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Abstract. An optimal control problem is studied for a quasilinear Maxwell
equation of nondegenerate parabolic type. Well-posedness of the quasilinear
state equation, existence of an optimal control, and weak Gâteaux-differentiability
of the control-to-state mapping are proved. Based on these results, first-order
necessary optimality conditions and an associated adjoint calculus are derived.

1. Introduction. We consider the optimal control of a system of quasilinear evo-
lution Maxwell equations that models the behavior of magnetic fields in a vector
potential formulation. The state equation is the non-degenerate parabolic equation

σ
∂y

∂t
+ curl ( ν(x, | curly|) curly ) = f in Q := Ω× (0, T )

y × n = 0 on ∂Ω× (0, T )

y(0) = y0 in Ω.

(1.1)

Here, Ω ⊂ R3 is a bounded and simply connected domain with a connected Lipschitz
boundary. We further assume that the electric conductivity σ : Ω→ R+ is a positive
constant,

σ(x) = σ > 0 ∀x ∈ Ω. (1.2)
By n(x), we denote the outward normal direction in the point x ∈ ∂Ω. If the
magnetic reluctivity ν : Ω × R3 → R+ is also a positive constant, then (1.1) is a
standard linear evolution equation. However, as in Bachinger et al. [2], we allow ν
to be a nonlinear function so that equation (1.1) becomes quasilinear. The mapping
s 7→ ν(x, s)s expresses the so-called |B|-|H| curve.

In the application to the magnetization processes we have in mind, the real
quantity of interest is the magnetic induction B : Ω × (0, T ) → R3 that will be
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represented here by a vector potential y : Ω× (0, T )→ R3 obtained from equation
(1.1). For the given right-hand side f : Ω × (0, T ) → R3 we shall require some
regularity properties. For instance, we assume div f = 0 in Ω. We will briefly sketch
some special types of associated (control) functions f at the end of this paper.

Our paper contributes to the fast developing theory of optimal control problems
that include, as part of the control system, Maxwell’s equations. For instance,
Maxwell’s equations appear in the control of processes of magneto-hydrodynamics
(MHD). We mention examplarily [3], [6], [7], [8].

In these papers, the Maxwell equations are considered in a steady state or time-
harmonic setting. The time harmonic approach is also used in [2], [5], [9], [10], [17],
[18]. For the linear transient case, we mention the paper [4] on the optimal control
of the full (linear) time dependent Maxwell system, where the control function is
composed as a product of two functions depending on the time and on the space
variable, respectively.

Concentrating on a parabolic vector potential formulation, we continue our inves-
tigations in [11], [12], [13], where we considered linear degenerate parabolic Maxwell
systems.

The main novelty of this paper is the consideration of quasilinear Maxwell equa-
tions of parabolic type in the context of optimal control. Quasilinear Maxwell
equations have already been considered in [2]. The extension of optimality condi-
tions to the quasilinear case causes specific difficulties related to the existence and
uniqueness of solutions to the state equation and the differentiability of the control-
to-state mapping. It turns out that we only have weak Gâteaux-differentiability.
However, since the objective functional is quadratic, this is sufficient for deriving
first-order necessary optimality conditions.

Our approach extends results of the seminal paper [19] on the optimal control
of certain quasilinear elliptic Maxwell equations. In this paper, main ideas were
introduced that we were able to adopt in the context of non-stationary quasilinear
systems. For proving existence and uniqueness of the solutions to our quasilinear
parabolic Maxwell equations, we rely on results of [15]. In this context, we also
mention the monography [14], where different important mathematical principles
for nonlinear partial differential equations are discussed.

2. Well-posedness of the non-degenerate quasilinear Maxwell evolution
system.

Assumption 2.1 (cf. [2, 19]). Let ν0 > 0 denote the magnetic reluctivity in a
vacuum. We assume that there exist constants ν ∈ (0, ν0) and ν ≥ ν0 such that
there holds

ν ≤ ν(x, s) ≤ ν for a.a. x ∈ Ω and all s > 0, (2.1)
lims→∞ ν(x, s) = ν0 for a.a. x ∈ Ω. (2.2)

Moreover, for a.e. x ∈ Ω, the mapping s 7→ ν(x, s)s is assumed to satisfy

(ν(x, s)s− ν(x, σ)σ)(s− σ) ≥ ν (s− σ)2 ∀s > 0, σ > 0, (2.3)
|ν(x, s)s− ν(x, σ)σ| ≤ ν |s− σ| ∀s > 0, σ > 0. (2.4)

Notice that, by this assumption, the real function s 7→ ν(x, s)s is monotone for
a.a. x ∈ Ω.

Definition 2.2. Following [19], we define a function F : Ω× R3 → R3 by

F(x, s) = ν(x, |s|) s.
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Lemma 2.3 ([19], Appendix). Under Assumption 2.1, we have for a.a. x ∈ Ω that

(F(x,u)−F(x,v))·(u− v) ≥ ν |u− v|2 ∀u,v ∈ R3, (2.5)
|F(x,u)−F(x,v)| ≤ L |u− v| ∀u,v ∈ R3, (2.6)

where L = 2ν0 + ν.

For convenience, we also introduce a mapping N : Ω× R3 → R by

N (x, s) = ν(x, |s|).

By N , we have F(x, s) = N (x, s) s.
Throughout this paper, vector valued functions will be written in boldface and

we write L2(E) := L2(E)3 for suitable measurable sets E. The associated inner
product and norm will be denoted by (·, ·)E and ‖ · ‖E , respectively; if E is equal
to Ω, we will drop the index. In particular, we have

(· , ·) := (· , ·)Ω and ‖ · ‖ := ‖ · ‖Ω.

Moreover, we will write a . b, if a generic positive constant C exists such that
a ≤ C b holds.

The divergence constraint is defined in distributional sense, i.e., for f ∈ L2(Ω),
we say that

div f = 0 iff
∫

Ω

f(x) · ∇ϕ(x) dx = 0 ∀ϕ ∈ C∞0 (Ω).

For later use, we introduce the following spaces:

H := H(div=0,Ω) = {y ∈ L2(Ω) : divy = 0},
H(curl,Ω) = {y ∈ L2(Ω) : curly ∈ L2(Ω)},
H0(curl,Ω) = {y ∈ H(curl,Ω) : y × n = 0 on ∂Ω},
V = H0(curl,Ω) ∩H(div=0,Ω),

W(0, T ) = {y ∈ L2(0, T ;V) : ∂y/∂t ∈ L2(0, T ;V′)},
L2(div=0, Q) = L2(0, T ;H(div=0,Ω)) = L2(0, T ;H).

The space H(div=0,Ω) is equipped with the norm of L2(Ω), while V and W(0, T )
are equipped with their known natural norms. Note that W(0, T ) is continuously
embedded into C([0, T ];H) (see for instance Theorem 3.10 from [16]). Further by
Theorem 2.8 of [1], V is compactly embedded into H, hence by the Aubin-Lions
Lemma [15, Prop. III.1.3], W(0, T ) is compactly embedded into L2(0, T ;H).

In order to prove the existence and uniqueness of a strong solution to (1.1), we
introduce the (nonlinear) operator A in H as follows:

D(A) := {y ∈ V : curl(F(·, curly)) ∈ L2(Ω)},

and
A(y) = curl(F(·, curly)), ∀y ∈ D(A).

We recall [15, p. 158] that an operator A : H ⊃ D(A)→ H in a Hilbert space H is
said to be accretive (or monotone) , if

(A(x)−A(y) , x− y)H ≥ 0 ∀x ∈ D(A)

and maximal accretive, if in addition Range (A+ I) = H holds.

Lemma 2.4. The operator A is maximal accretive in H.
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Proof. Let us start with the accretiveness. Indeed for y, z ∈ D(A), we have y−z is
in H0(curl,Ω) and F(·, curly)−F(·, curl z) belongs to H(curl,Ω), hence by Green’s
formula we can write

(A(y)−A(z),y − z) = (curl(F(·, curly)−F(·, curl z)),y − z)

= (F(·, curly)−F(·, curl z)), curl(y − z)).

By the property (2.5), we deduce that

(A(y)−A(z),y − z) ≥ ν ‖ curl(y − z)‖2 ≥ 0, ∀y, z ∈ D(A) (2.7)

and hence A is accretive.
Let us proceed with the maximality. Namely, we have to show that I + A is

surjective. In other words, for all f ∈ H, the equation

u +A(u) = f ,

or equivalently
u + curlF(·, curlu) = f

must have a solution u ∈ D(A).
If such a solution exists, multiplying by v ∈ V and integrating by parts as before,

we find that
a(u,v) = (f ,v), ∀v ∈ V, (2.8)

where
a(u,v) = (u,v) + (F(·, curlu), curlv).

The right-hand side of (2.8) defines an element of V′ while its left-hand side defines
a monotone, hemicontinuous map T fromV intoV′. Hence by [15, Corollary II.2.2],
problem (2.8) has a unique solution u ∈ V, if T is coercive, that is

〈T (u),u〉
‖u‖V

=
a(u,u)

‖u‖V
→ +∞, as ‖u‖V → +∞.

Here and in all what follows, we denote by 〈· , ·〉 the pairing between V and V′.
But this property directly follows from (2.5), since it yields

a(u,u) ≥ ‖u‖2 + ν ‖ curlu‖2 ≥ min{1, ν} ‖u‖2V.

Now, as u, f are divergence free, the identity (2.8) extends to any v ∈ H0(curl,Ω),
i.e.,

(u,v) + (F(·, curlu), curlv) = (f ,v), ∀v ∈ H0(curl,Ω). (2.9)

Indeed, any v ∈ H0(curl,Ω) admits the Helmholtz decomposition

v = v0 +∇ϕ,

with ϕ ∈ H1
0 (Ω) and v0 ∈ V. Hence curlv = curlv0 and (u,v) = (u,v0) as well as

(f ,v) = (f ,v0).
As C∞0 (Ω)3 is included (and dense) in H0(curl,Ω), we conclude that

u + curl(F(·, curlu)) = f

in the distributional sense. This means that u belongs to D(A) and satisfies u +
A(u) = f .

Corollary 2.5. D(A) is dense in H.
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Proof. As the boundary of Ω is assumed to be connected, Corollary 3.19 in [1]
guarantees that

‖u‖2 . ‖ curlu‖+ ‖ divu‖,
for all u ∈ H0(curl,Ω) such that divu ∈ L2(Ω). As a consequence, we deduce that

‖ curlu‖2 & ‖u‖2, ∀u ∈ V. (2.10)

Therefore the map
S : V −→ V′ : u 7→ Su,

with 〈Su,v〉 = (F(·, curlu), curlv), is monotone, hemicontinuous and coercive.
This implies that, for all f ∈ H, there exists a unique solution u ∈ V of

(F(·, curlu), curlv) = (f ,v), ∀v ∈ V. (2.11)

As before, f being divergence free, u also satisfies

(F(·, curlu), curlv) = (f ,v), ∀v ∈ H0(curl,Ω),

and therefore
curl(F(·, curlu)) = f

holds in the distributional sense; hence u belongs to D(A) and satisfies A(u) = f .
Now let us choose any f in H ∩D(A)⊥, namely f ∈ H such that

(f ,v) = 0, ∀v ∈ D(A).

Then by taking u ∈ D(A) such that A(u) = f , we deduce that

(A(u),u) = 0.

From (2.7) (applied with z = 0 and the fact that A(0) = 0), we obtain that

curlu = 0.

By (2.10), it follows that u = 0, hence f = 0.

Let us quote Theorem [15, Thm. IV.4.1] that goes back to Kato:

Theorem 2.6. Let A be maximal accretive in the Hilbert space H and ω ≥ 0. For
each y0 ∈ D(A) and each absolutely continuous f : [0, T ] → H, there is a unique
absolutely continuous y : [0, T ]→ H such that

y′(t) +A(y(t)) = ω y(t) + f(t) and y(0) = y0 (2.12)

holds at a.e. t > 0. Moreover, y is Lipschitz, right differentiable, y(t) ∈ D(A) for
all t ≥ 0 and y′, Ay ∈ L∞(0, T ;H).

The regularity y′ ∈ L∞(0, T ;H) is stated in the proof of Theorem IV.4.1 of [15].
Furthermore by (2.12) (as A is single-valued), Ay = −y′+ωy+ f that also belongs
to L∞(0, T ;H) since each term has this regularity.

Lemma 2.4 combined with Theorem 2.6 allows to deduce the existence and
uniqueness of a strong solution to (1.1).

Theorem 2.7. Let y0 ∈ D(A) and f : [0, T ] −→ H be absolutely continuous.
Then there exists a unique (strong) solution y of (1.1) with the regularity y ∈
C([0, T ];H) ∩W 1,∞(0, T ;H) and A(y) ∈ L∞(0, T ;H).

Weak solutions come from the following energy estimates.
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Lemma 2.8. Let y0, z0 ∈ D(A) and f ,g : [0, T ] −→ H be absolutely continuous.
Let y (resp. z) be the strong solutions of (1.1) corresponding to an initial datum
y0 (resp. z0) and right-hand sides f (resp. g). Then these solutions satisfy

‖y − z‖L2(0,T ;V) . ‖f − g‖Q + ‖y0 − z0‖. (2.13)

Proof. Multiplying the equation

σ
∂y

∂t
+ curl ( ν(x, | curly|) curly ) = f in Q,

by v ∈ L2(0, T ;V) and integrating with respect to (x, t) ∈ Q = Ω× (0, T ), we find∫
Q

(σ
∂y

∂t
·v + curl(F(x, curly)) ·v) dxdt =

∫
Q

f · v dxdt.

Integrating by parts in space, we get∫
Q

(σ
∂y

∂t
·v + F(x, curly) · curlv) dxdt =

∫
Q

f · v dxdt. (2.14)

Note that the same identity holds for z with g instead of f . Hence, making the
difference between (2.14) and the same identity with z instead of y, we find that∫

Q

(
σ
∂(y − z)

∂t
·v + (F(x, curly)−F(x, curl z)) · curlv

)
dxdt (2.15)

=

∫
Q

(f − g) · v dxdt, ∀v ∈ L2(0, T,V).

Taking v = y − z, we obtain in particular∫
Q

(
σ
∂(y − z)

∂t
· (y − z) + (F(x, curly)−F(x, curl z)) · curl(y − z)

)
dxdt

=

∫
Q

(f − g) · (y − z) dxdt.

Integrating by parts in time, we finally obtain

σ

∫
Ω

|(y − z)(T )|2 dx+

∫
Q

(F(x, curly)−F(x, curl z)) · curl(y − z) dxdt

=

∫
Q

(f − g) · (y − z) dxdt+ σ

∫
Ω

|y0 − z0|2 dx.

By (2.5), we deduce that
σ

2

∫
Ω

|(y − z)(T )|2 dx+ ν

∫
Q

| curl(y − z)|2 dxdt

≤
∫
Q

(f − g) · (y − z) dxdt+
σ

2

∫
Ω

|y0 − z0|2 dx.

Dropping the first term of this left-hand side, we get

ν ‖ curl(y − z)‖2Q ≤ ‖f − g‖Q ‖y − z‖Q +
σ

2
‖y0 − z0‖2

. ‖f − g‖Q ‖ curl(y − z)‖Q + ‖y0 − z0‖2,

where (2.10) was used in this last estimate. Applying Young’s inequality, we find

‖ curl(y − z)‖2Q . ‖f − g‖2Q + ‖y0 − z0‖2. (2.16)
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Again by (2.10), the estimate (2.16) yields

‖y − z‖2Q . ‖f − g‖2Q + ‖y0 − z0‖2. (2.17)

These two estimates prove (2.13).

Corollary 2.9. Under the assumptions of Lemma 2.8, we have

‖y − z‖W(0,T ) . ‖f − g‖Q + ‖y0 − z0‖. (2.18)

Proof. In (2.15), using (2.6) and Cauchy-Schwarz’s inequality we find that∣∣∣∣∫
Q

σ
∂(y − z)

∂t
·v dxdt

∣∣∣∣ ≤ (L‖ curl(y − z)‖Q + ‖f − g‖Q)‖ curlv‖Q.

Hence by the estimate (2.13), we conclude that∣∣∣∣∫
Q

σ
∂(y − z)

∂t
·v dxdt

∣∣∣∣ . (‖f − g‖Q + ‖y0 − z0‖Q)‖v‖L2(0,T ;V).

The conclusion directly follows.

At this stage, we are able to define the notion of weak solutions.

Definition 2.10. For T > 0, y0 ∈ H and f ∈ L2(0, T ;H), we say that y : [0, T ]→
L2(Ω)3 is a weak solution of problem (1.1) if y ∈W(0, T ) satisfies∫ T

0

〈
σ
∂y

∂t
(·, t) , z

〉
dt+ (F(·, curly) , curl z)Q = (f , z)Q, ∀z ∈ L2(0, T ;V)

as well as
y(·, 0) = y0 in Ω.

Theorem 2.11. Let T > 0 be fixed and assume that y0 ∈ H and f ∈ L2(0, T ;H).
Then problem (1.1) has a unique weak solution y that satisfies

‖y‖W(0,T ) . ‖f‖Q + ‖y0‖. (2.19)

Proof. By Cororally 2.5, there exists a sequence {y0,n} in D(A) such that

y0,n → y0 in H, as n→∞.
Fix another sequence {fn} ⊂ C∞0 ((0, T ),V), n ∈ N, such that

fn → f in L2(0, T ;V) as n→∞.
Then by Theorem 2.7, for all n ∈ N, problem (1.1) with right-hand side fn and an
initial datum y0,n has a unique strong solution yn. Further, owing to Lemma 2.8
and its Corollary 2.9 applied to yn and ym, we have

‖yn − ym‖W(0,T ) . ‖fn − fm‖Q + ‖y0,n − y0,m‖. (2.20)

Hence there exists y ∈W(0, T ) such that

yn → y in W(0, T ), as n→∞. (2.21)

Finally by (2.6), we have

|F(x, curlyn)−F(x, curly)| ≤ L| curlyn − curly|, (2.22)

and therefore F(x, curlyn) converges to F(x, curly) in L2(Q).
Starting from (2.14) satisfied by yn and passing to the limit, we find that y

satisfies (2.19). Finally the estimate (2.19) follows from (2.18) with y = yn and
z = 0, g = 0, z0 = 0.
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3. Optimal control. We will discuss the following optimal control problem that
is defined upon the state equation (1.1). We consider the objective functional

J(y, f) :=
λT
2

∫
Ω

|y(x, T )− yT (x)|2 dx+
λQ
2

∫
Q

|y(x, t)− yQ(x, t)|2 dxdt

+
λf
2

∫
Q

|f(x, t)|2 dxdt,
(3.1)

where λT , λQ, and λf are nonnegative constants with λT + λQ > 0, while yQ ∈
L2(div=0, Q) and yT ∈ H(div=0,Ω) are given functions. Here, the control function
f stands for a distributed current density f : Ω× [0, T ]→ R3.

The optimal control problem is

(OCP) min
f∈Fad

J(yf , f),

where yf denotes the solution of the equation (1.1) associated with the control f ,
and the set of admissible controls Fad ⊂ L2(0, T ;H) is assumed to be non-empty,
convex and closed.

Lemma 3.1. The control-to-state mapping G : f 7→ yf for the equation (1.1) is
weakly-strongly continuous from L2(div = 0, Q) to L2(0, T ;V). This means that
fn ⇀ f (weakly) in L2(div=0, Q) implies yfn → yf (strongly) in L2(0, T ;V).

Proof. We begin with the variational formulation for weak solutions of (1.1) and
write for short yn := yfn ,∫ T

0

〈
σ
∂yn
∂t

, v

〉
dt+

∫
Q

F(x, curlyn)· curlv dxdt =

∫
Q

fn · v dxdt (3.2)

∀v ∈ L2(0, T ;V).

The sequence {fn} is bounded in L2(0, T ;H), hence, by Theorem 2.11, the sequence
{yn} is bounded in W(0, T ) so that we can assume yn ⇀ y in W(0, T ) with some
y ∈ W(0, T ). The embedding W(0, T ) ⊂ L2(0, T ;H) is compact so that, after
extracting a subsequence again, we can also assume the strong convergence yn → y
in L2(0, T ;H).

Inserting yn − y as test function in the weak formulation for yn, we get∫ T

0

〈
σ
∂yn
∂t

, yn − y

〉
dt+

∫
Q

F(x, curlyn)· curl(yn − y) dxdt

=

∫
Q

fn · (yn − y) dxdt ∀n ∈ N.

Adding suitable terms to both sides, we proceed by∫ T

0

〈
σ
∂(yn − y)

∂t
, yn − y

〉
dt

+

∫
Q

(F(x, curlyn)−F(·, curly)) · curl(yn − y) dxdt

=

∫
Q

fn · (yn − y) dxdt−
∫ T

0

〈
σ
∂y

∂t
,yn − y

〉
dt

−
∫
Q

F(·, curly) · curl(yn − y) dxdt.

(3.3)
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The first integral of the right-hand side of (3.3) tends to zero, since {yn} converges
strongly to y in L2(0, T ;H) and {fn} is bounded. The second integral converges to
zero, because {yn} converges weakly in W(0, T ), hence also weakly in L2(0, T ;V).
Also the third integral tends to zero, since {curlyn} converges weakly to curly in
L2(Q). In view of all this, the right-hand side of (3.3) converges to zero, hence this
holds also for the left-hand side.

We have already proved before that∫ T

0

〈
σ
∂(yn − y)

∂t
, yn − y

〉
dt

+

∫
Q

(F(x, curlyn)−F(·, curly)) · curl(yn − y) dxdt

&
∫
Q

| curl (yn − y)|2 dxdt,

hence we deduce that {yn} converges to y in L2(0, T ;V).
Reminding (2.22) we can pass to the limit in (3.2) to find∫ T

0

〈
σ
∂y

∂t
, v

〉
dt+

∫
Q

F(x, curlyn)· curlv dxdt =

∫
Q

f · v dxdt

∀v ∈ L2(0, T ;V),

so that y is a weak solution associated with f . By uniqueness, we have y = yf , and
thus yn = yfn → yf (strongly) in L2(0, T ;V) as n→∞.

Let us next prove that our optimal control problem is well-posed, i.e. that there
exists at least one optimal control. Thanks to Lemma 2.8, we know that the control-
to-state mapping G : f → yf is continuous from L2(div=0, Q) ⊃ Fad to W(0, T ).

Theorem 3.2 (Existence of an optimal control). If, in addition to the former as-
sumptions, Fad is also bounded or if λf is positive, then the optimal control problem
(OCP) admits at least one optimal control f̄ ∈ Fad.

Proof. Let {fn}∞n=1 ⊂ Fad be an infimal sequence, i.e. J(yn, fn) = J(G(fn), fn)→ j,
as n→∞, where

j = inf
f∈Fad

J(G(f), f).

If Fad is bounded, then its closedness and convexity imply that Fad is weakly
sequentially compact. Therefore, we can assume w.l.o.g. that fn ⇀ f̄ in L2(0, T ;H).
Thanks to Lemma 3.1, we have yn → yf̄ in L2(0, T ;V). Moreover, an inspection of
the proof of this Lemma shows that yn ⇀ ȳ := yf̄ in W(0, T ), hence yn(T ) ⇀ ȳ(T )

in L2(Ω). The lower semicontinuity of the functional J finally yields that

j = lim inf
n→∞

J(yn, fn) ≥ J(ȳ, f̄),

and hence f̄ is an optimal control.
Let now λf be positive. The infimum j satisfies j ≤ J(y0,0), hence we can

restrict the search for an optimal solution to the set of all controls f with J(yf , f) ≤
J(y0,0). By

λf
2
‖f‖2 ≤ J(yf , f) ≤ J(y0,0),

an optimal solution must belong to the set Fad ∩ {f ∈ L2(0, T ;H) : ‖f‖2 ≤
2(λf )−1J(y0,0)}. Again, this is a weakly sequentially compact set so that the
proof can be finished in the same way as above.
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3.1. Necessary optimality conditions.

3.1.1. Differentiability of the control-to-state mapping. For necessary optimality
conditions, we first have to discuss the differentiability of the control-to-state map-
ping G. To this aim, following [19], we require some more assumptions.

Assumption 3.3 (Differentiability). For almost all x ∈ Ω, the mapping R3 3 s 7→
F(x, s) ∈ R3 is continuously differentiable with respect to s.

Remark 3.4. Continuous differentiability of the mapping s 7→ N (x, s) is sufficient
for Assumption 3.3. In this case, we write

∇sN (x, s) :=

[
∂N
∂s

(x, s)

]>
.

Note that by (2.6), the Jacobian matrix ∂F(x, s)/∂s satisfies∣∣∣∣∂Fi∂sj
(x, s)

∣∣∣∣ ≤ L for a.a. x ∈ Ω, ∀s ∈ R3, i, j ∈ {1, 2, 3}. (3.4)

Lemma 3.5. The mapping G is weakly Gâteaux differentiable from L2(div=0, Q)
to W(0, T ) and (strongly) Gâteaux differentiable from L2(div=0, Q) to L2(0, T ;H).
The weak derivative z = G′(f)h at f ∈ Fad in the direction h ∈ L2(div=0, Q) is the
unique weak solution in W(0, T ) to the problem

σ
∂z

∂t
+ curl

(
∂F
∂s

(·, curlyf ) curl z

)
= h

z(0) = 0.

(3.5)

Proof. We first mention that the weak solution z∈W(0, T ) of (3.5) is unique. This
is a consequence of the inequality

s>
∂F
∂s

(x, curlyf (x, t)) s ≥ ν |s|2 ∀s ∈ R3, for a.a. (x, t) ∈ Q (3.6)

that follows from [19], Proposition 3.7.
Now we select a sequence {τn}n∈N of nonzero real numbers tending to zero and

consider the solutions y := yf and yτn := yf+τnh associated with the controls f and
f + τnh, respectively. Let us write for convenience yn := yτn . Subtracting the state
equations for y and yf (written in strong form), we find

σ
∂(yn − y)

∂t
+ curl

(
F(·, curlyn)−F(·, curly)

)
= τn h. (3.7)

Testing the variational formulation with yn − y yields∫ T

0

〈
σ
∂(yn − y)

∂t
, yn − y

〉
dt

+

∫
Q

(F(·, curlyn)−F(·, curly))· curl (yn − y) dxdt

=

∫
Q

τn h · (yn − y) dxdt,

and hence, by (2.5),

‖yn(T )− y(T )‖2 + ‖ curl (yn − y)‖2Q. τn ‖h‖Q‖yn − y‖Q. (3.8)

As in the proof of Lemma 3.1, this yields

‖ curl (yn − y)‖Q . τn‖h‖Q.
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We already know that ‖v‖Q . ‖ curlv‖Q, hence
‖yn − y‖L2(0,T ;V) . τn ‖h‖Q (3.9)

and therefore

‖yn − y‖Q + ‖ curl (yn − y)‖Q → 0, n→∞. (3.10)

By the differential equation (3.7), we have∫ T

0

〈
σ
∂(yn − y)

∂t
, v

〉
dt = −

∫
Q

(F(·, curlyn)−F(·, curly))· curl v dxdt

+

∫
Q

τn h · v dxdt,∀v ∈ V.

From (3.9), we obtain

‖yn − y‖L2(0,T ;V′) . τn ‖h‖Q,
and therefore

‖yn − y‖W(0,T ) . τn ‖h‖Q.
Hence, after dividing by τn, ∥∥∥∥yn − y

τn

∥∥∥∥
W(0,T )

. ‖h‖Q.

In view of this boundedness, we can assume, possibly after selecting a subsequence,
that (yn − y)/τn ⇀ z ∈W(0, T ), n→∞. Let us proceed further using the strong
formulation of the associated pde. After dividing the pde by τn, we have

σ
∂

∂t

yn − y

τn
+ curl

(
F(·, curlyn)−F(·, curly)

τn

)
= h,

and, by the mean value theorem in integral form,

σ
∂

∂t

yn − y

τn
+ curl

(∫ 1

0

∂F
∂s

(·, curl(y + ϑ(yn − y)) dϑ · curl(yn − y)

τn

)
= h,

hence

σ
∂

∂t

yn − y

τn
+ curl

((
∂F
∂s

(·, curly) + rn

)
· curl(yn − y)

τn

)
= h, (3.11)

where

rn =

∫ 1

0

[
∂F
∂s

(·, curl(y + ϑ(yn − y))− ∂F
∂s

(·, curly)

]
dϑ.

Re-arranging the variational formulation of (3.11), we find∫ T

0

σ

〈
∂

∂t

yn − y

τn
, v

〉
dt+

∫
Q

∂F
∂s

(·, curly)
curl(yn − y)

τn
· curl v dxdt

+

∫
Q

curl(yn − y)

τn
· r>n curlv dxdt =

∫
Q

h · v dxdt ∀v ∈ L2(0, T ;V).

We will confirm below that r>n curlv → 0 in L2(Q), n→∞, up to a subsequence.
Since τ−1

n (yn − y) ⇀ z in W(0, T ), we can pass to the limit and obtain∫ T

0

〈
σ
∂z

∂t
, v

〉
dt+

∫
Q

∂F
∂s

(·, curly) curl z · curl v dxdt

=

∫
Q

h · v dxdt ∀v ∈ L2(0, T ;V).
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A simple inspection of the proof reveals that we have obtained a little bit more:
Any subsequence of {τ−1

n (yn − y)} contains a weakly convergent subsequence, and
all these subsequences converge weakly to the same limit z. Notice that z is a
solution of the linearized equation and hence is unique. Therefore, the whole
sequence {τ−1

n (yn − y)} converges weakly and we have proven the desired result of
weak Gâteaux-differentiability.

Moreover, since the embedding of W(0, T ) in L2(0, T ;H) is compact, we even
know that all subsequences of {τ−1

n (yn − y)} contain a subsequence that converges
strongly in L2(0, T ;H), again with the same limit. This yields the result on strong
Gâteaux differentiability in L2(0, T ;H).

It remains to confirm the strong convergence of a subsequence of r>n curlv to 0
in L2(Q). Thanks to the estimate (3.4), all entries of r>n are functions of L∞(Q).
Moreover, we know that curlyn → curly in L2(Q). Therefore, a subsequence
{curlynk

}k tends to curly almost everywhere in Q. In view of this, and since F is
continuously differentiable w.r. to s, the entries of rnk

converge to zero a.e. in Q.
We have ∣∣rnk

(x, t)> curlv(x, t)
∣∣2 ≤ C | curlv(x, t)|2 a.e. in Q

with some C > 0. The right-hand side is integrable on Q. Now, the pointwise
convergence of rnk

along with Lebesgue’s dominated convergence theorem ensure
that ‖r>nk

curlv‖L2(Q) → 0, k →∞.

3.1.2. Adjoint equation and necessary optimality conditions. Let us first introduce
the reduced objective functional

Ĵ(f) := J(yf , f). (3.12)

It is well known that an optimal control f̄ minimizing Ĵ in Fad has to obey the
variational inequality

Ĵ ′(f̄)(f − f̄) ≥ 0 ∀f ∈ Fad, (3.13)

provided that Ĵ is (strongly) Gâteaux-differentiable at f̄ . In our case, the mapping
f → yf (T ) is only weakly differentiable. Therefore, let us prove that Ĵ is Gâteaux-
differentiable although the control-to-state mapping is only weakly Gâteaux-differen-
tiable.

Lemma 3.6. The mapping f 7→ Ĵ(f) is Gâteaux-differentiable.

Proof. We have

Ĵ(f) =
λT
2
‖G(f)(T )− yT ‖2 +

λQ
2
‖G(f)− yQ‖2Q +

λf
2
‖f‖2Q.

The second and the third part of Ĵ are obviously differentiable. Notice that the map-
ping f → y, considered with range L2(0, T ;H), is (strongly) Gâteaux-differentiable
by Lemma 3.5. Therefore, it suffices to prove the Lemma for the first term ĴT (f),

ĴT (f) :=
λT
2
‖G(f)(T )− yT ‖2.

The mapping G : f 7→ yf is weakly Gâteaux-differentiable with range in W(0, T )
by Lemma 3.5, and the mapping y 7→ y(T ) is linear and continuous from W(0, T )
to L2(Ω).
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Consider the sequence zn = (yn − y)/tn that converges to some z weakly in
W(0, T ) as tn → 0, i.e.

1

tn
(G(f + tnh)−G(f)) ⇀ z, in W(0, T ).

To compute Ĵ ′T (f)h, we consider
1

tn
(ĴT (f + tnh)− ĴT (f)) =

1

tn
(‖yn(T )− yT ‖2 − ‖y(T )− yT ‖2)

=
1

tn
(yn(T )− y(T ) , yn(T ) + y(T )− 2yT )

=
(G(f + tnh)(T )−G(f)(T )

tn
, G(f + tnh)(T ) +G(f)(T )− 2yT

)
.

The embedding W(0, T ) ⊂ C([0, T ],H) is linear and continuous. Moreover, the
mapping y 7→ y(T ) is linear and continuous from W(0, T ) to L2(Ω). Let us denote
the mapping y 7→ y(T ) from W(0, T ) to L2(Ω) by ET . As a continuous linear
mapping, ET is also weakly continuous. We proceed by(G(f + tnh)(T )−G(f)(T )

tn
, G(f + tnh)(T ) +G(f)(T )− 2yT

)
=
(
ET

G(f + tnh)−G(f)

tn
, ET (G(f + tnh) +G(f))− 2yT

)
=
(
ET zn , ET (G(f + tnh) +G(f))− 2yT

)
.

By zn ⇀ z in W(0, T ), the weak continuity of ET and the strong convergence of
G(f + tnh)(T ) to G(f)(T ) in L2(Ω), cf. (3.8), we can pass to the limit and find

Ĵ ′T (f)h =
(
ET z , ET (G(f) +G(f))− 2yT

)
= 2

(
z(T ) , y(T )− yT

)
. (3.14)

In view of (3.14), the derivative of Ĵ ′ at f̄ in the direction h ∈ L2(div=0, Q) is
given by

Ĵ ′(f̄)h = λT
(
G(f̄)(T )− yT , (G′(f̄)h)(T )

)
+ λQ

(
G(f̄)− yQ , G

′(f̄)h
)
Q

+ λf
(
f̄ , h

)
Q

= λT (ȳ(T )− yT , z(T )) + λQ (ȳ − yQ , z)Q + λf
(
f̄ , h

)
Q
,

(3.15)

where z = G′(f̄)h is the solution of the linearized equation (3.5).
By an adjoint equation, we are able to transform this expression to one, where

the increment h appears explicitely.

Definition 3.7 (Adjoint equation). Let f ∈ L2(div=0, Q) be given and let yf be
the associated state. Then the equation

−σ∂ϕ
∂t

+ curl

(
∂F
∂s

(·, curlyf )
> curlϕ

)
= λQ (yf − yQ)

σϕ(T ) = λT (yf (T )− yT )

(3.16)

is said to be the adjoint equation associated with yf . The unique solution of (3.16) is
called adjoint state associated with f and denoted by ϕf . Existence and uniqueness
of ϕf will be discussed below.
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Let us briefly confirm that the adjoint equation has a unique solution ϕ. This
follows immediately by the estimate (3.6) that was used to prove the unique solv-
ability of the linearized equation. Obviously, the same inequality is satisfied for the
matrix ∂F

∂s (x, curlyf (x, t))
>, hence the differential operator in the adjoint equation

(3.16) is coercive and the existence of a unique ϕf of W(0, T ) is a fairly standard
conclusion.

Theorem 3.8. If f̄ is optimal for the optimal control problem (3.1), then there
exists a unique adjoint state ϕf̄ ∈W(0, T ) such that the variational inequality∫

Q

(ϕf (x, t) + λf f̄(x, t)) · (f(x, t)− f̄(x, t)) dxdt ≥ 0 ∀f ∈ Fad (3.17)

is fulfilled.

Proof. First, we consider the linearized state equation (3.5) for z, where h := f − f̄
is taken as right-hand side. We insert the adjoint state ϕf̄ ∈ W(0, T ) associated
with f := f̄ and yf := yf̄ as test function in the weak formulation of the linearized
equation. In this way, we obtain∫ T

0

〈
σ
∂z

∂t
, ϕf̄

〉
dt+

∫
Q

(
∂F
∂s

(·, curlyf̄ ) curl z

)
· curlϕf̄ dxdt

=

∫
Q

(f − f̄) ·ϕf̄ dxdt

z(0) = 0.

(3.18)

Moreover, we insert the solution z = G′(f̄)h as test function in the weak formulation
of the adjoint equation (3.16). Then

−
∫ T

0

〈
σ
∂ϕf̄

∂t
, z

〉
dt+

∫
Q

(
∂F
∂s

(·, curlyf̄ )
> curlϕf̄

)
· curl z dxdt

=

∫
Q

λQ (ȳ − yQ) · z dxdt

σϕf̄ (T ) = λT (ȳ(T )− yT )

is found. Performing an integration by parts with respect to the time in (3.18)
yields

(z(T ) , σϕf̄ (T ))−
∫ T

0

〈
σ
∂ϕf̄

∂t
, z

〉
dt

+

∫
Q

(
∂F
∂s

(·, curlyf̄ )
> curlϕf̄

)
· curl z dxdt =

∫
Q

(f − f̄) ·ϕf̄ dxdt.

Inserting the terminal condition σϕf̄ (T ) = λT (yf̄ (T ) − yT ), we arrive in view of
the adjoint equation (3.16) at

(z(T ) , λT (yf̄ (T )− yT )) + (λQ (yf̄ − yQ) , z)Q =

∫
Q

(f − f̄) ·ϕf̄ dxdt

In view of the representation (3.15), this is equivalent to

Ĵ(f̄)h =

∫
Q

(ϕf̄ + λf f̄) · (f − f̄) dxdt.

The claim follows from the general variational inequality (3.13) and from our setting
h = f − f̄ .
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This variational inequality (3.17) is a quite general result that can be discussed
in more detail for particular cases of Fad.We consider the following three particular
cases:
(i) At first, the unconstrained case is of interest,

Fad = L2(0, T ;H). (3.19)

(ii) Let us define for convenience the closed ball of L2(Ω) with radius r > 0,

Br(0) = {v ∈ H : ‖v‖ ≤ r}.

We may also consider, for given r > 0, the admissible set

Fad = {f ∈ L2(0, T ;H) : f(t) ∈ Br(0) for a.a. t ∈ (0, T )}. (3.20)

(iii) Another interesting set is defined as follows: Fix k ∈ N, functions ei ∈ H with
ei 6= 0, real numbers αi < βi, i = 1, . . . , k, and define

Fad =
{
f ∈ L2(0, T ;H) : f(x, t) =

k∑
i=1

ei(x)ui(t), ui ∈ L∞(0, T ),

αi ≤ ui(t) ≤ βi for a.a. t ∈ (0, T ), i = 1, . . . , k
}
.

(3.21)

Let us detail the variational inequality (3.17) for these particular sets of admissible
controls.

Case (i): If Fad is given by (3.19), then obviously the variational inequality is
equivalent to

f̄(x, t) = − 1

λf
ϕf̄ (x, t) for a.a. (x, t) ∈ Ω× (0, T ), (3.22)

provided that λf > 0. The positivity of λf is needed anyway to guarantee the
solvability of the optimal control problem. For λf = 0, the problem is solvable, if
the desired state is attainable.

Case (ii): If Fad is defined by (3.20), then the variational inequality is equivalent
to the pointwise inequality

(ϕf̄ (t) + λf f̄(t) , v − f̄(t)) ≥ 0 ∀v ∈ Br(0).0

Therefore, f̄(t) should be a negative multiple of ϕf̄ (t)+λf f̄(t) with (maximal) norm
r. For λf = 0, this implies

f̄(t) = − r

‖ϕf̄ (·, t)‖
ϕf̄ (t) for a.a. t with ϕf̄ (t) 6= 0.

If λf > 0, then we find in a standard way for a.a. t ∈ (0, T ) that

f̄(t) =


−ϕf̄ (t)

λf
if − ϕf̄ (t)

λf
∈ Br(0),

−r ϕf̄ (t)

‖ϕf̄ (·, t)‖
if − ϕf̄ (t)

λf
/∈ Br(0).

In other words, we have almost everywhere

f̄(t) = PBr

(
−λ−1

f ϕf̄ (t)
)
,

where PBr : H → H denotes the L2(Ω)-projection operator onto Br(0).
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Case (iii): Here, we expand the terms in the variational inequality as follows:
(3.17) holds if and only if,

k∑
i=1

(ϕf̄ (t) + λf f̄(t) , ei)(vi − ūi(t)) ≥ 0 for a.a. t ∈ (0, T )

and for all real numbers vi with αi ≤ vi ≤ βi, i = 1, . . . , k. Obviously, this splits in
k independent variational inequalities

(ϕf̄ (t) + λf f̄(t) , ei)(v − ūi(t)) ≥ 0 ∀v ∈ [αi, βi], (3.23)

i = 1, . . . , k. Therefore, we have for all i = 1, . . . , k

ūi(t) =

{
αi if (ϕf̄ (t) + λf f̄(t) , ei) > 0

βi if (ϕf̄ (t) + λf f̄(t) , ei) < 0.
(3.24)

Under the additional assumption λf > 0 and

(ei , ej) = 0 if i 6= j,

we get

ūi(t) = P[αi,βi]

(
− 1

λf‖ei‖2
(ϕf̄ (t) , ei)

)
. (3.25)

Here, P[αi,βi] : R→ [αi, βi] is the projection mapping defined by

P[αi,βi](z) = max(αi,min(βi, z)).

Let us briefly sketch this result: We insert the representation

f̄(t) =

k∑
j=1

ej ūj(t)

in (3.23) and obtain, for i = 1, . . . , k and almost all t ∈ (0, T )(
(ϕf̄ (t) , ei) + λf ‖ei‖2 ūi(t)

)
(v − ūi(t)) ≥ 0 ∀v ∈ [αi, βi],

since the functions ei were assumed to be mutually orthogonal. This last variational
inequality is equivalent to relation (3.25). We refer to [16, Thm. 2.28] for an
analogous situation.
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