now reads
Ay, + A (Tiug, Tevro, vk) = 0, g = Ear(vg), v — vP € Cr(S,V) (4.2)
or written in more detail
Ep(vh) + hApr(ul! U,iol,v,lc) Ey(ih), 1=1,...k,

(4.3)
= Ey(v) = u°.

Lemma 4.1 We assume (A1) — (A6). Then for all k € N there exists a unique solution (uy, vy,) to
problem (4.2). Additionally,

iug {Hvk — /UDHLQ(SJ/) + HA]CU]QH[Q(S’V*) + HKkukﬂc(S,H)} < Q.
€

Proof. 1. Foru € U andw € Vo +v{’, the map v iEM(v) + A (u, w, v) is strongly monotone

and Lipschitz continuous from v” + V' to V*. Therefore, for any given u} ' = Ej(vi ') and vl,"
there is a unique solution vfg to (4.3). Thus, we can compose from the solution for each time step a
unigque solution to (4.2).

2. We introduce the regularized functionals ®,; : v? +V — R, ¥y, : V* — (—o00, 00] by

£ £
Dy (v) ::/Q{§|VUO|2—§|VU§| C(vo —vf +Z/ enri(y dy dx

+/I‘G {%(US_(“E) ) = V(v O—Uo)}dF ver? v, (4.4)
W (u) = sup{(u, w) — By (w+02)}, we V™

weV

The functional @, is Fréchet differentiable with derivative ¢, = FEs, and the conjugate functional
W for arguments u = Ej/(v) is obtained by

Uar(u) = (u,v — Py — Oy (v) = <(Eovo,eMn(vn), eMp(vp)),v — ’UD> — Oy (v).  (45)

Moreover, we have v — v” € OW,,(u) provided that u = Ej(v) for v € v + V. Exploiting (4.4)
and (4.5), we estimate for u = Ej(v)

v ()—/{—yv - |2+Z/ - dy}d:z:—i—/cz(vo vP)2d0

i=n,p
D]W('Uv,)
> c||lvg — vP |13 + Z // (u; — ei(y)) dydx (4.6)
i=n,p
>CHUO—UOHH1+Z/ u; — e;(vP +1)) da.
i=n,p
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The estimate in the last line results from separately considering the cases viD <, > DM(’UZ') and
|vP — Dys(v;)| >, < 1. Using (4.3), the subdifferential property, and the strong monotonicity of A,
in the last argument, we findforl =1, ...k,

W () — Uar(u®) =Y (Unr(uf) = Uar(u ) <> (uf — w0l —0P)

j=1 j=1

= Z AM 7vk0 7”%)7“% - UD>
= —hie > {{An ol o) = Awld ol o) v — oP)
j=1 (4.7)
(A g o) o]~ 0P) )
< —h Z { Z eni(=M)plIV (eh, — D)7z + (Ane(ug, vfy 5 0P), 0 — UD>}

1= =n,p

lhk
<-1 / S (M)l Vo — o) |2adt + e,

i=n,p

where c); > 0 does not depend on k. Here we used that for any test function w € L*(S, V;), we can
estimate the reaction term

// r(myug) (o6 (e =e” (ki) _ 1)y dg dt < efje®™ + Ulzoes,eyllwllz2es,r2).  (4.8)
sJa

Because of ¥, (u’) < oo, the estimates (4.6), (4.7) guarantee that

iug {||Uk0 — UODHLOO(S’VO) + ||vg — UD||L2(S7V)} < 00. (4.9)
c

Since ul, = Ej(v}), we now conclude from (4.9) and (4.8) that

sup || Anr (Titt, TUk0s Vi) || L2(s,+) < 00, sup || Apug||L2(s,v+) < 00.
keN keN

Moreover, from u,y = Eyvyo and (4.9) we derive sup;,y ||Uk0||L°°(S,VO*) < o0. Taking into account
that 61'(—M) < uy; < Ny, and

t
(Kyup) (1) = (h—k . 1) (z hk>u§€ U tort € ((1—1)hy, Uy
we have Kjuy, € C(S, H) and supyey || Krtel|cs,my < oo. O

Lemma 4.2 We assume (A1) — (A6). Then there exists a solution (u, v) to problem (Py).

Proof. 1. Let { (u, vk)}keN be a sequence of solutions to the time discretized problems according to
Lemma 4.1. Then, we find functions v and « and a non-relabeled subsequence such that

v —vP = v —vPinL*(S,V), Kpu, — uin L*(S, H) and H*(S, V™). (4.10)
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2.Sinceforw € Vandt € Sthe map z — (z(t),w), z € H*(S,V*), gives a continuous linear
functional on the space H' (S, V*) we obtain from (4.10) that (Kuy)(t) — u(t) in V*forallt € S.
Furthermore, the boundedness of (Kjuy)(t) in H then ensures (Kjuy)(t) — w(t) in H fort € S.
From (Kuy)(0) = u°, k € N, we obtain u(0) = u°.

3. Because of || Kyuy — ug||r2(s,v+) < hel|Agurl|2(s,v+) — 0 we can find another non-relabeled
subsequence such that

(Krur, — ug)(t) — 0in V™, and weakly ug(t) — u(t) in H, fa.a.t € S.

Since uy; = enri(vki) < Nyo, enr; are Lipschitzian, and {vy; } are bounded in L?(S, H') we obtain
the boundedness of {uy; } in L?(S, H'), too. By Lebesgue’s theorem we additionally ensure that

up; — u; in L*(S, L*(Q)), i=n,p. (4.11)
We use the inequality (6.40) in [17, p. 529]:

Forall ¢ > O thereisa L. € N such that
Le
lwlf72 <Y (w,95)72 +ellwlf Vw € H(Q) ({th;}jen ON-base in L?).

=1

We integrate this inequality for w = wu; — uy; over S. Using the weak convergence in LZ(Q) a.e.
in S, the boundedness of {u;(t)} in L?(Q) for t € S, Lebesgue’s theorem and the boundedness
of {ug;} in L*(S, H'(2)) we verify that {us;} is a Cauchy sequence in L*(S, L?(€2)). And (4.11)
leads to the strong convergence

g — ug in L2(S, L*(Q)), i =n,p. (4.12)

In connection with ( Kyu, —uy); — 0in L2(S, V") we conclude that ( Kyuy —u); — 0in L*(S, V),
1 ="n,p.

4. For any fixed indices k; and ks of our subsequence and every wy € Vg and t € S we obtain by
partial integration

t
/ <Akluk1 — Ay Uy, (wo, Wo, —w0)> ds = <(Kkluk1 - KkQUkQ)(t), (woy Wo, —w0)> = 0.
0

Using wo(t) = J5 ' [( Kk, ugk, — K, tr,)o(t)], where Jy is the duality map of V; leads to
H(Kklukl - Kkzuk2>0(t)| %/0* - <(Kk71uk1 - Kkzuka)()(t)’ J()_l[(Kkluk?l - KkQUkz)O(t)]>

= —((Kpyugy, = Kyt ) (t) — (K, — Ky, )p(t), Jo  [(Kpy ury, — Ky, )o(2)])-

Integration over S' yields
H(Kklukl - Kkgqu)OHLQ(S,VO*) <c Z H(Kklukl - Kkzukfz)iHLz(S,Vo*)'
i=n,p

Therefore the last convergence result of Step 3 and the weak convergence in (4.10) guarantee the
strong convergences (Kjiuy)o — ug in L*(S,Vy) and Kpup — win L*(S,V*). Together with
Step 3, we also have u, — u in L?(S, H), and for a non-relabeled subsequence, u(t) — u(t) in
V*faa. tes.
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5. Let S be any subinterval of S and u € V* with U, () < oo. Using that vy — vP € OV (uy)
a.e. in .S and the lower semicontinuity of ¥, we estimate

/ﬁ —ult), o(t) — vP) dt = lim [ (@ — ug(t), ve(t) — 0P} dt

< lim sup/(‘I’M(a) — War(ug(t))) dt

k—o0 S

< / (War (@) — Wpr (ult))) .

This ensures for a.a. t € S that (u — u(t),v(t) — vP) < Wy (u) — Wp(u(t)) meaning that
v(t) —vP € OV (u(t)) and u(t) € 0P (v(t)) = En(v(t)) fora.a. t € S. By the chain rule [1,
Lemma 3.3] we obtain

Wasr(u(t)) — Wp(u’) = /Ot(u'(s),v(s) —vPYds Vtes. (4.13)

6. Since E is strongly monotone and ug(t) = Fovg(t), ugo(t) = Fovko(t) a.e. in S we find for the
subsequence by testing with vyg — v € V4 and integration over S

c||lvko — UOHQLz(SVVO) < /S<E07Jko — Eovo, vko — vo)dt < |lugo — uol|2(s,vp [[vko — vollz2(s,vp)-

Therefore, c||vro — vol|r2(svp) < [uro — uollz2(s,vy) — 0 according to Step 4. In particular we
obtain Vugg — Vg in L2(S, L*(£2)), which implies with (4.9) that 7, Vurg — Vg in L2(S, L*(Q))
and L?(S x ). Additionally, from (4.12) we get Ty u; — u; in L?(S x §2), 4 = n, p. For the latter two
convergences, we argue as follows: For wy, € Cy(S, L?)NL>(S, L*(Q)) (compare with Lemma 3.1)
with wy — win L2(S, L2(Q)), ||we||z2, ||w||zz < W a.e.in S we estimate

/ () — (ryag) ()25 dt < hyd TV 4 / leo(t) — w(t — hy)|2s dt
S

hi

T
+/ Wt — ) — wp(t — )2 dt — 0 for k — oo,
hi

Thus, for a non-relabeled subsequence, 7, Vuiy — Vvg and T,ur; — u; a.e.in .S x €. Using these
a.e. convergences and the boundedness of the functions p;, the reaction coefficient r as well as of
TrUk; and of the exponential term in the reaction rate

‘eie';l(Tkukn)feljl(Tkukp) - 1| S e2M + 1

we derive by Lebesgue’s theorem the convergence
Ang (Trg, Tevro, v) — Apr(u, vo,v)  in LA(S, V*). (4.14)

7. Since (uy, vg) solve (4.2), our convergence results for a subsequence obtained so far ensure (see
also Step 2 in the proof of Lemma 4.1)

0 = thl <Akuk + AM(Tkuk, TLULO, Uk), Vi — U> dt
— 00 S

= lim {(Akuk,vk—vD> — (v — o)
k—o0 S

+<AM(7'I@UI€7 TeUkos V) — Anr (Thlk, TiUko, v), Vg — U>+<AM(Tkuk,Tkvk0, V), Vg — U>} dt

> timsup { Was(uf) — ar(a) + (0,07 = 0) + 3 =Ml Wl = )]

k—o0 S i—np
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Note that the limit of the last term in the third line is zero because of (4.14) and vy, — P =~y — P

in LQ(S, V). The last term in the last line results from the strong monotonicity of A, in the last
argument. The weak lower continuity of ¥, on VV* ensures

lim sup Wy (uj;) = limsup War (ug(T)) > Car(u(T)).

k—o0 k—r00
Therefore, using (4.13), the estimates of Step 7 lead to
Ori — @i — 0in L*(S,Vy), i =n,p. (4.15)
Since in Step 6 it was already verified that ||vxg — v ||Lz(5y0) — 0 we also conclude the convergence

||Uki — UiHLZ(S,VO) — 0,4 = n, p, and finally ||Uk — 'UHLQ(S,V) — 0.

8. For arbitrary w € L?(S, V') we estimate

(AM(TkUk, TkUkO, U/c) - AM(U, Vo, U)a w>
= <AM(TkUk,TkUk0,Uk) - AM(TkukaTkvk0>v)aw>
+ (A (e, Tk, v) — Anr(u, vo,v), w)
< Y lew = eillzsvnllwlzzsy)
i=n,p

+ ”AM(Tkuk;Tkkaav) - AM(UWOW)HLQ(S,V*)

w||L2(S7V).

Using (4.15) and (4.14), we obtain for the subsequence A (Tig, TkUko, Vi) — Apr(u, v, v) in
L?(S,V*). Since we know already from Step 1 that A/ (Tpug, Tk, Vi) = —Qgup — —u’ in
L*(S,V*), we verify the identity v’ + Apr(u,vg,v) = 0. The relation u = FEjv was already
established in Step 5 such that the limit (u, v) is indeed a solution to (Py) and the proof is complete.
O

4.2 A priori estimate for problem (Py)

Under the assumption (A1), we use the exponent ¢ > 2 from Lemma 3.1 and define related expo-
nents  and " as well as the quantity

2q / 2q ( 2
ri=—— 1 :=—— k:=||Vulre(srLa +1> . 4.16
- s Vol Lo (s,9(02) (4.16)

Lemma 4.3 We assume (Al) — (A6), and (A1’). Let M > M* with M* as in (4.1). Then there exists
aco > 0 depending only on the data (but not on M andT") such that

ui(t) >cy aeinQ VtesS, i=n,p,

for any solution (u, v) to (Py).

Proof. 1. Let (u, v) be a solution to (Py). We set

K := max { max ||In e;(v))|| o, max H(lnug)_HLm}.
1=n,p 1=n,p
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Our choice of K, (A2), (A3), and (A6) guarantee that (ln u; + K)f(O) = 0and (ln u; + K)f €
L*(S,Vy), i = n, p. We show the assertion for i = n and use the test function

a—1

_aeat((), ,0) € [/2(5’,V)7 a>2, z:= (lnun+K)7_

Un

(Analogously this can be done for ¢ = p.) Note that due to the definition of the reaction rate, the
boundedness of g and the charge carrier density and the sign of the test function

a—1 a—1
RE— = ro(Un, up)unup(l — exp {—e;l(un)—egl(up)}) : <zl (4.17)
Unp, Unp,
We arrive at
e[| ()] e
t a—1
< / easoz/ {ununV(vn — vp) - V( ) + (2% + zo‘fl)} dr ds (4.18)
0 Q Un '

t
< / e"‘sa/ {un(an — V) - Vz((oz—l)zo’*2 + 20“1) + (2" + 1)} dz ds.
0 Q
With (2.6) it holds that ege/, (y) < e, (y) for all y € R and with ¢g = 1 such that
/ / 2
Vo,  Vz = —|an|2m < _EO(WU”‘M) = —ep|V22. (4.19)
e]%n(vn) e]%n(vn)
Moreover, we rewrite

4(a—1
ala—1)z"2|Vz|* = —(aa )\Vza/2|2,

4o o
m‘vz( +1)/2‘2’

aVug - V220t = 2V - V222002
< 2[Vug| [V2/2] 2277,
a(a—1)Vuy - V22272 = 2(a—1) Vg - V2/224/21
< 2(a—1)|Vuo| [V222) (|222] 4+ 1)

az? V2] =

and continue our estimate (4.18) with suitable 6 > 0 and ¢ > 1 by

e[|z(2)]

[0
Lo

¢
< —/ easa/eo,un]Vz]Z((oz—l)za_Q+za_1)d1:ds
0 Q
¢
+ / easoz/ {unVUO -Vz ((a—l)za_2 + z”‘_1> + (2" + 1)} dzx ds
0 Q

t
)
< [Fe{ = a0
0 (0]

b DI+ ca(l=2 3 + 1)  ds

(4.20)

+ cal [ Voo | a([]277]

t 5 R
< / oo { = IR+ 2022 + 1)} d
0
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Here we used Hoélder’s, Gagliardo-Nirenberg’'s and Young’s inequality and the definition of x in (4.16).

2. With the estimate for values p € R, and the function z € Vj
5, .
4 4
pllallis < pellzlzon = pell2IE° < pell=*llg < 5121l + e,

we now consider the inequality (4.20) for v = 2 and get ||2(¢)[|7. < cx® forall t € S. Therefore
2]l < cllz(@)||p2 < ex®?forallt € S.

For arbitrary a > 2, we exploit (4.20) and omit the first term on the right-hand side to obtain

|2(1)]|Fe < /C\QQT_lm(sug Hzo‘/z(s)H%l +1). (4.21)
ES

3. Setting now
Wy = sup ||2(s)||3em +1, m=0,1,2,...

seS

we find from (4.21) for « = 2™, m > 1, that w,, < ¢™kw?,_,, ¢ := 2%, and repeated application
gives w,, < (Ckwg)?” which means ||z(t)|| 2m < ¢k(supyeg ||2(s)]|1 + 1), and leads in the limit
m — oo to

|2(t)|| e < Eﬁ(sug lz(s)||zr +1) VteS. (4.22)
s€

Together with the uniform bound ||z (¢) |1 < c||z(#)]|z2 < cx®/? we obtain ||z(t)|| L < cx®/? for all
t € S. This ensures

—Inu,(t) < K + s/, o Koen®? < un(t) ae.inQ vtesS. O

4.3 Global solvability of problem (P)

Theorem 4.1 We assume (A1) — (A6), and (A1’). Then, forall'T > 0, S = [0, T)], there is a solution
to problem

w4+ A(w) =0, u=E() aeonS, u(0)=u,

P
we HY(S, V), v—oP e L3S, V)NL>(S,2). (Ps)

Proof. For arbitrarily chosen T' > 0, .S = [0, T'] the problem (Py) has a solution, see Lemma 4.2. The
a priori estimates for (Py) in Lemma 4.3 guarantee that for M sufficiently large every solution (u, v) to
(Pw) satisfies the equalities Dy v; = v;, @ = n, p. Therefore, the reaction terms in A (u, vo, v) and
A(v) coincide and we have Ey(v) = E(v), An(u, v, v) = A(v) and the pair (u, v) is a solution
to (Pg), too. [

Remark 4.1 Due to the dependence of the mobilities on |V vy| the question of uniqueness of the so-
lution remains still an open question. Other forms of the dependency of the mobilities on the gradients
of the quasi Fermi potentials but with included monotonicity properties have been discussed e.g. in

[9I.
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5 Global bounds for solutions to (P)

In the two-dimensional case, global bounds for solutions of the van Roosbroeck system in case of
inorganic semiconductors are obtained by the following rules (see e.g. [7, 8]). Estimates of the free
energy (estimates of ||u; Inu;|[1 in the Boltzmann case) ensure the start of a Moser iteration for
powers of (truncated) charge-carrier densities (u; — K)™ to obtain global L> bounds for u;. However,
in our case of organic semiconductors the statistical relation does not fulfill lim,_, ei(y) = +oo
and we have lim,_,  «, €;(y) = 0 this technique does not work.

In the case of inorganic semiconductors, with the knowledge of global upper bounds another Moser
iteration for (In u; + K)~ guarantees the global positive lower bounds of the densities u; (see [7, 8]).
In the case of organic materials we benefit from the fact that u; < N;o and argue in a similar way to
obtain positive lower bounds.

After obtaining these lower bounds we are able to verify suited upper bounds for u; less than N;g by
choosing powers of the function (e — K')™ for a Moser iteration technique (see Theorem 5.2).

5.1 Global positive lower bounds for solutions to (P)

Theorem 5.1 We assume (A1) — (A6), and (A1’). Then there exists a cy > 0 depending only on the
data such that any solution (u, v) to (P) fulfills

ui(t) > co, v =e; (u;) > e (co) aeinQ VteR,, i=n,p.

Proof. For any fixed T > 0, S = [0, 7] the proof of Lemma 4.3 can be done almost in the same

way for Problem (Pg) itself. Note that for solutions to (P) we have u = F(v), v € L*(S, H'(Q)),
. —la—1

(v;)” € L*(S, L*>*(Q)) and €;(y) < ¢ such that it is guaranteed that M € L*(S, H}),

o > 2, is an admissible test function.

In the estimate (4.19) we now argue directly with the original statistical relation e; instead of ej;,

© = n,p. Since the lower bounds for the charge carrier densities established in the proof do not
depend on the length T of the time interval S, we obtain the desired global bound. [

5.2 Global upper bounds for solutions to (P)

For the derivation of global upper bounds for the densities u; strictly lower than N, we verify global
finite upper bounds for the potentials v;, more precisely, for €, © = n, p. This is recommendable,
since for test functions of the form )
[(ev — K)*]™ ev
€;(vi)
in a corresponding Moser iteration, all terms arising from the test of the continuity equation for u; can
be handled. Here the estimates of Lemma 2.1 play an important role.

(5.1)

However, we can not use the function in (5.1) directly since it is not a priori clear that it belongs to
L. (R, H}). We have to approximate it by substituting v; in (5.1) by vz, := min(v;, L) for L large
enough and considering the limit L — oo in the resulting estimates.
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Theorem 5.2 We assume (A1) — (A6), and (A1’). Then there exists a c, < 1 depending only on the
data such that any solution (u, v) to (P) satisfies

u;(t) < c.lNyp aeinQ VteR,, i=n,p.

Proof. 1. Let (u, v) be a solution to (P). We set

D —=1/,0 (.
K = max { max el?P 1 max el @0l may o5 g}‘
1=n,p 1=n,p 1=n,p

Lemma 2.1 ensures for v; > s; — (; the inequalities

¢(s;)Nio ~— eviel(v;) B evitei NGl (v + G) — c(si)Nio’

(5.2)
(v Gl (vi + ¢ 3c(s;
)] _ a0+ Q3260 s o il
e;(vi) gl. (vi +G) c(s;)
We show the assertion of the theorem for = = n (analogously this can be done for 7 = p).
2. Let
L>InK >0, vp:=min(v;,L), L:=ey(L), uj:=min(u,,L).
We intend to use the test function
20 levr T
ae®(0, Fr(v,),0) := aeat(O, L ,0), a>2 zpi= (e”L — K) ) (5.3)

en(vr)

Since e/ (y) > 0 Vy and G/(n) < 0 for alln > 0, we obtain e/, (v;) > ¢(L) > 0forv, > InK.
Moreover, €'~ < ¢(L). (5.2) ensures an upper bound for |/ (vz,)|. Thus we find an estimate for

(a=Df(e™ = K)*]*2ee [(e" — K)*]* e
V) = { en(ve) en(vr)
[(e” = K)*]* e ey ()
- (6%(’[1[/))2 }an X{z:ln K<v, <L}

such that F(v,) € L. (R4, H'). Moreover, our choice of K guarantees that z;,(0) = 0 and

zp =0onTp. Thus, Fi(v,) € L2 (R, H}), and (5.3) is an admissible test function.

loc

Next, we rewrite
ent(uz) _ K)+e—1 ent(uz)
Fr(v,) = e - )1 e - = Uz
en (e (ug))

and obtain

/Ot e (uy,, uz) ds = /Q (e*g(un(t)) — g(uy)) dz — /Ot /Q ae®g(u,(s))dzds,  (54)

where

dr.

( ) /y [(eeﬁl(min(T,z)) _ K)—F]a—lee;l(min('r,z))
Yy) = =~
R (e (min(r. 1)
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L(Ry, H). For general u, the validity of this relation
is obtained via approximation by smooth functions and passing to the limit. Note that due to the choice
of K we have g(u2) = 0. Additionally, we have that

. _ min(un,L) (eezl(min(ﬂz)) — K)* afleeﬁl(min(T,z))
glua) = glain(un, D)) = glug) = [ K S ar
0 ey (€, ! (min(r, L)))

_ eeﬁl(min(unj)) - K +la emin(vn,L) - K +lo e’ _ K +la prcy
L

The validity of (5.4) is clear for smooth u,, € H,

Moreover, using (5.2), g(u, ) can be estimated from above by

- eeﬁl(ui) _ + afleeﬁl(uz)
o(00) = au5) + glu) = lug) < glug) + (u, ~ £ B

[(evL . K)—i—}a—levLevL

el (vg)evr

< 27+ Npo <29t e+ K)? <28t 4 1).

3. Note that due to the form of the reaction rate, the boundedness of ry and of the charge carrier
densities by V5 and the lower bounds for v;, ¢ = n, p, from Theorem 5.1 and (5.2) we arrive at the
estimate

a—1 a—1

z e z e
o =ro(n,p np(e_”"_“” — 1) L

e (vr) olm:) e (vr)

1 (5.5)
2$ T ellelL 1 9 41
< <+ K)? <28t 1),
evre! (vr)
4. Using the test function (5.3) and the relation (5.4), the estimates for the function g, and (5.5) it

follows that

e*l21(t)7

a—1_ vy,
/ e a/ — tpu, V (v, — vg) - V(ZeL/ (UeL) ) + (201! + 1)} dz ds (5.6)

n

/ / MMlh+h+h+h+k+g)+mgfﬂﬁﬁ¢m&

where theterms [;,7 = 1,. .., 6, are defined and estimated separately. We use the properties Vv, -
Vzp = |Vzp e, 21 < e, Vu, - Vor, = |V |? as well as the estimates in (5.2) such that
. a2 € 2 _a-2 <L
Il = (Oé I)an VZLZ M Z (1((1—1)|VZL’ 27 W
1 4 (Oé 1) |VZ(Q+1 /2|2 8 eSn (a+1)/2
_ 1)V, |2 20t _ > = vV 2
Oz(Oé )‘ ZL‘ 27, evLG%(’UL) (CY + 1) evLen(vL) = QE(SH)N ‘ L |
vr ! v e’UL
I, == —aVu, - Vur, zg_lw >0, I3 == a| Vo |2 2071 - >0
(en(vr)) e (vr)
Moreover, for the term I, we have the estimate
I Vi - Vg 202 Vo Vo ei® 27
= a(a—1)Vvy - Vzr 28~ =oa(a—1)Vug-Vzrz,? 2,2 ——
4 ( ) 0 L~p, €%(UL) ( ) 0 L~y L GZ(UL)
_ 2a(a—1) atl  a=3  @ULelL

Vg - V(2.2 )22

a+1 evre! (vg)’

| 14| <ca|Vvo||VzL \(!zLQ | + ) <ca|VUOHVzL |(]zL2 |—|—1)

evre! (vg)
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Finally, for I5 and Ig, we compute that

eUL6//</UL) a—1 a—1 e’UL 6”<UL)
I; .= —aVuy - Vo 28— = — V- V ? oz’ -
i N CACE UYL L e (o) € (ur)

o atl 1 er(v o atl
L] < V||V (1225 1 1) L] g [T/ (127 | 4 1),

evrep(ve) ep(vr)

o e'UL a—1 a—1 eUL
. — 2 2
I == aVvy - Vo 27 =aVuy-Vzpz,? 2

evre! (vr)’

1 (a+1)/2 afl
1)—6%%(%) < ¢|Vul|Vz; ](|2L | + 1).

The estimates for I;, i = 1,...,6, mes(I'p) > 0, (A4), (A5), (5.6) and the global positive lower
estimates of the charge carrier densities from Theorem 5.1 ensure with a suitable o > 0 that

t
e%awmsldﬂ—wqwm+meme

a+1
+ e Voollza(llzr? llor + Dllzst M}ﬁ (5.7)

i
< [ = Sl I+ @ w2 + 1)} ds.
0

where we used the quantities g, r and  from Lemma 3.1 and (4.16). As in the estimate (4.21) in the
proof of Lemma 4.3, we applied Hélder’'s, Gagliardo-Nirenberg’s and Young’s inequality, but now for
a+1

the function z, % instead of z7.

5. Next, we estimate

2 3 e 1 gty | T
It e = ([ =28 )™ < (bed el e) ™ = (1 < 1= 17
2(a+2) 2(a+2)
a+1 (a+1)2 a+1 o a2
= IE U5 < o™ 1 < @=F 15 x llop” I
_z(“?“%)mﬁﬂuLuﬁlxuéﬁwiﬁg
4oca?r
d 1 (ot 4202 K\ 22 o 2ot
SZ@THH il ||H1+C‘12+‘1 1( 5 )am Hlzg g
b 1 @+1? e K\ Py, @
< Saloe” i+ 8555 (F5) T R + )

which leads together with (5.7) and a suitable ¢ > 1 to

e ||zL(t)l|7a
(a+1)?

¢ (@t1? AN\ 2 I g
< [l = T+ 25 ()T (@) TR 0o e
0

! ol o 6r (.52
< [e{ = STl + cna UF I+ 1)} s
0

6. We find for values p € R,

3/24/3 3/24/3
I 71

S <pells 7213

0 3
pllzellie < pellzplfas = pellz; < Sl e +ep”
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Inserting this in estimate (5.8) for « = 2 we establish that ||z, (¢)|| 2 < cforallt € R, and therefore
also sup,eg, [|22(t)[lnr < e

For arbitrary o > 2, it results from (5.8) that
[z 2 < 65046’“’1(811513 22 (8)[I7: +1). (5.9)
se

7. Setting now ,

Wy = sup ||20(s)]|2em +1, m=0,1,2,...

seRL

we find from (5.9) for & = 2™, m > 1,and ¢ := ¢5 2°" that w,,, < ¢"w?,_; and repeated application
gives wy, < (Cwp)®" which means ||z (t)[|r2m < E(supyeg, ||2L(s)||zr + 1), and leads in the limit
m — oo to

llzo (@) ||L= < E(SLIlRp lzo(s)|lpr +1) VEeR,. (5.10)

selR4

With the uniform estimate for sup,cg, [|2L(t)(|21, (5.10) ensures that [|z1(f)[|L~ < co forall t €
R.,.

8. The constant c,, does not depend on the choice of L. Therefore we can pass to the limit L. — oo
in this estimate and derive || (e — K)+(t)||Loo < ¢ and

D <K 4 e, 0n(t) SI(K +cao),  un(t) < en(In(K +cs0)) < Ny VEER,. O

Remark 5.1 Using the global positive lower bounds for the charge carrier densities of solutions to (P)
established in Theorem 5.1 and the energy estimates performed in (3.7) in the proof of Theorem 3.1
we obtain under the assumptions (A1) — (A6), and (A1) the estimates ||| L2(s,u1y < ¢(S), 1 =
n, p. Together with the W14 estimate for v, from Lemma 3.1 and the relation of ©; and v; estimates of
the form ||v; || L2(s, a1y < ¢(S), @ = n, p, also depending on the length of the time interval S = [0, T'|
are ensured. Furthermore, together with the global upper bounds for v,,, v, this leads to the estimates
for the whole vectors

[A@)z2sv)s [0 llz2sve) < e(S).

A Properties of the free energy functional

We collect important properties of the free energy functional in the case of Gauss—Fermi statistics.
First, note that

Niw/v:ei(y) Yy = \/ﬂ/ exp ——)x
X {ln[eXp{—(si€ —v; — ()} + 1] — Infexp{—(s;£ — v — G)} + ]}

m / exp
ENg b exp{—(s:§ — Gi)} +exp{—vi} } dg.

_>{hl exp{—(s:{ —vi—G)}+1 }df (A.1)
\/ﬁ / exp _) {Uz —v; +1n exp{—(s:£ — ;) } + exp{—vP}

exp{—(s:{ —vP — )} +1
Here we used the relation

a+b1 +1 ebl (ea _i_efbl) ea + e*bl

—ea+b2 1 —eb2 (e o) =b—by+1In prpp— e (A.2)
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Second, for u € L*(€2)3 with u; < 0 or u; > Nj on a set M of positive measure for i = n ori = p
it holds true W(u) = +o0. (For this we argue as follows: Let, e.g., u,, < 0 on a set M. We take a
subset My C M of positive measure with My N T'p = ) and choose w = (0,w,,0) € V such
that w,, < 0 a.e. on My, w, = 0 a.e. on Q \ M,. We define sequences {w'}cn, {v'}ien, with

=lw € V,v" = w'+vP. Thenby (A.1), and v}, < v2 on M we find ®(v') < 0. Additionally,
by construction (u, w') — oo as | — oo. Thus (3.6) ensures ¥ (u) = +o0. Similar arguments can
be used for u,, < 0 on a set M.

Let now u,, > 0 a.e. in Q and u,, > N, on a set M. We again use a corresponding subset M
and take w = (0, w,,0) € V such that w, > 0 on a.e. My, w, = 0 a.e.on Q \ M. We define
sequences {w!}ien, {v'}ien, with w! := lw € V, v := w' + v and calculate

(u,w') — (')
! exp{—(s.& — v}, — G)} +1
/Mo Vor Al )t = Mo ST R A
= /M \/—/ eXp )(un—Nno)lwndex

> / (y, — Npo)lw, dx — 400 asl — oo
Mo

and again obtain W(u) = +o0. In the last chain of estimates we used (A.2) where the last term is
negative for by > bs.
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