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Abstract

We show the existence of solutions to a system of elliptic PDEs, that was recently
introduced to describe the electrothermal behavior of organic semiconductor devices.
Here, two difficulties appear: (i) the elliptic term in the current-flow equation is of
p(x)-Laplacian-type with discontinuous exponent p, which limits the use of standard
methods, and (ii) in the heat equation, we have to deal with an a priori L1 term on
the right hand side describing the Joule heating in the device. We prove the existence
of a weak solution under very weak assumptions on the data. Our existence proof
is based on Schauder’s fixed point theorem and the concept of entropy solutions
for the heat equation. Here, the crucial point is the continuous dependence of the
entropy solutions on the data of the problem.
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1 Introduction

In this paper we study a system of partial differential equations, that describes the elec-
trothermal behavior of organic semiconductor devices. It consists of the current-flow
equation for the electrostatic potential ϕ coupled to the heat equation with Joule heat
term for the temperature θ, namely

−∇ · A(x, θ,∇ϕ) = 0, (1a)

−∇ · (λ(x)∇θ) = H(x, θ,∇ϕ) (1b)
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in a bounded domain Ω ⊂ Rd. The current flux A : Ω× R+ × Rd → Rd is given via

A(x, θ, z) := σ0(x)F (x, θ)|z|p(x)−2z, where F (x, θ) = exp
[
−β(x)

(1

θ
− 1

θa

)]
(2)

describes an Arrhenius-like temperature law. The Joule heat term in the right-hand side
of (1b) H : Ω× R+ × Rd → [0,∞) is defined by

H(x, θ, z) := (1−η(x, θ, z))A(x, θ, z) · z, (3)

where η(x, θ, z) ∈ [0, 1] is the light-outcoupling factor. In particular, the equation (1a) is
of p(x)-Laplace-type, where x 7→ p(x) is measurable and satisfies 1 < ess infx∈Ω p(x) ≤
ess supx∈Ω p(x) <∞.

The system is complemented by Dirichlet and homogeneous Neumann boundary con-
ditions for ϕ and Robin boundary conditions for θ, viz.

ϕ = ϕD on ΓD and A(x, θ,∇ϕ) · ν = 0 on ΓN , (4a)

− λ(x)∇θ · ν = κ(x)(θ − θa) on Γ := ∂Ω. (4b)

Systems of the form (1) model materials conducting both heat and electrical cur-
rent and for which the electrical conductivity in the definition of A strongly depends
on the temperature. Devices of this type are called thermistors, see [3, 4]. Recently,
systems of the form (1) with the specific constitutive law in (2) were introduced in [11]
to describe electrothermal effects, such as self-heating and inhomogeneous current distri-
butions, in organic, i.e. carbon-based, semiconductor devices, see also [6]. For example,
Organic Light-Emitting Diodes (OLEDs) are thin-film heterostructures based on organic
molecules or polymers, where each functional layer has, in general, its own current-voltage
characteristics and material parameters. In particular, the exponent p(x), which describes
the non-Ohmic behavior of each layer, changes abruptly from one material to another. In
electrodes, the typically used parameter is p(x) = 2, while organic layers feature signifi-
cantly larger values, e.g. p(x) ≈ 9 (see [6]). The material function β, which is related to
the so-called activation energy in an Arrhenius law, is positive in organic layers. This,
however, leads to a positive feedback as the electrical conductivity increases with rising
temperature and in turn the power dissipation increases with the electrical current. This
mechanism was identified in [6] as the cause of the appearance of different operation modes
and accompanying unpleasant brightness inhomogeneities in large-area OLEDs.

The analytical difficulties of the problem in (1)–(4) arise from two issues: First, the
exponent function x 7→ p(x) is discontinous and in general only measurable. Second, the
source term H in the right hand side of (1b) is only in the space L1(Ω) for functions ϕ in
the energy space associated with the differential operator in the left hand side of (1a).

In [8] these issues were overcome in the two-dimensional case and for a piecewise
constant x 7→ p(x) satisfying p(x) ≥ 2 by showing improved integrability of the gradient
of the electrostatic potential, i.e. ∇ϕ ∈ Lsp(·)(Ω)d for some s > 1. The latter is proved
using Caccioppoli estimates and a Gehring-type lemma. This significantly helps to deal
with the right hand side H in the heat equation in the existence proof, since then we
have a priori control of H(·, θ,∇ϕ) in Ls(Ω). In particular, one does not need to face the
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problem of concentration effects and correspondingly the presence of a singular measure.
However, this approach heavily relies on the use of the Poincaré inequality, which does in
general not hold for discontinuous exponents p, see [5, Sec. 8.2]. Moreover, the extension
to higher dimension and ranges of p that are realistic for organic devices is unclear.

To tackle higher spatial dimensions an approach based on regularization and Galerkin
approximation was discussed in [2]. Therein, a regularized version of the system in (1) was
introduced, where the crucial term H is approximated so that it remains bounded. The
existence of solutions to the regularized problem is proven by Galerkin approximations.
By using suitable test functions in the weak formulation of the regularized version of (1)
uniform estimates for ϕ and θ independent of the regularization parameter ε > 0 were
derived, which allows to pass to the limit ε→ 0 and to obtain weak solutions of (1).

In this paper, we present a different existence proof using the concept of entropy
solutions with Robin boundary conditions (4b) and Schauder’s fixed-point theorem. More

precisely, for a given temperature distribution θ̃ we obtain a unique solution ϕ = ϕ(θ̃) of

the current flow equation (1a). Using ϕ and θ̃ in H, we then solve the heat equation to

obtain an entropy solution θ. The map θ̃ 7→ θ is continuous and hence has a fixed point in
a suitable compact setM⊂ L1(Ω). Here, the crucial point is the continuous dependence
of the entropy solutions on given right hand sides, see Lemma 3.4.

Outline of the paper. We start in Section 2 with fixing the notation, introducing the
underlying assumptions and function spaces and formulating our main result concerning
the existence of weak solutions to the coupled p(x)-thermistor model (1). Section 3 covers
the solvability of the two subproblems, i.e. the current-flow and heat equation. Finally,
in Section 4 we verify the solvability of the coupled system via Schauder’s fixed-point
theorem. In the Appendix we collect and proof needed results for entropy solutions to
linear elliptic problems with boundary conditions of the form (4b).

2 Preliminaries and main result

2.1 Assumptions on the data

Here, we collect the essential assumptions for the analytical investigations:

(A1) The domain Ω ⊂ Rd, d ≥ 2, is a bounded Lipschitzian domain and ΓD and ΓN are
disjoint open subsets of Γ := ∂Ω satisfying mes(ΓD) > 0 and ΓD ∪ ΓN = Γ.

(A2) The function x 7→ p(x) is measurable (we write p ∈ P(Ω)) and p : Ω → (1,∞)
fulfills 1 < p− := ess infx∈Ω p(x), p+ := ess supx∈Ω p(x) <∞.

(A3) The Dirichlet datum satisfies ϕD ∈ L∞(Ω) and
∫

Ω
|∇ϕD|p(x)dx <∞.

(A4) The electrical flux function A : Ω × R+ × Rd → Rd is of the form A(x, θ, z) =
σ0(x)F (x, θ)|z|p(x)−2z, where σ0 ∈ L∞(Ω) satisfies 0 < σ0 ≤ σ0 ≤ σ0 a.e. on Ω. The
Arrhenius factor is of the form F (x, θ) = exp

[
−β(x)

(
1
θ
− 1

θa

)]
with β ∈ L∞+ (Ω) and

the constant θa > 0 is the ambient temperature.
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(A5) The heat conductivity λ satisfies λ ∈ L∞(Ω) and λ ≥ λ0 > 0 a.e. on Ω. The heat
transfer coefficient κ is such that κ ∈ L∞+ (Γ) and ‖κ‖L1(Γ) > 0.

(A6) The light-outcoupling factor η = η(x, θ, z) is such that η : Ω × R+ × Rd → R is a
Carathéodory function and η(x, θ, z) ∈ [0, 1] holds f.a.a. x ∈ Ω and ∀(θ, z) ∈ R+×Rd.

The assumptions (A4) ensure important structural properties of the function A. They
imply that A is a Carathéodory function with the growth

|A(x, θ, z)| ≤ cg|z|p(x)−1 ∀(θ, z) ∈ R+ × Rd, f.a.a. x ∈ Ω. (5)

Due to the inequality (see [12, Chapter 10]) for z1, z2 ∈ Rd,

(
|z1|p−2z1 − |z2|p−2z2

)
· (z1−z2) ≥

{
22−p|z1−z2|p if p ≥ 2,

(p−1)(1+|z1|2+|z2|2)
p−2
2 |z1−z2|2 if p ∈ [1, 2],

the function A(x, θ, ·) ist strictly monotone in the third argument, meaning that(
A(x, θ, z1)− A(x, θ, z2)

)
· (z1 − z2) > 0 ∀θ ∈ R+, ∀z1 6= z2 ∈ Rd, f.a.a. x ∈ Ω. (6)

Additionally, there exists a constant ca > 0 such that

A(x, θ, z) · z ≥ ca|z|p(x) f.a.a. x ∈ Ω, ∀θ ≥ θa > 0, ∀z ∈ Rd (7)

is fulfilled. (The lower estimate θ ≥ θa for solutions θ of the heat equation can be obtained
in the setting of entropy solutions for the heat flow equation by Lemma 3.5.)

2.2 Function spaces

For constant p ∈ [1,∞], we use the classical Lebesgue spaces Lp(Ω) and Sobolev spaces
W 1,p(Ω). Following [5] we work with the generalized function spaces Lp(·)(Ω), where we
assume that the bounded variable exponents p ∈ P(Ω) satisfy

1 < p− := ess inf
x∈Ω

p(x) ≤ p+ := ess sup
x∈Ω

p(x) <∞.

The generalized Lebesgue space Lp(·)(Ω) consists of all measurable functions u for which
the modular

ρp(·)(u) :=

∫
Ω

|u(x)|p(x) dx

is finite. With the Luxemburg norm

‖u‖Lp(·) := inf
{
τ > 0 : ρp(·)

(u
τ

)
≤ 1
}

Lp(·)(Ω) is a Banach space and [5, Lemma 3.2.5] ensures for all u ∈ Lp(·)(Ω) the estimates

min
{
ρp(·)(u)

1
p− , ρp(·)(u)

1
p+

}
≤ ‖u‖Lp(·) ≤ max

{
ρp(·)(u)

1
p− , ρp(·)(u)

1
p+

}
. (8)
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We work with a definition of generalized Sobolev spaces that will be appropriate for our
problem. We emphasize that the spaces introduced here are not necessarily equivalent to
the standard Sobolev spaces with the variable exponent in [5]. This is necessary since in
our case the exponent p is discontinuous and varies over a large range, see also [2]. For a
given p ∈ P(Ω) we define the generalized Sobolev space W 1,p(·)(Ω) and equip it with the
following norm

W 1,p(·)(Ω) :=
{
u ∈ W 1,p−(Ω) : ρp(·)(|∇u|) <∞

}
,

‖u‖W 1,p(·) := ‖u‖W 1,p− + ‖∇u‖Lp(·) .

In the case 1 < p− ≤ p+ < ∞ the space W 1,p(·)(Ω) is a separable and reflexive Banach
space, since Lp(·) has the same properties. We introduce the subspace

W
1,p(·)
D (Ω) := {u ∈ W 1,p(·)(Ω) : u = 0 on ΓD}.

Since we assume that ΓD is of positive (d−1)-dimensional measure, we have the equivalent
norms

C1‖u‖W 1,p(·) ≤ ‖∇u‖Lp(·) ≤ C2‖u‖W 1,p(·) , u ∈ W 1,p(·)
D (Ω). (9)

Indeed, we can use the facts that the classical Sobolev space W
1,p−
D (Ω) satisfies the

Poincaré inequality and that the variable exponent Lebesgue space Lp(x)(Ω) is contin-

uously embedded into Lp−(Ω) to obtain for arbitrary u ∈ W 1,p(·)
D (Ω)

‖u‖W 1,p(·) = ‖u‖W 1,p− + ‖∇u‖Lp(·)

≤ c(‖∇u‖Lp− + ‖∇u‖Lp(·)) ≤ c‖∇u‖Lp(·) ≤ c‖u‖W 1,p(·) .

Furthermore, we denote byH1(Ω) the usual Hilbert space. By means of the assumption
(A5) the estimates

α‖θ‖2
H1 ≤

∫
Ω

λ|∇θ|2dx+

∫
Γ

κθ2dΓ ≤ α‖θ‖2
H1 , θ ∈ H1(Ω) (10)

with constants α, α > 0 are satisfied.

Moreover, the dual space of a Banach space X is denoted by X∗. In our estimates,
positive constants, which may depend at most on the data of our problem, are denoted
by c. In particular, we allow them to change from line to line.

2.3 Main result

Theorem 2.1 We assume (A1)– (A6). Then the p(x)-thermistor problem (1)– (4) has

a (weak) solution (ϕ, θ) with ϕ ∈ ϕD + W
1,p(·)
D (Ω) and θ ∈ W 1,q(Ω) for all q ∈ [1, d

d−1
).

Especially, θ is an entropy solution (see Definition 3.2) to the heat equation (1b).
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3 Solvability of subproblems

3.1 Existence of solutions to the current flow equation

In the first step, we turn our attention to the current-flow equation (1a) for the potential
ϕ. In particular, we consider an arbitrary but fixed θ, which is assumed to lie in the set
of relevant temperature distributions given by

Θ := {θ ∈ L1(Ω) : θ ≥ θa a.e. on Ω}. (11)

For fixed θ ∈ Θ, we introduce the operator Aθ : ϕD + W
1,p(·)
D (Ω) → W

1,p(·)
D (Ω)∗ and

consider the following problem: Find ϕ ∈ ϕD +W
1,p(·)
D (Ω) such that

〈Aθ(ϕ), v〉
W

1,p(·)
D

:=

∫
Ω

A(x, θ,∇ϕ) · ∇v dx = 0 ∀ v ∈ W 1,p(·)
D (Ω), (12)

which corresponds to finding a weak solution ϕ ∈ ϕD + W
1,p(·)
D (Ω) of the current-flow

equation (1a) with boundary conditions (4a) and fixed temperature distribution θ ∈ Θ.

Theorem 3.1 We assume (A1)– (A4). Let θ ∈ Θ be a fixed given function. Then (12)
has exactly one solution ϕ, and for almost all x ∈ Ω this solution satisfies

ess inf
x∈Ω

ϕD ≤ ϕ(x) ≤ ess sup
x∈Ω

ϕD. (13)

Moreover, there are constants cϕ > 0, cint > 0, and cA > 0 depending only on the data

(Ω, ϕD, σ0, σ0, θa, and β) but not on θ, such that (with p′(x) = p(x)
p(x)−1

)∫
Ω

|∇ϕ|p(x) dx ≤ cint, ‖ϕ‖W 1,p(·) ≤ cϕ, ‖A(·, θ,∇ϕ)‖Lp′(·) ≤ cA. (14)

Proof. 1. Bounds. The uniform bounds in (13) and (14) (except that for A) are exactly
obtained as in Step 1 of the proof of [8, Lemma 3.1]. The bound for A results then directly
from the growth condition (5),

ρp′(·)(|A(·, θ,∇ϕ)|) ≤
∫

Ω

cp
′(x)
g |∇ϕ|p(x) dx ≤ cρp(·)(|∇ϕ|), (15)

from the bound for ∇ϕ and (8). Especially, the map ϕD +W
1,p(·)
D (Ω) 3 ϕ 7→ A(·, θ,∇ϕ) ∈

Lp
′(·)(Ω)d maps bounded sets in bounded sets.
2. Existence. Due to (6), Aθ is strictly monotone. To prove the demi-continuity of Aθ,

we have to show that ϕn − ϕ→ 0 in W
1,p(·)
D (Ω) implies Aθϕn −Aθϕ ⇀ 0 in W

1,p(·)
D (Ω)∗.

Let ϕn−ϕ→ 0 in W
1,p(·)
D (Ω). Then, by Step 1, the set {A(·, θ,∇ϕn)} is bounded and

weakly compact in Lp
′(·)(Ω)d. To verify the weak convergence A(·, θ,∇ϕn) ⇀ A(·, θ,∇ϕ)

in Lp
′(·)(Ω)d, by [7, Lemma 5.4, Chapter 1], it suffices to show for each convergent sub-

sequence {A(·, θ,∇ϕnk
)} of {A(·, θ,∇ϕn)} that A(·, θ,∇ϕnk

) ⇀ A(·, θ,∇ϕ) in Lp
′(·)(Ω)d.

Let w ∈ Lp′(·)(Ω)d be the weak limit of such a subsequence {A(·, θ,∇ϕnk
)}. Since ϕn−ϕ→
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0 in W
1,p(·)
D (Ω) there exists a subsequence {ϕnkl

} of {ϕnk
} such that ∇ϕnkl

converges a.e.
in Ω to ∇ϕ. As A is a Caratheodory function it follows that A(·, θ,∇ϕnkl

)→ A(·, θ,∇ϕ)
a.e. in Ω. As a subsequence of {A(·, θ,∇ϕnk

)} the sequence {A(·, θ,∇ϕnkl
)} has the weak

limit w in Lp
′(·)(Ω)d, and therefore in Lp+/(p+−1)(Ω)d, too. By [7, Lemma 1.19, Chap. 2]

we obtain A(·, θ,∇ϕ) = w, and thus for the whole sequence A(·, θ,∇ϕn) ⇀ A(·, θ,∇ϕ) in

Lp
′(·)(Ω)d. Since for all v ∈ W 1,p(·)

D (Ω) we have ∇v ∈ Lp(·)(Ω)d it follows

〈Aθϕn −Aθϕ, v〉W 1,p(·)
D

=

∫
Ω

(A(x, θ,∇ϕn)− A(x, θ,∇ϕ)) · ∇v dx→ 0

for all v ∈ W 1,p(·)
D (Ω) and thus Aθϕn−Aθϕ ⇀ 0 in W

1,p(·)
D (Ω)∗ as ϕn−ϕ→ 0 in W

1,p(·)
D (Ω).

Additionally, the demi-continuity implies the radial continuity of Aθ.
Next, we prove the coercivity of Aθ. We apply (7) and (5), convexity of z 7→ |z|p as

well as (pointwise) Young’s inequality to estimate

〈Aθϕ, ϕ− ϕD〉W 1,p(·)
D

≥
∫

Ω

(
ca|∇ϕ|p(x) − cg|∇ϕ|p(x)−1|∇ϕD|

)
dx

≥
∫

Ω

(
c|∇(ϕ− ϕD)|p(x) − c|∇ϕD|p(x) − c|∇(ϕ− ϕD)|p(x)−1|∇ϕD|

)
dx

≥ c

2
ρp(·)(|∇(ϕ− ϕD)|)− cρp(·)(|∇ϕD|).

(16)

By assumption (A3), the term ρp(·)(|∇ϕD|) is bounded. By assumption (A1) mes(ΓD) > 0,

thus the seminorm ‖∇(·)‖Lp(·) is an equivalent norm on W
1,p(·)
D (Ω), compare (9). Accord-

ing to (8) we can estimate ρp(·)(|∇(ϕ − ϕD)|) from below, either by ‖∇(ϕ− ϕD)‖p+
Lp(·)

or ‖∇(ϕ− ϕD)‖p−
Lp(·) . Note that both exponents are strictly greater than 1. Divid-

ing the previous estimate (16) by ‖∇(ϕ− ϕD)‖Lp(·) the right hand side goes to +∞ if
‖∇(ϕ− ϕD)‖Lp(·) →∞ which guarantees that the operator Aθ is coercive.

In summary, the main theorem of monotone operators (see [7]) ensures the existence
of a solution to (12). Since Aθ is strictly monotone, this solution is unique. �

3.2 Entropy solutions of the heat equation

For the solvability of the second equation with right hand side in L1(Ω) we use the
concept of entropy solutions. In the case of Dirichlet boundary conditions this theory is
well presented in the survey [13], for nonlinear problems see [1, 10].

We consider the stationary heat flow equation with Robin boundary conditions and
right hand side f ∈ L1(Ω) as well as boundary data g ∈ L1(Γ), namely

−∇ · (λ(x)∇θ) = f(x) in Ω,

−λ(x)∇θ · ν = κ(x)θ − g(x) on Γ.
(17)

For k > 0, we define the truncation Ck : R→ [−k, k] by

Ck(s) := max{−k,min{s, k}}
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and introduce V1,2(Ω) := {θ : Ω→ R measurable, Ck(θ) ∈ H1(Ω) ∀k > 0}.

Definition 3.2 Let f ∈ L1(Ω), g ∈ L1(Γ). A function θ ∈ V1,2(Ω) is called an entropy
solution to (17) if∫

Ω

λ∇θ · ∇Ck(θ − ω) dx+

∫
Γ

(
κθ − g

)
Ck(θ − ω) dΓ ≤

∫
Ω

fCk(θ − ω) dx (18)

for all k > 0 and all ω ∈ H1(Ω) ∩ L∞(Ω).

Note that for ω ∈ H1(Ω) with ‖ω‖L∞(Ω) ≤ c we have ‖ω‖L∞(Γ) ≤ c with the same
constant.

Theorem 3.3 We assume (A1) and (A5). Let f ∈ L1(Ω), g ∈ L1(Γ). Then there exists
a unique entropy solution θ to (17). This entropy solution belongs to W 1,q(Ω), for all
1 ≤ q < d

d−1
. Especially, there are constants cEq > 0 not depending on f and g such that

‖θ‖W 1,q ≤ cEq(‖f‖L1 + ‖g‖L1(Γ)), 1 ≤ q < d
d−1

.

We give the proof of Theorem 3.3 in Appendix A and finalize this subsection by two
lemmas with special properties of entropy solutions to (17).

Lemma 3.4 We assume (A1) and (A5). Let f l → f in L1(Ω), gl → g in L1(Γ). Then
the corresponding entropy solutions θl to (17) converge weakly in W 1,q(Ω) to the entropy
solution θ for data f and g, 1 ≤ q < d

d−1
.

Proof. 1. Since the θl are entropy solutions to (17) for f l and gl by (18) with ω = 0
we find

α‖Ck(θl)‖2
H1 ≤ k(‖f l‖L1 + ‖gl‖L1(Γ)) ≤ kc ∀l, (19)

where the unified constant c > 0 results from the fact that f l → f in L1(Ω), gl → g in
L1(Γ). As in Step 2 of the proof of Theorem 3.3 (see Appendix A) we then verify for all
exponents q < d

d−1
that∫

Ω

(|∇θl|q + |θl|q) dx ≤ cq(‖f l‖L1 + ‖gl‖L1(Γ))
q ≤ Cq ∀l.

In summary we find a θ ∈ W 1,q(Ω) such that for a (non-relabeled) subsequence we have

θl ⇀ θ in W 1,q(Ω), θl → θ in L1(Ω), θl → θ a.e. in Ω,

Ck(θ
l) ⇀ Ck(θ) in H1(Ω), Ck(θ

l)→ Ck(θ) in L2(Ω) and a.e. in Ω,

Ck(θ
l)→ Ck(θ) in L2(Γ) and a.e. on Γ for all k > 0.

(20)

By the weak lower semicontinuity of the norm and Ck(θ
l) ⇀ Ck(θ) in H1(Ω) from (19) it

results
α‖Ck(θ)‖2

H1 ≤ kc, ∀k > 0.
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2. To verify that θ is the entropy solution to (17) with data f and g we prove now
as in [10] the strong convergence Ck(θ

l) → Ck(θ) in H1(Ω). Let 2h > k and take ωl :=
Ch(θ

l)−Ck/2(θl) +Ck/2(θ) as test function for the entropy solution θl in (18) with data f l

and gl. Then for m := h+ 2k we have ∇Ck(θl−ωl) = 0 on the set {x ∈ Ω : |θl(x)| > m}.
Therefore it follows from the entropy formulation∫

Ω

λ∇Cm(θl) · ∇Ck(θl − ωl) dx+

∫
Γ

(
κθl−g

)
Ck(θ

l−ωl) dΓ ≤
∫

Ω

f lCk(θ
l−ωl) dx.

Splitting the volume integral on the left hand side in integrals on Ωl
k := {x ∈ Ω : 2|θl(x)| >

k} and Ω \ Ωl
k (where ∇Ck(θl − ωl) = ∇

(
Ck/2(θl)− Ck/2(θ)

)
holds true) it results∫

Ω

λ∇Cm(θl) · ∇Ck(θl − ωl) dx ≥
∫

Ω

λ∇Ck/2(θl) · ∇
(
Ck/2(θl)− Ck/2(θ)

)
dx

−
∫

Ωl
k

λ|∇Cm(θl)||∇Ck/2(θ)| dx.

Using the entropy formulation we obtain∫
Ω

λ|∇
(
Ck/2(θl)− (Ck/2(θ)

)
|2 dx

≤
∫

Ωl
k

λ|∇Cm(θl)||∇Ck/2(θ)| dx+

∫
Ω

f lCk(θ
l−ωl) dx+

∫
Γ

glCk(θ
l−ωl) dΓ

−
∫

Γ

κθlCk(θ
l−ωl) dΓ−

∫
Ω

λ∇Ck/2(θ) · ∇
(
Ck/2(θl)−Ck/2(θ)

)
dx,

(21)

where, due to (20), the last term obviously converges to zero for l → ∞. Additionally,
for every fixed h, the convergences (20) ensure the weak convergences for l→∞

Ck
(
θl − Ch(θl)

)
⇀ Ck

(
θ − Ch(θ)

)
in H1(Ω),

Ck
(
θl − ωl

)
= Ck

(
θl − Ch(θl) + Ck/2(θl)− Ck/2(θ)

)
⇀ Ck

(
θ − Ch(θ)

)
in H1(Ω)

as well as corresponding convergences a.e. in Ω and Γ for a further non-relabeled subse-
quence. Because of the estimates∫

Ω

f lCk(θ
l − ωl) dx ≤ k‖f l − f‖L1 +

∫
Ω

fCk(θ
l − ωl) dx,∫

Γ

glCk(θ
l − ωl) dΓ ≤ k‖gl − g‖L1(Γ) +

∫
Γ

gCk(θ
l − ωl) dΓ,∣∣∣ ∫

Γ

κθlCk(θ
l − ωl) dΓ

∣∣∣ ≤ ‖κ‖L∞(Γ)‖θl‖
L

2d
2d−1 (Γ)

‖Ck(θl − ωl)‖L2d(Γ)

we therefore conclude with f l → f in L1(Ω), gl → g, in L1(Γ), (20), and Lebesgue’s
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dominated convergence theorem, in the limit l→∞

lim
l→∞

∫
Ω

f lCk(θ
l − ωl) dx =

∫
Ω

fCk(θ − Ch(θ)) dx,

lim
l→∞

∫
Γ

glCk(θ
l − ωl) dΓ =

∫
Γ

gCk(θ − Ch(θ)) dΓ,

lim
l→∞
|
∫

Γ

κθlCk(θ
l − ωl) dΓ| ≤ ĉ‖Ck(θ − Ch(θ))‖L2d(Γ),

(22)

where ĉ := ‖κ‖L∞(Γ)‖θ‖
L

2d
2d−1 (Γ)

. According to Lebesque’s theorem, we have that the

terms on the right hand sides in (22) converge to zero for h → ∞. Hence, we can fix a
sufficiently large hε > 0 such that∫

Ω

fCk
(
θ−Chε(θ)

)
dx+

∫
Γ

gCk
(
θ−Chε(θ)

)
dΓ + ĉ‖Ck(θ−Chε(θ))‖L2d(Γ) ≤ ε. (23)

With this hε and m = mε = 2k + hε we estimate the remaining term in the right hand
side of (21). Since |∇Cm(θl)| is bounded in L2(Ω) and χ{|θl|>k/2}|∇Ck/2(θ)| → 0 in L2(Ω)
we verify

lim
l→∞

∫
{|θl|>k/2}

λ|∇Cm(θl)||∇Ck/2(θ)| dx = 0.

Therefore, passing to the limit l→∞ in (21) and using (23) it results

lim
l→∞

∫
Ω

λ|∇
(
Ck/2(θl)− Ck/2(θ)

)
|2 dx

≤
∫

Ω

fCk
(
θ − Chε(θ)

)
dx+

∫
Γ

gCk
(
θ − Chε(θ)

)
dΓ + ĉ‖Ck(θ − Chε(θ))‖L2d(Γ) ≤ ε,

where ε > 0 can be made arbitrarily small by increasing hε. This yields

lim
l→∞

∫
Ω

λ|∇
(
Ck/2(θl)− Ck/2(θ)

)
|2 dx = 0,

and together with λ ≥ λ0 > 0 and Ck/2(θl) → Ck/2(θ) in L2(Ω) we obtain Ck/2(θl) →
Ck/2(θ) in H1(Ω) which then implies again for a non-relabeled subsequence ∇Ck/2(θl)→
∇Ck/2(θ) a.e. in Ω. These arguments hold true for all k > 0 and enable us to verify
similarly to Step 5 in the proof of Theorem 3.3 that θ is an entropy solution for the data
f and g.

3. Since the entropy solution to (17) with data f and g is unique, not only a subse-
quence but the whole sequence converges (weakly) to θ in W 1,q(Ω). �

Lemma 3.5 We assume (A1) and (A5). Let f ∈ L1
+(Ω) and g = κθa with θa = const > 0.

Then the entropy solution θ to (17) fulfills θ ≥ θa a.e. on Ω.

Proof. Let fn := Cn(f) ∈ L∞(Ω), gn := g = κθa and let θn ∈ H1(Ω) be the unique
weak solution to (17) with data fn and gn. We test (17) by −(θn− θa)− = min{θ− θa, 0}
and find ∫

Ω

λ|∇(θn − θa)−|2 dx+

∫
Γ

κ((θn − θa)−)2 dΓ ≤ 0
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implying that θn ≥ θa a.e. on Ω.
We fix k > θa. Since Ck(θn) → Ck(θ) in L1(Ω) as n → ∞ (note that θn → θ in

L1(Ω) due to Lemma 3.4) we find a subsequence {nl} such that Ck(θnl
) → Ck(θ) a.e. in

Ω which implies together with θnl
≥ θa a.e. on Ω that Ck(θ) ≥ θa a.e. in Ω. Especially

this ensures θ ≥ 0 a.e. in Ω because of θa > 0. Additionally, by our choice k > θa we have
θ ≥ Ck(θ) ≥ θa a.e. in Ω. �

4 Solution of the coupled system via Schauder’s fixed-

point theorem

In this section we proof our main result, Theorem 2.1.
1. Definition of the fixed-point map. Let

M := {θ ∈ L1(Ω) : ‖θ‖W 1,1 ≤ cQ, θ ≥ θa},

where cQ > 0 will be fixed in (26). We consider the fixed-point map Q : M→M with

θ = Q(θ̃) defined by θ being the unique entropy solution of

−∇ · (λ∇θ) = H(x, θ̃,∇ϕ) in Ω,

−λ∇θ · ν = κ(θ − θa) on Γ,
(24)

where H is defined in (3) and the function ϕ = ϕ(θ̃) is the unique weak solution to

−∇ · A(x, θ̃,∇ϕ) = 0 in Ω,

A(x, θ̃,∇ϕ) · ν = 0 on ΓN , ϕ = ϕD on ΓD.
(25)

Since θ̃ ∈ M we have θ̃ ∈ Θ and the existence and uniqueness of a weak solution
ϕ ∈ ϕD + W

1,p(·)
D (Ω) of the current flow equation (25) follows from Theorem 3.1. From

(14) in this theorem we find ‖H(·, θ̃,∇ϕ)‖L1 ≤ cH . With f := H(·, θ̃,∇ϕ) ∈ L1(Ω) and
g := κθa ∈ L1(Γ) Theorem 3.3 and Sobolev’s embedding result give a unique entropy
solution θ of (24) with

‖θ‖W 1,1(Ω) ≤ cE1(cH + ‖κθa‖L1(Γ)) =: cQ (26)

for all ϕ = ϕ(θ̃) with θ̃ ∈M. Here, cE1 > 0 comes from Theorem 3.3. Finally, Lemma 3.5

ensures that θ ≥ θa. Thus, we obtain that θ = Q(θ̃) ∈M.
2. Existence of a solution. The continuity of the mapping Q :M→M will be proven

in Lemma 4.1. Since for all θ ∈M the norm ‖θ‖W 1,1 is uniformly bounded, the compact
embedding of W 1,1(Ω) in L1(Ω) gives the desired compactness of the convex and nonempty
set M ⊂ L1(Ω). Therefore Schauder’s fixed-point theorem ensures the solvability of the
coupled problem (1)–(4). This finishes the proof of Theorem 2.1. �

Lemma 4.1 We assume (A1) – (A6). The fixed-point map Q : M → M defined in
Step 1 of the proof of Theorem 2.1 is continuous.
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Proof. Let θ̃, θ̃n ∈M with θ̃n → θ̃ in L1(Ω). We denote by ϕn the unique solution to

(25) with θ̃n instead of θ̃ as fixed argument in A. We have to show that θn = Q(θ̃n) →
θ = Q(θ̃) in L1(Ω).

1. Convergences of subsequences. Theorem 3.1, the growth properties of A and η and
Theorem 3.3 ensure for all ϕn = ϕ(θ̃n) and θn = Q(θ̃n) the uniform estimates

‖ϕn‖W 1,p(·) ≤ cϕ, ‖A(·, θ̃n,∇ϕn)‖Lp′(·) ≤ cA,
1

p(x)
+ 1

p′(x)
= 1,

‖θn‖W 1,q0 ≤ c̃Eq0 , q0 := 2d
2d−1

.
(27)

The estimates in (27) guarantee for some ϕ ∈ W 1,p(·)(Ω), A ∈ Lp′(·)(Ω)d, and θ ∈ W 1,q0(Ω)
and for a (not-relabeled) subsequence the weak convergences

ϕn ⇀ ϕ in W 1,p(·)(Ω), A(·, θ̃n,∇ϕn) ⇀ A in Lp
′(·)(Ω)d,

θn ⇀ θ in W 1,q0(Ω).
(28)

The growth condition (5) gives |A(x, θ̃n,∇ϕ)−A(x, θ̃,∇ϕ)| ≤ c|∇ϕ|p(x)−1. Hence, we have

an integrable majorant for the integrand |A(x, θ̃n,∇ϕ) − A(x, θ̃,∇ϕ)|p′(x). Since θ̃n → θ̃
in L1(Ω) and A is a Caratheodory function, this integrand converges to 0 a.e. on Ω for an
again non-relabeled subsequence. Thus, Lebesgue’s theorem on dominated convergence
gives ∫

Ω

|A(x, θ̃n,∇ϕ)− A(x, θ̃,∇ϕ)|p′(x) dx→ 0.

Exploiting the monotonicity of A in the last argument and using that ϕn is the weak
solution to (25) with θ̃n as argument in A, we derive

0 ≤
∫

Ω

(
A(x, θ̃n,∇ϕn)− A(x, θ̃n,∇ϕ)

)
· ∇(ϕn − ϕ) dx

= 0−
∫

Ω

A(x, θ̃n,∇ϕ) · ∇(ϕn − ϕ) dx→ 0

since ∇ϕn − ∇ϕ ⇀ 0 in Lp(·)(Ω)d and A(·, θ̃n,∇ϕ) → A(·, θ̃,∇ϕ) in Lp
′(·)(Ω)d. This

guarantees (for the subsequence)∫
Ω

(
A(x, θ̃n,∇ϕn)− A(x, θ̃n,∇ϕ)

)
· ∇(ϕn − ϕ) dx→ 0. (29)

Due to (6) the integrand in (29) is nonnegative which implies (together with θ̃n ≥ θa)(
A(·, θ̃n,∇ϕn)− A(·, θ̃n,∇ϕ)

)
· ∇(ϕn − ϕ)→ 0 in L1(Ω),(

|∇ϕn|p(·)−2∇ϕn − |∇ϕ|p(·)−2∇ϕ
)
· ∇(ϕn − ϕ)→ 0 in L1(Ω).

(30)

Using the strict monotonicity and arguing similar to [14, p. 50f] we obtain the conver-

gence ∇ϕnl
→ ∇ϕ a.e. on Ω, which together with θ̃nl

→ θ̃ a.e. on Ω for a subsequence

and the Caratheodory property of A gives A = A(·, θ̃,∇ϕ). We obtain∫
Ω

A(x, θ̃,∇ϕ) · ∇v dx = lim
nl→∞

∫
Ω

A(x, θ̃nl
,∇ϕnl

) · ∇v dx = 0 ∀v ∈ W 1,p(·)
D (Ω).
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By Theorem 3.1, the weak solution to (25) with θ̃ as second argument in A is unique such

that we find ϕ = ϕ = ϕ(θ̃).
2. Weak convergence of the whole sequence ϕn ⇀ ϕ in W 1,p(·)(Ω). To verify the weak

convergence ϕn ⇀ ϕ in the reflexive Banach spaceW 1,p(·)(Ω) of the whole sequence and not
only of the subsequence given in (28) we apply [7, Lemma 5.4, Chap. 1]. We have to show
that for every weakly convergent subsequence ϕnk

⇀ ϕ̂ it holds true that ϕ̂ = ϕ: If there
is a subsequence ϕnk

⇀ ϕ̂ in W 1,p(·)(Ω) then the arguments of Step 1 ensure again non-

relabeled subsequences such that ∇ϕnk
→ ∇ϕ̂ a.e. on Ω and A(·, θ̃nk

,∇ϕnk
) ⇀ A(·, θ̃,∇ϕ̂)

in Lp
′(·)(Ω)d. And ϕ̂ would solve (25), with θ̃ as second argument in A. Since the weak

solution to (25) is unique – we have ϕ̂ = ϕ. Thus, the convergence ϕn ⇀ ϕ in W 1,p(·)(Ω)
is valid for the whole sequence and not only a subsequence.

3. Further convergences for subsequences. Let w ∈ L∞(Ω) be arbitrarily given. Then

by (5), |(A(x, θ̃n,∇ϕ)− A(x, θ̃,∇ϕ))w|p′(x) ≤ c|∇ϕ|p(x)‖w‖p
′(x)
L∞ gives an integrable majo-

rant and we have for a non-relabeled subsequence that A(x, θ̃n,∇ϕ)→ A(x, θ̃,∇ϕ) for a.a.

x ∈ Ω (remember θ̃n → θ̃ a.e. in Ω, A Caratheodory function). Therefore it results for this

subsequence by Lebesgue’s dominated convergence theorem A(·, θ̃n,∇ϕ)w → A(·, θ̃,∇ϕ)w
in Lp

′(·)(Ω)d. Together with ∇ϕn ⇀ ∇ϕ in Lp(·)(Ω)d we obtain∫
Ω

A(x, θ̃n,∇ϕ) · ∇(ϕn − ϕ)w dx→ 0.

Since this argument holds true for all w ∈ L∞(Ω), we find

A(·, θ̃n,∇ϕ) · ∇(ϕn − ϕ) ⇀ 0 in L1(Ω).

This together with (30) ensures the weak convergence

A(·, θ̃n,∇ϕn) · ∇(ϕn − ϕ) ⇀ 0 in L1(Ω). (31)

The weak convergence of A(·, θ̃n,∇ϕn) in Lp
′(·)(Ω)d and w∇ϕ ∈ Lp(·)(Ω)d with w ∈ L∞(Ω)

guarantee

A(·, θ̃n,∇ϕn) · ∇ϕ ⇀ A(·, θ̃,∇ϕ) · ∇ϕ in L1(Ω)

which with (31) for the subsequence leads to the weak convergence

hn := A(·, θ̃n,∇ϕn) · ∇ϕn ⇀ A(·, θ̃,∇ϕ) · ∇ϕ =: h in L1(Ω).

Since a sequence of functions {hn} ⊂ L1(Ω), which converges weakly to h ∈ L1(Ω) is

uniformly equi integrable, the sequence {A(·, θ̃n,∇ϕn) ·∇ϕn} is uniformly equi integrable.

Due to the pointwise a.e. convergence of θ̃n(x) → θ̃(x), ∇ϕn(x) → ∇ϕ(x) a.e. in Ω and
the Caratheodory property of A we find hn → h a.e. in Ω for the subsequence.

Next, we apply Vitali’s theorem which tells us that for a sequence of functions {hn} ⊂
L1(Ω), which converges pointwise a.e. in Ω to h the following two assertions are equivalent:
(i) The sequence {hn} is uniformly equi integrable and (ii) hn → h in L1(Ω).
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Setting fn := (1−η(·, θ̃n,∇ϕn))hn and f := (1−η(·, θ̃,∇ϕ))h we estimate for a non-
relabeled subsequence

‖fn−f‖L1 ≤
∫

Ω

∣∣η(·, θ̃n,∇ϕn)− η(·, θ̃,∇ϕ)
∣∣|h| dx+

∫
Ω

∣∣1−η(·, θ̃n,∇ϕn)
∣∣|hn−h| dx.

Since the second term on the right hand side can be estimated by c‖hn − h‖L1 → 0 and
the first term tends to zero by Lebesgue’s dominated convergence theorem (η is bounded,

Caratheodory, θ̃n → θ̃, ∇ϕn → ∇ϕ a.e. on Ω for the subsequence) we conclude that
fn → f in L1(Ω). To summarize, for the right hand sides of the equation (24) we have
for the last subsequence the strong convergence

fn = H(·, θ̃n,∇ϕn)→ H(·, θ̃,∇ϕ) = f in L1(Ω).

According to Lemma 3.4 we find for the entropy solutions θn and θ of (24) with
right hand sides fn and f , respectively, that θn ⇀ θ in W 1,q0(Ω). By Theorem 3.3
the solution to (24) with right hand side f is unique, thus, with (28) it follows that

θn = Q(θ̃n) ⇀ θ = θ = Q(θ̃) in W 1,q0(Ω), for the subsequence in (28).
4. Convergences of the whole sequence θn ⇀ θ in W 1,q0(Ω) and θn → θ in L1(Ω).

Similar to Step 2, we have to show that for each weakly convergent subsequence θnk
⇀ θ̂

in the reflexive Banach space W 1,q0(Ω) the identity θ̂ = θ is fulfilled. We can argue as in

Step 3 to find for not-relabeled subsequences fnk
= H(·, θ̃nk

,∇ϕnk
)→ H(·, θ̃,∇ϕ) = f in

L1(Ω) such that the uniqueness result in Theorem 3.3 and Lemma 3.4 ensure θnk
⇀ θ = θ̂

in W 1,q0(Ω). This leads to the convergence of the whole sequence θn ⇀ θ in W 1,q0(Ω) and
by the compact embedding of W 1,q0(Ω) into L1(Ω) we obtain the strong convergence of
the whole sequence in L1(Ω) which proves the continuity of the operator Q. �

A Proof of Theorem 3.3

In the case of Dirichlet boundary conditions the theory of entropy solutions is presented
in the survey [13], for nonlinear problems see [1, 10]. To provide a complete theory for
our type of boundary conditions in (17) we give a proof by adapting the techniques in
[10, 13].

For the uniqueness proof of Theorem 3.3 we need that weak solutions to (17) for more
regular data f and g are admissible test functions ω in the sense of (18), which we state
first.

Lemma A.1 We assume (A1) and (A5). Let f ∈ L∞(Ω) and g ∈ L∞(Γ). Then the weak
solution to (17) belongs to L∞(Ω) and ‖θ‖L∞ ≤ C(f, g).

Proof. We test (17) by θr−1, r = 2k, k ∈ N, and use the notation v := θ
r
2 ,

α‖v‖2
H1 ≤ ‖f‖L∞

∫
Ω

θr−1 dx+ c‖g‖L∞(Γ)

∫
Γ

θr−1 dΓ

≤ c‖f‖L∞
∫

Ω

(1 + v2) dx+ c‖g‖L∞(Γ)

∫
Γ

(1 + v2) dΓ.

(32)
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By the Gagliardo-Nirenberg inequality, the trace inequality, and Young’s inequality
we find for all ε > 0 a cε > 0 such that

‖v‖2
L2 ≤ c‖v‖

4
d+2

L1 ‖v‖
2d
d+2

H1 ≤ ε‖v‖2
H1 + cε‖v‖2

L1 ,

‖v‖2
L2(Γ) ≤ c‖v‖L2‖v‖H1 ≤ c‖v‖

2
d+2

L1 ‖v‖
2d+2
d+2

H1 ≤ ε‖v‖2
H1 + cε‖v‖2

L1 .

From (32) it results with the same constant c0(f, g) ≥ 2 for r = 2k, k ∈ N, the estimate

‖v‖2
L2 ≤ ‖v‖2

H1 ≤
1

2
c0(f, g)(1 + ‖v‖2

L1).

Setting ak := 1 + ‖θ‖2k

L2k
the previous estimates ensure the recursion

ak ≤ c0(f, g)a2
k−1 ≤ c0(f, g)1+2a4

k−2 ≤ c0(f, g)1+2+···+2k−2

a2k−1

1 ≤ c0(f, g)2ka2k

1 .

The starting estimate for a1 is obtained by testing (17) by θ. Applying embedding and
trace inequality as well as Young’s inequality gives

α‖θ‖2
H1 ≤

∫
Ω

fθ dx+

∫
Γ

gθ dΓ ≤ α

2
‖θ‖2

H1 + cα(‖f‖2
L2 + ‖g‖2

L2(Γ)).

This ensures that a1 = 1 + ‖θ‖2
L2 ≤ c1(f, g) which finishes the proof. �

Proof of Theorem 3.3: 1. We use a proof by approximation. Let fn := Cn(f) ∈ L∞(Ω),
gn := Cn(g) ∈ L∞(Γ) and let θn ∈ H1(Ω) be the unique solution to

−∇ · (λ∇θn) = fn in Ω,

−λ∇θn · ν = κθn − gn on Γ.
(33)

For k > 0 we use for (33) the test function Ck(θn) ∈ H1(Ω) and find

α‖Ck(θn)‖2
H1 ≤

∫
Ω

λ|∇Ck(θn)|2 dx+

∫
Γ

κCk(θn)2 dΓ

≤
∫

Ω

λ∇θn · ∇Ck(θn) dx+

∫
Γ

κθnCk(θn) dΓ

=

∫
Ω

fnCk(θn) dx+

∫
Γ

gnCk(θn) dΓ ≤ k(‖f‖L1 + ‖g‖L1(Γ)).

(34)

Therefore, for all fixed k > 0 the sequence {Ck(θn)} is bounded in H1(Ω).
2. According to Sobolev’s embedding result, for d > 2 we have additionally

α

cS

(∫
Ω

|Ck(θn)|
2d
d−2 dx

) d−2
d ≤ k(‖f‖L1 + ‖g‖L1(Γ)).

Since |Ck(θn)| = k on Ωk,n := {x ∈ Ω : |θn(x)| ≥ k} it results

mes(Ωk,n) ≤ c
(‖f‖L1 + ‖g‖L1(Γ)

k

) d
d−2
,
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where c > 0 does not depend on n and k. [9, Chap. 2, p. 105] ensures that∫
Ω

|θn|q̃ dx ≤ cq̃(‖f‖L1 + ‖g‖L1(Γ))
q̃ for q̃ < d

d−2
. (35)

For d = 2 this estimate is valid for all q̃ < ∞. Similar to [13, p. 34], but now exploiting
(34) in the case of Robin boundary conditions we verify that∫

Ω

|∇θn|q dx ≤ cq(‖f‖L1 + ‖g‖L1(Γ))
q for q < d

d−1
. (36)

Thus, ‖θn‖W 1,q is uniformly bounded and we find a subsequence again denoted by {θn}
and θ ∈ W 1,q(Ω) with θn ⇀ θ in W 1,q(Ω), θn → θ in Lq(Ω) and a.e. in Ω.

3. Due to our construction, fn → f in L1(Ω) and fn is a Cauchy sequence in L1(Ω)
and gn → g in L1(Γ) and gn is a Cauchy sequence in L1(Γ). Repeating Step 2 of the proof
for θn − θm with fn − fm, gn − gm (weak solutions of a linear problem) we find∫

Ω

|∇(θn − θm)|q dx ≤ cq(‖fn − fm‖L1 + ‖gn − gm‖L1(Γ))
q

and similar estimates of the form (35) for the corresponding differences. Therefore {θn} is
a Cauchy sequence in W 1,q(Ω) for all q < d

d−1
and {θn} converges strongly to θ in W 1,q(Ω).

For a subsequence, ∇θn → ∇θ a.e. in Ω and θn → θ a.e. on Γ.
4. Using (35) and (36) for 1 ≤ q̃ = q < d

d−1
and the convergence θn → θ in W 1,q(Ω),

the estimate for ‖θ‖W 1,q of Theorem 3.3 is verified.
5. Next, we show that θ is an entropy solution of (17) for data f and g. From the

previous convergences we additionally obtain for a subsequence that ∇Ck(θn)→ ∇Ck(θ)
a.e. in Ω, Ck(θn) → Ck(θ) in L2(Ω) and Ck(θn) → Ck(θ) in L2(Γ) for all k > 0. Fatou’s
Lemma implies∫

Ω

λ0|∇Ck(θ)|2 dx+

∫
Γ

κCk(θ)
2 dΓ

≤ lim inf
n→∞

∫
Ω

λ0|∇Ck(θn)|2 dx+ lim
n→∞

∫
Γ

κCk(θn)2 dΓ ≤ k(‖f‖L1 + ‖g‖L1(Γ))

which ensures that θ ∈ V1,2(Ω). Let now k > 0 and ω ∈ H1(Ω)∩L∞(Ω) be fixed. We use
the test function Ck(θ − ω) ∈ H1(Ω) for the weak formulation of (33) and obtain∫

Ω

λ∇θn · ∇Ck(θn − ω) dx+

∫
Γ

κθnCk(θn − ω) dΓ

=

∫
Ω

fnCk(θn − ω) dx+

∫
Γ

gnCk(θn − ω) dΓ.

We write the terms on the left hand side in the form∫
Ω

λ∇θn · ∇Ck(θn − ω) dx =

∫
Ω

λ|∇Ck(θn − ω)|2 dx+

∫
Ω

λ∇ω · ∇Ck(θn − ω) dx,
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∫
Γ

κθnCk(θn − ω) dΓ =

∫
Γ

κ(θn − ω)Ck(θn − ω) dΓ +

∫
Γ

κωCk(θn − ω) dΓ.

On the one hand, by Fatou’s lemma we verify∫
Ω

λ|∇Ck(θ − ω)|2 dx ≤ lim inf
n→∞

∫
Ω

λ|∇Ck(θn − ω)|2 dx,

∫
Γ

κ(θ − ω)Ck(θ − ω) dΓ ≤ lim inf
n→∞

∫
Γ

κ(θn − ω)Ck(θn − ω) dΓ.

On the other hand, Lebesgue’s theorem on dominated convergence implies

lim
n→∞

∫
Ω

fnCk(θn − ω) dx =

∫
Ω

fCk(θ − ω) dx,

lim
n→∞

∫
Γ

gnCk(θn − ω) dΓ =

∫
Γ

gCk(θ − ω) dΓ.

Next, the weak convergence of Ck(θn) to Ck(θ) in H1(Ω) ensures

lim
n→∞

∫
Ω

λ∇ω · ∇Ck(θn − ω) dx =

∫
Ω

λ∇ω · ∇Ck(θ − ω) dx,

lim
n→∞

∫
Γ

κωCk(θn − ω) dΓ =

∫
Γ

κωCk(θ − ω) dΓ.

Collecting and balancing all the limit terms we end up with∫
Ω

λ∇θ · ∇Ck(θ − ω) dx+

∫
Γ

κθCk(θ − ω) dΓ ≤
∫

Ω

fCk(θ − ω) dx+

∫
Γ

gCk(θ − ω) dΓ

meaning that θ is an entropy solution of (17).

6. Finally, if there would be another entropy solution θ̃ besides θ we argue with a
proof by approximation. Let for the subsequence {n} from Step 3 of the above proof
fn := Cn(f) ∈ L∞(Ω), gn := Cn(g) ∈ L∞(Γ) and let θn be the corresponding unique
weak solution to (17). According to Lemma A.1, θn belongs to H1(Ω)∩L∞(Ω) and is an

admissible choice for ω in the definition of the entropy solution θ̃ in (18). Hence it results∫
Ω

λ∇θ̃ · ∇Ck(θ̃ − θn) dx+

∫
Γ

(κθ̃ − g)Ck(θ̃ − θn) dΓ ≤
∫

Ω

fCk(θ̃ − θn) dx.

Ck(θ̃ − θn) ∈ H1(Ω) yields as test function in the weak formulation of (33) the relation∫
Ω

λ∇θn · ∇Ck(θ̃ − θn) dx+

∫
Γ

(κθn − gn)Ck(θ̃ − θn) dΓ =

∫
Ω

fnCk(θ̃ − θn) dx.

Subtracting the above estimates and using the equivalent norm in H1(Ω) we derive

α‖Ck(θ̃ − θn)‖2
H1 ≤ k(‖f − fn‖L1 + ‖g − gn‖L1(Γ)).
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Similar to Step 2 (now for θ̃ − θn, f − fn, g − gn), we obtain for 1 < q̃ < d
d−2

(q̃ < ∞ if

d = 2) and 1 ≤ q < d
d−1∫

Ω

|θ̃−θn|q̃ dx ≤ cq̃(‖f−fn‖L1 + ‖g−gn‖L1(Γ))
q̃ → 0,∫

Ω

|∇(θ̃−θn)|q dx ≤ cq(‖f−fn‖L1 + ‖g − gn‖L1(Γ))
q → 0

since fn approximates f in L1(Ω) and gn approximates g in L1(Γ). By Step 3, θn → θ in

W 1,q(Ω) and thus we get θ = θ̃ and the entropy solution θ is unique. �
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