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Abstract. Under high load, the automated dispatching of service vehicles for
the German Automobile Association (ADAC) must reoptimize a dispatch for
100–150 vehicles and 400 requests in about ten seconds to near optimality. In
the presence of service contractors, this can be achieved by the column gener-
ation algorithm ZIBDIP. In metropolitan areas, however, service contractors
cannot be dispatched automatically because they may decline. The problem:
a model without contractors yields larger optimality gaps within ten seconds.
One way out are simplified reoptimization models. These compute a short-
term dispatch containing only some of the requests: unknown future requests
will influence future service anyway. The simpler the models the better the
gaps, but also the larger the model error. What is more significant: reop-
timization gap or reoptimization model error? We answer this question in
simulations on real-world ADAC data: only the new models ShadowPrice and
ZIBDIPdummy can keep up with ZIBDIP.

1. Issues and Motivation

Currently, the German Automobile Association (ADAC) evaluates an automated
dispatching system for service vehicles (units) and service contractors (contractors)
on the basis of exact cost-reoptimization. This means that a current dispatch is
maintained, which contains all known yet unserved requests and which is near
optimal on the basis of the current data; whenever a unit becomes idle its next
request is read from the current dispatch; at each event (new request, finished
service, etc.) the dispatch is updated by a reoptimization run.

A feasible current dispatch for all known requests and available service vehicles
is a partition of the requests into tours for units and contractors such that each
request is in exactly one tour and each unit drives exactly one tour (maybe directly
to its home position) so that the cost function is minimized. Cost contributions
come from driving costs for units, fixed service costs per requests for contractors,
and a strictly convex lateness costs for violation of soft time windows at each
request (currently quadratic). The latter cost structure is chosen so as to avoid
large individual waiting times for customers.

It is not a-priori clear that such a rigorous reoptimization yields the best, or
even a good, long-term cost (the online issue of the dispatching problem). In-
deed, at times in the literature it is claimed that exact reoptimization (i.e., with
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small optimality gap) does not pay in practice because of the unknown future re-
quests [1, p. 5]. In the case of this particular application, however, the results of
exact reoptimization are satisfying [2], in concordance with [3, Sec. 8.4].

Although the reoptimization problem, which is modeled as a set partitioning
problem for tours, has an astronomical number of variables, it can be solved by
a dynamic column generation procedure. An effective method to obtain provably
good solutions in ten seconds (the real-time aspect of the dispatching problem) is
dynamic pricing control, which is the main feature of our ZIBDIP algorithm (a
thourough description of the algorithm and computational results can be found
in [4]).

As it turns out, the fixed costs for service by contractors bound the dual values of
requests. Thus, contractors substantially contribute to the success of ZIBDIP. The
contractor, however, may in practice decline to serve suggested requests, in which
case this request has to be manually reentered into the system: a time consuming
process. In metropolitan areas, contractors decline so often that the ADAC decided
to remove contractors from the model.

In simulations on ADAC production data (three days in December 2002 with high
load) without contractors, we encountered a significant reoptimization gap. For
2002/12/13, e.g., Fig. 1 shows the gap of the reoptimization result to the respective
lower bound coming from the optimal solution of the LP relaxation (this lower
bound was computed a-posteriori for each reoptimization). The reoptimization
still works well in most cases, but under high load the solutions – delivered after
ten seconds – exhibit optimality gaps around 3% on average but up to 10% in peak
load situations.
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Figure 1. Optimality gap over time of ZIBDIP (the load ratio is
the number of requests per unit in a reoptimization problem)

One way to overcome this problem is to consider simplified reoptimization models

that stem from the following considerations: In principle, for each unit we only have
to determine the next request to work on. The complete dispatch is computed only
to pick up future synergies by considering more than one request per unit. Synergies
that are implemented only very far in the future will be disturbed by new requests
anyway; therefore, an exact pre-calculation of the best decisions in, say, two hours
may not really be necessary; consequently, one can try to cover only a subset of

requests in a reoptimization step.
The issue of this experimental work is: should one stick to the complete model

and accept occasional substantial reoptimization gaps, or is it better to simplify
the reoptimization model so as to eliminate the reoptimization gap? This question
is answered on the basis of simulation studies, performed on the aforementioned
ADAC production data: we first compare the original ZIBDIP reoptimization to
several methods to select subsets of requests that have to be covered by any solution
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of the reoptimization run. Then ZIBDIP competes with two simple online heuristics
for the ZIBDIP model in order to estimate how even larger reoptimization gaps
harm in the long run.

2. Simplified Models

We developed and evaluated the following strategies for the selection of requests
to be covered in a reoptimization run. In the sequel, we describe the original and
each simplified model in more detail.

In all these models, there is a binary selection variable xT for each feasible tour
T . Such a tour is given by a unit u and a sequence of requests to be served by u

in the given order. We call the set of all feasible tours T and the set of all feasible
tours for unit u is written as Tu.

We denote by cT the cost coefficient of tour T . This is a weighted sum of
strictly convex late costs, linear drive costs, and strictly convex overtime costs.
Late costs in the reoptimization are incurred whenever a request is served after a
waiting time of more than 15min. The true target for the waiting time is higher.
The 15min deadline in the reoptimization problem was derived from the following
consideration: the true waiting time for a request should lead to the same lateness
costs as the fixed contractor costs for serving that request. This is motivated by
the wish that requests that can not be served inside the true time window by a unit
should be served by a contractor in order to reach the true target time. The exact
formula including the numerical values of the coefficients of the cost function can
not be disclosed here.

Let (avT ) be the incidence matrix of requests and tours.

2.1. The Original Model ZIBDIP. The original reoptimization problem solved
by ZIBDIP without contractors reads as follows.

min
∑

T∈T

cT xT s.t.

∑

T∈T

avT xT = 1 ∀requests v(Partitioning Requests)

∑

T∈Tu

xT = 1 ∀units u(Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T(Binary Variables)

This model guarantees that, after every reoptimization, each request is assigned
to exactly one unit because of the set partitioning constraint. Every unit has to
drive exactly one tour, where the direct move to its home position is also a feasible
tour, the drive-home tour.

2.2. The Simplified Model 4-ZIBDIP. Select those requests that are among
the four closest to some unit. This can be generalized to k-ZIBDIP. In the following,
k-close requests are requests that are among the k closest to some unit. In formulae,
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we obtain the following model:

min
∑

T∈T

cT xT s.t.

∑

T∈T

avT xT = 1 ∀k-close requests v(Partitioning k-Close Requests)

∑

T∈Tu

xT = 1 ∀units u(Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T(Binary Variables)

Since this model does not guarantee the service for all requests even under low
load, one has to switch back and forth between ZIBDIP and 4-ZIBDIP. In our
experiments, we switch to 4-ZIBDIP whenever the load ratio surpassed a value
of 2; we switch back to ZIBDIP whenever the load ratio drops below a value of 2.

2.3. The Simplified Model PTC (Prescribed Total Cover). Relax the set
partitioning condition to set packing, and require that a request set of cardinality
twice the number of units is covered by tours of units. This leads to the following
model, where nT is the number of requests in tour T :

min
∑

T∈T

cT xT s.t.

∑

T∈T

avT xT ≤ 1 ∀requests v(Packing Requests)

∑

T∈T

nT xT ≥ 2|units|(Cardinality)

∑

T∈Tu

xT = 1 ∀u ∈ U(Partitioning Vehicles)

xT ∈ {0, 1} ∀T ∈ T(Binary Variables)

This model requires at least twice as many requests as units in the system, which
is the case under high load; under low load this may be infeasible, so one has to
switch back and forth between ZIBDIP and PTC accordingly. In our experiments,
we switch to PTC whenever the load ratio surpassed a value of 2; we switch back
to ZIBDIP whenever the load ratio drops below a value of 2.

2.4. The Simplified Model ShadowPrice. Solve the LP relaxation of ZIBDIP.
To find an integral solution, relax the set partitioning condition to set packing and
change the cost of each tour to its reduced cost from the hopefully near optimal
LP solution. In the following, the new cost coefficient c̃T of a tour T is the reduced

cost of Tour T w. r. t. the best LP solution that can be found in time. Because the
LP solution algorithms works by dynamic column generation, this solution is an
optimal solution to the last RLP that could be solved in time. The resulting model
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reads as follows:

min
∑

T∈T

c̃T xT s.t.

∑

T∈T

avT xT ≤ 1 ∀requests v(Packing Requests)

∑

T∈Tu

xT = 1 ∀units u(Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T(Binary Variables)

In this model, requests are assigned to units only if their LP dual prices together
with the drive-home cost of a unit pay enough to weigh out the primal costs of
their service. This requires that the LP relaxation can be solved fast, since the LP
is not simplified at all.

2.5. The Simplified Model ZIBDIPdummy. Introduce a dummy contractor.
This contractor can be assigned arbitrarily many requests at the same time at no
extra cost, i.e., in reality, these requests are unassigned for the moment. In order
to enforce a cost for the assignment to the dummy contractor, its arrival time at
any request is a fixed time, the dummy contractor delay. In our case, 135min were
chosen. In the following, dv is the dummy contractor delay, i.e., the late cost for
135min additional delay at v (on top of the current age of v). This leads to the
following model:

min
∑

T∈T

cT xT +
∑

v∈requests

dvxv s.t.

∑

T∈T

avT xT +
∑

v∈requests

xv = 1 ∀requests v(Partitioning Requests)

∑

T∈Tu

xT = 1 ∀units u(Partitioning Units)

xT ∈ {0, 1} ∀T ∈ T(Binary Variables)

This model implies that, in an optimal solution, for any request in a tour of a
unit, service will start after at most 135 minutes after reoptimization; otherwise,
the request would have been assigned to the dummy contractor.

3. Simplified Reoptimization Algorithms

We furthermore evaluated two heuristics for the original model, which where
used in the reoptimization process as replacements for ZIBDIP. One should men-
tion that in each reoptimization with either model, the solutions of the previous
reoptimization are reused as start solutions – a simple but essential technique to
stabilize the dispatching process in case of occasional suboptimal reoptimization.

3.1. The Simplified Algorithm BestInsert. A new dispatch is obtained by
taking the dispatch of the previous reoptimization, removing all requests that have
been served in the meantime, and inserting new requests at minimal additional cost
w. r. t. to the original ZIBDIP-model.



6 BENJAMIN HILLER, SVEN O. KRUMKE, AND JÖRG RAMBAU

3.2. The Simplified Algorithm 2-Exchange. A first tentative dispatch is com-
puted by BestInsert. This dispatch is then improved by successively exchanging
two requests between distinct time slots in the dispatch if this decreases the cost.
It has to be noted that the complicated cost function for tours leads to quite some
computational effort for the calculation of the 2-Exchange solutions.

4. Computational Results

The simulation data stems from three days of production at ADAC in December
2002; instance sizes are given in Table 1. Depending on the instance, between 1700
and 2100 reoptimization runs where triggered.

instance requests units requests per unit

2002/12/07 2123 125 16.98
2002/12/13 2537 146 17.38
2002/12/14 1731 131 13.21

Table 1. Sizes of high load instances used for simulation

The software ran on a standard Linux PC, 2.4GHz Pentium 4 CPU, 4GB RAM,
distribution Suse 9.0, kernel 2.4.21-202-smp, LP solver CPLEX 8.0, compiled with
gcc 3.3.1. Each reoptimization run was interrupted after 10 seconds run-time.

4.1. Simplified Models. First of all, we checked whether the simplified models
can reduce the optimality gaps of the reoptimization solutions that could be com-
puted in 10 s (see Fig. 2). It can be seen that all models reduce the gap significantly,
i.e., the corresponding optimization problems are easier to solve in 10 s.

It has to be noted, though, that for 4-ZIBDIP and PTC the simplified model
was only in effect for load ratios above two. Some single large optimality gaps stem
from switches back to ZIBDIP because ZIBDIP has to run essentially without a
start solution. This discontinuity in operation is certainly a draw-back of 4-ZIBDIP
and PTC.

Next, we investigated the cost over time w. r. t. the reoptimization cost function,
designed in cooperation with ADAC.

The results: only ShadowPrice and ZIBDIPdummy are competitive against ZIB-
DIP, although ShadowPrice seems to degrade in performance in the largest in-
stance (b). In two out of three instances, ShadowPrice and ZIBDIPdummy have even
slightly lower long-term cost than ZIBDIP, though by a small margin. In the largest
instance with the most difficult reoptimization problems, however, the original ZIB-
DIP is superior. On average, however, the results are in favor of ZIBDIPdummy.

Since the reoptimization cost function of ADAC is quite a complicated mixture
of late, drive, and overtime costs, we decided to investigate two standard measures
on the so-called late time vectors (see Fig. 4 and 5). The late time of a request
is its waiting time portion that exceeds the allowed waiting time, fixed by ADAC.
We calculated the L1 norms and the L2 norms of the late time vectors (one entry
for each request). The former norms measure the avarage waiting time, the latter
norms penalize in particular large individual late times, which is desirable from a
fairness point of view.

It is apparent, that w. r. t. these late time measures, ZIBDIPdummy is never
worse than second best; moreover, it performs best in four out of six evaluations.
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(a) ZIBDIP
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(b) 4-ZIBDIP
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(c) PTC
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(d) ZIBDIPdummy

Figure 2. Optimality gaps and load ratios for simplified models
and ZIBDIP. The optimality gap of ShadowPrice is inevitably in-
finite, since the lower bound the LP provides w. r. t. the modified
cost (which is the reduced cost) is zero

ShadowPrice shows the worst L1 norms, although the L2 norms are good. We have
no explanation for this.
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Figure 3. Comparison of ZIBDIP and simplified models w. r. t.
the nonlinear cost function used by ADAC.

The good L1 norms of PTC are due to the fact that, obviously, individial requests
are postponed in favor of new requests that can be served faster. This can be seen
very clearly in the L2 norm diagrams, in which PTC performs worst. Uncontrolled
deferment of requests is a very undesired property of an online algorithm. Therefore,
PTC can not be recommended for tasks in which fairness is an issue. In our
application, fairness certainly is an issue, whence the ADAC cost function contains
a strictly convex waiting time penalty.

The answer to our main question is that the model error of most of our high-
load models leads to worse long-term behaviour than the computational error that
ZIBDIP produces (Fig. 3). Therefore, model simplifications have to be treated with
great care. In our case, ZIBDIPdummy delivers the overall slightly best solution. One
needs to be careful, though: a substantially smaller contractor delay of 45min would
lead to a tiny reoptimization gap; it, however, would at the same time produce
unacceptable long-term costs because too many requests stay unassigned for too
long. (This was, by the way, observed when we were looking for a good dummy
contractor delay. Thus, ZIBDIPdummy involves some parameter tuning that the
original ZIBDIP does not.)

4.2. Simplified Reoptimization Algorithms. The results so far could lead us
to the conclusion to keep the orginal model but to use simplified reoptimization
algorithms, since it seems that the optimality gap does not harm too much. Af-
ter all, the implementation of a dynamic column generation procedure means a
substantially larger effort, which is important especially in the industrial context.

Since we hear quite frequently such arguments in order to promote the use of
heuristics rather than exact mathematical programming methods, we followed also
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Figure 4. ZIBDIP vs. simplified models: L1-norm of late time

this line in our simulation experiments and found out the following: Larger com-
putational errors in the reoptimization can increase the long-term costs even more
significantly than the model errors above.

This is most incisively shown by the bad performance of BestInsert (Fig. 6, 7,
and 8). Even 2-Exchange can not catch up with ZIBDIP and ZIBDIPdummy in the
heavier instances. In the largest instance (b), 2-Exchange ends up at a long-term
cost of 20 % above ZIBDIP and ZIBDIPdummy. Especially striking is the fact that,
in the large instance, the cost of 2-Exchange is constantly increasing over time
relative to ZIBDIP. That means: the reoptimization errors accumulate.

In particular: in our application it is certainly not true, that deliberately sticking
to the suboptimal solutions of heuristics like BestInsert in order to leave space for
future requests can yield superior long-term behavior (compare [1, p. 5]). We are
not saying that reoptimization is the best possible policy, maybe not even in our
application. We claim: if anything is wrong with the reoptimization policy then this
defect is not cured by using suboptimal solutions to the reoptimization problems.

The good overall performance of ZIBDIPdummy may stem not only from clos-
ing the optimality gap in the reoptimization process; it seems, moreover, that
the special model of ZIBDIPdummy makes perfectly sense in the dynamic environ-
ment: since requests that are assigned to the dummy contractor would otherwise
be served quite far in the future, with a high probability their position in the dis-
patch will change anyway. These considerations led us to the conclusion to install
ZIBDIPdummy as the default reoptimization model in the automatic dispatching
software for ADAC.
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Figure 5. ZIBDIP vs. simplified models: L2-norm of late time
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Figure 6. Comparison of ZIBDIP and the heuristics w. r. t. the
nonlinear cost function used by ADAC.
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Figure 7. ZIBDIP vs. heurisitics: L1-norm of late time.
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Figure 8. ZIBDIP vs. heurisitics: L2-norm of late time.
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5. Significance

The production software for automated dispatching of ADAC service vehicles is
delivered by Intergraph Public Saftety (IPS), based on the ZIBDIP algorithm. In
the view of the results presented in this work, ADAC has filed a change request for
the production software: ZIBDIPdummy is now the standard reoptimization model
because it has proven to be more robust against sudden load increase. The key
learning is that rigorous reoptimization on the basis of mathematical programming
– though myopic w. r. t. unknown future requests – yields the best results in this
particular application. Whether or not statistic information about future requests
can be fruitfully ingetrated into the reoptimization framework, is work in progress.
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