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Abstract Large-area organic light-emitting diodes are thin-film multilayer devices
that show pronounced self-heating and brightness inhomogeneities at high currents.
As these high currents are typical for lighting applications, a deeper understanding
of the mechanisms causing these inhomogeneities is necessary. We discuss the mod-
eling of the interplay between current flow, self-heating, and heat transfer in such
devices using a system of partial differential equations of thermistor type, that is
capable of explaining the development of luminance inhomogeneities. The system
is based on the heat equation for the temperature coupled to a p(x)-Laplace-type
equation for the electrostatic potential with mixed boundary conditions. The p(x)-
Laplacian allows to take into account non-Ohmic electrical behavior of the different
organic layers. Moreover, we present analytical results on the existence, bounded-
ness, and regularity of solutions to the system. A numerical scheme based on the
finite-volume method allows for efficient simulations of device structures.
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1 Introduction

Nowadays organic (i.e. carbon-based) semiconductors are extensively used in smart-
phone displays and increasingly in TV screens. Lighting applications are of great
interest due to the fascinating properties of organic light-emitting diodes (OLEDs),
e.g. large-area surface emission, semi-transparency, flexibility. However, lighting
applications require a much higher brightness than displays and hence higher cur-
rents are necessary. These cause substantial Joule self-heating accompanied by un-
pleasant brightness inhomogeneities of the panels. An appropriate simulation tool
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can help to validate cost-efficient device concepts by accounting for nonlinear self-
heating effects.

The appearance of the inhomogeneities, which show a saturation of the lumi-
nance in the panel center, can neither be explained with high sheet resistances of
the optically transparent electrode nor with a degradation of the organic materials
due to high temperatures. In [1, 2] it was demonstrated that the complex interplay
of temperature activated transport of the charge carriers and heat flow in the device
lead to inhomogeneous current distributions resulting in inhomogeneous luminance.

Indeed, applying a voltage to an organic semiconductor device induces a current
flow which leads to a power dissipation by Joule heating and hence also a temper-
ature rise. As higher temperatures improve the conductivity in organic materials,
higher currents occur. Thus, a positive feedback loop develops that can result in a
complete destruction of the device by thermal runaway if the generated heat cannot
be dispersed into the environment. The temperature dependence of the conductivity
is often [1] modeled by an exponential law of Arrhenius type, which features an
activation energy that is linked to the energetic disorder in the organic material.

Devices that show such an electrothermal interplay are called thermistors with
negative temperature coefficient. The current-voltage characteristics of such ther-
mistors are S-shaped with regions of negative differential resistance (S-NDR),
where currents increase despite of decreasing voltages, see Fig. 1 (left). A thermistor-
like behavior of organic semiconductors induced by self-heating has been verified
for the organic material C60 in [1] and for organic materials used in OLEDs in [2].

However, due to the huge aspect ratios of OLED panels, such devices cannot be
regarded as a single spatially homogeneous thermistor device, but rather as an ar-
ray of thermistor devices that can exchange heat. In particular, the self-heating, and
hence also the local differential resistance, is now a collective property of neighbor-
ing thermistors.

In [2] we demonstrated that a new operation mode appears that is not present
in the spatially homogenoeus case: Eventually, the S-NDR regime has propagated
through the whole panel. Now, regions in the panel do not warm up enough to re-
main in an S-NDR mode so that both, local voltages and currents, decrease although
the externally applied voltage is still increasing. This “switched-back” regime is ul-
timately the reason for the observed saturation of luminance in the panel center, in
fact, one even has to expect a decline of luminance as the local currents are decreas-
ing.

In the following we present a mathematical model for the current and heat flow
in organic semiconductor devices consisting of a coupled PDE system for the elec-
trostatic potential and the temperature, see Section 2. This PDE modeling approach
gives much more flexibility concerning variations in geometry and material com-
position than for example network models. Moreover, our model contains also a
PDE-type description of the active organic zone whereas in other PDE simulation
approaches the organic layer is reduced to the information from empirical charac-
teristics. The crucial feature of our PDE model is that the current flow equation is
of p(x)-Laplace type, where the exponent p(x) takes the non-Ohmic behavior of the
organic layers into account. In particular, the exponent is in general discontinuous
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Fig. 1 Left: Simulated current-voltage characteristics for different thermal outcoupling regimes,
regions of negative differential resistance are dashed. Right: Schematic picture of OLED stack.

as the different functional layers exhibit different power laws. In Section 3, we sum-
marize the analytical results of [3, 4, 5] and present in Section 4 a numerical scheme
that allows us to efficiently simulate the current and heat flow in OLEDs. One of the
major challenges is the derivation of a stable scheme for the p(x)-Laplacian, which
we address by using a hybrid finite-volume/finite-element approach.

2 Modeling of current and heat flow

A typical OLED device structure is depicted in Fig. 1 (right). To describe the inter-
play of current and heat flow in organic semiconductor devices the following PDE
model was proposed in [6]. It consists of the current flow equation for the electro-
static potential j and the heat equation for the temperature T

�— ·S(x,T,—j) = 0,
�— ·

�
l (x)—T ) = H(x,T,—j)

on W ⇢ Rd . (1)

The system is complemented by Dirichlet and no-flux boundary conditions for the
potential j at the contacts GD and the insulating parts GN of the boundary, respec-
tively, and Newton boundary conditions for the temperature to describe the coupling
to the environment

j = jD on GD, S(x,T,—j) ·n = 0 on GN ,

�l (x)—T ·n = g(x)(T �Ta) on G = ∂W ,
(2)

where Ta > 0 denotes the fixed ambient temperature. The special features of the
model are the Arrhenius-like temperature law as well as the non-Ohmic current-
voltage relations incorporated by a power law in the current expression S, namely

S(x,T,—j) = k0(x)F(x,T )|—j|p(x)�2—j, F(x,T ) = exp
h
� Eact(x)

kB

⇣ 1
T
� 1

Ta

⌘i
.
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Here, k0 and Eact are material dependent effective conductivity and an activation
energy, respectively. The exponent p of the power law is also material dependent,
taking different power laws in the various layers of the device into account. Hence,
the first equation in (1) becomes of p(x)-Laplacian type with discontinuous mea-
surable exponent p. In particular, we have p(x) ⌘ 2 in Ohmic materials such as
electrodes and p(x) > 2 (e.g. p(x) = 9.7, see [2]) in organic layers.

The Joule heat term in the second equation of (1) takes the form

H(x,T,—j) =
�
1�h(x,T,—j)

�
k0(x)F(x,T )|—j|p(x),

where h(x,T,—j) 2 [0,1] represents the light-outcoupling factor. Note that H is a
priori only an L1 function which hampers the analytical treatment of the system.

3 Analytical results

The first and foremost question is, whether the system in (1), (2) is well-defined, i.e.
existence of (weak) solutions. Due to the definition of the flux function S with spa-
tially dependent exponent p it is clear, that we cannot work in the classical Lebesgue
and Sobolev spaces. Following [7], we introduce for measurable exponents p with

1 < p� := ess infx2W p(x)  esssupx2W p(x) =: p+ < • (3)

the generalized Lebesgue space Lp(·)(W) as the set of all measurable functions f
with finite modular rp(·)( f ) :=

R
W | f (x)|p(x) dx < •, which equipped with the cor-

responding Luxemburg norm is a reflexive and separable Banach space. More-
over, we define the generalized Sobolev space W 1,p(·)(W) := { f 2 W 1,p�(W) :
— f 2 Lp(·)(W)d} being also a separable and reflexive Banach space with the norm
k fkW 1,p(·) := k fkW 1,p� +k— fkLp(·) . By W 1,p(·)

D (W)⇢W 1,p(·)(W) we denote the sub-
space of functions with Dirichlet value 0 at GD. The following theorem guarantees
the existence of solutions, we refer to [4, 5] for details.

Theorem 1. Besides an L• setting for the material parameters we suppose (3),
Ta > 0, and d � 2. Then the p(x)-Laplace thermistor problem (1), (2) has a solution
(j,T ) with j 2 jD +W 1,p(·)

D (W) and T 2W 1,q(W) for all q 2 [1, d
d�1 ). Especially,

T is an entropy solution to the heat equation and T � Ta a.e. in W .

There are two strategies to prove the existence result without improved regularity
of the Joule heating term H. In [4] a more constructive way is proposed, where an
truncation He of the Joule heat term is applied such that it remains bounded. The
regularized problems are solved by Galerkin approximation. By verifying a priori
estimates not depending on the truncation parameter e and a suitable passage to
the limit the existence result for (1), (2) is obtained. The second method is based on
Schauder’s fixed point theorem on the set M := {T 2 L1(W) : kTkW 1,1  c̃, T � Ta}
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and the concept of entropy solutions for the heat equation with Newton boundary
conditions, see [5].

Fig. 2 Model sets with different exponents pA < pB and different types of boundary conditions.

An alternative approach to verify the existence of solutions to (1), (2) is to im-
prove the regularity of the Joule heating term H such that the concept of weak solu-
tions for the p(x)-Laplace thermistor problem is applicable. In [3], we proved higher
regularity of the gradient of the electrostatic potential in two spatial dimensions and
for p(x) � 2 piecewise constant, and such that the localized geometric situation is
covered by one of the eight cases in Fig. 2. The proof is based on a localization
argument, Caccioppoli estimates, and a Gehring-type lemma. With this, we obtain
—j 2 Lsp(·)(W) and H(·,T,—j) 2 Ls(W) for some s > 1. Defining a fixed point
map for the temperature on the set M =

�
T 2 W 1,q(W) : kTkW 1,q  cq, T � Ta

 

for some q > 2 Schauder’s fixed point theorem leads to the following improved
existence result.

Theorem 2. Let additionally d = 2, jD 2W 1,•(W) and p(x)� 2 be piecewise con-
stant. We assume that the geometric structure can be locally transferred to the situ-
ation of one of the eight cases in Fig. 2, where pB > pA. Then the problem (1), (2)
has a solution (j,T ) with j 2 jD +W 1,sp(·)

D (W) and T 2 W 1,q(W) for some s > 1
and q > 2. Especially, T is continuous and fulfils Ta  T  cT .

Note that Schauder’s theorem does not give uniqueness of fixed points and hence
of solutions. However, uniqueness of solutions for the p(x)-Laplace thermistor sys-
tem (1), (2) cannot be expected due to the hysteretic behavior induced by the pos-
itive feedback with respect to temperature described in the introduction. Even in
the spatially homogeneous setting of self-heating in organic devices (see [1] and
[6, Sect. 2.1]) S-shaped current-voltage characteristics occur. Here, three different
currents are possible for the same applied voltage.

4 Numerical scheme

As we have to deal with piecewise constant functions p(x), we subdivide the compu-
tational domain W̄ =

S
r2R W̄r into disjoint subdomains coinciding with the regions

of continuity of the coefficients. We call the boundary between two neighboring
regions hetero interface. To solve the PDE system (1), (2) numerically we use a
finite-volume method on Voronoi cells as control volumes which are constructed
based on a Delaunay grid. The latter is supposed to be boundary conforming with
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respect to exterior boundaries and hetero interfaces, see e.g. [8]. We assume that
each control volume contains a collocation point xK 2 W .

We apply Gauss’s theorem to the integral of the flux divergence to obtain for the
current flow equation in (1) the flux balance with further subdivision into contribu-
tions from adjacent subdomains:

0 =
Z

K
— ·S(x,T,—j)dx = Â

r2R
Â

L⇠K

Z

∂K\∂L\Wr

k0,r Fr(T )|—j|pr�2—j ·nKL da, (4)

where L ⇠ K indicates that L is adjacent to K and nKL is the unit normal vector
pointing from K into L.

Note that the normal flux over a surface ∂K \ ∂L\Wr does not only depend
on the normal components of —j but on the modulus of the full gradient. To take
this into account we compute the approximation of |—j|2 on ∂K \ ∂L\Wr as the
average squared norms of the P1 finite element gradients —t j over the set TK,L,r of
all simplices (triangles in 2D) in the underlying Delaunay triangulation adjacent to
the edge xKxL and belonging to Wr :

��—j
��2|∂K\∂L\Wr ⇡ G2

K,L,r(j) :=
Ât2TK,L,r |t||—t j|2

Ât2TK,L,r |t|
.

This approach allows us to introduce an approximation of the right-hand side
of (4) consisting in replacing the surface integral by a simple quadrature, and the
gradient projection by a finite difference expression leading to

0 = Â
r2R

Â
L⇠K

|∂K \∂L\Wr|
|xK�xL|

k0,rFr(TKL)GK,L,r(j)pr�2(jL�jK).

The same approach of calculating the conductivity in the Joule heat term is com-
bined with the approach suggested in [9] which allows us to calculate the Joule
heating approximation by edge contributions: Applying Gauss’s theorem leads to

0 =
Z

K

�
— · (l (x)—T )+H(x,T,—j)

�
dx

= Â
L⇠K

Z

∂K\∂L
l (x)—T ·nKL da+

Z

K

�
1�h(x)

�
k0(x)F(x,T )|—j|p(x) dx,

(5)

and the suggested approach yields the approximation of the heat flow equation on K

0 = Â
r2R

Â
L⇠K

⇣ |∂K \∂L\Wr|
|xK�xL|

lr(TL�TK)

+d
|∂K \∂L\Wr|

|xK�xL|
(1�hr)k0,rFr(TKL)GK,L,r(j)pr�2(jL�jK)2

⌘
,

where TKL = (TK+TL)/2.
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It is important to take care of the hetero interface when calculating the average
of the gradient norm. An averaging over all simplices adjacent to a given edge re-
gardless of the hetero region they belong to leads to an artificial diffusion along the
hetero interface (see Fig. 3) which does not diminuish with grid refinement. The
validity of this approach and the way it has been implemented hinges on the fact
that all the measures |∂K\∂L\Wr| can be calculated from contributions from each
simplex which at the hetero interfaces have to stay nonnegative. It is guaranteed by
the boundary conforming Delaunay property of the underlying triangulation.

p(x) = 6 p(x) = 6p(x) = 2 p(x) = 2

Fig. 3 Discrete solutions of p(x)-Laplace equation with constant right-hand side, Dirichlet bound-
ary conditions, and piecewise constant p(x). Left: Wrong approximation with two local maxima
due to gradient averaging ignoring the hetero interface. Right: Correct approximation.
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