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LOW-DIMENSIONAL FACES OF RANDOM 0/1-POLYTOPES

VOLKER KAIBEL

Abstract. Let P be a random 0/1-polytope in R
d with n(d) vertices, and denote by νr(P ) the

quotient of the number of faces of P with exactly r vertices and
(

n(d)
r

)

(the r-density of P ). For each
r ≥ 3, we establish the existence of a sharp threshold for the r-density and determine the values of
the threshold numbers τr such that, for all ε > 0,

E [νr(P )] =

{

1 − o(1) if n(d) ≤ 2(τr−ε)d for all d

o(1) if n(d) ≥ 2(τr+ε)d for all d

holds for the expected value of νr(P ). The threshold for r = 2 has already been determined in [8].
In particular, these results indicate that the high densities often encountered in polyhedral com-

binatorics (e.g., the cut-polytope has both 2- and 3-density equal to one) is due to the geometry of
0/1-polytopes rather than to the special combinatorics of the underlying problems.

1. Introduction and Results

Over the last decades, investigations of various special classes of 0/1-polytopes (convex hulls of
sets of 0/1-points) have not only lead to beautiful structural results on combinatorial optimization
problems, but also to powerful algorithms. Consequently, there has been some effort to learn more
about the general class of 0/1-polytopes (see [11]).

In the 1980’s, e.g., several results on the graphs of 0/1-polytopes have been obtained, most
notably Naddef’s proof [9] that they satisfy the Hirsch-conjecture. A quite spectacular achievement
in 2000 was Bárány and Pór’s theorem [2] stating that random 0/1-polytopes (within a certain
range of vertex numbers) have super-exponentially (in the dimension) many facets. Their proof is
based on the methods developed in the early 1990’s by Dyer, Füredi, and McDiarmid [4], in order
to show that the expected volume of a random d-dimensional 0/1-polytope with n vertices drops
from (almost) zero to (almost) one very quickly with n passing the threshold 2(2/

√
e)d.

While Bárány and Pór’s result sheds some light on the highest-dimensional faces of random 0/1-
polytopes, we investigate their lower dimensional faces in this paper. We define the r-density νr(P )
of a polytope P with n vertices to be the number of faces of P with exactly r vertices devided by
(

n
r

)

. Thus, νr(P )=1 if and only if P is r-neighborly in the usual sense (see, e.g., [10]).
For r = 2, τ2(P ) is the density of the graph of P . In this case, a threshold result for random

0/1-polytopes has recently been obtained in [8]. However, for specific classes of 0/1-polytopes, high
r-density has been observed also for larger values of r: For example, cut-polytopes have both 2-
and 3-density equal to one, i.e., every triple of vertices makes a triangle-face (see [1, 3]). Note that

cut-polytopes (of complete graphs) have 2Θ(
√

d) vertices.
Here, we obtain that there is a sharp threshold for the r-density of random 0/1-polytopes for all

(fixed) r. The threshold values nicely extend the results for r = 2, while the proof becomes more
involved and needs a heavier machinery (the one developed in the above mentioned paper by Dyer,
Füredi, and McDiarmid). As a pay-back, the proof, however, reveals several interesting insights
into the geometry of (random) 0/1-polytopes.

1.1. Results. Throughout the paper, log(·) and ln(·) will denote the binary and the natural loga-
rithm, respectively. For 0 < ξ < 1, define

h(ξ) := ξ log
1

ξ
+ (1 − ξ) log

1

1 − ξ
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(i.e., h(·) is the entropy function). For any a ∈ R, let [a] := {1, 2, . . . , ⌊a⌋} be the set of all positive
integers not greater than a.

For every r ∈ {2, 3, . . .} and for each i ∈ [ r
2
], we denote by b(r, i) the number of subsets of [r] of

size i or r − i, i.e.,

b(r, i) =

{

2
(

r
i

)

if i < r
2

(

r
r
2

)

if i = r
2

.

In particular, we have
∑

i∈[ r
2
] b(r, i) = 2r − 2. Let us define

Hr :=
1

2r − 2

∑

i∈[ r
2
]

b(r, i)h
( i

r

)

.

Note that, for r ≥ 3 we have 0 < Hr < 1, and H2 = 1.
We define

Vd := {0, 1}d and Qd := [0, 1]d = conv Vd .

Let r ∈ {2, 3, . . .} be fixed. For every d and n ∈ [2d], choose the points S1, . . . , Sr, X1, . . . , Xn ∈ Vd

independently uniformly at random. Let

S := {S1, . . . , Sr} , X := {X1, . . . , Xn} , P := conv (X ∪ S) ,

and denote by
fr(d, n) := P [conv (S) is a face of P ]

the probability that S is the vertex set of a face of P . Note that, since r is constant, for large d, S
will be affinely independent with (very) high probability (see [7]). Therefore, if conv (S) is a face
of P , then it will be an (r − 1)-dimensional simplex-face with high probability.

Now we can formulate our main result.

Theorem 1. For every r ∈ {3, 4, . . .} and for each ε > 0 the following holds: If n : N → N is any
function, then we have

fr(d, n(d)) =

{

1 − o(1) if n(d) ≤ 2(τr−ε)d for all d

o(1) if n(d) ≥ 2(τr+ε)d for all d
,

where
τr = 1 − (1 − 21−r)Hr .

The evolution result on the density of the graphs of random 0/1-polytope obtained in [8] implies
that the statement of Theorem 1 is also true for r = 2 (yielding τ2 = 1

2
).

Figure 1 illustrates the values τr for r ∈ {2, . . . , 50}.

Figure 1. The values τr, 1 − Hr (see Proposition 1), as well as the function h(·).

A slightly different random model is the following: First, choose X ′ among the n-element subsets
of Vd uniformly at random, and then choose S ′ among the r-element subsets of X ′ uniformly at
random. Define P ′ := conv X ′ and
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However, if for some ε > 0, n(d) ≤ 2( 1
2
−ε)d holds for all n, then we have

P
[

|{X1, . . . , Xn(d)}| = n(d)
]

= 1 − o(1) .

Therefore, the statement of Theorem 1 is also true with fr(d, n(d)) replaced by gr(d, n(d)).
Since P [conv S ′ is a face of P ′] = νr(P

′), this proves the result refered to in the abstract:

Theorem 2. Let r ∈ {2, 3, . . .}, ε > 0, and n : N → N be any function. For each d ∈ N, choose an
n(d)-element subset X of {0, 1}d uniformly at random, and denote P := conv X. Then

E [νr(P )] =

{

1 − o(1) if n(d) ≤ 2(τr−ε)d for all d

o(1) if n(d) ≥ 2(τr+ε)d for all d

holds for the expected r-density of P .

1.2. Overview of the proof. The following basic polyhedral facts (consult [10] in case of doubts
– or for background information) are important for our proof :

Remark 1. Let P be a polytope with vertex set V , and S ⊂ V .

(1) conv (S) is a face of P only if the barycenter 1
|S|

∑

s∈S s of S is not contained in conv (V \ S).

(2) conv (S) is a face of P if (and only if) there is an affine halfspace containing S in its
boundary and V \ S in its interior.

(3) If P ⊂ R
d is a 0/1-polytope, and F (S) is the smallest face of Qd containing S, then conv S

is a face of P if and only if conv S is a face of P ∩ F (S).

The structure of the proof is as follows: First, we will (in Section 2) reduce the problem of
determining a threshold for the probability that conv S is a face to the problem of determining a
threshold for the corresponding probability conditioned on the event that S is not contained in a
proper face of the cube (S is spanning). The latter problem finally is resolved in Section 5. There
we need the results of Section 3 (for showing that behind the threshold conv S almost surely is not
a face) and Section 4 (for showing that below the threshold conv S almost surely is a face).

Some of the calculations omitted in this extended abstract are given in the Appendix.

Acknowledgements. Im grateful to the Mathematical Sciences Research Institute at Berkeley for
the generous financial support and the excellent working conditions I enjoyed during my visit in
October/November 2003, when this work has been done. I thank Günter M. Ziegler for comments
on an earlier version of the paper.

2. Reduction to the spanning case

For the rest of the paper, let r ∈ {3, 4, . . .} be fixed.
Again, choose the points S1, . . . , Sr, X1, . . . , Xn ∈ Vd independently uniformly at random, and

let S := {S1, . . . , Sr}, X := {X1, . . . , Xn}, and P := conv (X ∪ S). Denote by F (S) the smallest
face of the cube Qd that contains S. Let d(S) be the dimension of F (S) (i.e., d(S) is the number
of coordinates where not all elements of S agree). If F (S) = Qd (i.e., d(S) = d), then we call S
spanning. Let us define

f̃r(d, n) := P [conv (S) is a face of P |S is spanning] .

In Section 5, we will prove the following result.

Proposition 1. Let r ∈ {3, 4, . . . , }. For each ε > 0, the following holds: If n : N → N is any
function, then we have

f̃r(d, n(d)) =

{

1 − o(1) if n(d) ≤ 2(1−Hr−ε)d for all d

o(1) if n(d) ≥ 2(1−Hr+ε)d for all d
.

Figure 1 illustrates the threshold values 1−Hr. Note that they are not monotone in r. Actually,
this is not surprising: In [8] it was shown that the threshold for f̃2(d, n(d)) is at (2 ± ε)d (thus,
Proposition 1 holds for r = 2 as well, due to 1 − H2 = 0). On the other hand, if r is large, than
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will approximately be equal to that for the general case, for which it is quite plausible that it is
monotonically decreasing with increasing r.

If for all j ∈ [d] we have
∑

i∈[r] Sij ≤ r
2

(where Sij is the j-th component of Si), then we call S
reduced. By appropriate “coordinate flips,” we have

(1) P [conv (S) is a face of P |S is spanning]

= P [conv (S) is a face of P |S is spanning and reduced] .

This is not relevant in this section, but we will exploit it for the proof of Proposition 1 in Sections 3,
4, and 5.

The aim of the current section is to show that Proposition 1 implies Theorem 1.

2.1. Preliminaries. Let A be the (r × d)-matrix whose rows are S1, . . . , Sr. Clearly, d(S) equals
the number of columns of A which are neither 0 (the all-zero vector) nor 1 (the all-one vector).

The random matrix A is distributed in the same way as an r × d matrix is distributed whose
columns are chosen independently uniformly at random from {0, 1}r. For t ∈ {0, 1}r chosen uni-
formly at random, we have P [t 6∈ {0, 1}] = 1 − 21−r.

The de Moivre-Laplace Theorem (see, e.g., [5, Chap. 7]) yields that, for every δ > 0, there is a
Bδ > 0 such that

(2) P
[

|d(S) − (1 − 21−r)d| ≤ Bδ

√
d
]

≥ 1 − δ

holds for all large enough d.
For each δ > 0, define

Kδ(d) :=
{

k ∈ [d] : |k − (1 − 21−r)d| ≤ Bδ

√
d
}

.

Thus, by (2) we have

(3) P [d(S) ∈ Kδ] ≥ 1 − δ

for all large enough d.
Throughout the section, we denote by face the event that conv S is a face of P = conv (S ∪ X).

Furthermore, we denote

n(S) :=
∣

∣{i ∈ [n] : Xi ∈ F (S)}
∣

∣ .

2.2. The case n(d) ≤ 2(τr−ε)d. Let δ > 0 be fixed and let kmin ∈ Kδ such that

P [face | d(S) = kmin] = min
{

P [face | d(S) = k] : k ∈ Kδ(d)
}

.

Then we have
∣

∣d − kmin

1 − 21−r

∣

∣ = o(kmin) .

We therefore obtain

E
[

n(S)
∣

∣ d(S) = kmin

]

= 2kmin−dn(d)

≤ 2kmin−d+(τr−ε)d

≤ 2
1−21−r+τr−1−ε

1−21−r kmin+o(kmin)
.(4)

The fraction in the exponent equals (see Appendix) 1−Hr−ε′ where ε′ := ε
1−21−r > 0. By Markov’s

inequality, we obtain

(5) P [n(S) ≤ 2(1−Hr−ε′/2)kmin | d(S) = kmin] = 1 − o(1) .

Proposition 1 implies

P [face | d(S) = kmin, n(S) ≤ 2(1−Hr−ε′/2)kmin ] = 1 − o(1) .
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2.3. The case n(d) ≥ 2(τr+ε)d. The calculations that are necessary to prove the following lemma
can be found in the Appendix.

Lemma 1. Let α, β, γ > 0 with α + β > 1 + βγ, n(d) := ⌊2αd⌋, k(d) = βd + o(d), and let F be any
k(d)-face of Qd. If X1, . . . , Xn(d) are chosen independently uniformly at random from Vd, then we
have

P
[
∣

∣{i ∈ [n(d)] : Xi ∈ F}
∣

∣ ≥ 2γk(d)
]

= 1 − o(1) .

Now we can prove the second part of Theorem 1 (using Proposition 1). Let δ > 0 be fixed and
let kmax ∈ Kδ such that

P [face | d(S) = kmax] = max
{

P [face | d(S) = k] : k ∈ Kδ(d)
}

.

With α := τr + ε, β := 1 − 21−r, and γ := 1 − Hr + ε, one easily verifies (see Appendix)
α + β > 1 + βγ. Since kmax = (1 − 21−r)d + o(d) we thus obtain from Lemma 1

(6) P [n(S) ≥ 2(1−Hr+ε)kmax | d(S) = kmax] = 1 − o(1) .

The second part of Proposition 1 implies

P [face | d(S) = kmax, n(S) ≥ 2(1−Hr+ε)kmax] = o(1) .

Together with (6), the definition of kmax, and (3), this proves the second part of Theorem 1.

3. Membership probabilities

In this section, we derive (from Dyer, Füredi, and McDiarmid’s paper [4]) suitable lower bounds
on n(d) that, for specified points of Qd, guarantee their membership in our random 0/1-polytopes
with high probablity.

For any z ∈ Qd, let us define

p(z) :=
1

2d
min

{

|T≤ ∩ Vd | : T≤ ⊂ R
d (closed affine) halfspace, z ∈ T≤}

.

For each α > 0, denote

Qα
d := {z ∈ Qd : p(z) ≥ 2−αd} .

For z = (ζ1, . . . , ζd) ∈ int Qd (the interior of Qd), define

H(z) :=
1

d

∑

j∈[d]

h(ζj) .

From Lemmas 2.1 and 4.1 of [4] one can deduce the following fact (for details see the Appendix).
Let us mention that in particular the proof of Lemma 4.1 (needed for part (2) of Lemma 2) is quite
hard. It is the core of Dyer, Füredi, and McDiarmid’s beautiful paper.

Lemma 2. For every α, ε > 0 the following holds:

(1) If n(d) ≥ 2(α+ε)d holds for all d, and X1, . . . , Xn(d) ∈ Vd are chosen independently uniformly
at random, then we have

P [Qα
d ⊆ conv {X1, . . . , Xn(d)}] = 1 − o(1) .

(2) For large enough d,

{z ∈ int Qd : H(z) ≥ 1 − α + ε} ⊆ Qα
d

holds.

The following straight consequence (choose α := 1− β + ε/2) of Lemma 2 is the key to the proof
of the second part of Proposition 1.

Corollary 1. Let β > 0. If n(d) ≥ 2(1−β+ε)d holds for all d, and X1, . . . , Xn(d) ∈ Vd are chosen
independently uniformly at random, then we have

P
[ ]



6 VOLKER KAIBEL

4. Shallow cuts of the cube

This section is the heart of the proof of (the first part of) Proposition 1.
For m ∈ {1, 2, . . .}, let A(m) be an r×M matrix with M := (2r−2)m that has as its columns 2m

copies of each vector v ∈ {0, 1}r with 1 ≤ 1T v < r
2

and m copies of each v ∈ {0, 1}r with 1T v = r
2

(if r
is even). This choice is motivated by the following fact (which is, however, irrelevant in this section):
If S1, . . . , Sr are chosen independently uniformly at random from VM , then the “multiplicity” of
each vector v ∈ {0, 1}r among the columns of A(m) equals the expected number of appearances
of v as a column of the matrix with rows S1, . . . , Sr — conditioned on the event that S is spanning
and reduced.

Let s1, . . . , sr ∈ {0, 1}M be the rows of A(m), and let L(i) be the set of indices of columns that
have precisely i ones. We have |L(i)| = b(r, i)m. Denote by σ(i) the number of ones that any of
the rows has in columns indexed by L(i) (these numbers are equal for all rows). Obviously, we have
σ(i) = i

r
b(r, i)m.

Let b := (β1, . . . , βM) be the barycenter of the rows s1, . . . , sr. For each l ∈ [M ] we thus have

βl = i(l)
r

, if l ∈ L(i(l)). Consequently (with the definition of H(·) from Section 3),

H(b) =
1

M

∑

i∈[ r
2
]

b(r, i) m h
( i

r

)

= Hr .

From Section 3 (see Lemma 2) we know that no hyperplane in R
M that contains b can therefore cut

off significantly less than 2HrM points from VM , and that there are indeed hyperplanes containing b
that do also not cut off significantly more than 2HrM cube vertices. However, for our purposes, it
will be necessary to know that there is a hyperplane containing not only b, but even the entire set
{s1, . . . , sr}, and nevertheless cutting off not significantly more than 2HrM cube vertices.

The next result guarantees the existance of such a hyperplane, i.e., a certain shallow cut of the
cube. Its proof will also reveal the basic reason for the appearance of the function h(·): It is due to
the well-known fact that, for any constant α > 0,

(7)
∑

p∈[αq]

(

q

p

)

= 2h(α)q+o(q) (for q → ∞)

(see, e.g., [6, Chap. 9,Ex. 42]).

Proposition 2. There are coefficients a1, . . . , a⌊r/2⌋ ∈ R, such that the inequality

(8)
∑

i∈[ r
2
]

∑

l∈L(i)

aiξl ≤
∑

i∈[ r
2
]

aiσ(i)

has at most 2HrM+o(M) 0/1-solutions. (By construction, the 0/1-points s1, . . . , sr satisfy the inequal-
ity with equality.)

Proof. For all a1, . . . , a⌊r/2⌋ ∈ R and for each (k1, . . . , k⌊r/2⌋) ∈ N
⌊r/2⌋, let ω(k1, . . . , k⌊r/2⌋) be the

number of 0/1-solutions to (8) with precisely ki ones in components indexed by L(i) for each i. Let
us further define

K(a1, . . . , a⌊r/2⌋) :=
{

(k1, . . . , k⌊r/2⌋) ∈ N
⌊r/2⌋ :

∑

i∈[ r
2
]

aiki ≤
∑

i∈[ r
2
]

aiσ(i)
}

.

Then we have

ω(k1, . . . , k⌊r/2⌋) =

{

∏

i∈[ r
2
]

(

b(r,i)m
ki

)

if (k1, . . . , k⌊r/2⌋) ∈ K(a1, . . . , a⌊r/2⌋)

0 otherwise
.

Consequently, the number of 0/1-points satisfying (8) is precisely

(9)
∑

ω(k1, . . . , k⌊r/2⌋) .
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If, for some i, we have ki > b(r, i)m, then clearly ω(k1, . . . , k⌊r/2⌋) = 0. Thus, the number of
nonzero summands in (9) is O(mr). Below, we will exhibit (constant) coefficients a1, . . . , a⌊r/2⌋ ∈ R

with

(10) ω(k1, . . . , k⌊r/2⌋) ≤ ω(σ(1), . . . , σ(⌊r/2⌋)) 2o(M)

for all (k1, . . . , k⌊r/2⌋) ∈ K(a1, . . . , a⌊r/2⌋). This will eventually prove the proposition, since we have

ω(σ(1), . . . , σ(⌊r/2⌋)) =
∏

i∈[r/2]

(

b(r,i)m
σ(i)

)

=
∏

i∈[r/2]

(

b(r,i)m
(i/r) b(r,i)m

)

=
∏

i∈[r/2] 2
h(i/r) b(r,i)m+o(m)

= 2
∑

i∈[r/2] h(i/r) b(r,i)m+o(m)

= 2HrM+o(m)

(where the third equation is due to (7), and the last one comes from M = (2r − 2)m).
For simplicity, let us define Mi := b(r, i)m. Furthermore, we denote by

B := (0, M1/2] × (0, M2/2] × · · · × (0, M⌊r/2⌋/2]

the box of all points in the open positive orthant of R
⌊r/2⌋ for which no i-th coordinate exceeds Mi/2.

(Note that (σ(1), . . . , σ(⌊r/2⌋) ∈ B.)
For a1, . . . , a⌊r/2⌋ ∈ R define the halfspace

U(a1, . . . , a⌊r/2⌋) :=
{

(ζ1, . . . , ζ⌊r/2⌋) ∈ R
⌊r/2⌋ :

∑

i∈[ r
2
]

aiζi ≤
∑

i∈[ r
2
]

aiσ(i)
}

.

Thus,

K(a1, . . . , a⌊r/2⌋) = U(a1, . . . , a⌊r/2⌋) ∩ N
⌊r/2⌋

holds. If all ai are nonnegative, then we have

max{ω(k1, . . . , k⌊r/2⌋) : (k1, . . . , k⌊r/2⌋) ∈ K(a1, . . . , a⌊r/2⌋)}
= max{ω(k1, . . . , k⌊r/2⌋) : (k1, . . . , k⌊r/2⌋) ∈ B ∩ U(a1, . . . , a⌊r/2⌋) ∩ N

⌊r/2⌋} .

Let us now approximate the function ω by Sterlings formula (see, e.g., [6, Eq. (9.40)])

N ! = Θ
(√

N
NN

eN

)

.

We obtain (for (k1, . . . , k⌊r/2⌋) ∈ K(a1, . . . , a⌊r/2⌋))

Ω(M−r)
∏

i∈[r/2]

MMi
i

kki
i (Mi − ki)Mi−ki

≤ ω(k1, . . . , k⌊r/2⌋) ≤ O(M r)
∏

i∈[r/2]

MMi
i

kki
i (Mi − ki)Mi−ki

.

Therefore, if we define the function η : B → R via

η(ζ1, . . . , ζ⌊r/2⌋) :=
∏

i∈[r/2]

MMi
i

ζζi
i (Mi − ζi)Mi−ζi

,

then it suffices to find nonnegative coefficients a1, . . . , a⌊r/2⌋ ∈ R such that z⋆ := (σ(1), . . . , σ(⌊r/2⌋)
maximizes η over B∩U(a1, . . . , a⌊r/2⌋) (since then (10) holds for (k1, . . . , k⌊r/2⌋) ∈ K(a1, . . . , a⌊r/2⌋)).

In fact, since ln(·) is monotonically increasing, we may equivalently investigate the function

ln
(

η(ζ1, . . . , ζ⌊r/2⌋)
)

=
∑

i∈[r/2]

Mi ln Mi −
∑

i∈[r/2]

(

ζi ln ζi + (Mi − ζi) ln(Mi − ζi)
)

,

and thus find nonnegative coefficients a1, . . . , a⌊r/2⌋ ∈ R such that z⋆ minimizes

η̃(ζ1, . . . , ζ⌊r/2⌋) :=
∑

i∈[r/2]

(

ζi ln ζi + (Mi − ζi) ln(Mi − ζi)
)
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Now we choose ai as (−1) times the i-th partial derivative of η̃ at z⋆, i.e., −(a1, . . . , a⌊r/2⌋) is the
gradient of η̃ at z⋆. One easily calculates (see Appendix)

ai = − ln
σ(i)

Mi − σ(i)

(which is nonnegative due to σ(i) ≤ Mi

2
).

In order to prove that this choice indeed makes z⋆ a minimizer of η̃ over B ∩ U(a1, . . . , a⌊r/2⌋),
let z ∈ B ∩ U(a1, . . . , a⌊r/2⌋) be arbitrary (z 6= z⋆). Define v := z − z⋆, and consider the function
η̃z⋆,z : [0, 1] → R defined via η̃z⋆,z(t) := η̃(z⋆ + tv). The derivative of this function on (0, 1) is (see
Appendix)

(11) η̃′
z⋆,z(t) =

∑

i∈[r/2]

vi ln
σ(i) + tvi

Mi − σ(i) − tvi
.

Consider any i ∈ [r/2], and define ̺(t) := σ(i)+tvi

Mi−σ(i)−tvi
(for all t ∈ (0, 1)). If vi ≥ 0, then ̺(t) ≥ ̺(0),

therefore, vi ln ̺(t) ≥ vi ln ̺(0) = −aivi. If vi < 0, then ̺(t) < ̺(0), and thus, vi ln ̺(t) > vi ln ̺(0) =
−aivi. Hence, in any case the i-th summand in (11) is at least as large as −aivi. Therefore, we
obtain

η̃′
z⋆,z(t) ≥ −

∑

i∈[r/2]

aivi .

Since z ∈ U(a1, . . . , a⌊r/2⌋), we have
∑

i∈[r/2] aivi ≤ 0. Thus, η̃′
z⋆,z(t) ≥ 0 for all t ∈ (0, 1). Since

η̃z⋆,z is continuous on [0, 1], we hence conclude η̃(z⋆) ≤ η̃(z). �

5. The spanning case

Using the material collected in Sections 3 and 4, we will now prove Proposition 1 (and thus, as
shown in Section 2) Theorem 1.

Towards this end, let S1, . . . , Sr, X1, . . . , Xn ∈ Vd be chosen according to the probability distri-
bution induced by our usual distribution (choosing all points independently uniformly at random)
on the event that S := {S1, . . . , Sr} is spanning and reduced (see (1) in Section 2). Let A be the
(r × d)-matrix with rows S1, . . . , Sr. Then A is a random matrix that has the same distribution as
the (r × d)-random matrix A′ which arises from choosing each column independently uniformly at
random from {0, 1}r \ {0, 1}, and then “flipping” all columns with more than r/2 ones. Therefore,
if we denote the columns of A by t1, . . . , td ∈ {0, 1}r, then the tj are (independently) distributed
according to the distribution

P [tj = t] =
κ(t)

2r − 2
=: π(t)

whith

κ(t) =











2 if 1T t < r/2

1 if 1T t = r/2

0 if 1T t > r/2

for each t ∈ {0, 1}r \ {0, 1}.
Define

Tr :=
{

t ∈ {0, 1}r : 1T t ≤ r

2

}

,

and denote, for every t ∈ Tr,

J(t) := {j ∈ [d] : tj = t} .

Let m ∈ N be the largest number such that κ(t)m ≤ |J(t)| holds for all t ∈ Tr. For each t, choose
an arbitrary subset J̃(t) ⊆ J(t) with |J̃(t)| = κ(t)m.

Denote by

∆max := max
{
∣

∣|J(t)| − π(t)d
∣

∣ : t ∈ Tr

}
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From the de Moivre-Laplace Theorem (see, e.g., [5, Chap. 7]) one deduces the following for
each t ∈ Tr: For every γ′ > 0 there is a C ′

γ′ > 0 such that

P
[
∣

∣|J(t)| − π(t)d
∣

∣ ≤ C ′
γ′

√
d
]

≥ 1 − γ′

holds for all large enough d. Since |Tr| is a constant, one can even derive the following stronger
result from this: For every γ > 0 there is a constant Cγ > 0 such that

(12) P
[

∆max ≤ Cγ

√
d
]

≥ 1 − γ

holds for all large enough d.
Let us define

D̃ :=
⋃

t∈Tr

J̃(t)

and d̃ := |D̃| = m(2r − 2). In case of ∆max ≤ Cγ

√
d, we can deduce

(13) d̃ ≥ d − o(d) .

5.1. The case n(d) ≤ 2(1−Hr−ε)d. Let S̃1, . . . , S̃r be the canonical projections of S1, . . . , Sr, respec-
tively, to the coordinates in D̃. Then S̃1, . . . , S̃r form a matrix A(m) as defined in Section 4. Denote,
for each i ∈ [r/2],

L̃(i) :=
⋃

t∈Tr :1T t=i

J̃(t) .

Due to Proposition 2, there are coefficients ã1, . . . , ã⌊r/2⌋ ∈ R such that the inequality

(14)
∑

i∈[r/2]

ãi

∑

j∈L̃(i)

ãiξj ≤
∑

i∈[r/2]

ãi
i

r
b(r, i)m =: a0

has at most 2Hr d̃+o(d̃) many 0/1-solutions (and S̃1, . . . , S̃r satisfy the inequality with equality).
For each j ∈ [d] let

aj :=

{

ãi if j ∈ L̃(i)

0 if j ∈ [d] \ D̃
,

i.e., a1, . . . , ad are the coefficients of (14) considered as an inequality for R
d.

The inequality

(15)
∑

j∈[d]

ajξj ≤ a0

is satisfied with equality by S1, . . . , Sr.
Let us, for the moment, restrict our attention to the event ∆max ≤ Cγ

√
d. Then (15) has at most

2Hr d̃+o(d̃)2d−d̃ = 2Hrd+o(d)

solutions (due to (13).
Define the hyperplane

T≤ :=
{

(ξ1, . . . , ξd) ∈ R
d :

∑

j∈[d]

ajξj ≤ a0

}

,

and let T= be its bounding hyperplane. Thus, we have

(16) S1, . . . , Sr ∈ T= and
∣

∣T≤ ∩ Vd

∣

∣ ≤ 2Hrd+o(d) .

Since n(d) ≤ 2(1−Hr−ε)d, the expected number of points from X lying in T≤ is at most

2Hrd+o(d)

2d
n(d) ≤ 2−εd+o(d) .

Therefore, by Markov’s inequality,

(17) P [X ∩ T≤ = ∅ |∆max ≤ Cγ

√
d] = o(1)
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5.2. The case n(d) ≥ 2(1−Hr+ε)d. From the remarks in the Introduction, we know

(18) P [|S| = r] = 1 − o(1) .

Let γ > 0 be fixed, and assume |S| = r, i.e., the points S1, . . . , Sr are pairwise disjoint. Denote

by b(S) = (β1, . . . , βd) the barycenter of S. For each t ∈ Tr and j ∈ J̃(t), we have

βj =
1T t

r
.

If ∆max ≤ Cγ

√
d holds, we thus have (due to (13))

H(b(S)) = 1
d

(
∑

t∈Tr
mκ(t)h

(

1T t
r

)

+ o(d)
)

= 1
d

(
∑

i∈[r/2] m b(r, i)h(i/r) + o(d)
)

= m(2r−2)
d

Hr + o(1)

= (1 − o(1))Hr + o(1)

Hence, in this case
H(b(S)) ≥ Hr − ε

holds for large enough d, and, due to n(d) ≥ 2(1−Hr+ε)d, Corollary 1 implies

P
[

b(S) ∈ conv (X \ S)
∣

∣ |S| = r, ∆max ≤ Cγ

√
d
]

≥ 1 − o(1) .

Together with (18) and (12), this proves the second part of Proposition 1 (recall Remark 1).
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Appendix

Evaluation of the fraction in (4).

1 − 21−r + τr − 1 − ε

1 − 21−r
= 1 + 1−(1−21−r)Hr−1−ε

1−21−r

= 1 + −(1−21−r)Hr−ε
1−21−r

= 1 − Hr − ε
1−21−r

Proof of Lemma 1. For the sake of readibility, let n := n(d) and k := k(d). For each m ∈ [2γk]
we have

P
[

|{i ∈ [d] : Xi ∈ F}| = m
]

=
(n

m)(2k)m(2d−2k)n−m

(2d)n

≤ nm2km
(

2d−2k

2d

)n

= 2(log n+k)m
(

(

1 − 1
2d−k

)2d−k
)

n

2d−k

.

For d → ∞ we have d− k → ∞ (due to k = βd+o(d)), and therefore, the expression in the biggest
brackets converges to 1/e < 1/2 (where e = 2.71 . . . is Euler’s constant). Thus, for large enough d,
we obtain

P
[

|{i ∈ [d] : Xi ∈ F}| = m
]

≤ 2(log n+k)m(1/2)
n

2d−k

≤ 22γβd+o(d)−2αd−d+βd−o(d)

= 22γβd+o(d)−2(α+β−1)d−o(d)

Since we have α + β − 1 > γβ, we thus obtain

P
[

|{i ∈ [d] : Xi ∈ F}| = m
]

= o(2−2δd

)

for δ := (α + β − 1)/2 (which is positive due to α + β − 1 > γβ > 0).
Therefore, we have

∑

m∈[2γk ]

P
[

|{i ∈ [d] : Xi ∈ F}| = m
]

≤ 2γk o(2−2δd

) = o(1) ,

which proves the lemma.

Verification of α + β > 1 + βγ for (6). We have

α + β = τr + ε + 1 − 21−r

= 1 − (1 − 21−r)Hr + ε + 1 − 21−r

= 1 + (1 − 21−r)(1 − Hr) + ε

and

1 + βγ = 1 + (1 − 21−r)(1 − Hr + ε)

= 1 + (1 − 21−r)(1 − Hr) + (1 − 21−r)ε ,

which proves the claim due to 1 − 21−r < 1 and ε > 0.

The proof of Lemma 2. For any x ∈ [−1, 1]d, let us define

q(x) :=
1

2d
min

{

|T≤ ∩ {−1, 1}d| : T≤ ⊂ R
d (closed affine) halfspace, x ∈ T≤}

.

For each γ > 0, denote

Cγ
d := {x ∈ [−1, 1]d : q(x) ≥ e−γd}

(where e is Euler’s constant). For ξ ∈ (−1, 1) define

1 1 − −
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and for x = (ξ1, . . . , ξd) ∈ (−1, 1)d, define

F (x) :=
1

d

∑

j∈[d]

f(ξj) .

For every µ > 0, let

F µ
d := {x ∈ (−1, 1)d : F (x) ≤ µ} .

Lemma 2.1 of [4] implies (more precisely: the proof of part (b) of that lemma shows) the following:

DFM 1. Let γ, δ > 0. If n(d) ≥ e(γ+δ)d for all d and Y1, . . . , Yn(d) are chosen independently
uniformly at random from {−1, 1}d, then

P [Cγ
d ⊆ conv {Y1, . . . , Yn(d)}] = 1 − o(1)

holds.

Lemma 4.1 of [4] states the following:

DFM 2. Let γ, δ > 0. Then, for all large enough d,

F γ−δ
d ⊆ Cγ

d

holds.

Let us now show, how the results DFM 1 and DFM 2 imply Lemma 2. The linear transformation
Ψ : R

d → R
d defined via

Ψ(x) :=
1

2
(x + 1)

maps [−1, 1]d to Qd by translating and shrinking it. Clearly, we have

(19) q(x) = p(Ψ(x))

for all x ∈ [−1, 1]d.
For each α > 0, we have, for every x ∈ (−1, 1)d,

x ∈ Cα ln 2
d ⇔ q(x) ≥ e−(α ln 2)d

⇔ q(x) ≥ 2−αd

⇔ p(Ψ(x)) ≥ 2−αd

⇔ Ψ(x) ∈ Qα
d .

This shows

(20) Ψ
(

Cα ln 2
d

)

= Qα
d .

Hence DFM 1 (applied with γ = α ln 2 and δ = ε ln 2) implies the first part of Lemma 2.
In order to show the second part, let us first calculate (for each ξ ∈ (−1, 1))

f(ξ) =
1 − h(1

2
(ξ + 1))

log e
.

Indeed, this follows from the following computation (for every ζ ∈ (0, 1)):

f(2ζ − 1) = 1
2

(

2ζ ln 2ζ + (2 − 2ζ) ln(2 − 2ζ)
)

= ζ ln 2ζ + (1 − ζ) ln(2 − 2ζ)

= ζ(ln 2 + ln ζ) + (1 − ζ)(ln 2 + ln(1 − ζ))

= ln 2 + ζ ln ζ + (1 − ζ) ln(1 − ζ)

= ln 2 −
(

ζ ln 1
ζ

+ (1 − ζ) ln 1
(1−ζ)

)

= 1
log e

(

log 2 −
(

ζ log 1
ζ

+ (1 − ζ) log 1
(1−ζ)

))

−
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In particular, we have (for all x = (ξ1, . . . , ξd) ∈ (−1, 1)d):

F (x) = 1
d

∑

j∈[d] f(ξj)

= 1
d

∑

j∈[d]

1−h( 1
2
(ξj+1))

log e

= 1−H(Ψ(x))
log e

.

Thus, for each µ > 0, and for all x ∈ (−1, 1)d

x ∈ F µ ln 2
d ⇔ F (x) ≤ µ ln 2

⇔ 1−H(Ψ(x))
log e

≤ µ ln 2

⇔ H(Ψ(x)) ≥ 1 − µ

holds. This yields
Ψ(F µ ln 2

d ) = {z ∈ int Qd : H(z) ≥ 1 − µ} ,

which proves the second part of Lemma 2 by applying DFM 2 with γ = α ln 2 and δ = ε ln 2.

The partial derivatives of η̃. For any (ζ1, . . . , ζ[r/2]) ∈ B, the i-th partial derivative of η̃ at
(ζ1, . . . , ζ[r/2]) is

∂η̃

∂ζi
(ζ1, . . . , ζ[r/2]) = ln ζi + ζi

1
ζi

+ (−1) ln(Mi − ζi) + (Mi − ζi)
1

Mi−ζi
(−1)

= ln ζi − ln(Mi − ζi)

= ln ζi

Mi−ζi
.

The derivative of η̃z⋆,z. If gradz̃ η̃ denotes the gradient of η̃ at the point z̃ ∈ B, then we have (for
t ∈ (0, 1))

η̃z⋆,z(t) = 〈v, gradz⋆+tv η̃〉 ,

which by the result of the previous paragraph equals
∑

i∈[r/2]

vi ln
σ(i) + tvi

Mi − (σ(i) + tvi)
,

proving the claim.
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