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Gradient structures for optoelectronic models of

semiconductors

Alexander Mielke, Dirk Peschka, Nella Rotundo, Marita Thomas

Abstract We derive an optoelectronic model based on a gradient formulation for the

relaxation of electron-, hole- and photon-densities to their equilibrium state. This

leads to a coupled system of partial and ordinary differential equations, for which

we discuss the isothermal and the non-isothermal scenario separately.

1 Introduction

The aim of this work is to formulate a model for opto-electronic processes in semi-

conductors as a generalized gradient system. We will discuss the isothermal case

and the non-isothermal case. For both cases we will consider the admissible state

variables qqq in a state space QQQ, and determine a suitable thermodynamical functional

Φ : QQQ → R, that drives all the opto-electronic processes, as well as a potential

Ψ ∗ : QQQ×QQQ∗ → [0,∞) encoding the different additive dissipative processes in the

material. With the aid of these functionals Φ and Ψ ∗, the evolution of the state qqq is

governed by the rate equation

q̇qq = DηηηΨ ∗(qqq;−DqqqΦ(qqq)) in QQQ (1)

where q̇qq denotes the time-derivative of the state vector qqq and DηηηΨ ∗(qqq;ηηη) denotes

the derivative of Ψ ∗(qqq;ηηη) wrt. the variable ηηη , and similarly, DqqqΦ(qqq) the derivative

of Φ(qqq) wrt. qqq.

It was first shown in [10, 11, 5] that certain diffusion processes can be written

as gradient flows of the form (1) with Φ given by the free energy or the entropy

functional. In [7, 8] it was proven that also reaction-diffusion systems can be cast
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in the gradient structure of (1) and in [7, 4] this approach was adapted to the drift-

diffusion and recombination processes arising in semiconductors.

In this contribution we will show that also the opto-electronic models treated in,

e.g., [13, 12, 2] fall into the framework of (1), see [7, 8, 4]. These models consist of

transport equations for the densities of charge carriers, electrons n and holes p, and

describe their motion in the device driven by diffusion and drift in a self-consistent

electrical field EEE = −∇ϕc. In addition, electrons, holes and photons are generated

or annihilated according to different radiative and non-radiative processes, coupled

to the equations in a thermodynamically consistent way. The number of photons

generated by such kinds of radiative recombination mechanisms is determined by

a photon rate equation, which arises from the corresponding reaction kinetics; this

feature so far was not considered in [7, 8, 4].

To incorporate the photon rate equation to our gradient flow formulation we make

use of the ideas of [14]. Therein, the key idea is to extend the classical thermody-

namic treatment of electromagnetic radiation beyond the purely thermal black-body

radiation towards luminescent radiation which is observed, e.g., in diodes and lasers.

It is assumed that optoelectronic excitations in a semiconductor lead to an equilib-

rium of electron/hole chemical potentials µc,µv with the photon chemical potential

µγ so that µγ = µc +µv. This leads to a modified radiation formula following Bose-

Einstein statistics for the number of photons per volume and energy interval

ρ(E) f (E,µ) =
E2

π2

( nr

h̄c

)3(
exp
(

E−µγ

kBθ

)
−1
)−1

≈
E2

π2

( nr

h̄c

)3

exp
(
−

E−µγ

kBθ

)
,

with E = h̄ω beyond Planck distribution in equilibrium, where µγ ≡ 0 for photons,

cf. [14]. From this, by standard thermodynamics, we can compute entropy and en-

ergies as functions of photon density γ and temperature θ , cf., [6]. This approach

allows us to adapt the framework of [4] to optoelectronics. In order to present sim-

ple closed-form expressions in this contribution, we assume that electron-, hole-,

and photon-distributions can be approximated by Boltzmann distributions.

2 Gradient structure: From functionals to differential equations

Thermodynamic functionals. The optoelectronic system consists of negatively

charged electrons n in the conduction band and positively charged holes p in the

valence band. The density of states is parabolic with band edges Ec,Ev and effec-

tive masses m∗
c ,m

∗
v for conduction and valence band. Furthermore we have a photon

density γ in the system with constant refractive index nr and quadratic density of

states. While the electron and hole densities n, p are space-dependent, it is assumed

that the photon density γ is constant in space. This leads to the following effective

densities of state for electrons (conduction band), holes (valence band), and photons

in equilibrium

n̄ = Nc = 2
(

m∗
ckBθ

2π h̄2

)3/2

, p̄ = Nv = 2
(

m∗
vkBθ

2π h̄2

)3/2

, γ̄ = 2
π2

(
nrkBθ

h̄c

)3

, (2)
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and to the intrinsic carrier density n2
i = n̄ p̄exp

(
(Ev −Ec)/(kBθ)

)
. In (2) by h̄ we de-

note the Dirac constant, kB is the Boltzmann constant, and θ is the absolute temper-

ature. We use the notation ccc = (c1,c2,c3) = (n, p,γ) and c̄cc = (c̄1, c̄2, c̄3) = (n̄, p̄, γ̄),
where all ci, c̄i are densities with units of (length)−3. Assuming the Boltzmann dis-

tributions for charge carriers and photons, we define the internal energy U , the

entropy S , and the free energy F of the system as

U (ccc,θ) =
∫

Ω
U dx, S (ccc,θ) =

∫

Ω
Sdx, F (ccc,θ) =

∫

Ω
F dx, (3a)

where Ω ⊂ R
3 is an open bounded domain occupied by the semiconductor. More-

over, F(ccc,θ) =U(ccc,θ)−θS(ccc,θ), where the densities U and S are given by

U(ccc,θ) =
ε

2
|∇ϕc|

2 + kBθ
(

3
2
(n+ p)+3γ

)
+Ecn−Ev p+ cV θ , (3b)

S(ccc,θ) =−kB

[
n
(
log n

n̄
− 5

2

)
+ p

(
log

p
p̄
− 5

2

)
+ γ
(

log
γ
γ̄ −4

)]
+ cV logθ , (3c)

in which cV θ and cV logθ constitute lattice contributions to the internal energy in

(3b) and the entropy in (3c), where cV denotes the heat capacity of the lattice. The

contribution to the entropy by electrons and holes are given by the Sackur-Tetrode

equation. The internal energy density U in (3b) contains the electrostatic potential

ϕc, which depends implicitly on ccc as it is determined by the Poisson equation

−∇ · ε∇ϕc = e(C+ p−n), (3d)

where C is the given concentration of dopants, e is the elementary charge and

ε denotes the dielectric permittivity. Now we define dual dissipation functionals

Ψ ∗(qqq;ηηη) =Ψ ∗
rec(qqq;ηηη)+Ψ ∗

diff(qqq;ηηη), for which we separately discuss additive contri-

butions due to recombinations and diffusion.

Dissipation by recombinations with detailed balance. Between electrons, holes,

and photons we consider different types of recombinations r with stoichiometric

coefficients αααr = (αr
1,α

r
2,α

r
3) and βββ r = (β r

1 ,β
r
2 ,β

r
3) in the sense of [7]. As can be

found in, e.g., [2, 12, 3] recombinations, characteristic for optoelectronic semicon-

ductor materials, can be written in the form

αr
1n+αr

2 p+αr
3γ

kr
+
⇋

kr
−

β r
1n+β r

2 p+β r
3γ.

In particular, this form includes non-radiative recombination-generation processes

such as Auger- and Shockley-Read-Hall, as well as radiative emission-absorption,

both spontaneous and stimulated. More precisely, their specific form is

n+ p ⇋ /0 thus ααα1 −βββ 1 = (1,1,0)⊤ recombination-generation,

n+ p+ γ ⇋ 2γ thus ααα2 −βββ 2 = (1,1,−1)⊤ stimulated absorption-emission,

n+ p ⇋ γ thus ααα3 −βββ 3 = (1,1,−1)⊤ spontaneous absorption-emission,
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each of them with forward reaction rate kr
+ and backward reaction rate kr

−. Assuming

detailed balance there is a steady state ĉcc so that kr(qqq) = kr
+(qqq)ĉccαααr

= kr
−(qqq) ĉccβββ r

. This

notation means ĉccαααr
= n̂αr

1 p̂αr
2 γ̂αr

3 . Following [7, 8] and using η̃ηη = (ηn,ηp,ηγ) a

suitable dual dissipation functional for the recombinations is given by

Ψ ∗
rec(qqq;ηηη) =

∫

Ω

1

2
η̃ηη ·H(qqq)η̃ηη dx, H(qqq) =

3

∑
r=1

Λr(qqq)(ααα
r −βββ r)⊗ (αααr −βββ r), (4a)

Λr(qqq) = kr(qqq)ℓ

((ccc

ĉcc

)αααr

,
(ccc

ĉcc

)βββ r
)
, where ℓ(x,y) =

{
x−y

logx−logy
x 6= y,

y x = y.
(4b)

Note that H, defined in (4a), is symmetric by construction and positive semidefinite

on the stochiometric subspace (for details see [7]).

Isothermal model. In the isothermal case we have qqq = ccc and the gradient dynam-

ics with fixed θ = θ⋆, is driven by the free energy F (ccc) ≡ F (ccc,θ⋆), so that the

evolution of the state variables qqq = ccc is given by ċcc = DηηηΨ ∗
(
ccc;−DF (ccc)

)
. Using

a projector P ∈ R
2×3 such that Pηηη = (ηn,ηp)

⊤, we introduce the dual dissipation

potential for diffusion as follows

Ψ ∗
diff(qqq;ηηη) =

∫

Ω

1

2
∇Pηηη ·M(q)∇Pηηη dx, M(qqq) =

1

e

(
nµn 0

0 pµp

)
, (5)

where ∇Pηηη ·M∇Pηηη means ∑
d
i ∂i(Pηηη)⊤M∂iPηηη . Here µn, µp > 0 represent electron

and hole mobilities. The dual dissipation potential comprising recombination and

diffusion is given by Ψ ∗(qqq;ηηη) = Ψ ∗
diff(qqq;ηηη) +Ψ ∗

rec(qqq;ηηη). Integrating by parts we

find that the derivative of Ψ ∗ is

〈DηηηΨ ∗(qqq;ηηη),ννν〉=
∫

Ω
ννν⊤
[
−P⊤∇ ·M(qqq)∇Pηηη +H(qqq)ηηη

]
dx (6)

where ννν = (νn,νp,νγ) with νn,νp are general functions and νγ is constant. When

performing integration by parts we used appropriate boundary conditions for the

boundary terms to vanish. By the properties of M we clearly see that DqqqΨ
∗(qqq; ·) :

QQQ×QQQ∗ → R is a symmetric and positive semidefinite operator. Due to (3) we have

∂cccF(ccc,θ⋆) = kBθ⋆




log(n/n̄)
log(p/ p̄)
log(γ/γ̄)


+




Ec − eϕc

eϕc −Ev

0


 . (7)

Then (6) and (7) lead to the abstract form

ṅ =−∇ · jjjn −
[
Λ1(∂nF +∂pF)+(Λ2 +Λ3)(∂nF +∂pF −∂γ F)

]
, (8a)

ṗ =−∇ · jjjp −
[
Λ1(∂nF +∂pF)+(Λ2 +Λ3)(∂nF +∂pF −∂γ F)

]
, (8b)

|Ω |γ̇ =
∫

Ω
(Λ2 +Λ3)

[
∂nF +∂pF −∂γ F

]
dx, (8c)

where the currents jjjn and jjjp are defined as
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(
jjjn

jjjp

)
=−M∇

(
∂nF

∂pF

)
=−M∇

(
kBθ⋆ log(n/n̄)+Ec − eϕc

kBθ⋆ log(p/ p̄)−Ev + eϕc

)
.

Using (4b) we get

ṅ =−∇ · jjjn −Rnr −g(qqq)
(

np

n2
i

− γ
γ̄

)
, (9a)

ṗ =−∇ · jjjp −Rnr −g(qqq)
(

np

n2
i

− γ
γ̄

)
, (9b)

|Ω |γ̇ =−

[∫

Ω

g(qqq)

γ̄
dx

]
γ +

∫

Ω
g(qqq)

np

n2
i

dx, (9c)

where n̂p̂ = n2
i (θ⋆) and γ̂ = γ̄ . The term Rnr = k1(qqq)(np/n2

i − 1), represents non-

radiative recombination-generation processes. The rate of optical transitions g(qqq) =
(γ/γ̄)k2(qqq) + k3(qqq) includes stimulated and spontaneous absorption-emission and

resembles optical gain in lasers. An equilibrium state of (9) is characterized by

neq peq = n2
i and γeq = γ̄ . To determine the equilibrium carrier densities neq, peq re-

quires to solve the Poisson equation (3d), which is nonlinear due to the insertion

of peq = ni exp(−eϕc/(kBθ⋆)) and neq = ni exp(eϕc/(kBθ⋆)). With no-flux bound-

ary conditions the gradient system (9) then implies a monotonous decay of the free

energy towards this equilibrium

d
dt

F (ccc(t)) = 〈DcF , ċcc〉=−〈DcF ,DηηηΨ ∗(ccc;DcF )〉 ≤ 0 (10)

as a consequence of the positive semi-definiteness of DηηηΨ ∗(qqq; ·).
Non-isothermal model. In the non-isothermal case it is advantegeous to start with

the internal energy u = U(ccc,θ) as an independent variable, cf. [1]. Then, we solve

(3b) for θ = Θ(ccc,u) and set q̄qq = (ccc,u) ∈ QQQ. We redefine energy and entropy as

Ū (q̄qq) =
∫

Ω udx, and S̄ (q̄qq) = S
(
ccc,Θ(ccc,u)

)
. For any functional Φ : QQQ → R the

derivative Dq̄qqΦ(q̄qq) now has four components. Therefore, the dual dissipation poten-

tial Ψ̄ ∗ in the non-isothermal case can be obtained by extending the dual dissipation

potential Ψ ∗ of the isothermal case as follows

Ψ̄ ∗(q̄qq;ηηη) =
∫

Ω
∇(Pηηη) ·M̄(q̄qq)∇Pηηη +ηηη · H̄(q̄qq)ηηη dx, (11a)

where M̄=Θ

(
M Mcross

M
⊤
cross Mu

)
and H̄=Θ

(
H 0

0 0

)
, (11b)

where P ∈R
3×4 is a projector Pηηη = (ηn,ηp,ηu). Observe that Dq̄qqŪ (ccc,u) = (000,1)⊤,

so that the integrand in (11a) vanishes and thus also DηηηΨ̄ ∗(q̄qq;Dq̄qqŪ (q̄qq)) = 0. In turn,

this implies the conservation of the internal energy Ū (q̄qq(t)) as

d
dt

Ū = 〈Dq̄qqŪ , ˙̄qqq〉= 〈Dq̄qqŪ ,DηηηΨ̄ ∗(q̄qq;Dq̄qqS̄ )〉= 〈DηηηΨ̄ ∗(q̄qq;Dq̄qqŪ ),Dq̄qqS̄ 〉= 0,

where the last step follows from the symmetry of DηηηΨ̄ ∗(q̄qq; ·). The evolution of the

thermo-optoelectronic system is given by ˙̄qqq = DηηηΨ̄ ∗(q̄qq;Dq̄qqS̄ (q̄qq)) with the negative

entropy as the driving functional. Since it is more common to write the equations u-
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sing the temperature θ as a variable, we now reverse the previous change of variables

and replace u with U(ccc,θ) and Θ(ccc,u) with θ and set Ξ(ccc,θ) = (ccc,U(ccc,θ)). This

generates the transformed dual dissipation potential w.r.t. the variables qqq = (ccc,θ) by

Ψ ∗(ccc,θ ;ηηη) = Ψ̄ ∗(Ξ(ccc,θ);Aηηη) inducing q̇qq = DηηηΨ ∗(qqq;DqS ), where

A =
(
D(c,θ)Ξ

)−⊤
=

(
I3×3 − ∂cccU

∂θU

0 1
∂θU

)
, A(qqq)∂qqqS(qqq) = 1

θ

(
−∂cccF(ccc,θ)

1

)
.

The derivative DηηηΨ ∗ is as in (6), but with a new projector P, we replaced qqq = ccc by

qqq = (ccc,θ), ηηη by Aηηη , and H,M by H̄,M̄. In addition to (8) but with temperature-

dependent coefficients we obtain the following equation for the temperature

(∂θU)θ̇ =−∇ · jjjθ +(∂nU)(∇ · jjjn)+(∂pU)(∇ · jjjp)+(∂cccU) ·H∂cccF, (12)

with (∂cccU)⊤ = (−eϕc +Ec,eϕc −Ev,0)+
1
2
kBθ(3,3,6) and the currents




jjjn

jjjp

jjjθ


= M̄∇

1

θ




∂nF

∂pF

−1


≡ M̄∇

1

θ




kBθ log(n/n̄)+Ec − eϕc

kBθ log(p/ p̄)−Ev + eϕc

−1


 . (13)

Using Λr(ccc,θ) from (4b) as in (9) we get the explicit form

ṅ =−∇ · jjjn −Rnr −g(qqq)
(

np

n2
i

− γ
γ̄

)
, (14a)

ṗ =−∇ · jjjp −Rnr −g(qqq)
(

np

n2
i

− γ
γ̄

)
, (14b)

|Ω |γ̇ =−

[∫

Ω

g(qqq)

γ̄
dx

]
γ +

∫

Ω
g(qqq)

np

n2
i

dx, (14c)

ĉV θ̇ =−∇ · jjjθ +
2

∑
i=1

∂ci
U(∇ · jjjci

)+αnrRnr +αrg
(

np

n2
i

− γ
γ̄

)
, (14d)

where αnr = (∂nU +∂pU) = 3kBθ +Eg and αr = (∂nU +∂pU +∂γU) = 6kBθ +Eg,

with the band gap is Eg = Ec −Ev. The heat capacity ĉV ≡ (∂θU) = cV + kB

(
3
2
(n+

p)+3γ
)
+E ′

c(θ)n−E ′
v(θ)p is usually dominated by cV . Note in general Ec,Ev, n̄, p̄

depends on space and temperature, which will then consistently generate extra drift

terms in the current in (13). Also observe that the same calculations as in (10) with

DS instead of −DF provide the production of entropy d
dt

S (qqq(t))≥ 0.

3 Discussion

The non-isothermal model derived here is in the spirit of [2], but our approach is

focussed on a concise derivation in the framework of gradient structures. Since a

term-by-term comparison is beyond the scope of this paper let us mention a few key

differences. The model in [2] is for a semiconductor laser, for which additionally
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light is spatially localized in a mode density χ solving a Helmholtz equation. Even

though one can easily modify the functionals to create similar looking terms, e.g.,

g is replaced by g|χ|2 in the emission-absorption, the coherent, and in this sense

more luminescent, character of light makes a thermodynamic approach using en-

tropies more elusive. We believe that using the GENERIC formalism to couple the

charge transport to Hamiltonian system which are either more microscopic, e.g.,

quantum mechanical [9], or to the classical Maxwell equation might help to clarify

the situation. For the shortness of the presentation we assumed homogeneous natural

boundary conditions of vanishing normal fluxes and obtained the decay of the free

energy. Obviously the model is built so that it also supports electrical pumping of a

photon field, i.e., an energy flux through non-homogeneous boundary conditions.
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1. Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semicon-

ductor devices. Nonlinearity 15(2), 367 (2002)
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