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1. Introduction

Many mathematical and engineering applications contain some considerable amount of
uncertainty in their input data, e.g., unknown model coefficients, forcing terms and bound-
ary conditions. Partial differential equations with uncertain coefficients play a central role
and are efficient tools for modeling randomness and uncertainty for the corresponding
physical phenomena. Recently there is a growing interest and meanwhile a large amount
of research literature for such PDEs, see e.g. [4], [5], [6] and references therein. Moreover,
optimal control problems of such uncertain systems are of great practical importance. We
mention here the works [7], [12], [15] and references therein. We note that the analysis of
PDE constrained optimization with uncertain data is still in its beginning, in particular
when uncertainty enters state constraints. The appropriate approach depends critically
on the nature of uncertainty. If no statistical information is available, uncertainty cannot
be modeled as a stochastic parameter but could be rather treated in a worst case or robust
sense (e.g., [22]). On the other hand, if a (usually multivariate) statistical distribution
can be approximated for the uncertain parameter, then a robust approach could turn
out to be unnessecarily conservative and methods from stochastic optimization are to be
preferred.
In [11], [8], the authors consider the minimization of different risk functionals (expected
excess and excess probability) in the context of shape optimization, where the uncertainty
is supposed to have a discrete distribution (finite number of load scenarios). In [2] an
excess probability functional has been considered for a continuous multivariate (Gaussian)
distribution. Randomness in constraints can be delt with by imposing a so-called chance
constraint. To illustrate this, consider a random state constraint

y(x, ω) ≤ ȳ(x) ∀x ∈ D,
where x, y refer to space and state variables, respectively, ω is a random event, D is a
given domain and ȳ a given upper bounding function for the state. The associated joint
state chance constraint then reads as

P(y(x, ω) ≤ ȳ(x) ∀x ∈ D) ≥ p,

where P is a probability measure and p ∈ [0, 1] is a safety level, typically chosen close to
but different from one. The chance constraint expresses the fact that the state should
uniformly stay below the given upper bound with high probability. In a problem of optimal
contro, the state chance constraint transforms into a (nonlinear) control constraint, thus
defining an optimization problem with robust in the sense of probability decisions. This
probabilistic interpretation of constraints has made them a popular tool first of all in
engineering sciences (e.g., hydro reservoir control, mechanics, telecommunications etc.).
We note that the state chance constraint above could be equivalently formulated as a
constraint for the excess probability

P(C(y, ω) ≥ 0) ≥ p

of the random cost function

C(y, ω) := sup
x∈D
{y(x, ω − ȳ(x)},

thus making a link to the papers discussed before. Note, however, that C is nondifferen-
tiable in this case.
A mathematical theory treating PDE constrained optimization in combination with chance
constraints is still in its infancy. The aim of this paper is to generalize semi-continuity
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and convexity properties of chance constraints, well-known in finite-dimensional opti-
mization/operations research, to a setting of control problems subject to (uniform) state
chance constraints. Although optimization problems with chance constraints (under con-
tinuous multivariate distributions of the random parameter) are considered to be difficult
already in the finite-dimensional world, there exist a lot of structural results on, for in-
stance, convexity (e.g., [17], [18], [13]), or differentiability (e.g., [16], [23]). For a numerical
treatment in the framework of nonlinear optimization methods, efficient gradient formu-
lae for probability functions have turned out to be very useful in the case of Gaussian
or Gaussian-like distributions (e.g., [14], [3]). A classical monograph containing many
basic theoretical results and numerous applications of chance constraints is [19]. A more
modern presentation of the theory can be found in [21].
The paper is organized as follows: In Section 2, we provide some basic results on weak
sequential closedness and convexity of chance constraints as well as weak sequential semi-
continuity properties of probability functions in an abstract framework. In Section 3,
these results will be applied to a specific PDE constrained optimisation problem with
random state constraints.

2. Continuity properties of probability functions

We consider the following probability function

(1) h(u) := P (g (u, ξ, x) ≥ 0 ∀x ∈ C) (u ∈ U).

Here, U is a Banach space, C is an arbitrary index set, g : U × Rs × C → R is some
constraint mapping and ξ is an s-dimensional random vector living on some probabil-
ity space (Ω,F ,P). Probability functions of this type figure prominently in stochastic
optimization problems either in the form of probabilistic constraints h(x) ≥ p or as an
objective in reliability maximization problems. We are going to provide conditions for
weak sequential upper semicontinuity of h first and, by adding appropriate assumptions,
for weak sequential lower semicontinuity next. The following proposition follows the idea
of the proof of Prop. 3.1 in [20] which was given in a finite dimensional setting .

Proposition 1. In (1), let U have a separable dual U∗ and assume that the g(·, ·, x) are
weakly sequentially upper semicontinuous for all x ∈ C. Then,

(1) g (u, ·, x) is Borel measurable for each u ∈ U and x ∈ C.
(2) M := {u ∈ U |h(u) ≥ p} is weakly sequentially closed for each p ∈ R.
(3) h is weakly sequentially upper semicontinuous.

Proof. By assumption, the functions g (u, ·, x) : Rs → R are upper semicontinuous for
each u ∈ U and x ∈ C. Consequently, the sets {z ∈ Rs|g (u, z, x) ≥ 0} are closed for all
u ∈ U and x ∈ C, which implies 1. and justifies to talk about probabilities of events as
in (1). 3. is an immediate consequence of 2. Hence, in order to prove 2., let p ∈ R be
arbitrary and consider any weakly convergent sequence un ⇀n ū ∈ U with un ∈M for all
n. We have to show that ū ∈M . We define

H(u) := {z ∈ Rs | g(u, z, x) ≥ 0 ∀x ∈ C}.
From un ∈M , it follows that

(2) P (ξ ∈ H (un)) ≥ p ∀n ∈ N.
Boundedness of un (by weak convergence) implies that there is some closed ball B with
sufficiently large radius such that ū ∈ B and un ∈ B for all n. By U∗ being separable, the
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weak topology on B is metrizable by some metric d. We put

Ak :=
⋃
{H(u) |u ∈ B, d(u, ū) ≤ k−1} (k ∈ N) .

It holds that

(3) H(ū) =
⋂

k∈N
Ak.

Indeed, the inclusion ’⊆’ being trivial, let z ∈ ⋂k∈NAk be arbitrary. By definition, there
exist sequences zk ∈ Rs and wk ∈ B such that

‖zk − z‖ ≤ k−1, d(wk, ū) ≤ k−1, zk ∈ H(wk) ∀k ∈ N.
Hence zk →k z and wk ⇀k ū, where the latter convergence follows from the fact that d
metrizes the weak topology on B. In particular, g (wk, zk, x) ≥ 0 for all x ∈ C and all
k ∈ N. Now, the weak sequential upper semicontinuity of g(·, ·, x) for all x ∈ C yields
that

g (ū, z, x) ≥ lim supk g (wk, zk, x) ≥ 0 ∀x ∈ C.
Hence, z ∈ H(ū) which shows the reverse inclusion of (3).
Clearly, Ak+1 ⊆ Ak for all k ∈ N which along with (3) entails that

P (ξ ∈ Ak)→k P (ξ ∈ H(ū)) .

Accordingly, for any arbitrarily fixed ε > 0 there is some k′ ∈ N with

P (ξ ∈ H(ū))− P (ξ ∈ Ak′) ≥ −ε.
Moreover, by un ⇀n ū there exists some n∗ ∈ N with d (un∗ , ū) ≤ (k′)−1. It follows that
H (un∗) ⊆ Ak′ , whence altogether

P (ξ ∈ H(ū))− P (ξ ∈ H (un∗)) ≥ P (ξ ∈ H(ū))− P (ξ ∈ Ak′) ≥ −ε.
Now, (2) provides that P (ξ ∈ H(ū)) ≥ p− ε. Since, ε > 0 was chosen arbitrarily, we infer
that P (ξ ∈ H(ū)) ≥ p or ū ∈M as was to be shown. �

The simple analogue of the previous Proposition, providing weak sequential lower semi-
continuity of h under the condition that all functions g(·, ·, x) (x ∈ C) are weakly se-
quentially lower semicontinuous cannot hold true even in a one-dimensional setting, where
g : R× R× R is defined as

g(u, z, x) := u− z ∀x ∈ C := R
and the distribution of ξ is the Dirac measure in zero. Then, clearly, g is even continuous
but the probability function satisfies

h(u) =

{
0 if u < 0
1 if u ≥ 0

.

Hence, it fails to be lower semicontinuous at ū := 0.
The following proposition provides some missing conditions ensuring the weak sequential
lower semicontinuity of h:

Proposition 2. In (1), let U have a separable dual U∗. Assume that

(1) C is a compact subset of Rd.
(2) the g are weakly sequentially lower semicontinuous (as functions of all three vari-

ables simultaneously).
(3) the g(u, ·, x) are concave for all u ∈ U and x ∈ C.
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(4) For each u ∈ U there exists some z̄ ∈ Rs such that g(u, z̄, x) > 0 for all x ∈ C.
(5) ξ has a density.

Then h is weakly sequentially lower semicontinuous.

Proof. We introduce the function

gmin(u, z) := min
x∈C

g(u, z, x) (u ∈ U ; z ∈ Rs)

Note first that this definition is justified by weak sequential lower semicontinuity of g in
x and by compactness of C. We show next that, as a consequence of our assumptions
1. and 2., gmin is weakly sequentially lower semicontinuous. Indeed, fixing an arbitrary
(ū, z̄) ∈ U × Rs, we may select a weakly convergent sequence (uk, zk) ⇀ (ū, z̄) realizing
the inferior limit:

lim
k
gmin(uk, zk) = lim inf

(u,z)⇀(ū,z̄)
gmin(u, z).

By definition, there exists a sequence xk ∈ C such that gmin(uk, zk) = g(uk, zk, xk). Due
to the compactness of C, we may assume that xkl →l x̄ for some subsequence and some
x̄ ∈ C. Summarizing, exploiting the assumed weak lower semicontinuity of g in all three
variables simultaneously, we get the desired weak lower semicontinuity of gmin:

lim inf
(u,z)⇀(ū,z̄)

gmin(u, z) = lim
l
gmin(ukl , zkl) = lim

l
g(ukl , zkl , xkl)

= lim inf
l

g(ukl , zkl , xkl) ≥ g(ū, z̄, x̄) ≥ gmin(ū, z̄).

As a consequence, −gmin is weakly sequentially upper semicontinuous. We may apply
now Proposition 1 in order to derive the weak sequential upper semicontinuity of the
probability function

h̃(u) := P(−gmin(u, ξ) ≥ 0)

(by formally choosing the set C as a singleton so that the dependence on x disappears).
Accordingly, for an arbitrarily fixed ū ∈ U we have that

(4) lim sup
u⇀ū

P(−gmin(u, ξ) ≥ 0) ≤ P(−gmin(ū, ξ) ≥ 0).

Then, it follows:

lim inf
u⇀ū

h(u) = lim inf
u⇀ū

P (g (u, ξ, x) ≥ 0 ∀x ∈ C)(5)

= lim inf
u⇀ū

P
(
gmin (u, ξ) ≥ 0

)

≥ lim inf
u⇀ū

P
(
gmin (u, ξ) > 0

)
= − lim sup

u⇀ū
−P
(
gmin (u, ξ) > 0

)

= − lim sup
u⇀ū

(
P
(
gmin (u, ξ) ≤ 0

)
− 1
)

= 1− lim sup
u⇀ū

P
(
gmin (u, ξ) ≤ 0

)

≥ 1− P
(
gmin (ū, ξ) ≤ 0

)
(6)

= P
(
gmin (ū, ξ) > 0

)
= P

(
gmin (ū, ξ) ≥ 0

)
(7)

= P (g (ū, ξ, x) ≥ 0 ∀x ∈ C) = h(ū).

Here, (6) follows from (4) and it remains to justify (25): Observe first that, as a conse-
quence of our assumption 3., gmin(ū, ·) is a concave function. Moreover, by our assumption
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4., there exists some z̄ ∈ Rs such that gmin(ū, z̄) > 0. Both observations entail that the
set

E := {z ∈ Rs | gmin(ū, z) = 0}
is a subset of the boundary of the convex set

{z ∈ Rs | gmin(ū, z) ≥ 0}.
Since the boundary of a convex set has Lebesgue measure zero, E itself has Lebesgue
measure zero. By our assumption 5., the distribution of ξ is absolutely continuous with
respect to the Lebesgue measure, whence P(ξ ∈ E) = 0. This finally yields (25), so that
the chain of relations above proves the weak sequential lower semicontinuity of h. �

Remark 1. Assumptions 1. and 2. in the previous proposition were needed in order to
show the weak sequential lower semicontinuity of the minimum function gmin. If the set C
happens to be just a finite one, then of course the same property of gmin can be derived from
the substantially weaker (compared with 2.) assumption that g(·, ·, x) is weakly sequentially
lower semicontinuous for each x ∈ C because the finite minimum of lower semicontinuous
functions also happens to be so.

Corollary 1. In (1), let U have a separable dual U∗. Assume that

(1) C is a compact subset of Rd.
(2) the g are weakly sequentially continuous (as functions of all three variables simul-

taneously).
(3) the g(u, ·, x) are concave for all u ∈ U and x ∈ C.
(4) For each u ∈ U there exists some z̄ ∈ Rs such that g(u, z̄, x) > 0 for all x ∈ C.
(5) ξ has a density.

Then h is weakly sequentially continuous. Moreover, owing to Remark 1, the same result
can be derived in the case that C happens to be a finite set upon replacing 2. by the weaker
assumption that the g(·, ·, x) are weakly sequentially continuous for all x ∈ C.

We finally address the question of convexity for a chance constraint h(u) ≥ p for h
introduced in (1). To this aim, we recall that a function p : V → R (V a vectors space)
is defined to be quasiconcave, if the following relation holds true:

p(λx+ (1− λ)y) ≥ min{p(x), p(y)} ∀x, y ∈ V ; ∀λ ∈ [0, 1]

The next proposition can be proven exactly in the same way as in [19, Theorem 10.2.1].
As this original proof has been given in an unnecessarily restricted setting (U finite di-
mensional, C a finite index set), we provide here a streamlined proof applicable to our
setting in (1) for the readers convenience.

Proposition 3. In the setting of (1), let U be an arbitrary vector space. Moreover, let the
random vector ξ have a density whose logarithm is a (possibly extended-valued) concave
function. Finally, assume that the g(·, ·, x) are quasiconcave for all x ∈ C. Then, the set

(8) M := {u ∈ U | h(u) ≥ p}
is convex for any p ∈ [0, 1].

Proof. Define the infimum function

ginf (u, z) := inf
x∈C

g(u, z, x) (u ∈ U ; z ∈ Rs)
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and observe that, according to (1),

(9) h(u) = P(ginf (u, ξ) ≥ 0) (u ∈ U).

We note that ginf is quasiconcave. Indeed, fix an arbitrary couple of points

(u1, z1), (u2, z2) ∈ U × Rs

along with an arbitrary λ ∈ [0, 1]. Moreover, choose an arbitrary ε > 0. Then, there
exists some x ∈ C such that

ginf (λ(u1, z1) + (1− λ)(u2, z2)) ≥ g(λ(u1, z1) + (1− λ)(u2, z2), x)− ε
≥ min{g(u1, z1, x), g(u2, z2, x)} − ε
≥ min{ginf (u1, z1), ginf (u2, z2)} − ε

Here, in the second inequality, we exploited our assumption on g(·, ·, x) being quasiconcave
for all x ∈ C. As ε > 0 was arbitrarily chosen, the claimed quasiconcavity of ginf follows.
Next, the assumption on ξ having a logconcave density implies by Prekopa’s Theorem
[19, Theorem 4.2.1] that ξ has a logconcave distribution. This means that

(10) P(ξ ∈ λA+ (1− λ)B) ≥ [P(ξ ∈ A)]λ[P(ξ ∈ B)]1−λ

holds true for all convex subsets A,B ∈ Rs and all λ ∈ [0, 1]. I order to prove the
claimed convexity of the set M in (8), let u1, u2 ∈ M and λ ∈ [0, 1] be arbitrarily given.
Accordingly, h(u1), h(u2) ≥ p. We have to show that λu1 + (1− λ)u2 ∈ M . To this aim,
define a multifunction H : U ⇒ Rs by

H(u) := {z ∈ Rs | ginf (u, z) ≥ 0} (u ∈ U).

Observe that H(u1) and H(u2) are convex sets as an immediate consequence of the qua-
siconcavity of ginf . We claim that

(11) H(λu1 + (1− λ)u2) ⊇ λH(u1) + (1− λ)H(u2).

Indeed, selecting an arbitrary z ∈ λH(u1) + (1 − λ)H(u2), we may find z1 ∈ H(u1) and
z2 ∈ H(u2) such that z = λz1 + (1− λ)z2. In particular,

ginf (u1, z1), ginf (u2, z2) ≥ 0.

Exploiting the quasiconcavity of ginf proven above, we arrive at

ginf (λu1 + (1− λ)u2), z) = ginf (λ(u1, z1) + (1− λ)(u2), z2)

≥ min{ginf (u1, z1), ginf (u2, z2)} ≥ 0.

In other words, z ∈ H(λu1 + (1 − λ)u2), which proves (11). Now, (9) along with (10)
yields that

h(λu1 + (1− λ)u2) = P(ξ ∈ H(λu1 + (1− λ)u2))

≥ P(ξ ∈ λH(u1) + (1− λ)H(u2))

≥ [P(ξ ∈ H(u1))]λ[P(ξ ∈ H(u2))]1−λ

= hλ(u1)h1−λ(u2) ≥ pλp1−λ = p.

Consequently, λu1 + (1− λ)u2 ∈M as desired. �
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3. Example from PDE constrained optimization

In this part we are going to apply the method developed in section 2 to a simple PDE
constrained optimization with chance constraint. To this end, we consider a fairly general
PDE

−∇x · (κ(x)∇xy(x, ω)) = r(x, ω), (x, ω) ∈ D × Ω

n · (κ(x)∇xy(x, ω)) + α y(x, ω) = u(x) (x, ω) ∈ ∂D × Ω,(12)

where D ⊂ Rd, d = 2, 3, α > 0 and ∇x is the gradient operator with index x indicating
that the gradient has to be build with respect to the spatial variable x ∈ D. Moreover ω
is the stochastic variable, which as in Section 2 belongs to a complete probability space
denoted by (Ω,F , P ). Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events,
and P : F → [0, 1] is a probability measure. In (12) the function denoted by u will play the
role of a deterministic control variable (boundary control), whereas the function r indi-
cates an uncertain source function. Such PDEs appear for instance in shape optimization
with stochastic loadings, see e.g. [11], or in induction heating problems in semiconduc-
tor single crystal growth processes, see e.g. [9]. For problems arising in the context of
crystal growth of semiconductor single crystals optimizing the temperature - the state of
the system - within a desirable range is one of important goals. In [9] a stationary heat
equation is considered with a source term caused by an induction process. There, such an
induction process generated by time-harmonic electromagnetic fields can not be realized
exactly and exhibits uncertainty which consequently results in a random temperatur field.

To ensure well-posedness of (12), we assume that

D ∈ C1,1, κ ∈ C0,1(D) and ∃κ0 > 0 : κ0 ≤ κ(x)∀x ∈ D.(13)

3.1. Well-posedness of (12). Throughout this paper, we use standard notations (e.g.,
see [1]) for the Sobolev spaces Hm(D) for each real number m with norms ‖ · ‖Hm(D).
We denote the inner product on Hm by (·, ·)Hm and c a generic constant whose value
may change with context. Let ξ be an Rs-valued random variable in a probability space
(Ω,F , P ). If ξ ∈ L1

P (Ω), we define Eξ =
∫

Ω
ξ(ω) dP (ω) as its expected value. We now

define the stochastic Sobolev spaces

L2(Ω;Hm(D)) = {v : D × Ω→ R | ‖v‖L2(Ω;Hm(D)) <∞},
where

‖v‖2
L2(Ω;Hm(D)) =

∫

Ω

‖v‖2
Hr(D)dP (ω) = E‖v‖2

Hm(D).

Note that the stochastic Sobolev space L2(Ω;Hm(D)) is a Hilbert space with the inner
product

(u, v)L2(Ω;Hm(D)) = E
∫

D

∇u · ∇v dx.

For simplicity, we use the following notation:

Hm(D) = L2(Ω;Hm(D)).

For instance,

L2(D) = L2(Ω;L2(D))
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and

H1(D) = {v ∈ L2(D) | E‖v‖2
H1(D)<∞}.

Moreover we define

C(D̄) = L2(Ω;C(D̄)).

We now state the well-posedness for (12).

Proposition 4. Let (13) be fulfilled. Then for every (r, u) ∈ L2(D) × H
1
2 (∂D) there

exists a unique solution y ∈ H2(D) of (12) in the sense

E
(∫

D

κ(x)∇xy(x, ω) · ∇xϕ(x, ω) dx+ α

∫

∂D

y(x, ω)ϕ(x, ω) ds

)

= E
(∫

D

r(x, ω)ϕ(x, ω) dx+

∫

∂D

u(x)ϕ(x, ω) ds

)
, ∀ϕ ∈ H1(D)(14)

Moreover, the mapping

Y : L2(D)×H 1
2 (∂D)→ H2(D), (r, u) 7→ y := Y (r, u)

is linear and continuous, i.e.

‖y‖H2(D) ≤ C
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
.(15)

Proof. Use the Lax-Milgram lemma and [10]. �

Remark 2. For n = 3, we know that the continuous embedding H2(D) ↪→ C(D̄) is
fulfilled. Hence, the solution y from Proposition 4 belongs to C(D̄) and we further obtain

‖y‖C(D̄) ≤ C
(
‖r‖L2(D) + ‖u‖

H
1
2 (∂D)

)
.(16)

3.2. Optimization problem. Let Uad be a bounded, closed and convex subset of U :=
H

1
2 (∂D) and ȳ(x) ∈ C(D̄) a given function. Moreover, we will work in different cases with

a subset C of D. The first case ist C = D, whereas the second case is C ⊂ D with finite C.
Given a weakly sequentially lower semi-continuous cost functional L : H2(D)×H 1

2 (∂D)→
R which is additionally bounded from below, our overall optimization problem reads as

(P )





min E(L(y(x, ω), u(x)))

over H2(D)× Uad
s.t. (12) is satisfied

P(ω ∈ Ω | y(x, ω) ≤ ȳ(x),∀x ∈ C) ≥ p, p ∈ (0, 1)

Remark 3. As indicated in the beginning of this section for problems arising in the
context of crystal growth of semiconductor single crystals optimizing the temperature - the
state of the system - within a desirable range is one of important goals. In application this
is an important issue since engineers are interested to prevent damage in semiconductor
single crystals which are caused by high temperatur distributions. But as one has to deal
with uncertain time-harmonic electromagnetic fields the temperatur field is consequently
random, too. In this case it is reasonable to claim that the temperatur as state variable
stays with high probability in some prescribed domain.
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3.3. Finite sum expansion. For the source function r in (12) we make the ansatz of a
finite (truncated) sum expansion

r(x, ω) :=
s∑

k=1

φk(x) ξk(ω),(17)

which enables us to approximate the infinite dimensional stochastic field by a finite di-
mensional (s-dimensional) random variable. For a discussion of this ansatz, we refer to
[2, Section 2.4]. With

φ(x) := (φ1(x), . . . , φs(x))T ; ξ(ω) := (ξ1(ω), . . . , ξs(ω))T ,

we define

r̃(x, ξ) := φ(x) · ξ(ω),(18)

where ξ is is an Rs-valued random variable. Using the solution operator Y and (18) we
define

g : U × Rs ×D → R, g(u, ξ, x) := ȳ(x)− Y (r̃(x, ξ), u(x)).(19)

Lemma 5. Let C = D in (P ). Then g(·, ·, x), defined in (19), is weakly sequentially
continuous for all x ∈ C.

Proof. Using Proposition 4, in case of (17), we obtain from (15) the estimate

‖y‖H2(D) ≤ C
(
(‖φ‖[L2(D)]s · ‖ξ‖[L2(Ω)]s) + ‖u‖U

)
.(20)

which means that y is depending linearly and continuously on the data (ξ, u) for fixed
x ∈ D. Linearity in combination with continuity provides weakly sequentially continuity.
Consequently the assertion of the lemma immediately follows. �

3.4. Properties of the reduced problem. Defining the reduced cost functional by

f(u(·)) := E(L(Y (r̃(·, ξ), u(·)), u(·)))(21)

and using the definition

h(u) := P(g(u(x), r̃(x, ξ), x) ≥ 0,∀x ∈ C),(22)

the chance constraint in (P ) can be formulated as

M := {u ∈ U |h(u) ≥ p}.(23)

Then the reduced optimal control problem reads as

(P ) min
u∈Uad∩M

f(u).(24)

The aim of the following Theorem is to establish the existence of a solution to (P ).

Theorem 6. The problem (P ) admits a solution u ∈ Uad ∩M .

Proof. As a Hilbert space U := H
1
2 (∂D) has a separable dual and moreover g is weakly

sequentially continuous by Lemma 5. Consequently Proposition 1 from section 2 yields
that M is weakly sequentially closed. Hence, by assumptions on Uad it is obvious that
Uad ∩M is weakly sequentially closed, too. Taking into account the assumptions on the
cost functional the existence of a solution to (P ) follows by the direct method in the
calculus of variations. �
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In the previous theorem, one of the main ingredients in proving the existence result was
to establish the weakly sequentially upper semicontinuity of the function h. This was
done by using Lemma 5 and Proposition 1. In the following theorem we will refine this
upper semicontinuity result to a semicontinuity result by taking into account additional
assumptions. The theorem will then ensure weakly sequentially continuity of the function
h.

Theorem 7. Let C be finite and the random variable ξ, defined in (18), have a density.
Moreover, assume that for each u ∈ U there exists some z̄ ∈ Rs such that

Y (r̃(x, z̄), u(x)) < ȳ(x) ∀x ∈ C.(25)

Then the function h, defined in (22), is weakly sequentially continuous.

Proof. Using once again Lemma 5, it follows that g is weakly sequentially continuous as
a function of all three variables simultaneously. Moreover, it is obvious that g(u, ·, x) is
linear for all u ∈ U and x ∈ C, and consequently concave. Then the third assumption of
Corollary 1 is fulfilled. Hence, the assertion of the Theorem follows from Corollary 1. �
The condition given by (25) can be interpreted as a Slater’s condition. It means that for
every given control u there must exists a realization z̄ of the random variable ξ such that
the state y has to be uniformly strictly smaller than the given state ȳ. If this condition
is not fulfilled then the upper limit function ȳ was chosen too restrictively.
To provide an instance for the use of Theorem 7 is the consideration of random state
constraints in disjunctive form which would lead to the following state chance constraint:

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) ≥ p.

Here, in contrast to the previous setting in problem (P) one is interested in the com-
plementary situation, namely that with high probability the random state exceeds some
given threshold at least somewhere on the domain. Turning this state chance constraint
into a control constraint as before and using the functions g, h defined in (19) and (22),
respectively, we arrive at the condition

P(ω ∈ Ω | ∃x ∈ C : y(x, ω) > ȳ(x)) = P(ω ∈ Ω | ∃x ∈ C : g(u, ξ, x) < 0)

= 1− h(u) ≥ p.

So, instead of (23) the chance constraint would be defined by M := {u | h(u) ≤ 1 − p}.
In order to prove an existence result similar to that of Theorem 6, one would now need
the weak sequential lower (rather than upper) semicontinuity of h. This would come as a
consequence of Theorem 7.

In the following theorem we are going to establish a condition such that (P ) becomes a
convex optimization problem.

Theorem 8. Let the random variable ξ, defined in (18), have a density whose logarithm
is a (possibly extended-valued) concave function. Moreover, assume that the objective
function L is convex. Then problem (P ) is a convex optimization problem.

Proof. The convexity of L and the linearity of the solution operator Y , see (20), yield
that the mapping

u(·) 7→ L(Y (r̃(·, ξ), u(·)), u(·))
is convex. Then by the linearity of the expectation E, we obtain that u 7→ f(u) is convex.
Moreover, by the linearity of g(·, ·, x), it follows that it is quasiconcave for all x ∈ C.
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Then, it follows from Proposition 3 that M is convex. By assumption Uad is convex and
consequently the intersection M ∩Uad is convex, too. Hence, the assertion of the theorem
follows. �

Remark 4. Numerous multivariate distributions do have logconcave densities, e.g. nor-
mal distribution, Student’s t-distribution, uniform distribution on compact and convex
sets, see e.g. [19]. Hence, the assumption about the logconcave densities is fairly gen-
eral. Often in PDE constrained optimization the objective functional L has the form
L(y, u) = L1(y) + L2(u) where L1 and L2 are separately convex and are defined by
L1 : H2(D) 3 y 7→ L1(y) ∈ R and L2 : U 3 u 7→ L2(u) ∈ R.
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