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1 Introduction

The study and generation of light pulses that encompass only a few cycles of the electric field
is a major topic in ultrafast optics, and nowadays pulses with durations of a few femtoseconds
can be generated in a wide spectral range. Different laser technologies, such as chirped pulse
amplification, filament self-compression, or optical parametric amplification provide nearly
single-cycle pulses from the ultraviolet to the THz regime. While Ti:sapphire and its harmon-
ics conveniently offer fairly direct schemes toward ultrashort pulses from the near infrared well
into the ultraviolet, the mid-infrared (wavelength 2–25µm) is a notoriously challenging range
for direct laser-based schemes. Optical parametric schemes offer a convenient alternative, but
require carefully designed phase-matching ranges and are difficult to implement. Here we ex-
plore a different path toward few-cycle pulse generation in the mid-infrared at nanojoule pulse
energies. Our method follows up on Ref. [1], where a widely tunable compression scheme for
pedestal-free few-cycle pulses has first been proposed. This approach requires input pulses that
are tailored to fiber dispersion characteristics. Here we explore how to increase the practicality
of this method by introducing the chirp of one of the input pulses as an additional control
parameter. This waveform control strongly resembles the function of an optical transistor [2],
yet with the decisive difference that the control pulse induces changes of compression factor
and pulse duration rather than of amplitude.

This scheme inherently relies on cross-phase modulation (XPM) between two group-velocity
matched pulses at different wavelengths [2]. In fact, this condition is automatically met in
fibers in the vicinity of the zero dispersion wavelength, where a soliton with a particular
wavelength always co-propagates with dispersive radiation at equal group velocity. In this
situation, the soliton may exhibit an intensity that is high enough for creating a refractive in-
dex barrier for the dispersive wave. Cross-phase modulation then modifies the group velocity
of the dispersive wave such that an effective temporal lock of the soliton and the dispersive
wave is established. This collision process may alternatively be understood as scattering or
reflection of the dispersive radiation at the soliton [3, 4, 5]. This kind of XPM process is
known as the optical push broom effect [6] or the optical event horizon [8, 9] and has an
analogy in many nonlinear wave systems, e.g., in fluid dynamics [11]. Moreover, it appears
naturally in the supercontinuum generation by soliton fission [12, 13, 14]. Direct experimental
verification of the reflection process at the induced refractive index barrier can be found in
Refs. [8, 10, 7, 20, 15].

Given energy conservation, the collision process inevitably induces a frequency shift of
both pulses [5], which enables mutual manipulation of optical pulses [2, 16, 17, 18, 19, 20]. In
particular, the induced soliton center frequency shift can be efficiently exploited, e.g., by an
induced blue shift of the solitons, which, in turn, leads to adiabatic soliton compression. This
shift enables the generation of few-cycle pulses [1]. Nevertheless, given a certain dispersion
profile of a fiber, practical exploitation of the compression always requires the generation of a
soliton and a dispersive wave with center wavelengths and durations tailored to the particular
situation. Some minor adjustment is only possible by changing the initial delay between the
pulses.

Very recently, this novel type of soliton compression via interaction with the dispersive wave
was experimentally demonstrated [23], yet with pulse duration that seem far from exploiting
the full potential of the method. This experimental verification employed two coherent pulses
at ≈ 600 and 800 nm and a fiber with zero-dispersion wavelength at ≈ 700 nm. The dispersive
wave was deduced from the 800 nm pulses by an optical parametric oscillator with subsequent
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frequency doubling. Larger wavelength separations can also be obtained from parametric gen-
eration schemes with reverted roles, i.e., the pump wavelength lies in the normal dispersion
scheme of the fiber, and either the signal or even the idler wavelength is launched into the fiber
in the anomalous dispersion range. In the following, we have chosen a wavelength combination
that could, in principle, be deduced from a frequency-doubled ytterbium pump laser, using
additional optical parametric amplification with the idler set to 2.2µm wavelength. The nec-
essary pulse durations in the visible should be immediately obtainable from existing ytterbium
oscillators and amplifiers by simple frequency doubling schemes. However, pulse preparation
in the infrared may require additional compression efforts. One of the limiting factors in our
scheme is the presence of Raman self-frequency shift, which cannot be compensated by con-
trol of the dispersive wave delay and duration. As we show below, additional control can be
obtained by varying the chirp of the dispersive wave, which acts as the control pulse. Let
us remark that suitable chirps can be introduced intentionally in experiments by wedge or
prism pairs. Moreover, small residual chirps may also be experimentally unavoidable in the
preceding pulse preparation schemes, and the question may arise what values can be tolerated
here without preventing compression.

2 Adjustable pulse compression at a group-velocity horizon

To model collision and scattering of two co-propagating pulses with considerably different
carrier frequencies, we describe the electric field E(z, t) in terms of the so-called analytic signal
E(z, t) = 1

π

∫∞
0 E(z, ω)e−iωtdω, where E(z, ω) is the usual spectral component of the field

E(z, t) = 1
2π

∫∞
−∞E(z, ω)e−iωtdω. Here, E(z, t) is real-valued and contains both positive and

negative frequencies, whereas E(z, t) is complex-valued and contains only positive frequencies
[28, 29]. This formalism does not require definition of a carrier frequency and is independent
on the slowly-varying envelope approximation. The corresponding propagation equation is
bidirectional [30], and its unidirectional version reads

∂zE + β̂E + n2
c
∂t(fK |E|2E + fRE ĥ|E|2)+ = 0, (1)

and is similar to the generalized nonlinear Schrödinger equation (GNLSE). The only structural
difference from the GNLSE is that the negative-frequency part of the nonlinear terms like |E|2E
is put to zero, this is indicated by the notation (|E|2E)+.

The parameter n2 in Eq. (1) is the nonlinear refractive index, c the speed of light, operator
β̂ is defined in the frequency domain by the propagation constant β(ω), and V is the velocity
of the moving frame such that β̂e−iωt = −i[β(ω) − ω/V ]e−iωt. The parameters fK and
fR = 1− fK describe relative contributions of the Kerr and Raman effect, respectively, and ĥ
denotes a standard convolution with the Raman response function

ĥ|E(z, t)|2 =
∫ ∞
0

h(t′)|E(z, t− t′)|2dt′,

where

h(t′) =
τ21 + τ22
τ1τ22

e−t
′/τ2 sin(t′/τ1).

The expression for β(ω) and the specific values of fK,R and τ1,2 are specified in [1]. The
velocity V equals that of the soliton. For numerical solution of Eq. (1), we use a de-aliased
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pseudo-spectral method, with the implementation of the Runge-Kutta integration scheme in
the frequency domain and adaptive step-size control. Quality of the time discretization is
ensured by exemplary runs with a considerably larger number of harmonics.

This approach allows investigating the interaction of two pulses at well-separated center
frequencies, far away from restrictions of the slowly-varying envelope approximation, which is
sometimes presupposed in similar studies. In particular, the center frequencies of the interact-
ing waves may readily be separated by an octave or more. The capability to include arbitrary
frequencies is crucial as we are mainly interested in the interaction of a fundamental soliton in
the mid-IR with a dispersive wave close to the ultraviolet region. Under these circumstances,
we avoid the main limitation of the compression scheme due to resonant transfer of energy
from the soliton into the normal dispersion regime in the form of Cherenkov radiation [1, 13].
As Eq. (1) is not completely equivalent to the full Maxwell equations, it does not include the
backward-propagating waves. Moreover, we also neglect a frequency dependence of n2.

As a nonlinear dispersive medium we exemplarily choose an endlessly single-mode (ESM)
photonic crystal fiber [24]. In terms of choice of the medium, we only require that the dis-
persion profile exhibit at least one zero dispersion wavelength (ZDW). Such a precondition
is given in a large class of silica-based fibers, but also in other materials as, e.g., fluoride
based ZBLAN fibers [25]. Moreover, adequate dispersion profiles can be found in Raman-free
gas-filled hollow core photonic crystal fibers [26], where the dispersion properties can addition-
ally be adjusted by pressure variation. Anomalous and normal branches of the corresponding
group velocity dispersion profile for the ESM fiber are shown in Fig. 1(a,b) together with a
suitably chosen group-velocity matched frequency combination between a soliton and a dis-
persive wave (fat red and blue points, respectively). The parameters are chosen to provide
a compression of a fundamental soliton into the few-cycle regime. In principle, this choice
enables maximum compression down to duration in the single-cycle regime. Limitations arise
due to a substantial absorption of the soliton in the mid-infrared [1] or due to the generation
of Cherenkov radiation [13].

For our pulse compression scheme, we have to inject two synchronized pulses E(z = 0, t) =
Es(t)+Ed(t+ t0) with a time delay of t0 = 1000 fs on both sides of the ZDW. In the anomalous
dispersion regime we inject a hyperbolic secant pulse

Es(t) = Es0 sech(t/ts)e−iωst, (2)

which corresponds to an exact fundamental soliton solution of the nonlinear Schrödinger equa-
tion for the dispersion value at the center frequency ωs. The parameters for initial field Es0
and initial pulse width ts (corresponding to FWHM duration Ts ≈ 2.634ts) are then given by

√
n2Es0 = 0.0173, ts = 16.7 fs,

2πc

ωs
= 2200 nm. (3)

In the normal dispersion regime we inject a Gaussian-shaped pulse with similar parameters
for the amplitude and pulse width, i.e.,

Ed(t) = Ed0 exp
(
−1 + iC

2

t2

t2d

)
e−iωdt,

2πc

ωd
= 542 nm. (4)

Compared to the previous work [1], we now additionally introduce the possibility of a variable
initial linear chirp in the dispersive wave, determined by the dimensionless parameter C. We
note that there is no simple and generally valid relation between C and the group delay
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dispersion (GDD). Assuming Gaussian pulse shapes, one can relate GDD by calculating the
distance required to fully compensate the chirp in the medium via |β2| = |β′′(ωd)| and GDD ≡
β2z = −t2dC/(1 + C2).
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Figure 1: Collision process between a controlling dispersive wave and a soliton in the spectral
domain: (a) The group velocity dispersion β2 profile in the anomalous dispersion regime over
the range of the induced soliton frequency shift. (b) The same over the frequency conversion
range of the dispersive wave. (c),(d) Evolution of spectra along the fiber in the range of the
(c) soliton and (d) the dispersive wave. The dashed grey lines mark the input and output
center frequencies of the soliton and the dispersive wave. The red and blue dots correspond
to the initial center frequency of the soliton and dispersive wave, respectively.

Let us first consider the Raman-free case. Figure 1 displays the collision behavior of
the dispersive wave with the fundamental soliton in the spectral domain. For an unchirped
dispersive wave (C = 0), we observe the following process. When parts of the dispersive
wave collide with the edge of the soliton, a small mutual frequency shift between soliton
and dispersive wave is induced. In our set-up the dispersive wave is injected earlier into
the fiber, so that a collision occurs at the leading edge of the soliton. This process results
in a blue-shift of the soliton center frequency [Fig. 1(c)] and in frequency conversion of the
dispersive wave, giving rise to new red components [Fig. 1(c)]. Nearly all frequencies of the
dispersive wave are converted to the range of 370 to 460 THz. Eventually, the entire spectrum
of the dispersive wave is depleted. This process starts with the conversion at the initial
contact between soliton and a dispersive wave segment at 600THz and subsequently sweeps
down to 500THz. Simultaneously, the soliton frequency is up-shifted from 136 to 170THz.
The latter process is accompanied by spectral broadening from about 40THz to more than
100THz. This frequency shift automatically leads to a change of group velocity [Fig. 2(b)]
and of group-velocity dispersion [Fig. 1(a,b)], with amount and direction depending on the
dispersion profile. In this example, both pulses are shifted toward the larger group velocity.

Enabling longer interaction zones of the soliton and parts of dispersive waves, a concomi-
tant acceleration of the soliton may be achieved. The acceleration of a soliton by interaction
with the dispersive wave depicted in Fig. 2(a) is directly related to the strength of the induced
frequency shift. This shift is determined by the profile of the group index ng = cdβ(ω)/dω
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shown in Fig. 2(b). At the same time, the change of the soliton frequency results in a shift
along the group velocity dispersion β2 profile [marked by the dashed lines in Figs. 1(a) and (c)].
For the presented set-up discussed so far, the soliton experiences an adiabatic shift towards
lower values of β2 = d2β(ω)/dω2, as the β3 component is positive in this case. A negative sign
of β3 may also appear for other dispersion profiles. For example, in fibers with two ZDWs
both signs of β3 are given, allowing decrease of β2 with a blue frequency shift of the soliton.
More importantly, for efficient compression it has to be ensured that the modulus of β3 is high
enough to enable a strong variation of β2 along the induced soliton frequency shift.

A soliton center frequency shift toward lower dispersion values results in an adiabatic
compression of the fundamental soliton [Fig. 2(d)]. This behavior is comparable to soliton
compression in dispersion decreasing fibers [27], where the dispersion is manipulated by suit-
able prefabrication of the fiber. In our case, the change of the dispersion parameter is achieved
differently by an induced frequency shift of the soliton, which, in turn, is controlled by inter-
action with dispersive waves. The resulting compression factor is then related to the strength
of the induced frequency shift. Here lower dispersion values lead to higher peak intensities
and to lower pulse width. However, the obtainable compression also depends on the initial
soliton frequency and on material properties. When a soliton is injected into a range of the
dispersion profile with large β3 values, a relatively small frequency shift may already result
in strong compression. For our example, this precondition is fulfilled due to the vicinity of
vibrational resonances. The parameters for the simulations in Figs. 1 therefore lead to nearly
purely adiabatic compression behavior, i.e., far away from the stringent limitations that were
observed in the system discussed above.

3 Effect of chirp on the compression and acceleration behavior

The exact temporal frequency variation along the dispersive wave has a strong impact on
group-velocity matching in the collision process. This fact suggests use of the chirp as an
additional control parameter here. A carefully chosen chirp allows automatic avoidance of
temporal walk-off effects due to the varying soliton frequency.

As the soliton frequency constantly increases during the entire interaction process, the
frequency of the dispersive wave should constantly decrease [see Fig. 2(b)] to avoid early
stagnation of the collision process. To this end a positive chirp has to be induced.

To illustrate this feature, we choose a dispersive pulse width of td = 300 fs and an amplitude
of Ed = 0.3Es. With this setup, we performed several simulations at different chirp parameters
varying from C = −12 to 12 (GDD ≈ −830 to 830 fs2). The spectral dynamics of the
dispersive wave for different chirps are shown in Figs. 2 (c) and (d). Here the evolution of the
spectrum of the dispersive waves is shown in comparison with that carrying a chirp of C = 6
(GDD ≈ 1620 fs2). As one can see, the interaction of a positively chirped dispersive wave
with a soliton leads to a shift of frequencies interacting with the soliton, and thus a stronger
acceleration of the latter, such that it arrives earlier at the fiber end. In the (t, z)-plane picture,
this implication results in a stronger curvature of the soliton trajectory (similar to the case
presented in Fig. 3). The soliton acceleration is accompanied by its compression due to the
adiabatic frequency shift along the dispersion profile. The net effect of this compression is
shown in Fig. 1(b), where we compare the peak intensities I of the soliton at the fiber end
(z = 30 cm) for different values of the initial chirp C of the dispersive wave. Consequently,
increasing the positive chirp of the dispersive wave, an immediate enhancement of the soliton
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Figure 2: (a) Group index ng of the fiber. Positions of the soliton and dispersive wave are
indicated by the red and blue dots, respectively. (b) Pulse duration at the fiber output (30
cm) is shown in dependence on the dispersive wave chirp C (normalized to pulse duration for
the case C = 0). (c–f) Details of the dispersive wave evolution in frequency range (e,f) and
the output spectrum (c,d) for the chirp parameter C = 0 (c,e) and C = 6 (GDD ≈ 1620 fs2)
(d,f) are presented. One can see the broader spectrum in (f) for z = 0. Dispersive waves in
resonance with the soliton reach higher intensity upon further propagation.
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compression mechanism results.
Also, a positive chirp makes the spectrum of the dispersive wave broader (see Fig. 2),

both at the beginning of the fiber and beyond. In contrast, a negative chirp leads to spectral
narrowing after a certain distance (not shown). The blue frequency components of the trailing
edge of the dispersive wave can thus be adjusted to a better group velocity matching with the
frequency components at the leading edge of the soliton. Thus, the reflection process at the
first collision point is optimized, leading to stronger acceleration. Upon further propagation,
the frequency shift of the soliton feeds on portions of the dispersive wave with suitably delayed
frequency components. For obtaining a blue-shift of the soliton, suitably red-shifted segments
of the dispersive wave are required at the collision points. Otherwise, group-velocity matching
cannot be maintained, and the XPM-induced frequency shift will stagnate. In our example,
new components are originally created by self-phase modulation of the dispersive wave. The
initial chirp then conveys these segments into the interaction zone.

For a negative chirp, the spectrum of the dispersive wave initially appears broadened as
some material dispersion is pre-compensated. Nevertheless, this initial phase is followed by
spectral narrowing. In turn, this leads to deterioration of the matching condition already
during the first collision process, resulting in a slower acceleration process.

At further increase or decrease of the initial chirp, temporal reshaping of the dispersive
wave becomes dominant. This situation is considered in the next section.

4 Effect of strongly chirped dispersive waves on the collision
process
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Figure 3: Temporal dynamics of a soliton interacting with a resonant chirped dispersive wave
for (a-c) td = 100 fs, t0 = 300 fs, Ed = 0.6Es and (d-f) td = 300 fs, t0 = 500 fs, Ed = 0.4Es for
different input chirps C of the dispersive wave. Soliton parameters and the initial delay as in
Fig. 2.

When propagating through the fiber, a chirped dispersive wave experiences shaping dif-
ferent from an unchirped one, to the end of varying amplitude upon initial contact with the
soliton. For the collision process, this results in a simultaneous change of parameters that
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influence the collision process. Here we focus on the situation where maximum compression
is achieved, i.e., even without an initial chirp, the chosen parameters enable practically ideal
compression [1]. Quite generally, the chirp does not allow any further compression beyond the
ideal result of a single-cycle pulse, yet may enable restoration of the ideal situation in case of
disturbing effects like the Raman effect. Let us nevertheless first explore, how an additional
chirp on the dispersive wave actually affects the adiabatic soliton compression process.

Figure 3 depicts the collision process in the time domain with and without initial chirp
of the dispersive wave for two different pulse width combinations. Apart from the chirp
C value, Figs. 3 (a)-(c) are based on identical soliton and dispersive wave parameters as
utilized in Fig. 2. The case without a chirp (C = 0) is shown in Fig. 3(a) and is identical
to the scenario in Fig. 2(a). With a positive chirp of C = 40 [GDD ≈ 250 fs2, Fig. 3(b)],
the initial temporal broadening of the dispersive wave is enhanced, so that the first collision
process appears earlier in the propagation. Apart from spectral broadening due to the initial
chirp, a broader temporal background of dispersive radiation is created, enabling a longer
interaction zone with the soliton. In this way, a stronger total acceleration of the soliton
results, which then translates into enhanced adiabatic compression of the soliton. Applying
a negative chirp parameter [C = −40, GDD ≈ −250 fs2 in Fig. 2(b)], the dispersive wave is
initially compressed until its chirp is compensated. Further dispersive broadening then creates
background radiation that again enables interaction with the soliton over extended distances.
In the collision process, the amplitude of the dispersive wave is larger than without an initially
chirped pulse. The increased amplitude then leads to a stronger acceleration of the soliton for
both signs of the chirp parameter C. As the amplitude is the most efficient control parameter
of this all-optical manipulation scheme [2, 1], small amplitude variations of the dispersive wave
may already strongly affect the soliton acceleration process.

In summary, exploiting temporal reshaping, a strong initial chirp can be used as an alterna-
tive way to simultaneously adjust the dispersive wave duration and time delay. However, chirp
and delay are not perfectly equivalent control parameters. Because of the nonlinear effects
discussed in the previous section, introducing a chirp to a dispersive wave is not completely
equivalent to the changing the delay between the soliton and the dispersive wave.

In Figs. 3(d)-(f), we depict the corresponding collision process for a soliton and a dispersive
pulse with the width of td = 100 fs, delay of t0 = 300 fs and Ed = 0.6Es. These pulse
parameters correspond to a scenario where one reaches already the absolute limitation of
spectral broadening for the soliton. Initially, the soliton is adiabatically compressed up to a
point where it falls abruptly into a state with lower peak intensity and broader pulse width.
These limitations are inherent for this compression scheme and ultimately enforced by the
spectral boundaries dictated by the ZDW and the on-set of absorption [1]. One particular
consequence is the incapability of increasing the compression factor solely by the chirp, as
is illustrated in Fig. 4. Here the dynamics of the soliton maximum is shown for different
chirps, both for short [Fig. 4(a)] and for long [Fig. 4(b)] pulses. As can be seen, the maximum
intensity remains nearly the same, although it is achieved at different propagation lengths z.
The electric field of the soliton and dispersive waves at different stages of propagation are
shown in Figs. 4(c-h). At the end of the fiber, we receive a cycle number Nc below two. Nc

has been calculated at FWHM of the corresponding intensity profile of a soliton. Nevertheless,
the strength of the acceleration can indeed be controlled, which enables the compression on
shorter propagation distances (see for example red lines in Fig. 4). In this way, the chirp can
be used to adapt the compression behavior to the available length of the fiber. This means
of control is particularly useful when the point of maximum compression is already observed
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at very short distances. As we show in the following, the chirp-induced control becomes even
more important when the Raman effect has to be compensated.
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Figure 4: Evolution of the soliton maximum with z for td = 300 fs (a) and td = 100 fs (b)
for different input chirps C of the dispersive wave and other parameters as in Fig. 2. Electric
field of the soliton and the dispersive wave at the (c,d) end, (e,f) the point of maximum
compression, (g,h) at an early propagation stage in the fiber for the evolutions shown in (a)
and (b), respectively. Nc in (c-h) represents the cycle width of the soliton.

5 Chirped dispersive waves for cancellation of the Raman soli-
ton self frequency shift

So far, we have excluded the Raman effect in our considerations. In fact, the Raman effect
does not exclude the collision process [8, 4, 14], but requires a more careful selection of the
initial pulse parameters [21, 22] to obtain similar results for the pulse compression as without
the Raman effect. In particular, the soliton-self-frequency shift has to be taken into account
for the group-velocity matching of dispersive wave. The first collision process has to be realized
in such a way that the red shift induced by the Raman effect is compensated. Upon further
propagation, the induced blue-shift has to overcome the soliton-self-frequency-shift in order
to obtain an effective adiabatic soliton compression. The initial parameters have to be chosen
suitably to ensure that the amplitude of the radiation is sufficient to continuously induce a
frequency shift of the soliton into the blue during the entire interaction process. Only the low
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intensity parts of the dispersive wave interact with the soliton, and the intensity and the width
of the initial dispersive wave ensure the build-up of a low level background from broadening of
the dispersive wave. At higher intensities of the DW, it mostly crosses the soliton, with only
a small interacting part remaining. Nevertheless, the intensity of the dispersive wave at the
collision point has to be high enough for compensating any counteracting deceleration induced
by the Raman self-frequency shift. This condition naturally implies that the group velocities
of both pulses be not too close to each other, limiting the range of the resonant condition for
the reflection process.
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Figure 5: Dynamics of soliton and dispersive wave interaction in the temporal (a,d) and
spectral (b,c,e,f) domain taking into account the Raman process for C = 0 (a-c) and C = 6
(GDD ≈ 1620 fs2) (d-f). (b,e) Spectral evolution of soliton and (c,f) of dispersive wave.

Figure 5 shows the collision process under the influence of the Raman effect. During the
collision the soliton-self-frequency shift is canceled over propagation distances during the col-
lision stage. At a certain point, the interaction between the dispersive wave and the soliton
ceases to support sufficiently strong acceleration of the soliton, and the soliton self-frequency
shift subsequently determines the soliton trajectory. In turn, the soliton is shifted back to-
wards the red, which then leads to broadening and deceleration of the soliton. In contrast to
the Raman-free case, an adjusted interaction length is now essential for the formation of a
compressed soliton at the fiber output.

Finally, the presence of the chirp may serve to enhance the interaction length, leading to
a stronger compression of the soliton. This is exemplified in Fig. 6, where the behavior of
the soliton maximum is shown for different chirp factors as well as for different amplitudes
of the dispersive wave. Obviously, in the presence of Raman effect, the compressing factor
due to interaction with the dispersive wave is less than in the case without Raman. For low
amplitudes of the dispersive wave, even a simple re-compression may be impossible to achieve.
Nevertheless, the presence of a chirp in the dispersive wave can improve the situation (see
Fig. 6(a)). On the other hand, when a relatively high recompression ratio is achieved (see
Fig. 6(b), the chirp is not likely to improve the compression. The comparison of Fig. 5(c,d)
shows that the spectral dynamics of the dispersive wave is significantly different in the case
with and without chirp. In particular, a low-frequency part of the dispersive wave appears
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Figure 6: Evolution of the soliton maximum with z for Ed = 0.67Es (a) and Ed = 0.75Es (b)
for different input chirps C (C = 0: grey line, C = 6: red line, C = −6 (GDD = −40000 fs2):
blue line) of the dispersive wave and other parameters as in Fig. 2 and td = 500 fs.

much more pronounced in the case with chirp. This clearly shows once more that the temporal
reshaping of the dispersive wave plays only a minor role in this case. Much more importantly, is
the fact that spectral resonance relations between the soliton and dispersive wave are modified
by the chirp.

6 Conclusion

In conclusion, we have studied the dynamics of a short soliton resonantly interacting with a
chirped dispersive wave packet in an ESM photonic crystal fiber. We found that a relatively
small chirp can already significantly modify the dynamics of the interaction process. In gen-
eral, there are two major mechanisms influencing the dynamics, namely, one related to the
phase-matching condition governing the interaction of the soliton and dispersive wave and a
second one relating to purely linear reshaping of the chirped dispersive wave in time. The
latter mechanism is important for large input chirps and allows controlling the point where
dispersive wave and soliton start to interact. On the other hand, the former case allows for an
improvement of the soliton-dispersive wave interaction in the spectral domain. This second
mechanism relies on spectral broadening of the chirped wave, and it enables a match of the
compression behavior to the fiber length. Specifically, one can obtain the maximum soliton
compression at shorter propagation distances. Moreover, the chirped dispersive wave is very
useful for the control of the soliton compression process in presence of the Raman effect. This
means of control provides an additional independent degree of freedom, enabling the mod-
ification of time and position of the first collision. In particular, introduction of a positive
chirp reduces this time and provides longer interaction distances. The outlined mechanisms
enable substantial adaption of the adiabatic soliton compression to a given dispersion charac-
teristics of the fiber. Moreover, the demonstrated control exploits the working principle of an
optical transistor for the control of the width and compression factor of a soliton, yielding a
controllable and transient pulse compression.
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