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Abstract

This article deals with the spectra of Laplacians of weighted graphs. In this context, two objects
are of fundamental importance for the dynamics of complex networks: the second eigenvalue of such a
spectrum (called algebraic connectivity) and its associated eigenvector, the so-called Fiedler vector. Here
we prove that, given a Laplacian matrix, it is possible to perturb the weights of the existing edges in the
underlying graph in order to obtain simple eigenvalues and a Fiedler vector composed of only non-zero
entries. These structural genericity properties with the constraint of not adding edges in the underlying
graph are stronger than the classical ones, for which arbitrary structural perturbations are allowed. These
results open the opportunity to understand the impact of structural changes on the dynamics of complex
systems.
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1 Introduction

Many dynamical phenomena observed in real world networks take place on weighted graphs [3, 2]. Synchro-
nization in networks of lasers is an important example as it increases laser stability [18]. Another example
is given by stability in power grids, where certain coupling configurations can lead to the desynchronization
of generators and thereby to major blackouts [25]. Recently, random walks on graphs have attracted much
attention [22, 9, 13] which has been of interest for graph community detection (see [11] and [12] as well).
Further important examples can be found in neuroscience [31, 7] and in epidemiology [21]. These dynamical
processes are intimately related to the spectrum of the Laplacian matrix associated with the graph.

Simplicity of eigenvalues plays a major role as it guarantees good properties of the underlying dynamics
such as exponentially and uniformly fast convergence towards synchronization in diffusively coupled networks
[29] and convergence to the stationary measure in random walks [1]. In fact, when the eigenvalues fail to
be simple the underlying dynamics can be pathological [26]. The eigenvectors of the Laplacian matrix
also have a fundamental impact on the system. In particular, the so-called Fiedler vector associated with
the algebraic connectivity (i.e the second eigenvalue) of this matrix is of importance for spectral graph
partitioning [23, 33] and for synchronization [28, 29]. Indeed, when the Fiedler vector has non-zero entries
one can design structural changes that make synchronization unstable [27, 19].

The purpose of this article is to deal with generic properties of graph Laplacians spectra. Since the 70’s
and the seminal work of Fiedler, graph spectra have attracted a great deal of attention [16, 10, 24, 30, 5, 14, 6].
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Here we focus on generic properties under the constraint of keeping the graph structure unchanged and only
slightly modifying the positive weights.

In general, given any Laplacian matrix (in fact any matrix) it is always possible to perturb its entries
to obtain simple eigenvalues. Typically, such perturbations will change the underlying graph drastically. In
fact, these perturbations usually cascade to the whole graph resulting in a massively connected graph or
even a fully connected one. However, in the context of many dynamical networks it is important to keep the
initial graph topology. For instance, adding new connections to power grids is very costly and can lead to
instabilities [35]. In general, the links have assigned physical meaning and while we can slightly change the
weights, we cannot introduce new links. In other words, we look for generic properties when we don’t add
new edges to the initial graph and only slightly change the weights on already existing edges.
Hence, given a connected weighted and undirected graph our main goal is to address the two questions:

(Q1) Can we perturb the weights of the existing edges to obtain a Laplacian matrix with simple
eigenvalues?
(Q2) Can we perturb the weights of the existing edges to obtain a Laplacian matrix with
Fiedler vector having non-zero entries?

The manuscript gives positive answer to these two questions. In fact, we prove stronger results. The set
of graph Laplacians such that these two questions have positive answer has full Lebesgue measure. We will
show that for directed graphs the answer to (Q1) is also positive.

The manuscript is organized as follows. In Section 2, we introduce our notations and the notion of
structural genericity for sets of symmetric zero-row sum real matrices. This notion permits us to formulate a
density result with constraint for undirected graphs. In Section 3 we state our main results (Theorem 3.1 and
Theorem 3.2) providing positive answer to (Q1) and (Q2) by showing that having a simple spectrum and
eigenvectors with non-zero entries are structurally generic properties. Then, in Section 4 we prove Theorem
3.1 and in Section 5 we prove Theorem 3.2. Finally, in Section 6 we generalize our first result on simplicity
of eigenvalues to directed graphs (Theorem 6.6).

2 Notations and Definitions

2.1 Weighted and Undirected Graphs

Let us recall some basic notions of algebraic graph theory (we refer the reader to [4, 10] and the references
therein for a detailed introduction on the subject).
A simple graph with n vertices or nodes is a pair (V, E) formed by a vertex set V = (v1, · · · , vn) and an edge
set E ⊂ {1, · · · , n} × {1, · · · , n}, where a pair (i, j) belonging to E is called an edge or link between vertex
vi and vertex vj (or in a short way, (i, j) is an edge between node i and node j). In particular, there is no
loop linking a node to itself. A graph is weighted if any of its edges (i, j) is associated to a number wi,j > 0
(called weight). When (i, j) is not in E, we set wi,j = 0. A graph is said to be undirected when for any pair
(i, j) belonging to its edge set E we have that (j, i) belongs to E as well and wi,j = wj,i.

Connected Graphs. An undirected graph G = (V, E) is connected, if for any two nodes i and j of G, there
exists a path {i = i1, · · · , ip = j} of connected nodes (i.e nodes successively connected by some edges of E)
between node i and node j.

A tree is an undirected graph for which any two nodes i and j are connected by exactly one path.
Geometrically, it means there is no cycle in such a graph: for this reason trees are also referred to as acyclic
graphs. A spanning tree is a tree of which set of nodes equals V, and for which the set of edges is included
in E. A rooted spanning tree is a spanning tree for which one node has been designated as a root.
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2.2 Notations on matrices

We will denote byMn (R) the set of square real matrices of size n, by Zn (R) the vector subspace ofMn (R)
formed by zero-row sum real matrices of size n, and by Sn (R) the vector subspace of Mn (R) formed by
symmetric real matrices of size n. Given a subset M of Mn (R), Mc will be its complement set. The
notation ||·|| will stand for a norm over the set of matrices of Mn (R). Any norm can be used in our study.

Given a matrix M inMn (R), the notation det (M) will stand for the determinant of M , χM will stand for
the characteristic polynomial of the matrix M , tM will stand for the transpose matrix of M , and Com (M)
for the comatrix of M, formed by the cofactors of these matrices. In other words the element ci,j of Com (M)
is given by:

ci,j = (−1)
i+j

det (M (i|j)) ,

where M (i|j) is the submatrix of M obtained by deleting the i-th row and the j-th column.
Rn+ will denote the subset of vectors for which the coordinates are positive or null, and R∗+

n the one for
which the coordinates are all strictly positive. Given a vector X in Rn, its i-th entry will be denoted by
X(i). Given a subspace A of Rn we will denote by L|A the Lebesgue measure restricted to A.

2.3 The set of Laplacian matrices of weighted graphs

Given an undirected weighted graph G its Laplacian matrix L is the square matrix of size n defined by

L = D −W,

where W is the weighted adjacency matrix representing the weights of the edge set E i.e W = (wi,j)
n
i,j=1,

and where D =diag(D1, · · · , Dn) with Di =
∑n
j=1 wi,j , is the matrix of degrees of G. The Laplacian matrix

L is a positive semi-definite operator:

Proposition 2.1. Let L a Laplacian matrix of an undirected graph with n nodes. Then, the spectrum S (L)
has the form:

S (L) = {0 = λ1 ≤ λ2 ≤ · · · ≤ λn}.

Moreover, the multiplicity of the eigenvalue 0 equals the number of connected components of the graph.

The first part of this result follows from the Gerschgorin’s disk theorem. The multiplicity of the zero
eigenvalue is readily obtained by noticing that constant vectors are eigenvectors associated with this eigen-
value. The eigenvalue λ2 (possibly equal to zero) is called algebraic connectivity of the graph. It is closely
related to constants which are important for characterizing the topology of a graph, such as the diameter or
the isoperimetric number.

Notation 2.2. We will denote byW the set of Laplacian matrices associated to connected undirected weighted
graphs with n nodes. We will denote by:

Ws the subset of W formed by Laplacian matrices having only simple eigenvalues,

W0 the subset of W formed by Laplacian matrices whose Fiedler vector has at least one zero entry.

In Theorem 3.1 we prove a structural density property. Before stating this result, we need to introduce
the following notion of perturbations of symmetric zero-row sum matrices:
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Definition 2.3 (Structural Perturbations). For any matrix M in Sn (R) ∩ Zn (R) and any tuple E =

(εi,j)1≤i<j≤n in R
n(n−1)

2 we define the matrix M (E ) in Sn (R) ∩ Zn (R) by:

∀1 ≤ i < j ≤ n, M (E )i,j =

{
−εi,j if Mi,j 6= 0

0 else

M (E )j,i = M (E )i,j

M (E )i,i = −
n∑
j=1
j 6=i

M (E )i,j .

For example, consider the following Laplacian matrix in S4 (R):

L =


3/2 −1 0 −1/2
−1 2 −1 0
0 −1 4/3 −1/3
−1/2 0 −1/3 5/6

 .
Then given any tuple E = (εi,j)1≤i<j≤6 in R6, the matrix L (E ) is equal to:

L (E ) =


ε1,2 + ε1,4 −ε1,2 0 −ε1,4
−ε1,2 ε1,2 + ε2,3 −ε2,3 0

0 −ε2,3 ε2,3 + ε3,4 −ε3,4
−ε1,4 0 −ε3,4 ε1,4 + ε3,4

 .
Remark 2.4. Given a Laplacian matrix L, the matrix L (E ) may not be Laplacian, for its off-diagonal

entries may not be negative. However, L (E ) is a Laplacian matrix for E in R
n(n−1)

2
+ . We emphasize the fact

that, even for a tuple E in R∗+
n(n−1)

2 , the graph associated to the Laplacian matrix L (E ) is a subgraph of G
(or G itself). It does not have more edges than the graph G.

To formulate Questions (Q1) and (Q2) we need a new notion of density with constraint for sets of real
matrices, namely the constraint of keeping the graph structure of a given matrix.

Definition 2.5 (Structural density). Let M0 ⊂ M be two subsets of Sn (R) ∩ Zn (R). We say that M0 is
structurally dense in M if the following holds:

∀M ∈M, ∀ε0 > 0, ∃E ∈ R
n(n−1)

2 , such that M +M (E ) ∈M0 and ||M (E )|| < ε0.

Obviously, one could extend the definition of structural density to the entire set Sn (R): to do this, it
suffices to delete the condition

M (E )i,i = −
n∑
j=1
j 6=i

M (E )i,j

in Definition 2.3 above. We don’t consider this extended definition here as our article focuses exclusively on
Laplacian matrices, for which the structural perturbations correspond precisely to Definition 2.3. Concerning
the non symmetric case, the notion of structural density for matrices in the complement set Sn (R)

c
of real

non symmetric matrices is dealt with in Section 6, where we consider non symmetric graph Laplacians. To
this structural density notion, corresponds a new notion of structural genericity property:

Definition 2.6 (Structural genericity). A property R0 for matrices belonging to a subset M of Sn (R) ∩
Zn (R) is said to be structurally generic in M if:
- The set of matrices in M satisfying R0 is structurally dense in M.

- Given a matrix M ∈M, the set of tuples E in R
n(n−1)

2 such that M (E ) belongs to M and does not satisfy

R0 is of Lebesgue measure zero in R
n(n−1)

2 .
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3 Main Results

We can now enunciate the first result of this paper, which gives a positive answer to (Q1):

Theorem 3.1. The property of having only simple eigenvalues is structurally generic in the set W, that is:
- The set Ws is structurally dense in W.

- For any Laplacian matrix L in W, the set of tuples E in R
n(n−1)

2 such that L (E ) belongs to Ws
c ∩W is of

Lebesgue measure zero in R
n(n−1)

2 .

Hence, changing only the existing weights of a graph Laplacian inW leads to simple spectrum. Actually,
in Section 6 we will prove a similar result in the case of directed graphs (see Theorem 6.6). Our next results
provides an affirmative answer to (Q2), which asks how big the complement set W0

c ∩W is in W:

Theorem 3.2. The property of having a Fiedler vector with only non-zero components is structurally generic
in W:
- The set W0

c ∩W is structurally dense in the set W.

- For any Laplacian matrix L in W, the set of tuples E ∈ R
n(n−1)

2 such that L (E ) belongs to W0 is of
Lebesgue measure zero.

Actually, we prove a more general extension of Theorem 3.2: the property of having a basis of eigenvectors
having only non-zero components is structurally generic in W. This is stated in Corollary 5.1.

3.1 Sketches of the proofs

To prove Theorem 3.1 we follow two main steps. First, we construct an iterative process to obtain a Laplacian
matrix with simple eigenvalues L (E ) over a graph with the same structure as the original graph. We start
from the longest path inside one of its spanning trees, and iteratively include new branches while controlling
of the spectrum. Second, we consider the map DL : R2 → R defined by (α, β) 7→ Discr

(
χαL+βL(E )

)
, and

we apply a classical algebraic variety result on non identically null polynomial maps in several variables: the
sets of zeros of such maps are of Lebesgue measure zero, and their complement is dense (see [15]). This
permits us to conclude.

The proof of Theorem 3.2 is slightly more involved. Starting from a Laplacian L over a graph with n nodes
and the corresponding eigenvector equation Lv = λv, we decompose v = (X, z) and L in blocks matrices,
one of these blocks being given by the Laplacian over the first n− 1 nodes of the initial graph. Perturbing L
we can make the real number z distinct from zero. Then we obtain an equation of the form UX = b, where
U is an operator depending on the perturbation and on the graph. We invert this operator and show that
all entries of X are polynomials in the eigenvalue. Finally, using this observation the conclusion follows from
the regularity of algebraic varieties.

4 Structural genericity of graph Laplacians with simple spectrum:
Proof of Theorem 3.1

Here we deal with Question (Q1) for undirected graphs. In this case the Laplacian matrices are symmetric
and their eigenvalues are real. We aim at proving that having simple eigenvalues is structurally generic in
W.

Proof of Theorem 3.1. (a) First we prove that Ws is structurally dense in the set W. Let us fix an element
L of W, and G its associated weighted, undirected, connected graph. The idea of the proof is to construct a
graph with the same structure as G and simple spectrum. We will do this iteratively: we start from a path,
then we will include step-by-step nodes and edges to recover the topology of G. At each step of the process,
we will impose smaller and smaller weights in the edges added, so as to keep a simple spectrum.
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As G is connected, it admits a spanning tree T . Then let’s consider the longest path P in T (see Figure
1). Without loss of generality we can reorder if necessary the nodes of G so that T is rooted at the node
1 and P = {1, 2, · · · , p − 1, p} where p ≤ n: indeed, reordering the nodes of G thanks to a permutation σ
comes to considering the matrix P−1σ LPσ instead of L (where Pσ stands for the permutation matrix defined
by σ), which does not restrict the generality since two similar matrices have the same spectra.

For any tuple A = (a1,2, · · · , ap−1,p) in R∗+
p−1, the Laplacian matrix LP (A ) (of the path P) weighted

by A has the following form:

LP (A ) =



a1,2 −a1,2 0 · · · · · · · · · 0
−a1,2 a1,2 + a2,3 −a2,3 0 · · · · · · 0
0 −a2,3 a2,3 + a3,4 −a3,4 0 · · · 0

...
. . .

. . .
. . .

0
0 · · · · · · 0 −ap−2,p−1 ap−2,p−1 + ap−1,p −ap−1,p

0 · · · · · · 0 0 −ap−1,p ap−1,p


.

The spectrum of such tridiagonal matrices of size p has been intensively studied. In particular, it is well
known that if A is only composed of two-by-two distinct reals, LP (A ) has only simple eigenvalues. Let us
take one such tuple A with positive distinct two-by-two elements, we can then write:

S (LP (A )) = {0 < α2 < · · · < αp},

where the positive real numbers αi depend on the ai.

1

2

q1

p + 1

p + k1

p + k1 + k2

p

q2

Figure 1: The path P (in black) inside the spanning tree T , both of them subgraphs of G. We have
represented in red the out-branches of T , notably B1 and B2 rooted at nodes q1 and q2.

Now let us consider the subgraph P ∪{p+ 1, · · · , n}, i.e the disconnected graph composed of the path P
and of the other nodes of G (Figure 1). Then the Laplacian matrix of this subgraph is the following square
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matrix of size n:

LP∪{p+1,··· ,n} (A ) =


LP (A ) (0)

(0) (0)

 ,

for which the spectrum is:

S
(
LP∪{p+1,··· ,n} (A )

)
= {0⊗(n−p+1) < α2 < · · · < αp}.

Now, we look at the edges of the tree T that do not belong to the path P: let us consider the first of these
edges, starting from the root 1 of this tree. This first edge is adjacent to a node say q1 in P, and without
loss of generality we can assume it is the edge E1 = (q1, p+ 1). Re-ordering the nodes if necessary we can
assume the first out-branch B1 starting at this edge E1 is composed of the nodes q1, p+ 1, · · · , p+ k1, where
k1 + 1 is the number of nodes of B1 (Figure 1). Then, let’s take ε1 > 0, small enough compared to the ai:
the subgraph P ∪ E1 ∪ {p+ 2, · · · , n} with weights given by the tuple (A , ε1) has one component less than
the graph P ∪ {p+ 1, · · · , n}, and satisfies the relation:

LP∪E1∪{p+2,··· ,n} (A , ε1) = LP∪{p+1,··· ,n} (A ) + L{1,··· ,p}∪E1∪{p+2,··· ,n} (ε1) .

Therefore the spectrum of P ∪ E1 ∪ {p+ 2, · · · , n} has the following form:

S
(
LP∪E1∪{p+2,··· ,n} (A , ε1)

)
= {0⊗(n−p) < β1 (ε1) < α2,1 < · · · < αp,1},

where β1 (ε1) is a small perturbation of 0, and the αi,1 are small perturbations of the αi.
Now we repeat this process with the second edge E2 of the branch B1. Let us consider the subgraph
P ∪ E1 ∪ E2 ∪ {p+ 3, · · · , n} weighted by the tuple (κ (ε1) [A , ε1], ε2) where κ (ε1) > 0 is chosen large enough
so that the eigenvalues κ (ε1)β1 (ε1) , κ (ε1)α2,1, · · · , κ (ε1)αp,1 are very large numbers compared to 0, and
where ε2 > 0 is small enough compared to the entries of κ (ε1) [A , ε1].
Then this subgraph P ∪ E1 ∪ E2 ∪ {p + 3, · · · , n} has one connected component less than the subgraph
P ∪ E1 ∪ {p+ 2, · · · , n}.
Therefore the spectrum S

(
LP∪E1∪E2∪{p+3,··· ,n} (κ (ε1) [A , ε1], ε2)

)
is of the form:

{0⊗(n−p−1) < β2 (ε2) < β1,2 < α2,2 < · · · < αp,2},

where β2 (ε2) is a small perturbation of 0, and the terms β1,2, αi,2 are small perturbations of the real numbers
β1 (ε1), αi,1.
Repeating this process for the rest of the nodes p + 3, · · · , p + k1 of B1 and for the other out-branches B2
(rooted at a node say q2), B3, · · · of the tree T , we get the existence of a tuple E in R∗+

n−1 for which the
spectrum of the Laplacian matrix LT (E ) with weights given by E has only simple eigenvalues:

S (LT (E )) = {0 < λ2 (E ) < · · · < λn (E )}.

We can now complete the tree T with edges weighted by a tuple E ′ in R
n(n−3)

2
+ , so as to recover the

complete graph G weighted by a tuple E0 = (E ,E ′) ∈ R
n(n−1)

2
+ : choosing the real numbers of E ′ very small

compared to E , we get that the Laplacian matrix L (E0) weighted by E0 belongs to Ws.
Finally, to get our structural density result, it just remains to apply a classical argument on algebraic

varieties. Indeed, consider the map DL defined by:

DL : R2 → R
(α, β) 7→ Discr

(
χαL+βL(E0)

) ,
7



where Discr stands for the Discriminant map over the field Rn[X] of real polynomials of degree n. Recall
the map Discr is itself a polynomial map (in the coefficients of the element of Rn[X] considered) and that
it satisfies the following relation:

∀P ∈ Rn[X] : Discr (P ) = c (P )
∏
i<j

(αi − αj)2 ,

where c (P ) is a constant and the αi are the roots of the polynomial P . (Notice this formula gives us that
Discr (P ) = 0 if and only if P admits at least one multiple eigenvalue).
Then DL is a polynomial map in the entries of the matrix αL + βL (E0). Moreover, this map DL is not
identically null over R2 since we have proved above that DL (0, 1) 6= 0.
Therefore the complement of the algebraic variety D−1L ({0}) is dense in R2. Thus we have:

∀a > 0, ∃ 0 < β < α such that
β

α
< a and L+

β

α
L (E0) ∈ Ws.

We have proved that Ws is structurally dense in W.

(b) Now let’s fix L in W and prove the set of E in R
n(n−1)

2 such that L (E ) belongs to Ws
c ∩ W is of

Lebesgue measure zero in R
n(n−1)

2 . Actually the proof of this fact is already given by the first point we
established above.
Indeed, it suffices to consider the map:

EL : R
n(n−1)

2 → R
E 7→ Discr

(
χL(E )

) ,
that we proved to be a non-null polynomial map. As before, we conclude the algebraic variety E−1L (0) is of

Lebesgue measure zero in R
n(n−1)

2 . QED.

5 Structural genericity of graph Laplacians having a Fiedler vec-
tor with non-zero entries: Proof of Theorem 3.2

In this section we tackle Question (Q2), which asks how big the complement set W0
c ∩W is in the set W.

Proof of Theorem 3.2. (a) First let us prove that W0
c ∩W is structurally dense in W.

Let us fix L in W a Laplacian matrix of a graph G, and Ln−1 the Laplacian matrix of the subgraph of G
induced by the first n− 1 nodes.
As Ws is structurally dense in W, we can assume that L is in Ws. Denote by (α, a) the non identically null

tuple in R
(n−1)(n−2)

2
+ ×Rn−1+ defining the weights of L, where α is the tuple in R

(n−1)(n−2)
2

+ defining the weights
of Ln−1. The matrix L has the following form:

L =



−a1
...

Ln−1 +D (a) −ai
...

−an−1

−a1 · · · −ai · · · −an−1
∑n−1
k=1 ak


, (1)
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where the matrix D (a) is the diagonal matrix of size n−1 containing the elements of the non identically null
tuple a = (a1, · · · , an−1). In accordance with our definition of structural density, we are going to prove that,
up to a perturbation of the weights of L, i.e of the non-zero parameters in (α, a), the matrix L belongs toW0.

Consider the algebraic connectivity λ2 = λ2 (α, a) of L : for a generic choice of the non-zero parameters
in the tuple (α, a), the real number λ2 does not belong to the spectrum of Ln−1 (this fact is proved in Lemma
7.1 in the Appendix). Therefore perturbing our non-null parameters if necessary, we can assume λ2 is not
in this spectrum.

For an eigenvector (X, z) = (X (α, a) , z (α, a)) in Rn associated to λ2 we have:Ln−1 (α)X

0

+


a1
(
X(1) − z

)
...

an−1
(
X(n−1) − z

)
−
∑n−1
k=1 ak

(
X(k) − z

)

 = λ2

X
z

 .
(i) Now, assume that in the tuple a, only the real numbers a1 and ai are non zero (this case does not

restrict the generality as is shown later in the proof).
In this case the eigenvector equation above can be written as:Ln−1 (α)X

+


a1
(
X(1) − z

)
(0)

ai
(
X(i) − z

)
(0)

 = λ2

X
 (2)

and:

ai
(
X(i) − z

)
= −a1

(
X(1) − z

)
− λ2z. (3)

1st case: Assume we have X(i) 6= z.
In this case, the theory of perturbations of eigenvalues (see [34, 32]) tells us that the algebraic connectivity
map x 7→ λ2 (α, a1, x) is differentiable in x = ai (since λ2 (α, a1, ai) is simple) and its derivative is given by:

∂

∂x |x=ai
λ2 (α, a1, x) =

t

[
X
z

]
· L (0, · · · , 1, 0, · · · , 0) ·

[
X
z

]
||
[
X
z

]
||2

=
(
X(i) − z

)2
> 0.

Thus, perturbing the parameter ai if necessary, we have:

λ2 = λ2 (α, a1, ai) /∈ S (Ln−1 (α) +M (a1)) ,

where:

M (a1) =


a1 0 · · · 0
(0) (0) · · · (0)
−a1 0 · · · 0
(0) (0) · · · (0)

 .
Under this possible small perturbation of ai, the new algebraic connectivity λ2 (α, a1, ai) and the new Fiedler
vector (X, z) still satisfies X(i) 6= z. From Equation (2) we then obtain the following relation:

(Ln−1 (α) +M (a1)− λ2In−1)X =


a1z
(0)

λ2z − a1z
(0)

 ,
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in which only λ2 depends on the parameter ai. From this we get z 6= 0 and:

X =
1

µ (α, a1, ai)
tCom [Ln−1 (α) +M (a1)− λ2In−1]


a1z
(0)

λ2z − a1z
(0)



=
1

µ (α, a1, ai)
Com

[
Ln−1 (α) + tM (a1)− λ2In−1

] 
a1z
(0)

λ2z − a1z
(0)


where µ (α, a1, ai) denotes the determinant of the matrix Ln−1 (α) + M (a1) − λ2In−1. We are thus led to
look at the comatrix of Ln−1 (α) + tM (a1) − λ2In−1. Let us denote by (ci,j)1≤i,j≤n−1 the entries of this
comatrix and let us first compute all the coefficients ck,1: to do this it suffices to develop with respect to the
first column in the matrix Ln−1 (α) + tM (a1)− λ2In−1. We get:

c11 =

n−2∏
j=1

(
λ′j (1, 1)− λ2

)
,

∀k > 1, ck1 = (−1)
k+1

n−2∏
j=1

(
λ′j (k, 1)− λ2

)
− a1 (−1)

i+1
n−3∏
j=1

(
λ′′j (k, 1, 1, i)− λ2

) ,

where λ′j (1, 1) denote the eigenvalues of the submatrix Ln−1 (1|1) of size n − 2, obtained by deleting the
1th row and the 1th column in Ln−1 (α), λ′j (k, 1) denote the eigenvalues of the submatrix Ln−1 (k|1) of
size n − 2, obtained by deleting the kth row and the 1th column, and where the terms λ′′j (k, 1, 1, i) denote
the eigenvalues of the submatrix (of size n− 3) of Ln−1 (k|1), obtained by deleting the 1th row and the ith
column in Ln−1 (k|1). With the same notations, we have:

c1i = (−1)
1+i

n−2∏
j=1

(
λ′j (1, i)− λ2

)
,

∀k > 1, cki = (−1)
k+i

n−2∏
j=1

(
λ′j (k, i)− λ2

)
+ a1

n−3∏
j=1

(
λ′′j (k, i, 1, 1)− λ2

) .

We notice that all the eigenvalues involved above λ′j (1, 1), λ′j (k, 1), λ′j (1, i), λ′j (k, i) and λ′′j (k, 1, 1, i) , λ′′j (k, i, 1, 1)
are eigenvalues of submatrices of Ln−1 (α): they do not depend on the coefficient ai, and thus changing
slightly ai if necessary, we have that (for a generic choice of the parameter ai) all those eigenvalues are
distinct from the algebraic connectivity λ2 = λ2 (α, a1, ai).

Therefore, for every integer 1 ≤ k ≤ n the coefficients ck1 and cki are (non identically null) polynomials
of degree n− 2 in the eigenvalue λ2 = λ2 (α, a1, ai), each of the coefficients of these polynomials expressions
being independent on the coefficient ai. Thus we conclude that the Fiedler vector X has the form:

X =
z

µ (α, a1, ai)

 P1 (λ2)
...

Pn−1 (λ2)

 ,
Where each Pi are non identically null polynomials of degree n− 1 in the eigenvalue λ2. Therefore, we get
that, up to a perturbation of the (non-null) parameter ai the eigenvector (X, z) has only non-zero components.

10



2nd case: Assume we have X(i) = z.

Then we have a1
(
X(1) − z

)
= −λ2z, with X(1) 6= z, otherwise : λ2 ∈ S (Ln−1 (α)). Thus z 6= 0 and:

X =
1

µ (α, a1, ai)
tCom [Ln−1 (α)− λ2In−1]

[
λ2z
(0)

]
=

1

µ (α, a1, ai)
Com [Ln−1 (α)− λ2In−1]

[
λ2z
(0)

]
.

Now the derivative of the map x 7→ λ2 (α, x, ai) satisfies:

∂

∂x |x=a1
λ2 (α, x, ai) =

(
X(1) − z

)2
> 0,

so, perturbing a1 if necessary, we have this time the relation

ck1 = (−1)
k+1

n−2∏
j=1

(
λ′j (k, 1)− λ2

)
6= 0.

Under this small perturbation of a1, either the new eigenvalue λ2 and the new eigenvector (X, z) satisfy
X(i) 6= z in which case we are led to the 1st case, or they satisfy X(i) = z in which case we get again z 6= 0
and the relation:

X =
z

µ (α, a1, ai)

 c1,1λ2
...

cn−1,1λ2

 ,
which implies the eigenvector (X, z) has only non-zero coordinates.
So we proved that, up to a perturbation of the non-null parameters in the tuple (α, a1, ai), the Fiedler vector
(X (α, a1, ai) , z (α, a1, ai)) has only non-zero coordinates.

(ii) The general situation where a is not identically null is completely similar. Indeed, either there is only
one non-zero coefficient say ai (in which case the situation is easier than in (i), since all the entries ci,j of the

comatrix appeared above are equal in absolute value to |
∏n−2
j=1

(
λ′j (k, l)− λ2

)
|), or more than two of them

are distinct from zero: in this former case the exactly same reasoning as in (i) applies, from which we get
again that the coordinates of the vector X can be expressed as non-null polynomials in the eigenvalue λ2.

Thus in any case, for a generic choice of the non-null parameters in (α, a), i.e for a generic choice of the
non-null weights of our initial Laplacian matrix L, the Fiedler vector (X (α, a) , z (α, a)) associated to the
algebraic connectivity λ2 (α, a) has only non-zero components.

In other words, for any Laplacian matrix L in W, there exists a tuple E in R
n(n−1)

2
+ of norm as small as we

want, such that the matrix L+ L (E ) belongs to W0. QED.

(b) Secondly, let us fix L in W and prove the set of tuples E in R
n(n−1)

2 for which L (E ) belongs to W0

is of Lebesgue measure zero.

Let L a Laplacian matrix in W0 with weights given by the tuple (α, a), and denote by λ2 = λ2 (α, a) its
second eigenvalue and by X = X (α, a) its Fiedler vector. Then in the same notations as in the proof of
structural density we have just done above, either we have:

λ2 ∈ S (Ln−1) ∩S (L)

which implies:

S (Ln−1) ∩S (L) 6= {0},

11



or λ2 does not belong to both of these spectra: in this last case the algebraic connectivity λ2 (α, a) is a non
constant map in one of the parameters of the tuple (α, a), say ai, and we have:

X =

 Q1 (λ2)
...

Qn−1 (λ2)

 ,
with Qi (λ2) = 0 for at least one index i, where the Qi are one variable polynomials of degree n−1, of which
coefficients depend on all the parameters of the tuple (α, a) except ai. Thus we have:

L
|R

n(n−1)
2

({L (E ) ∈ W0}) ≤ L
|R

n(n−1)
2

(
{(E1, E2) ∈ R

n(n−1)
2 : S

(
Ln−1 (E1)

)
∩S (L (E1, E2)) 6= {0}}

)
+ L|R (∪n

i=1Zeros (Qi)) .

It is actually proven in Lemma 7.1 of the Appendix that the first term of this sum is 0. And as a set of
zeros of any non null polynomial in one variable is a finite set in R, therefore:

L
|R

n(n−1)
2

({L (E ) ∈ W0}) = 0,

as desired.

The reader might have observed that the proof of Theorem 3.2 can be applied to all non-zero simple
eigenvalues of a Laplacian matrix in W, and not only to the algebraic connectivity. And as the eigenvector
of the eigenvalue 0 is (1, · · · , 1), the following corollary holds:

Corollary 5.1. The property of having a basis of eigenvectors with only non-zero entries is structurally
generic in W. In other words, denoting by Wa the subset of W formed by Laplacian matrices for which there
exists a basis of eigenvectors, one of them admitting at least one zero component, we have:
- The set Wa

c ∩W is structurally dense in the set W.

- For any L in W, the set of tuples E in R
n(n−1)

2 such that L (E ) belongs to Wa is of Lebesgue measure zero

in R
n(n−1)

2 .

6 Structural genericity of graph Laplacians with simple spectrum:
the directed case

Section 4 was devoted to prove our first structural genericity result in the undirected case: actually Theorem
3.1 extends to the case of directed graphs (i.e simple graphs where edges have been assigned an orientation),
provided we consider directed graphs presenting a particular kind of “connectedness”. Let us first recall the
notion of connectedness in the directed case.

Definition 6.1. A directed graph (or in a short way a digraph) G = (V, E) is strongly connected, if for any
of its nodes i and j, there exists a directed path between i and j. Moreover, A digraph is said to be weakly
connected if its underlying undirected graph, obtained by ignoring the orientations of the edges, is connected.

Given a digraph, a directed rooted spanning tree is a rooted spanning tree for which the edges are directed
towards the root. A diverging rooted spanning tree is a rooted spanning tree for which the edges are directed
away from the root.

As a consequence, there does not always exist a directed rooted spanning tree for a weakly connected
digraph; nor does there always exist a diverging rooted spanning tree (see Figure 2). Notice that other
names are given in the literature for characterizing these objects: for instance diverging rooted spanning
trees are sometimes called arborescence or out-trees, while directed rooted spanning trees are sometimes
called anti-arborescence or in-trees.
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Notation 6.2. We will denote by W ′ the set of Laplacian matrices over weakly connected weighted digraphs,
and by W ′s the subset of W ′ of Laplacian matrices for which the eigenvalues are simple.

As in the symmetric case, 0 is always an eigenvalue for Laplacian matrices over directed graphs: moreover,
0 is simple if and only if the underlying digraph admits a diverging spanning rooted tree. Other results can
be found in the literature on the multiplicity of 0 in terms of number of diverging spanning trees contained
in diverging spanning forests of digraphs (see [20, 8]).

Now, we aim at dealing with Question (Q2) for digraphs: actually Theorem 3.1 cannot be extended to
the whole setW ′: indeed if we take the directed graph G1 (with four vertices) given in Figure 2, then G1 does
not have a directed rooted spanning tree nor a diverging rooted spanning tree. Its corresponding Laplacian
matrix is:

L1 =


0 0 0 0
−a2,1 a2,1 + a2,4 0 −a2,4
−a3,1 0 a3,1 + a3,4 −a3,4

0 0 0 0

 ,
for which the eigenvalue 0 is double, and this for any values of the non-null parameters ai,j . Similarly for the
graph G2 with five vertices (see Figure 2) for which the eigenvalue 0 of the corresponding Laplacian matrix
L2 is double as well.

2 3

4

1 1

5

2

3

4

Figure 2: Two weakly connected digraphs G1 (on the left), G2 (on the right): both do not have a directed
spanning tree nor a diverging spanning tree.

In fact our method used in the proof of Theorem 3.1 works for digraphs which have a diverging rooted
spanning tree.

Notation 6.3. We will denote by U ′ the subset of W ′ of Laplacian matrices over weighted digraphs having
a diverging rooted spanning tree. We will denote by U ′s the subset of U ′ formed by Laplacian matrices with
only simple eigenvalues: U ′s = U ′ ∩W ′s

Definition 6.4. For any matrix M in Sn (R)
c ∩ Zn (R) and any tuple E = (εi,j)1≤i 6=j≤n in Rn(n−1), we

define the matrix M˜ (E ) in Zn (R) by:

∀i 6= j, M˜ (E )i,j =

{
−εi,j if Mi,j 6= 0

0 else

M˜ (E )i,i = −
n∑
j=1
j 6=i

M˜ (E )i,j .

This definition holds only for non symmetric matrices M in Sn (R)
c∩Zn (R): indeed, in the case where M

is symmetric, it would not be interesting to consider a weighted matrix M˜ (E ) that would not be symmetric,

for this would come to lose a structural information on M . Actually, for symmetric matrices M , the definition
that we must consider is M (E ) (see definition 2.3), which is the one fitting well with the undirected setting.
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Definition 6.5. Let M0 ⊂ M two subsets of Sn (R)
c ∩ Zn (R). We say that M0 is structurally dense in

M if the following holds:

∀M ∈M, ∀ε0 > 0, ∃E ∈ Rn(n−1), such that M +M˜ (E ) ∈M0 and ||M˜ (E )|| < ε0.

From this definition of structural density, we deduce the corresponding notion of structural genericity for
matrices in Sn (R)

c ∩ Zn (R). The result now enunciates as:

Theorem 6.6. The property of having only simple eigenvalues is structurally generic in the set of Laplacian
matrices U ′ over digraphs for which exists a diverging rooted spanning tree:
- The set U ′s is structurally dense in the set U ′.
- For any L in U ′, the set of tuples E in Rn(n−1) such that L˜ (E ) belongs to U ′cs ∩ U ′ is of Lebesgue measure

zero in Rn(n−1).

Proof. The proof works in a completely similar as in the undirected case.
(a) First we prove that U ′s is structurally dense in the set U ′. Let L be an element of U ′, and G its associated
weighted, weakly connected digraph.

By definition of U ′, G admits a diverging spanning tree T , rooted at a node, say node 1. Then let’s
consider the longest directed path P in T , say P = {1, 2, · · · , p − 1, p} where p ≤ n. For any tuple
A = (a2,1, · · · , ap,p−1) of distinct elements in R∗+

p−1, the Laplacian matrix LP (A ) (of the path P) weighted
by A is now lower triangular:

LP (A ) =



0 0 0 · · · · · · · · · 0
−a2,1 a2,1 0 0 · · · · · · 0

0 −a3,2 a3,2 0 0 · · · 0

...
. . .

. . .
. . .

0
0 · · · · · · 0 −ap−1,p−2 ap−1,p−2 0
0 · · · · · · 0 0 −ap,p−1 ap,p−1


,

and therefore it has a simple spectrum precisely equal to: S (LP (A )) = {0, a2,1, · · · , ap,p−1}. Now, as
the tree T is diverging, there exists an out-branch B1 starting at a node say 1 ≤ q1 ≤ p, composed
of the nodes q1, p + 1, · · · , p + k1. The edges of B1 being directed away from q1, the Laplacian matrix
LP∪B1∪{p+k1+1,··· ,n} (A ,E1) is still lower triangular (and this for any tuple E1 in R∗+

k1). Therefore, its spec-
trum is directly given by the tuple (A ,E1), from which we deduce again that the non-zero eigenvalues of
LP∪B1∪{p+k1+1,··· ,n} (A ,E1) are all distinct for a generic choice of E1 in R∗+

k1 .

Repeating the process, we get at the end the existence of a tuple E0 ∈ Rn(n−1)+ , for which the Laplacian non
symmetric matrix L˜ (E0) weighted by E0 belongs to U ′s. The rest of the proof is similar to Item (a) in the

proof of Theorem 3.1.

(b) The exactly same reasoning applies, using the Discriminant map.

7 Conclusion and discussions

We have defined and studied structural genericity properties for Laplacian matrices over weighted graphs,
where only perturbations of non-zero entries were allowed, i.e, where the constraint of preserving the ini-
tial graph topology is imposed. Thanks to constructive methods, we proved that having simple spectrum
and having a Fiedler vector with only non-zero components are both structurally generic for Laplacians of
connected graphs.
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According to a theorem by Fiedler on graph partitioning (see [17]), given a connected undirected weighted
graph G, if the coordinates vi of the Fiedler vector v are all distinct from zero, then the set C of edges (i, j)
for which we have vivj < 0 forms a cut of G into two connected components, namely the set G1 of nodes i for
which v (i) > 0 and the set G2 of nodes i for which v (i) < 0. In this case the partitioning of G corresponding
to the cut C is uniquely determined (which is not always true) by G1, G2.

Therefore, our result given by Theorem 3.2 adds a more precise information to this graph partitioning
theorem: namely the fact that generically (in the structural meaning we have defined in this paper), the
coordinates of the Fiedler vector always provide such a partition into two connected components. This
refinement of the Fiedler’s partitioning result has applications to the theory of synchronization of diffusively
coupled dynamical systems. We will show in a future paper how we can use these genericity results to
understand the effects of structural changes on the synchronizability of complex systems.

Lastly, we conjecture that for a generic choice of the non-null weights of a given graph, the Fiedler vector
has only distinct coordinates. This would be another extension of Theorem 3.2, useful as well for studying
synchronization loss or synchronization enhancement in coupled networks. Such a direction will be followed
in some other future works.
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Appendix

Here, we prove the following result used in the proof of Theorem 3.2 above, which asserts that given a
Laplacian matrix L over a connected undirected weighted graph G, then for a generic choice of the weights
of L, the non-null eigenvalues of this matrix are not eigenvalues of the Laplacian matrix of the subgraph of
G formed by the nodes 1, · · · , n− 1:

Lemma 7.1. Let L a Laplacian matrix in W over a graph G with n nodes. Let Ln−1 the Laplacian matrix
of the subgraph of G formed by the first n − 1 nodes. Then, for a generic choice of the weights of L, the
following holds:

S (Ln−1) ∩S (L) = {0}.

More precisely, the set of parameters (E1,E2) in R
(n−1)(n−2)

2 × Rn−1 for which we have

S
(
Ln−1 (E1)

)
∩S (L (E1,E2)) = {0}

is dense and its complement is of Lebesgue measure zero in R
n(n−1)

2 .

Before we prove this lemma, we need the following auxiliary result:

Lemma 7.2. Let P be a path over p nodes. Then, there exists a tuple b = (b1, · · · , bp−1) in R∗+
p−1 such

that for the Laplacian matrix LP (b) weighted by b, the eigenvalues are simple:

S (LP (b)) = {0 < λ2 (b) < · · · < λp (b)}

and the eigenvectors:

(1, X2 (b) , · · · , Xp (b))

satisfy:

∀k ∈ {2, p} :

p∏
i=1

Xk (b)(i) 6= 0.
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Proof. Let P be a path over p nodes, with all weights equal to one and LP be its associated Laplacian matrix.
Then denoting by Lp−1 the Laplacian matrix of the subpath over the nodes 1, · · · , p− 1, with weights equal
to one, we can write:

LP =



0
...

Lp−1 +D (0, · · · , 0, 1) 0
...
−1

0 · · · 0 · · · −1 1


,

where D (0, · · · , 0, 1) stands for the diagonal matrix of size p − 1 of which entries are given by the tuple
(0, · · · , 0, 1). Some of the components of the eigenvectors of LP can be zero (see Remark 7.3): the idea is to
obtain the desired tuple b from a perturbation of the tuple (1, · · · , 1).
It is well known that:

S (LP) = {0 < 2− 2 cos

(
π

p

)
< 2− 2 cos

(
2π

p

)
< · · · < 2− 2 cos

(
π (p− 1)

p

)
}

S (Lp−1) = {0 < 2− 2 cos

(
π

p− 1

)
< 2− 2 cos

(
2π

p− 1

)
< · · · < 2− 2 cos

(
π (p− 2)

p− 1

)
}

and consequently:

S (LP) ∩S (Lp−1) = {0}.

Now, if λ is a strictly positive eigenvalue of LP , there exists a non-null vector

[
X
z

]
such that:Lp−1X +

[
(0)

−λz

]
= λX

−
(
X(p−1) − z

)
= λz

and as λ /∈ S (Lp−1), thus z 6= 0 and

X =
1

det [Lp−1 − λIp−1]
tCom [Lp−1 − λIp−1]

[
(0)
λz

]
.

We now use the same argument as in the proof of Theorem 3.2: as z 6= 0, we have X(p−1) 6= z and so

∂

∂x |xp=1
λ (1, · · · , 1, xp) =

(
X(p−1) − z

)2
||X||2 + z2

> 0. Thus perturbing the value xp = 1 in 1 + εp we have that the

new eigenvalue λ (1, · · · , 1, 1 + εp) (corresponding to a new eigenvector

[
X (1, · · · , 1, 1 + εp)
z (1, · · · , 1, 1 + εp)

]
) is not in the

spectra of the submatrices of Lp−1, and still does not belong to the spectrum of S (Lp−1). Therefore, as in the
proof of Theorem 3.2, the coordinates of this new eigenvector (associated to the eigenvalue λ (1, · · · , 1, 1 + εp))
are all non-zero polynomial expressions in λ (1, · · · , 1, 1 + εp). Perturbing again the value 1 + εp if necessary,
we get that all these polynomial expressions are distinct from zero:

p−1∏
i=1

X (1, · · · , 1, 1 + εp)(i) z (1, · · · , 1, 1 + εp) 6= 0.

And this holds for any eigenvector of any strictly positive eigenvalue of LP (1, · · · , 1, 1 + εp). QED.
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Remark 7.3. Notice that the eigenvectors of the Laplacian matrix of the undirected unweighted path with p
nodes are (1, X2, · · · , Xp), with:

Xk(i) = cos

(
π (k − 1) i

p
− π(k − 1)

2p

)
.

It can happen that an entry of Xk is zero: for instance if p = 10, k = 3 and i = 3. Therefore Lemma 7.2 is
not true for the tuple (1, · · · , 1): we needed to perturb this tuple to prove Lemma 7.2.

With Lemma 7.2 we can now prove Lemma 7.1:

Proof of Lemma 7.1. Let Tn a spanning tree of G and P the longest path inside Tn: reordering the nodes if
necessary we can assume P = {1, 2, · · · , p}. Applying Lemma 7.2, let us take a tuple b = (b1, · · · , bp−1) of
strictly positive numbers such that:

S (LP (b)) = {0 < λ2 (b) < · · · < λp (b)}

with eigenvectors:

(1, X2 (b) , · · · , Xp (b))

satisfying:

∀k ∈ {2, p} :

p∏
i=1

Xk (b)(i) 6= 0.

As in the proof of Theorem 3.1 we look at the edges of the tree Tn that do not belong to the path P: starting
from the root 1 of the tree, let us consider the first out-branch B1 of Tn, and inside B1, the first of these
edges, say E1 = (q1, p+ 1), weighted by a real number αp.

We have:

S (LP∪E1 (b, αp)) = {0, λ2 (b, αp) , · · · , λp+1 (b, αp)},

with:

{λ2 (b, 0) , λ3 (b, 0) · · · , λp+1 (b, 0)} = {0, λ2 (b) , · · · , λp (b)}.

For αp > 0 small enough the second eigenvalue λ2 (b, αp) > 0 is a simple one, since it is a very small
perturbation of the double eigenvalue 0 of LP∪{p+1}. Moreover, since λk (b, 0) is simple we can apply again
the perturbation formula to get:

∀k ∈ {3, · · · , p+ 1} :
∂

∂xp
λk (b, xp)|xp=0 =

Xk−1 (b)
2
(q1)

||Xk−1 (b) ||2
> 0.

Therefore the spectrum of LP∪E1 (b, αp) is entirely perturbed, i.e it does not intersect the spectrum of LP (b)
(except in the zero eigenvalue):

S (LP∪E1 (b, αp)) ∩S (LP (b)) = {0}.

Besides, for 3 ≤ k ≤ p+ 1, let us write the eigenvectors of LP∪E1 (b, αp) as:

{1, X2 (b, αp) , · · · , Xp+1 (b, αp)} = {
[
1
1

]
,

[
U2 (b, αp)
z2 (b, αp)

]
, · · · ,

[
Up+1 (b, αp)
zp+1 (b, αp)

]
}.
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It now suffices to use the same argument as in the proof of Theorem 3.2 and of Lemma 7.2. Writing the
eigenvalue equation LP∪E1 (b, αp)Xk (b, αp) = λk (b, αp)Xk (b, αp) we obtain the relation Xk (b, αp)(q1) 6=
zk (b, αp) otherwise λk (b, αp) would belong to the spectrum S (LP (b)). Therefore zk (b, αp) 6= 0 and we
have:

Uk (b, αp) =
1

det [LP (b)− λk (b, αp) Ip]
tCom [LP (b)− λk (b, αp) Ip]

 (0)
λk (b, αp) zk (b, αp)

(0)

 ,

from which we conclude again that perturbing the value αp if necessary, Uk (b, αp) has only non- zero coor-
dinates, and the same holds for all the eigenvectors X2 (b, αp) , · · · , Xp+1 (b, αp).

Repeating the process for the other edges of the first out-branch B1 and for the other out-branches of the
tree Tn, we get the existence of a tuple D in R∗+

n−2 for the subtree Tn−1 (formed by the nodes (1, · · · , n− 1))
of Tn and of a real number αkn > 0 such that for the tuple E = (D , αkn) we have:

S (LTn (E )) = {0 < λ2 (E ) < · · · < λn (E )}

∀k ∈ {2, n} :

n∏
i=1

Xk (E )(i) 6= 0,

and:

S
(
LTn−1 (D)

)
∩S (LTn (E )) = {0}

where {1, X2 (E ) , · · · , Xn (E )} are the eigenvectors associated to the eigenvalues λk (E ). Consequently,
denoting by Res the resultant map (recall that for two polynomials P,Q we have Res(P,Q) = 0 if and only
if P and Q have a common root), we conclude the map RL defined by:

RL : R
(n−1)(n−2)

2 × Rn−1 → R

(E1,E2) 7→ Res

(
χLn−1(E1)

X
,
χL(E1,E2)

X

)
,

is a non-null polynomial map. Indeed let us complete the tuple E found above by adding some 0 so as to

obtain a tuple (E0,E ′0) in R
n(n−1)

2
+ . We have proved above that:

RL (E0,E
′
0) = Res

(χLTn−1
(D)

X
,
χLTn(E)

X

)
6= 0.

Finally, as in the proof of Theorem 3.1, we thus conclude that the set of tuples (E1,E2) for which we have

RL (E1,E2) = 0, is of Lebesgue measure 0 in R
n(n−1)

2 and is of complement dense in R
n(n−1)

2 . QED.
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