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EXISTENCE OF WEAK SOLUTIONS FOR THE CAHN-HILLIARD REACTION

MODEL INCLUDING ELASTIC EFFECTS AND DAMAGE

CHRISTIANE KRAUS AND ARNE ROGGENSACK

Abstract. In this paper, we introduce and study analytically a vectorial Cahn-Hilliard reaction
model coupled with rate-dependent damage processes. The recently proposed Cahn-Hilliard re-

action model can e.g. be used to describe the behavior of electrodes of lithium-ion batteries as it

includes both the intercalation reactions at the surfaces and the separation into different phases.
The coupling with the damage process allows considering simultaneously the evolution of a damage

field, a second important physical effect occurring during the charging or discharging of lithium-ion

batteries.
Mathematically, this is realized by a Cahn-Larché system with a non-linear Newton boundary

condition for the chemical potential and a doubly non-linear differential inclusion for the damage

evolution. We show that this system possesses an underlying generalized gradient structure which
incorporates the non-linear Newton boundary condition. Using this gradient structure and tech-

niques from the field of convex analysis we are able to prove constructively the existence of weak

solutions of the coupled PDE system.

1. Introduction

Lithium-ion batteries belong to the most promising technologies to store energy. They are used
as well for small electronic devices as for electric cars or the storage of renewable energies. Due to
the increasing demand of such batteries, it is important to develop and study mathematical models
in order to understand the charging and discharging process. During the last years it was observed
that the classical battery models (like e.g. a shrinking core model) do not predict the right behavior
for lithium-ion batteries [1].

As an alternative to the classical models, Singh et al. [29] and Zeng et al. [31] proposed to use an
extended phase-field model of Cahn-Hilliard or Cahn-Larché type. Their idea bases on the fact that
LiFePO4 has the strong tendency to separate in a lithium rich and a lithium poor phase. The model
takes inherently care of the intercalation reactions at the phase boundaries. Singh et al. and Zeng
et al. introduced a non-linear Newton boundary condition for the chemical potential reflecting the
chemical reactions on the surface using generalized Butler-Volmer kinetics. That model is sometimes
called Cahn-Hilliard reaction (CHR) model. The fundamental difference to the classical Cahn-Larché
model is the new chemically active boundary condition instead of the classical no-flux condition.

In recent years, the classical Cahn-Larché model describing phase-separation in elastic materials
was studied intensively. In particular, the existence, the uniqueness, the regularity and the long-time
behavior of solutions were investigated (see [4, 11] and the references therein). Often the main idea
for the analysis was to write the equations as an H−1-gradient flow. This bases essentially on the
mass conservation of the solution which allows proving a priori estimates. However, in the CHR
model the mass will not be conserved in general due to the chemical reactions at the boundary. For
this reason, our approach to handle the CHR model analytically is to use a non-quadratic dissipation
potential and to introduce a corresponding generalized gradient structure instead of theH−1-gradient
structure (see [20, 21] for details on generalized gradient structures). This ansatz naturally takes into
account the non-linear Newton boundary condition and circumvents the analytical problem with the
non-conserved mass. To the best of our knowledge, this additional structure of the CHR model was
not known before.

Date: March 2, 2016.
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In [13] and [14], the Cahn-Larché model was expanded to describe also damage of an alloy using a
scalar damage variable z. The damage is driven by a rate-dependent dissipation potential. Assuming
that the damage process is unidirectional and that the damage variable lies in a fixed interval, i.e.
[0, 1], we are confronted with the mathematical challenging task to deal with inequality constraints
guaranteeing ∂tz ≤ 0 and z ∈ [0, 1]. In the context of lithium-ion batteries, the charging behavior
is expected to depend strongly on the damage of the material. For this reason we include such
a damage variable in the CHR model [29, 31]. The main objective of this work is to prove the
existence of a weak solution of this coupled model. As in [14], we are also able to deal with the
physical meaningful gradient term |∇z|2 in the damage energy density (see [9]). Hence, we do not
need to restrict to |∇z|p (p > space dimension).

During the last years, many damage models based on the model of Frémond and Nedjar [10]
describing damage in concrete (see also [9]) were investigated. The models divide basically in two
types, the rate-independent [18, 17, 30] and the rate-dependent models [2, 13, 14, 15]. Both types
can be coupled with different other equations to describe e.g. different phases [13, 14], inertia [16] or
thermal effects [19, 24, 25, 5].

To prove existence of a weak solution of the CHR model we will discretize the equations in time
using the implicit Euler scheme. For analytical reason, we add a viscosity term ν∂tc to the chemical
potential in the first instance. This will result in additional regularity of the solution which is
important to pass to the limit of the Euler discretization. The technique we use to construct a
solution can also be used to compute a solution numerically. As far as we know, there is yet only
one numerical scheme developed for the CHR model [6] which is based on another discretization. It
does not take into account the natural gradient structure of the system.

This paper is divided into five sections. In section 2, we present the model including its viscous
approximation. Section 3 deals with the functional replacing the H−1-norm of the usual Cahn-Larché
framework. In section 4, we prove the main existence result for the viscous case using an implicit
time-discretization before we pass to the vanishing viscosity limit in section 5.

2. Model

In the following, we will present the model in some more details. Let Ω ⊂ Rn be a bounded
Lipschitz domain with boundary Γ = ∂Ω. The time-dependent state of the system is described by
a triple (u, c, z) where u : Ω→ Rn describes the deformation of the elastic material, c : Ω→ RN the
chemical concentration field and z : Ω→ [0, 1] the damage variable. Here, z = 1 refers to undamaged
material whereas z = 0 refers to completely damaged material. To describe the state of the system
we use a generalized Ginzburg-Landau free energy functional of the form

Ẽ : H1(Ω;Rn)×H1(Ω;RN )×H1(Ω)→ R

Ẽ(u, c, z) :=

∫
Ω

1

2
Γ∇c : ∇c+

1

2
K∇z · ∇z +W ch(c) +W el(e(u), c, z)dx.

Here, the term W ch accounts for the chemical energy density and W el for the elastically stored
energy density. We consider the linearized strain tensor e(u) = 1

2

(
∇u+∇uT

)
since we assume the

deformations to be sufficiently small. The first two terms in the functional penalize rapid spatial
changes of the concentration and the damage profile.

A typical form of the chemical free energy density is a double well-potential like W ch(c) = (1 −
|c|2)2. The elastically stored energy density is often modeled as W el(e, c, z) = (Φ(z) + η) Ŵ el(e, c)
with a continuously differentiable and monotonically increasing function Φ : [0, 1] → [0,∞) with
Φ(0) = 0 and an elastically stored energy of the undamaged material of the form

Ŵ el(e, c) =
1

2
(e− e?(c)) : C(c) (e− e?(c)) .

Here, e?(c) is the eigenstrain which is usually linear and C(c) ∈ L(Rn×nsym ) is a concentration de-
pendent, symmetric and positive definite fourth order stiffness tensor. The parameter η > 0 is
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introduced to ensure that the system is not degenerating (compare assumption (A3) at the end of
this section).

As usual, the chemical potential µ is defined as the variational derivative of the energy functional
in direction of c, i.e.

µ = − div(Γ∇c) +W ch
c (c) +W el

c (e(u), c, z) + ν∂tc.

Note that we have added the viscosity term ν∂tc to capture viscous effects. This term can physically
be interpreted as a microforce (see [8, 22]). It is also useful for analytical reasons (see proof of
Theorem 4). Then, the mass balance in the bulk material leads to the viscous Cahn-Hilliard equation

∂tc = ∆µ. (1)

At the surface, chemical reactions imply a flux into the domain. This is described using an Arrhenius
type law [29] by a nonlinear Newton boundary condition of the form

∇µνb = R(c, µ) (2)

where νb denotes the outer normal on the boundary ∂Ω and R(c, µ) the reaction rate. This function
may be of the form

R(c, µ) = g

(
c,Rins

(
1− exp

(∑N
i=1(µi − µe,i)

kT

)))
with µ = (µ1, . . . , µN ), µe = (µe,1, . . . , µe,N ),

where g : RN ×RN → RN and Rins : R→ RN . Here, Rins denotes the rate for the insertion rate, µe
the external potential, k the Boltzmann constant and T the temperature. In our work, we assume a
polynomial growth condition for R, see (A8) to (A12). To allow for an exponential growth, we have
to modify the function Rins outside some compact interval [−c1, c2].

Furthermore, we assume the system to be in the quasi-static equilibrium, i.e.

div(σ) = 0

where σ = W el
e (e(u), c, z) denotes the stress tensor. The damage process is described by the dissi-

pation potential (compare [13, 14] for more details on the damage process)

R̃ : L2(Ω)→ R

R̃(ż) :=

∫
Ω

ρ(ż)dx

with ρ(ż) := −αż+ β
2 ż

2 and α, β > 0. We assume the damage process to be irreversible, i.e. ∂tz ≤ 0.
To take into account the irreversibility and the natural constraint z ≥ 0 we add the corresponding
indicator functions to the energy functional and the dissipation potential

E(u, c, z) := Ẽ(u, c, z) +

∫
Ω

I[0,∞)(z)dx, R(ż) := R̃(ż) +

∫
Ω

I(−∞,0](ż)dx

where IA denotes the indicator function with IA(x) = 0 if x ∈ A and IA(x) = ∞ otherwise. Then,
the evolution of the damage variable z can be described as a doubly nonlinear differential inclusion

0 ∈ ∂Cl
z E(u, c, z) + ∂żR(∂tz).

Due to the constraints on z and ∂tz the functionals are non-smooth and we need to use the (Clarke)
subdifferential.

Remark that the CHR model without damage process is a special case of the presented model for
W el(e, c, z) = W el(e, c) and z(0) = 0. Thus, all presented results also hold for the usual CHR model.



EXISTENCE OF WEAK SOLUTIONS FOR THE CAHN-HILLIARD REACTION MODEL 4

Let us summarize the complete model with initial and boundary conditions:

∂tc = ∆µ in ΩT ,

µ = −div(Γ∇c) +W ch
c (c) +W el

c (e(u), c, z) + ν∂tc in ΩT ,

div(W el
e (e(u), c, z)) = 0 in ΩT

0 ∈ ∂Cl
z E(u(t), c(t), z(t)) + ∂żR(ż(t)) in ΩT ,

∇c νb = 0 on Γ,

∇µ νb = R(c, µ) on Γ,

σ νb = 0 on Γ,

∇z · νb = 0 on Γ,

c(0) = c0 in Ω,

z(0) = z0 in Ω.

To prove existence of weak solutions, we first add a regularization term in the energy. Therefore,
we introduce the regularized energy for ε > 0

Eε : W 1,p(Ω;Rn)×H1(Ω;RN )×W 1,p(Ω)→ R ∪ {∞}

Eε(u, c, z) = E(u, c, z) +
ε

p

∫
Ω

|e(u)|p + |∇z|pdx

for some p > n. Later, we will also use the regularized energy without the constraint on z, i.e.

Ẽε(u, c, z) := Ẽ(u, c, z) +
ε

p

∫
Ω

|e(u)|p + |∇z|pdx.

The corresponding regularized equations read

∂tc = ∆µ in ΩT ,

µ = −div(Γ∇c) +W ch
c (c) +W el

c (e(u), c, z) + ν∂tc in ΩT ,

div(σ) + εdiv(|e(u)|p−2e(u)) = 0 in ΩT ,

0 ∈ ∂Cl
z Eε(u(t), c(t), z(t)) + ∂żR(ż(t)) in ΩT ,

∇c νb = 0 on Γ,

∇µ νb = R(c, µ) on Γ,

(σ + ε|e(u)|p−2e(u)) νb = 0 on Γ,

∇z · νb = 0 on Γ,

c(0) = c0 in Ω,

z(0) = z0 in Ω.

To simplify the notation we will assume Γ = K = Id. The presented results can easily be adapted
to any positive definite diagonal matrices.

Note that all presented results can be proven similarly prescribing a Dirichlet boundary condition
u = b on ΓD × [0, T ] where ΓD ⊂ Γ is a part of the boundary with Hn−1(ΓD) > 0. Then, the
Neumann boundary condition (σ + ε|e(u)|p−2e(u)) νb = 0 is only necessary on the remaining part
(Γ \ ΓD)× [0, T ] of the boundary.

To conclude this section, we list all assumptions on the involved functions which we need in order
to prove our results. Let 2? denote the critical Sobolev exponent and

2# =


2n−2
n−2 for n > 2

arbitrary for n = 2

∞ for n = 1
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the critical exponent for the trace operator to be continuous as an operator from H1(Ω;RN ) to

L2#

(Γ;RN ) (see e.g. [26]). The Euclidean norm is always denoted by | · | whereas the 1-norm in RN
is written as | · |1. The unit vectors of the standard basis of Rn are written as ek. During the whole
work, C > 0 and C1 > 0 denote constants which may vary from line to line.

We assume that there exist constants η, δ, C,C1 > 0 with δ < min
(

2?

2 , 2
# − 1

)
such that the

following (in-)equalities hold for all e, e1, e2 ∈ Rn×n, c, µ, µ1, µ2 ∈ RN , and z ∈ [0, 1].

(i) Elastically stored energy density:

W el ∈ C1
(
Rn×n × RN × R; [0,∞)

)
with

W el(e, c, z) = W el(eT , c, z), (A1)

W el(e, c, z) ≤ C(|e|2 + |c|2 + 1), (A2)

η|e1 − e2|2 ≤
(
W el
e (e1, c, z)−W el(e2, c, z)

)
: (e1 − e2), (A3)

|W el
e (e1 + e2, c, z)| ≤ C(W el

e (e1, c, z) + |e2|+ 1), (A4)

|W el
c (e, c, z)| ≤ C(|e|2 + |c|2 + 1), (A5)

|W el
c (e, c, z)| ≤ C(|e|+ |c|2 + 1), (A5’)

|W el
z (e, c, z)| ≤ C(|e|2 + |c|2 + 1). (A6)

(ii) Chemical energy density:

W ch ∈ C1(R;RN ) with W ch(c) > −C,

|W ch
c (c)| ≤ C(|c| 2

?

2 −δ + 1) (A7)

(iii) Reaction rate:
Let G ∈ C1(RN × RN ) with the following properties:

• The reaction rate R(c, µ) := Gµ(c, µ) is strictly decreasing, uniformly in c, i.e.(
R(c, µ1)−R(c, µ2)

)
· (µ1 − µ2) ≤ −C1|µ1 − µ2|2 (A8)

and

|R(c,±ek)| ≤ C (A9)

for k = 1, . . . , N .
• The growth condition

|R(c, µ)| ≤ C
(

1 + |c|2
#−δ−1 + |µ|2

#−δ−1
)
, (A10)

is satisfied.

Note that the monotonicity (A8) and the boundedness (A9) implies |R(c, 0)| ≤ C and thus, by
Young’s inequality we can extract from (A8) the estimate

−µ ·R(c, µ) ≥ C
(
|µ|2 − C1

)
. (A11)

In addition, due the growth condition (A10) the following estimate is fulfilled:

|G(c, µ)| ≤ C
(

1 + |c|2
#−δ + |µ|2

#−δ
)
. (A12)

3. Legendre-Fenchel transform and subdifferentials

In this section, we will collect some basic facts about the Legendre-Fenchel transform and the
subdifferential. We will apply these results to a special functional which is important to generate
the generalized gradient flow structure of the equations.
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We define the proper, partly convex, and lower semi-continuous functional

A : L2#−δ(Γ;RN )× L2(Ω;RN )→ R ∪ {∞}

A(c, v) =

{
1
2 (∇v,∇v)L2 −

∫
Γ
G(c, v)dω if v ∈ H1(Ω;RN )

∞ otherwise.
(3)

We observe that the boundary integral
∫

Γ
G(c, v)dω is finite for v ∈ H1(Ω;RN ) and c ∈ L2#−δ(Γ;RN )

due to the assumption (A12) on G.
Furthermore, we introduce the continuous operator

B : L2#−δ(Γ;RN )×H1(Ω;RN )→ H1(Ω;RN )′

〈B(c, u), v〉 =

∫
Ω

∇u : ∇vdx−
∫

Γ

R(c, u) · v dω.
(4)

For fixed c ∈ L2#−δ(Γ;RN ), the operator Bc := B(c, ·) is strictly monotone, bounded, and coercive
due to the assumptions on R. Here, the coercivity can be proven using assumption (A11) to obtain

〈B(c, u), u〉 = ‖∇u‖2L2(Ω;RN ) −
∫

Γ

R(c, u) · u dω

≥ ‖∇u‖2L2(Ω;RN ) + C
(
‖u‖2L2(Γ;RN ) − C1Hn−1(Γ)

) (5)

for any u ∈ H1(Ω;RN ). Then, a special variant of Poincaré’s inequality, namely

‖u‖H1(Ω;RN ) ≤ C
(
‖∇u‖L2(Ω;RN ) + ‖u‖Lq(Γ;RN )

)
(6)

for any 1 ≤ q ≤ 2# (see e.g. Theorem 1.32 of [26]) implies the coercivity. Altogether, there exists a
strictly monotone, bounded, and demicontinuous inverse operator B−1

c : H1(Ω;RN )′ → H1(Ω;RN )
(see e.g. Theorem 2.14 of [26]).

Lemma 1. The operator B̄ : L2#−δ(Γ;RN )×H1(Ω;RN )′ → H1(Ω;RN ),

B̄(c, v?) = B−1
c (v?)

is bounded and continuous.

Proof. The boundedness can directly be seen from estimate (5) and Poincaré’s inequality (6) since
we have for u = B̄(c, v?)

‖B̄(c, v?)‖2H1(Ω;RN ) ≤ C
(
‖B̄(c, v?)‖2L2(Γ;RN ) + ‖∇B̄(c, v?)‖2L2(Ω;RN )

)
≤ C

(〈
B(c, B̄(c, v?)), B̄(c, v?)

〉
+ 1
)

≤ C
(
‖v?‖H1(Ω;RN )′‖B̄(c, v?)‖H1(Ω;RN ) + 1

)
and thus

‖B̄(c, v?)‖H1(Ω;RN ) ≤ C(‖v?‖H1(Ω;RN )′ + 1). (7)

In order to show the continuity, let {(cn, v?n)} ⊂ L2#−δ(Γ;RN )×H1(Ω;RN )′ be a norm converging
sequence with limit (c, v?). Then, the sequence B̄(cn, v

?
n) is bounded in H1(Ω;RN ) and there exists

a weakly convergent subsequence vnk := B̄(cnk , v
?
nk

) ⇀ v in H1(Ω;RN ). Due to the monotonicity of

Bc and the continuity of B, it follows for any w ∈ H1(Ω;RN )

0 ≤ 〈B(cnk , vnk)− B(cnk , w), vnk − w〉
= 〈v?nk − B(c, w), vnk − w〉+ 〈B(c, w)− B(cnk , w)︸ ︷︷ ︸

→0 in H1(Ω;RN )′

, vnk − w〉

→ 〈v? − B(c, w), v − w〉.
Then, Minty’s trick (see e.g. Lemma 2.13 of [26]) yields v? = B(c, v) which is equivalent to v =
B̄(c, v?). By contradiction we see that in fact the whole sequence {vn} is weakly converging to v and
it only remains to show the strong convergence of vn in H1(Ω;RN ). The compactness of the trace
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operator from H1(Ω;RN ) to L2#−δ(Γ;RN ) implies the strong convergence of vn in L2#−δ(Γ;RN ).

The growth condition (A12) yields the strong convergence of R(cn, vn) in L(2#−δ)′(Γ;RN ). Using
the definition of B̄ and (4), we observe

〈v̄?, B̄(c, v̄?)〉 = 〈B(c, B̄(c, v̄?)), B̄(c, v̄?)〉 = (∇B̄(c, v̄?),∇B̄(c, v̄?))L2 −
∫

Γ

R(c, B̄(c, v̄?)) · B̄(c, v̄?) dω

(8)
for any v̄? ∈ H1(Ω;RN )′. Thus, we conclude

‖∇B̄(cn, v
?
n)‖2L2 = 〈v?n, vn〉+

∫
Γ

R(cn, vn) · vn dω → 〈v?, v〉+

∫
Γ

R(c, v) · v dω = ‖∇B̄(c, v?)‖2L2

which shows the strong convergence of B̄(cn, v
?
n) in H1(Ω;RN ). Hence, the continuity of B̄ is proven.

�

Note that from (7) and continuity of the trace operator we obtain

‖B̄(c, 0)‖
L2#−δ(Γ;RN )

≤ C‖B̄(c, 0)‖H1(Ω;RN ) ≤ C. (9)

Next, we will study the relation between A and B. For the proper, convex, and lower semicon-
tinuous functional Ac := A(c, ·), the following relationship is well-known for v ∈ dom(Ac) (see e.g.
[23])

v? ∈ ∂Ac(v)⇔ 〈v?, w〉L2(Ω;RN ) ≤ d+Ac(v;w) for all w ∈ L2(Ω;RN ) (10)

where d+ denotes the right-hand directional derivative. For v, w ∈ H1(Ω;RN ) the directional deriv-
ative of operator Ac at v in the direction w exists and it holds dAc(v;w) = 〈Bc(v), w〉. Thus, the
relationship (10) turns into

v? ∈ ∂Ac(v)⇔ 〈v?, w〉L2(Ω;RN ) = dAc(v;w) = 〈B(c, v), w〉H1(Ω;RN )′ for all w ∈ H1(Ω;RN ). (11)

Hence, we observe that the weak formulation of (1) and (2) is equivalent to −∂tc(t) ∈ ∂Ac(t)(µ(t))
for almost all t ∈ (0, T ).

Since we want to use variational methods in the following, the (partial) Legendre-Fenchel trans-
form will occur naturally. The transform is defined as

A? : L2#−δ(Γ;RN )× L2(Ω;RN )→ R ∪ {∞}
A?(c, v?) = A?c(v?) = sup

v∈L2(Ω;RN )

{
(v?, v)L2(Ω;RN ) −Ac(v)

}
= sup
v∈H1(Ω;RN )

{
(v?, v)L2(Ω;RN ) −Ac(v)

}
.

Since Ac is proper, convex, and lower semi-continuous and since L2(Ω;RN ) is reflexive, we obtain
the equivalence (see e.g. Proposition 4.4.4 of [27])

Ac(v) <∞, v? ∈ ∂Ac(v)⇔ A?c(v?) <∞, v ∈ ∂A?c(v?). (12)

As a next step, we will examine the map A?c in more detail.

Let (c, v?) ∈ L2#−δ(Γ;RN )× L2(Ω;RN ) be fixed. The necessary condition for v ∈ H1(Ω;RN ) to
be a maximizer of the strict concave functional (v?, v)L2(Ω;RN ) −Ac(v) is

〈Bc(v), ξ〉H1(Ω;RN )′ = (v?, ξ)L2 for all ξ ∈ H1(Ω;RN ).

Since Bc is invertible, the unique solution of this equation is given by v = B̄(c, v?) and since the
functional is strict concave, v must be the unique global maximizer. Thus, it is

A?(c, v?) = (v?, B̄(c, v?))L2 −A(c, B̄(c, v?))

= (v?, B̄(c, v?))L2 − 1

2
(∇B̄(c, v?),∇B̄(c, v?))L2 +

∫
Γ

G(c, B̄(c, v?))dω.



EXISTENCE OF WEAK SOLUTIONS FOR THE CAHN-HILLIARD REACTION MODEL 8

Using the equation (8), this can be reformulated as

A?(c, v?) =
1

2
(B̄(c, v?), v?)L2 +

∫
Γ

(
G(c, B̄(c, v?))− 1

2
R(c, B̄(c, v?)) · B̄(c, v?)

)
dω

and

A?(c, v?) =
1

2
(∇B̄(c, v?),∇B̄(c, v?))L2 +

∫
Γ

(
G(c, B̄(c, v?))−R(c, B̄(c, v?)) · B̄(c, v?)

)
dω. (13)

In particular, it is A?c(v?) <∞ for every v? ∈ L2(Ω;RN ). Hence, due to the equivalences in (12) and
in (11), v ∈ ∂A?c(v?) implies v ∈ H1(Ω;RN ) and v = B̄(c, v?). In particular, ∂A?c(v?) is a singleton.

Furthermore, we see that A? is continuous as B̄ in H1(Ω;RN ) and A|
L2#−δ(Γ;RN )×H1(Ω;RN )

are

continuous.
Since A?c is convex on L2(Ω;RN ) and since ∂A?c(v?) is a singleton, A?c is Gateaux differentiable

(see e.g. Corollary 4.2.5 of [3]) in the sense that the right-hand directional derivative is linear and
continuous. Obviously, then the restriction A?c |H1(Ω;RN ) has also a linear and continuous right-hand

directional derivative and thus, for each v? ∈ H1(Ω;RN ) the subdifferential ∂A?c |H1(Ω;RN )(v
?) ⊂

H1(Ω;RN )′ is also a singleton. To be precise, it is

∂A?c |H1(Ω;RN )(v
?) =

{
B̄(c, v?)

}
. (14)

To conclude the analysis of the functional A?, we prove some estimates of the Legendre-Fenchel
transform.
Lemma 2. The functional A?c(v?) +Ac(B̄(c, 0)) is uniformly bounded from below, i.e.

0 ≤ 1

n

∣∣∣ ∫
Ω

v?dx
∣∣∣
1
≤ A?c(v?) +Ac(B̄(c, 0)) + C (15)

for any c ∈ L2#−δ(Γ;RN ) and any v? ∈ L2(Ω;RN ).

Proof. From (A8) we infer

R(c, t(µ∓ ek)± ek) · t(µ∓ ek) ≤ R(c,±ek) · t(µ∓ ek)− C1t
2|µ∓ ek|2

for any standard basis vector ek ∈ RN . In consequence, it follows with (A9)∫ 1

0

R(c, t(µ∓ ek)± ek) · (µ∓ ek) dt ≤
∫ 1

0

R(c,±ek) · (µ∓ ek) dt ≤ C|µ∓ ek|.

For fixed c ∈ RN and any µ ∈ RN , we estimate

G(c,±ek)−G(c, µ) = −
∫ 1

0

R(c, t(µ∓ ek)± ek) · (µ∓ ek) dt

≥ −C|µ∓ ek|.

Thus, for any c ∈ L2#−δ(Γ;RN ) and v? ∈ L2(Ω;RN ), we obtain due to (9)

A?c(v?) ≥ (v?,±ek)L2 −Ac(±ek) = ±
∫

Ω

v? · ekdx+

∫
Γ

G(c,±ek)dω

≥ ±
∫

Ω

v? · ekdx+

∫
Γ

(
G(c, B̄(c, 0))− C|B̄(c, 0)∓ ek|

)
dω

≥ ±
∫

Ω

v? · ekdx−Ac(B̄(c, 0))− C.

Hence, it follows

0 ≤ 1

n

∣∣∣ ∫
Ω

v?dx
∣∣∣
1
≤ A?c(v?) +Ac(B̄(c, 0)) + C.

In particular, A?c(v?) +Ac(B̄(c, 0)) is uniformly bounded from below. �
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4. Viscous Cahn-Hilliard reaction equations

As in [11], we will consider boundary conditions of the second type for u and thus u can only
be determined uniquely up to translations and infinitesimal rotations. Therefore, we introduce the
space of infinitesimal rigid displacements

Xird,p :=
{
u ∈W 1,p(Ω;Rn)|there exists b ∈ Rn and a skew symmetric matrix

A ∈ Rn×n with u(x) = Ax+ b
}

which is known to be the null space of the symmetrized gradient e(v), i.e. of the operator

e : W 1,p(Ω;Rn)→ Lp(Ω;Rn×n)

v 7→ 1

2

(
∇v +∇vT

)
.

We define the quotient space Ẇ 1,p(Ω;Rn) := W 1,p(Ω;Rn)/Xird,p and set e([v]) := e(v) for [v] ∈
Ẇ 1,p(Ω;Rn) and any v ∈ [v]. This is possible since e(v) does not depend on the choice of the

representative of [v]. For p = 2 we denote the quotient space as usual by Ḣ1(Ω;Rn) := Ẇ 1,2(Ω;Rn).
Since H1(Ω;Rn) is a Hilbert space, the quotient space is isomorphic to the orthogonal complement

Ḣ1(Ω;Rn) ∼= X⊥ird,2 :=
{
u ∈ H1(Ω;Rn)|(u, v)H1 = 0 for all v ∈ Xird,2

}
.

In order to simplify the notation, let us introduce some more spaces

C = L∞(0, T ;H1(Ω;RN )) ∩H1(0, T ;L2(Ω;RN ))

Uε = L∞(0, T ; Ẇ 1,p(Ω;Rn))

U0 = L∞(0, T ; Ḣ1(Ω;Rn))

Zε = L∞(0, T ;W 1,p
+ (Ω)) ∩H1(0, T ;L2(Ω))

Z0 = L∞(0, T ;H1
+(Ω)) ∩H1(0, T ;L2(Ω))

M = L2(0, T ;H1(Ω;RN ))

for ε > 0. Furthermore, let us write pε =

{
p for ε > 0

2 for ε = 0.
These notations allow us to define a

solution for ε > 0 and ε = 0 in a unified way.

Definition 3. Let be ε ≥ 0 and ν > 0. A tuple q = (u, c, µ, z) ∈ Uε × C ×M×Zε is called a weak
solution of the viscous Cahn-Hilliard reaction equations with elasticity and damage if the following
properties are satisfied:

(i) The initial conditions are fulfilled, i.e. c(0) = c0 and z(0) = z0 and the damage process is
irreversible, i.e. ∂tz ≤ 0.

(ii) It holds

−(∂tc(t), ξ)L2 =

∫
Ω

∇µ(t) : ∇ξdx−
∫

Γ

R(c(t), µ(t)) · ξdω (16)

for all ξ ∈ H1(Ω;RN ) and almost all t ∈ (0, T ).
(iii) It holds

(µ(t), ξ)L2 =

∫
Ω

∇c(t) : ∇ξ +
(
W ch
c (c(t)) +W el

c (e(u(t)), c(t), z(t)) + ν∂tc(t)
)
· ξdx (17)

for all ξ ∈ H1(Ω;RN ) and for almost all t ∈ (0, T ).
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(iv) It holds ∫
Ω

W el
e (e(u(t)), c(t), z(t)) : e(ξ) + ε|e(u(t))|p−2e(u(t)) : e(ξ)dx = 0 (18)

for all ξ ∈W 1,pε(Ω;Rn) and for almost all t ∈ [0, T ].

(v) There exists a function r ∈ L1
(

0, T ;
(
W 1,pε(Ω) ∩ L∞(Ω)

)′)
such that it holds∫

Ω

(
ε|∇z(t)|p−2 + 1

)
∇z(t) · ∇ξ +

(
W el
z (e(u(t)), c(t), z(t))− α+ β∂tz(t)

)
ξdx

≥ −〈r(t), ξ〉
(19)

for all ξ ∈W 1,pε
− (Ω) ∩ L∞(Ω) and almost all t ∈ (0, T ) and

〈r(t), ξ − z(t)〉 ≤ 0

for all ξ ∈W 1,pε
+ (Ω) ∩ L∞(Ω) and almost all t ∈ (0, T ).

(vi) The energy inequality

Eε(u(t), c(t), z(t))

+

∫ t

0

−α∂tz(s) + β|∂tz(s)|2 +A(c(s), µ(s)) +A?(c(s),−∂tc(s)) + ν‖∂tc(s)‖2L2(Ω)ds

≤ Eε(u0, c0, z0)

(20)

is fulfilled for almost all t ∈ [0, T ] and all u0 ∈ Ẇ 1,pε(Ω;Rn).

Let us give some comments on the solution concept for the damage equation using the energy
inequality. It was introduced in [13] since (until now) it seems to be impossible to show ∂tz(t) ∈
W 1,pε(Ω) which would be necessary in order to understand the differential inclusion in a classical way
(compare the comments on this concept in [18] and the original derivation in [13]). If the solution
has this additional regularity, the above defined notation of a solution is equivalent to the usual
concept of the differential inclusion.

The rest of this paper is concerned with the construction of such a solution either in the case
ε > 0 or ε = 0.
Theorem 4 (Existence for ε > 0). Let the assumptions (A1)-(A10) be true. For each ε > 0, ν > 0
and each c0 ∈ H1(Ω;RN ) and z0 ∈W 1,p(Ω) with 0 ≤ z0 ≤ 1, there exists a weak solution q as defined
in Definition 3. Additionally, it is possible to choose r ∈ L∞(0, T ;Ls(Ω)) for s = 1

2 min(2?, p).
Using this result, we will be able to consider the limit ε → 0 to show that there also exists a

solution for the case ε = 0. Remark that we still require ν to be positive. Later, we will see that
this yields the required regularity in order to perform the limit process. Altogether, this will result
in the following theorem.
Theorem 5 (Existence for ε = 0). Let the assumptions (A1)-(A4), (A5’) and (A6)-(A10) be true.
For each ν > 0 and ε = 0 and each c0 ∈ H1(Ω;RN ) and z0 ∈ H1(Ω) with 0 ≤ z0 ≤ 1, there exists
a weak solution q as defined in Definition 3. It is possible to choose r ∈ Ls(0, T ;L1(Ω)) for any
1 ≤ s <∞.

The proof of the existence of a solution of the viscous problem is divided into several steps. For
some details we refer to [13] and [14]. In this section, we will always assume ε > 0.

4.1. Construction of time-discrete solutions. Let be M ∈ N and set τ = T
M . Furthermore, let

u0 be a minimizer in Ẇ 1,p(Ω;Rn) of the functional u 7→ E(u, c0, z0). Then, we set (u0
M , c

0
M , z

0
M ) =

(u0, c0, z0), define the convex closed subsets

Q =:
{

(u, c, z) ∈ Ẇ 1,p(Ω;Rn)×H1(Ω;RN )×W 1,p(Ω)|0 ≤ z ≤ 1
}

and

QmM :=
{

(u, c, z) ∈ Q|z ≤ zm−1
M

}
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and the discrete energy functional

EmM : QmM → R

EmM (u, c, z) = Ẽε(u, c, z) + τR̃
(
z − zm−1

M

τ

)
+ τA?

cm−1
M

(
−
c− cm−1

M

τ

)
+ τAcm−1

M

(
B̄(cm−1

M , 0)
)

+
ν

2τ
‖c− cm−1

M ‖2L2 .

Remark 6. The use of A? is the natural generalization of the H−1-norm which is well-known for
the study of the Cahn-Hilliard equation. This functional incorporates the nonlinear gradient flow
originating from the Newton boundary condition for the potential.

Lemma 7 (Existence of minimizers). For each (um−1
M , cm−1

M , zm−1
M ) ∈ Q, there exists a minimizer

(umM , c
m
M , z

m
M ) ∈ QmM of the functional EmM , i.e.

EmM (umM , c
m
M , z

m
M ) = inf

(u,c,z)∈QmM
EmM (u, c, z).

Proof. We will show that the functional is coercive and sequentially weakly lower semi-continuous.
For the coercivity let (uk, ck, zk)k ⊂ QmM be a sequence and C > 0 with EmM (uk, ck, zk) ≤ C. Then,
it is due to the non-negativity of W el, the inequality W ch(c) ≥ −C and the inequality (15)

1

2
‖∇ck‖2L2 +

ε

p
(‖e(uk)‖pLp + ‖∇zk‖pLp) +

1

n

∣∣∣∣∫
Ω

ckdx

∣∣∣∣
1

≤ 1

2
‖∇ck‖2L2 +

ε

p
(‖e(uk)‖pLp + ‖∇zk‖pLp) +

τ

n

∣∣∣∣∫
Ω

ck − cm−1
M

τ
dx

∣∣∣∣
1

+
1

n

∣∣∣∣∫
Ω

cm−1
M dx

∣∣∣∣
1

≤ EmM (uk, ck, zk) +
1

n

∣∣∣∣∫
Ω

cm−1
M dx

∣∣∣∣
1

+ C ≤ C.

Thus, we can apply Poincaré’s inequality to obtain the boundedness of the sequence ck in H1(Ω;RN ).
Together with the constraint 0 ≤ zk ≤ 1, the sequence zk is bounded in W 1,p(Ω). The sequence uk
is bounded in Ẇ 1,p(Ω;Rn) by Korn’s inequality for Lp (see e.g. [7]).

The lower semi-continuity follows as in [13] since the Legendre-Fenchel conjugate is always lower
semi-continuous. �

Now, we set (umM , c
m
M , z

m
M ) = arg min(u,c,z)∈QmM EmM (u, c, z) and

µmM = B̄
(
cm−1
M ,−

cmM − c
m−1
M

τ

)
. (21)

In order to shorten the notation, we denote the vector of unknowns by qmM = (umM , c
m
M , µ

m
M , z

m
M ) and

introduce

tM (t) = min
1≤m≤M

{mτ |t ≤ mτ}

and

t−M (t) = tM (t)− τ.
Furthermore, we introduce the left-continuous and right-continuous piecewise constant interpolants
defined by

qM (t) = qmM if (m− 1)τ < t ≤ mτ,
q−M (t) = qm−1

M if (m− 1)τ ≤ t < mτ,

for m = 1, . . . ,M with qM (0) = q0
M and q−M (T ) = qMM . Then,

q̂M (t) = qM (t)
t− t−M (t)

τ
− q−M (t)

t− tM (t)

τ
is the piecewise linear interpolant.
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As a next step, we investigate the Euler-Lagrange equations which are satisfied by the approxi-
mations:
Lemma 8 (Euler-Lagrange equations). The approximations qM , q−M and q̂M satisfy the following
properties:

(i) It holds

−(∂tĉM (t), ξ)L2 =

∫
Ω

∇µM (t) : ∇ξdx−
∫

Γ

R(c−M (t), µM (t)) · ξdω

for all ξ ∈ H1(Ω;RN ) and for almost all t ∈ [0, T ].
(ii) It holds

(µM (t), ξ)L2 =

∫
Ω

∇cM (t) : ∇ξ +
(
W ch
c (cM (t)) +W el

c (e(uM (t)), cM (t), zM (t))

+ν∂tĉM (t)) · ξdx (22)

for all ξ ∈ H1(Ω;RN ) and for almost all t ∈ [0, T ].
(iii) It holds∫

Ω

W el
e (e(uM (t)), cM (t), zM (t)) : e(ξ) + ε|e(uM (t))|p−2e(uM (t)) : e(ξ)dx = 0 (23)

for all ξ ∈W 1,p(Ω;Rn) and for almost all t ∈ [0, T ].
(iv) It holds

0 ≤
∫

Ω

(
ε|∇zM (t)|p−2 + 1

)
∇zM (t) · ∇ξ +

(
W el
z (e(uM (t)), cM (t), zM (t)) + β∂tẑM (t)− α

)
ξdx (24)

for almost all t ∈ [0, T ] and for all ξ ∈W 1,p(Ω) such that there exists a constant ν > 0 with
0 ≤ νξ + zM (t) ≤ z−M (t) a.e. in Ω.

(v) The discrete energy inequality

Eε(uM (t), cM (t), zM (t)) +

∫ tM (t)

0

R(∂tẑM ) +A?
c−M

(−∂tĉM ) +Ac−M
(
B̄(c−M , 0)

)
+
ν

2
‖∂tĉM‖2L2ds

≤ Eε(û0, c0, z0)

(25)

is fulfilled for all t ∈ [0, T ] and all û0 ∈ Ẇ 1,p(Ω;Rn).

Proof. Using the assumptions (A1) to (A7) on the constitutive energy densities, we compute the

Gateaux derivatives of Ẽε as

〈duẼε(u, c, z), [ξ]〉 =

∫
Ω

W el
e (e(u), c, z) : e(ξ) + ε|e(u)|p−2e(u) : e(ξ)dx for [ξ] ∈ Ẇ 1,p(Ω;Rn)

〈dcẼε(u, c, z), ξ〉 =

∫
Ω

∇c : ∇ξ +W ch
c (c) · ξ +W el

c (e(u), c, z) · ξdx for ξ ∈ H1(Ω;RN ) (26)

〈dzẼε(u, c, z), ξ〉 =

∫
Ω

(
ε|∇z|p−2 + 1

)
∇z · ∇ξ +W el

z (e(u), c, z)ξdx for ξ ∈W 1,p(Ω).

(i) This is fulfilled by construction (see (21)).
(ii) Since (umM , c

m
M , z

m
M ) is a minimizer of the discrete energy functional EmM we have

0 ∈ ∂Cl
c

(
Ẽε(uM , cM , zM ) + τA?

c−M

∣∣∣
H1(Ω;RN )

(−∂tĉM ) + τ
ν

2
‖∂tĉM‖2L2(Ω)

)
.

Thus, using the chain rule it is

dcẼε(uM , cM , zM ) + ν(∂tĉM , ·)L2(Ω;RN ) ∈ ∂A?c−M

∣∣∣
H1(Ω;RN )

(−∂tĉM ).

The observation (14) implies

(B̄(c−M ,−∂tĉM ), v)L2 = 〈dcẼε(uM , cM , zM ), v〉+ ν(∂tĉM , v)L2
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for all v ∈ H1(Ω;RN ). Thus, the definition of µM and the Gateaux derivative (26) result
in equation (22).

(iii) Let be ξ ∈ W 1,p(Ω;Rn) and [ξ] the corresponding equivalence class in Ẇ 1,p(Ω;Rn) with

ξ ∈ [ξ]. The necessary condition 〈duẼε(uM , cM , zM ), [ξ]〉 = 0 immediately yields equation
(23) for all ξ ∈W 1,p(Ω;Rn).

(iv) The necessary condition for zmM to be a minimizer in the convex set 0 ≤ z ≤ zm−1
M is〈

dzẼε(umM , cmM , zmM ), ξ − zmM
〉

+

〈
dżR̃

(
zmM − z

m−1
M

τ

)
, ξ − zmM

〉
≥ 0

for all ξ ∈W 1,p(Ω) with 0 ≤ ξ ≤ zm−1
M which is equivalent to condition (24).

(v) To prove the discrete energy inequality we test EmM with (um−1
M , cm−1

M , zm−1
M ). Using A?c(0) =

−Ac(B̄(c, 0)), this yields

Eε(umM , cmM , zmM ) + τR
(
zmM − z

m−1
M

τ

)
+ τA?

cm−1
M

(
−
cmM − c

m−1
M

τ

)
+ τAcm−1

M
(B̄(cm−1

M , 0)) +
ν

2τ
‖cmM − cm−1

M ‖2L2(Ω;RN )

= EmM (umM , c
m
M , z

m
M )

≤ EmM (um−1
M , cm−1

M , zm−1
M )

= Eε(um−1
M , cm−1

M , zm−1
M ).

Summing up these inequalities from 1 to M leads to the desired discrete energy inequality.
Remark that we can choose an arbitrary value u0

M ∈ Ẇ 1,p(Ω;Rn).

�

4.2. A priori estimates and convergence. The energy estimate leads to the following a priori
estimates.
Corollary 9 (A priori estimates). There exists a constant C > 0 - depending on ε and ν - such
that

(i) ‖uM‖L∞(0,T ;Ẇ 1,p(Ω;Rn)) ≤ C,

(ii) ‖cM‖L∞(0,T ;H1(Ω;RN )) ≤ C,
(iii) ‖zM‖L∞(0,T ;W 1,p(Ω)) ≤ C,

(iv) ‖∂tĉM‖L2(ΩT ;RN ) ≤ C,
(v) ‖∂tẑM‖L2(ΩT ) ≤ C and

(vi) −C ≤
∫ T

0
A?
c−M

(−∂tĉM )+Ac−M (B̄(c−M , 0))dt ≤ C

holds for all M ∈ N.

Proof. Using the energy estimate (25) and (15), we immediately obtain the properties (iv),(v) and
(vi) and the boundedness of ∇cM (t) in L2(Ω;RN×n). With the inequality (15), we find∣∣∣∣∫

Ω

cM (t)dx

∣∣∣∣
1

≤ τ

tM (t)

τ∑
i=1

∣∣∣∣∫
Ω

ciM − c
i−1
M

τ
dx

∣∣∣∣
1

+

∫
Ω

|c0|1dx

≤ nτ

tM (t)

τ∑
i=1

(
A?
ci−1
M

(
−
ciM − c

i−1
M

τ

)
+Aci−1

M
(B̄(ci−1

M , 0))

)
+ τMC + ‖c0‖L1(Ω;RN )

= n

∫ tM (t)

0

A?
c−M

(−∂tĉM ) +Ac−M (B̄(c−M , 0))dt+ TC + ‖c0‖L1(Ω;RN ).

Thus, the mean value of cM (t) is bounded in L∞(0, T ;RN ) and Poincaré’s inequality yields the
property (ii). The property (iii) follows from the constraint 0 ≤ zM (t) ≤ 1 and the boundedness of
∇zM (t) in Lp(Ω;Rn). Property (i) is a consequence of Korn’s inequality. �
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Using compactness arguments we can extract weakly (weakly?, resp.) convergent subsequences
due to the a priori estimates. The details of the proof of the following lemma can be found in [13].
Lemma 10 (Weak convergence). There exists a subsequence {Mk} and elements u ∈ Uε, c ∈ C
and z ∈ Zε such that it holds

(i) uMk

?−⇀ u in L∞(0, T ; Ẇ 1,p(Ω;Rn))

(ii) cMk
, c−Mk

?−⇀ c in L∞(0, T ;H1(Ω;RN ))

cMk
, c−Mk

→ c in Lq(0, T ;L2?−δ(Ω;RN ))

cMk
(t), c−Mk

(t) ⇀ c(t) in H1(Ω;RN ) a.e.

cMk
, c−Mk

→ c a.e. in ΩT
ĉMk

⇀ c in H1(0, T ;L2(Ω;RN ))

(iii) zMk
, z−Mk

?−⇀ z in L∞(0, T ;W 1,p(Ω))

zMk
, z−Mk

→ z in Lq(0, T ;C(Ω))

zMk
(t), z−Mk

(t) ⇀ z(t) in W 1,p(Ω) a.e.

zMk
, z−Mk

→ z a.e. in ΩT
ẑMk

⇀ z in H1(0, T ;L2(Ω))

for any 1 ≤ q <∞ and δ > 0.

Proof. The proof bases merely on the bounds provided in Corollary 9 and follows the lines of [13].
The only differences are the second convergence statements of (ii) and (iii). But these are just direct
consequences of the Aubin-Lions-Simon theorem (see e.g. [28]). �

For the convergence results obtained in the previous lemma only the boundedness of the energy
functional was needed. As a next step, we will sharpen these convergence results using the discrete
Euler-Lagrange equations. Basically, we will perform the same steps as in [13] but we have to change
the order of the steps carefully as we don’t have the weak convergence of µMk

yet. To simplify the
notation, we will index the subsequences just by M instead of Mk.
Lemma 11 (Strong convergence of uM). There exists a further subsequence such that it holds

uM , u
−
M → u in Lp(0, T ; Ẇ 1,p(Ω;Rn))

e(uM ), e(u−M )→ e(u) a.e. in ΩT

and

uM (t)→ u(t) in Ẇ 1,p(Ω;Rn) for almost all t ∈ [0, T ].

Proof. In each inner product space, the elementary inequality

Cuc‖x− y‖q ≤
〈(
‖x‖q−2x− ‖y‖q−2y

)
, x− y

〉
(27)

is valid for q ≥ 2 and some positive constant Cuc > 0 (see e.g. [13]). We will apply this inequality for
q = p in the space of n× n matrices. Testing equation (23) by any representative ξ of uM (t)− u(t),
this leads together with (A3) to

η‖e(uM )− e(u)‖2L2(ΩT ;Rn×n) + εCuc‖e(uM )− e(u)‖pLp(ΩT ;Rn×n)

≤
∫

ΩT

(
W el
e (e(uM ), cM , zM )−W el

e (e(u), cM , zM )
)

: (e(uM )− e(u))dxdt

+ ε

∫
ΩT

(
|e(uM )|p−2e(uM )− |e(u)|p−2e(u)

)
: (e(uM )− e(u))dxdt

=

∫
ΩT

W el
e (e(uM ), cM , zM ) : e(ξ) + ε|e(uM )|p−2e(uM ) : e(ξ)dxdt︸ ︷︷ ︸

= 0 by (23)

−
∫

ΩT

W el
e (e(u), cM , zM ) : e(uM − u)dxdt− ε

∫
ΩT

|e(u)|p−2e(u) : (e(uM )− e(u))dxdt.

(28)

Due to Lebesque’s generalized convergence theorem and the assumptions (A2) and (A4), the sequence
W el
e (e(u), cM , zM ) is strongly converging in L2(ΩT ;Rn×n) and thus the weak convergence e(uM ) ⇀

e(u) in Lp(ΩT ;Rn×n) shows that the right hand side of (28) converges to zero. Therefore, we get the
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strong convergence e(uM ) → e(u) in Lp(ΩT ;Rn×n). Since it is uM (t), u(t) ∈ Ẇ 1,p(Ω;Rn), Korn’s

inequality yields the convergence in Lp(0, T ; Ẇ 1,p(Ω;Rn)).
Due to the continuity of the translation operator, it is clear that u−M also converges strongly

to u in Lp(0, T ; Ẇ 1,p(Ω;Rn)). To see this, let ε̄ > 0 be given. Then, we choose N such that
‖uM − u‖pLp(0,T ;Ẇ 1,p(Ω))

≤ ε̄
3p and ‖uM − uM̄‖

p

Lp(0,T ;Ẇ 1,p(Ω;Rn))
≤ ε̄

3p for all M,M̄ ≥ N . Denote

by C > 0 the bound in Lp(0, T ; Ẇ 1,p(Ω;Rn)) of the sequence uM . Then, it holds with Jensen’s
inequality∫ T

0

‖u(t)− u−M (t)‖p
Ẇ 1,p(Ω;Rn)

dt

≤ 3p−1

∫ T

0

‖u(t)− uN (t)‖p +

∥∥∥∥uN (t)− uN
(
t− T

M

)∥∥∥∥p +

∥∥∥∥uN (t− T

M

)
− uM

(
t− T

M

)∥∥∥∥p dt

≤ ε̄

3
+ 3p−1

N∑
k=1

2p‖ukN‖p
T

M
+
ε̄

3

≤ 2

3
ε̄+

1

3
6p
N

M
‖uN‖pLp(0,T ;Ẇ 1,p(Ω))

≤ ε̄
(29)

for all M ≥ max
(
N, 6p

ε̄ NC
p
)
. Here, we used the convention uM (t) = 0 for t < 0.

Clearly, we can now extract a subsequence such that e(uM ) and e(u−M ) converge to e(u) almost

everywhere in ΩT and uM (t)→ u(t) in Ẇ 1,p(Ω;Rn) for almost all t ∈ [0, T ]. �

Remark, that the last part of the proof did not use any fact from the specific differential equation.
It bases just on the convergence of uM in Lp(0, T ; Ẇ 1,p(Ω;Rn)). It can be modified without any

changes to an arbitrary Banach space X instead of Ẇ 1,p(Ω;Rn).
Using the discrete energy inequality (24) of Lemma 8, we can also conclude the strong convergence

of zM in Lq(0, T ;W 1,p(Ω)).
Lemma 12 (Strong convergence of zM). It holds zM , z

−
M → z in Lq(0, T ;W 1,p(Ω)) for any

1 ≤ q <∞ and zM (t)→ z(t) in W 1,p(Ω) for almost all t ∈ [0, T ] for the same subsequence as before.

Proof. The proof is the same as in [13] since it just uses the differential inclusion for the damage
variable. �

Now, we are able to prove an energy estimate which is stronger than inequality (25). In comparison
to [13], we have weaker requirements at the moment since we have only the strong convergence of cM
in Lq(0, T ;L2?−δ(Ω;RN )) and not in Lq(0, T ;H1(Ω;RN )) and since we have no weak convergence of

µM . But this is sufficient for the proof. Remark at this stage, that we need the exponent 2?

2 − δ in
the assumption (A7) with positive δ.

For this second energy estimate, not only the Legendre-Fenchel transform A? but also the operator
A itself comes into play naturally.
Lemma 13 (Precise energy inequality). For every M ∈ N and every t ∈ [0, T ], there exists
κM (t) ∈ R such that the approximations fulfill

Eε(uM (t), cM (t), zM (t)) +

∫ tM (t)

0

Ac−M (µM ) +A?
c−M

(−∂tĉM )dt

+

∫ tM (t)

0

∫
Ω

−α∂tẑM + β|∂tẑM |2 + ν|∂tĉM |2dxdt ≤ Eε(u0, c0, z0) + κM (t)

(30)

for any u0 ∈ Ẇ 1,p(Ω;Rn) with κM (t) → 0 for M → ∞. Here, κM is independent of the choice of
u0.
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Proof. Since it is EmM (umM , c
m
M , z

m
M ) ≤ EmM (um−1

M , cmM , z
m
M ), we obtain with the chain rule

Eε(umM , cmM , zmM ) ≤ Ẽε(um−1
M , cmM , z

m
M )

= Ẽε(um−1
M , cm−1

M , zm−1
M )

+ Ẽε(um−1
M , cmM , z

m−1
M )− Ẽε(um−1

M , cm−1
M , zm−1

M )

+ Ẽε(um−1
M , cmM , z

m
M )− Ẽε(um−1

M , cmM , z
m−1
M )

= Ẽε(um−1
M , cm−1

M , zm−1
M )

+

∫ τ

(m−1)τ

〈
dcẼε(um−1

M , ĉM (s), zm−1
M ), ∂tĉM (s)

〉
ds

+

∫ τ

(m−1)τ

〈
dzẼε(um−1

M , cmM , ẑM (s)), ∂tẑM (s)
〉

ds.

Taking the discrete Euler-Lagrange equations into account, a summation from m = 1 to tM (t)
τ leads

to

Eε(uM (t), cM (t), zM (t))− Eε(u0, c0, z0)

≤
∫ tM (t)

0

〈
dcẼε(u−M , ĉM , z

−
M )− dcẼε(uM , cM , zM ), ∂tĉM

〉
dt︸ ︷︷ ︸

=:κ1
M (t)

+

∫ tM (t)

0

〈
dcẼ(uM , cM , zM ), ∂tĉM

〉
dt

+

∫ tM (t)

0

〈
dzẼε(u−M , cM , ẑM )− dzẼε(uM , cM , zM ), ∂tẑM

〉
dt︸ ︷︷ ︸

=:κ2
M (t)

+

∫ tM (t)

0

〈
dzẼε(uM , cM , zM ), ∂tẑM

〉
dt

≤ −
∫ tM (t)

0

(µM ,−∂tĉM )L2 + ν‖∂tĉM‖2L2 + 〈dżR̃(∂tẑM ), ∂tẑM 〉dt+ κ1
M (t) + κ2

M (t)

for any u0 ∈ Ẇ 1,p(Ω;Rn). Since it is (µM (t),−∂tĉM (t))L2 = Ac−M (µM (t)) +A?
c−M

(−∂tĉM (t)) due to

the definition of µM and A?
c−M

, it remains only to find κM (t) with κ1
M (t) + κ2

M (t) ≤ κM (t)→ 0.

Due to the convexity of x 7→ |x|p and x 7→ |x|2, we have the estimates(
|∇ẑM )|p−2∇ẑM − |∇zM |p−2∇zM

)
· ∇∂tẑM ≤ 0

and

(∇ẑM −∇zM ) · ∇∂tẑM ≤ 0.

Thus, we conclude

κ2
M (t) ≤

∫ tM (t)

0

∫
Ω

(
W el
z (u−M , cM , ẑM )−W el

z (uM , cM , zM )
)
∂tẑMdxdt→ 0

using Lebeque’s generalized convergence theorem. Similarly, we find

κ1
M (t) ≤

∫ tM (t)

0

∫
Ω

(
W el
c (u−M , ĉM , z

−
M )−W el

c (uM , cM , zM )
)
· ∂tĉM

+
(
W ch
c (ĉM )−W ch

c (cM )
)
· ∂tĉMdxdt→ 0.

�



EXISTENCE OF WEAK SOLUTIONS FOR THE CAHN-HILLIARD REACTION MODEL 17

Corollary 14 (Weak convergence of µM). There exists a constant C > 0 - only depending on ε
and ν - with

‖µM‖L2(0,T ;H1(Ω;RN )) ≤ C,
a function µ ∈ L2(0, T ;H1(Ω;RN )) and a subsequence with µM ⇀ µ in L2(0, T ;H1(Ω;RN )).

Proof. Since the sequence κM (T ) of the previous lemma is bounded, we find a constant C2 > 0 with∫ T

0

Ac−M (µM ) +A?
c−M

(−∂tĉM )dt ≤ C2.

Using the definition (21) of µM , the definition (3) of A, the reformulation (13) for A? and the
assumption (A11) on R, we obtain

C2 ≥
∫ T

0

Ac−M (µM ) +A?
c−M

(−∂tĉM )dt

=

∫ T

0

(∇µM ,∇µM )L2(Ω;RN )dt−
∫ T

0

∫
Γ

R(c−M , µM ) · µMdωdt

≥
∫ T

0

(∇µM ,∇µM )L2(Ω;RN ) + C(µM , µM )L2(Γ;RN )dt− CC1THn−1(Γ).

The variant (6) of Poincaré’s inequality yields the desired boundedness. The existence of µ and the
weak convergent subsequence is then clear. �

Now, we are able to strengthen the convergence result for cM .
Lemma 15 (Strong convergence of cM). The subsequences cM and c−M strongly converge to c in

Lq(0, T ;H1(Ω;RN )) and in Lq(0, T ;L2#

(Γ;RN )) for any 1 ≤ q <∞.

Proof. The previously obtained convergence results allow us to pass to the limit in (22). Thus, we
see that µ and c fulfill∫ T

0

(µ, ξ)L2(Ω;RN )dt =

∫ T

0

∫
Ω

∇c : ∇ξ +
(
W ch
c (c) +W el

c (e(u), c, z) + ν∂tc
)
· ξdx (31)

for any ξ ∈ L2(0, T ;H1(Ω;RN )). Now, we use cM as test functions in (22) and pass to the limit.
Then, we find∫ T

0

‖∇cM‖2L2dt

=

∫ T

0

∫
Ω

µM · cM −
(
W ch
c (cM ) +W el

c (e(uM ), cM , zM ) + ν∂tĉM
)
· cMdxdt

→
∫ T

0

∫
Ω

µ · c−
(
W ch
c (c) +W el

c (e(u), c, z) + ν∂tc
)
· cdxdt

=

∫ T

0

‖∇c‖2L2dt.

Thus, due to the uniform convexity of L2(0, T ;H1(Ω;RN )) the convergence of cM is in fact strong in
L2(0, T ;H1(Ω;RN )). Together with the boundedness in L∞(0, T ;H1(Ω;RN )), this yields the con-

vergence in Lq(0, T ;H1(Ω;RN )) for any 1 ≤ q < ∞ and consequently also in Lq(0, T ;L2#

(Γ;RN )).
The convergence of c−M follows again by the continuity of the translation operator (compare (29) and
the comment after the proof of Lemma 11). �

The lower semi-continuity and the partial convexity of A and A? allows us now to prove the (norm

× weak) lower semi-continuity of the integral operators (c, µ) 7→ IA(c, µ) :=
∫ T

0
A(c(t), µ(t))dt and

(∂tc, µ) 7→ IA? :=
∫ T

0
A?(c(t),−∂tc(t))dt.
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Lemma 16 ((norm × weak) lower semi-continuity of the integral operators). It holds∫ T

0

A(c, µ)dt ≤ lim inf
M→∞

∫ T

0

A(c−M , µM )dt

and ∫ T

0

A?(c,−∂tc)dt ≤ lim inf
M→∞

∫ T

0

A?(c−M ,−∂tĉM )dt.

Proof. We define the mappings

Ā : L1(Γ;RN )×H1(Ω;RN )→ R

Ā(w, v) = A
((
|w1|

1

2#−δ sgn(w1), . . . , |wN |
1

2#−δ sgn(wN )
)
, v
)

and

Ā? : L1(Γ;RN )× L2(Ω;RN )→ R

Ā?(w, v?) = A?
((
|w1|

1

2#−δ sgn(w1), . . . , |wN |
1

2#−δ sgn(wN )
)
, v?
)
.

These mappings are continuous and thus Carathéodory functions. Furthermore, for fixed w ∈
L1(Γ;RN ) the mappings v 7→ Ā(w, v) and v? 7→ Ā?(w, v?) are convex. To simplify the notation, we

set (c1, . . . , cN ) = (|w1|
1

2#−δ sgn(w1), . . . , |wN |
1

2#−δ sgn(wN )) in the following. Due to the definition
of A? and B̄, it is for any v ∈ H1(Ω;RN )

−A(c, B̄(c, 0)) = A?(c, 0) ≥ −A(c, v).

Thus, with estimate (A12) on G and (9), we find the lower bound

Ā(w, v) = A(c, v) ≥ A(c, B̄(c, 0)) =
1

2
‖∇B̄(c, 0)‖2L2 −

∫
Γ

G(c, B̄(c, 0))dω

≥ −C
(

1 + ‖c‖2
#−δ
L2#−δ(Γ;RN )

+ ‖B̄(c, 0)‖2
#−δ
L2#−δ(Γ;RN )

)
≥ −C

(
1 + ‖w‖L1(Γ;RN )

)
.

Using additionally the estimates (15) on A? and (9) on ‖∇B̄(c, 0)‖L2(Ω;RN ), we can also bound Ā?
from below

Ā?(w, v?) = A?(c, v?) ≥ −A(c, B̄(c, 0))− C

= −1

2
‖∇B̄(c, 0)‖L2(Ω) +

∫
Γ

G(c, B̄(c, 0))dω − C

≥ −C
(

1 + ‖c‖2
#−δ
L2#−δ(Γ;RN )

)
= −C

(
1 + ‖w‖L1(Γ;RN )

)
.

Altogether, we can apply Theorem 3.5.50 of [12] to obtain the (norm × weak) lower semi-continuity
of the integral operators

IĀ : L1(0, T ;L1(Γ;RN ))× L1(0, T ;H1(Ω;RN ))→ R

(w, v) 7→
∫ T

0

Ā(w(t), v(t))dt

and

IĀ? : L1(0, T ;L1(Γ;RN ))× L1(0, T ;L2(Ω;RN ))→ R

(w, v?) 7→
∫ T

0

Ā?(w(t), v?(t))dt

which finishes the proof. �
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Before we present the proof of the main result of this section, we cite two lemmas from [13] which
will help us to pass to the limit in the variational inequality.
Lemma 17 ([13], Lemma 5.2). Let be p > n, q > 1 and f, ζ ∈ Lq(0, T ;W 1,p

+ (Ω)) with {ζ = 0} ⊇
{f = 0}. Furthermore, let be {fM}M∈N ⊆ Lq(0, T ;W 1,p

+ (Ω)) be a sequence with fM (t) ⇀ f(t) in

W 1,p(Ω) as M →∞ for a.e. t ∈ [0, T ]. Then, there exists a sequence {ζM}M∈N ⊆ Lq(0, T ;W 1,p
+ (Ω))

and constants νM,t > 0 such that

(i) ζM → ζ in Lq(0, T ;W 1,p(Ω)) as M →∞,
(ii) ζM ≤ ζ a.e. in ΩT for all M ∈ N,

(iii) νM,tζM (t) ≤ fM (t) a.e. in Ω for a.e. t ∈ [0, T ] and for all M ∈ N.

If, in addition, ζ ≤ f a.e. in ΩT then condition(iii) can be refined to
(iii)’ ζM ≤ fM a.e. in ΩT for all M ∈ N.

Lemma 18 ([13], Lemma 5.3). Let be f ∈ Lp′(Ω;Rn), g ∈ L1(Ω) and z ∈W 1,p
+ (Ω) with f ·∇z ≥ 0

a.e. in Ω and {f = 0} ⊇ {z = 0} in an a.e. sense. Furthermore, we assume that∫
Ω

f · ∇ζ + gζdx ≥ 0 for all ζ ∈W 1,p
− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then ∫
Ω

f · ∇ζ + gζdx ≥
∫
{z=0}

max{g, 0}ζdx for all ζ ∈W 1,p
− (Ω).

Finally, we have now all ingredients to prove the main existence result for ε > 0 since the (weak
× norm) lower semi-continuity of A and A? allows us to conclude that the pair (c, µ) solves the
continuity equation for the concentration with the nonlinear Newton boundary condition for the
chemical potential.

Proof of Theorem 4. Using the Fenchel-Young inequality, the (norm × weak) lower semi-continuity
provided by Lemma 16, the weak semi-continuity of the norm and testing equation (22) with µM
and (31) with µ, we estimate

ν

∫ T

0

(−∂tc, µ)L2(Ω;RN )dt

≤ ν
∫ T

0

Ac(µ) +A?c(−∂tc)dt

≤ ν lim inf
M→∞

∫ T

0

A(c−M , µM )dt+ ν lim inf
M→∞

∫ T

0

A?(c−M ,−∂tĉM )dt

≤ ν lim inf
M→∞

(∫ T

0

A(c−M , µM )dt+

∫ T

0

A?(c−M ,−∂tĉM )dt

)

= lim inf
M→∞

∫ T

0

ν(−∂tĉM , µM )L2(Ω;RN )dt

= lim inf
M→∞

(∫ T

0

∫
Ω

∇cM : ∇µM (32)

+
(
W ch
c (cM ) +W el

c (e(uM ), cM , zM )
)
· µMdxdt− ‖µM‖2L2(0,T ;L2(Ω;RN ))

)

=

∫ T

0

∫
Ω

∇c : ∇µ+
(
W ch
c (c) +W el

c (e(u), c, z)
)
· µdxdt+ lim inf

M→∞

(
−‖µM‖2L2(0,T ;L2(Ω;RN ))

)
=

∫ T

0

∫
Ω

∇c : ∇µ+
(
W ch
c (c) +W el

c (e(u), c, z)
)
· µdxdt− lim sup

M→∞

(
‖µM‖2L2(0,T ;L2(Ω;RN ))

)
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≤
∫ T

0

∫
Ω

∇c : ∇µ+
(
W ch
c (c) +W el

c (e(u), c, z)
)
· µdxdt− lim inf

M→∞

(
‖µM‖2L2(0,T ;L2(Ω;RN ))

)
≤
∫ T

0

∫
Ω

∇c : ∇µ+
(
W ch
c (c) +W el

c (e(u), c, z)
)
· µdxdt− ‖µ‖2L2(0,T ;L2(Ω;RN ))

= ν

∫ T

0

(−∂tc, µ)L2(Ω;RN )dt.

Thus, in fact all inequality signs are equality signs. In particular, it is
∫ T

0
(−∂tc, µ)L2(Ω;RN )dt =∫ T

0
Ac(µ) +A?c(−∂tc)dt. Hence, the Fenchel-Young inequality implies

(−∂tc(t), µ(t))L2(Ω;RN ) = A(c(t), µ(t)) +A?(c(t),−∂tc(t))

for almost all t ∈ [0, T ] which is equivalent to the weak formulation (16) of the first equation.
The validity of equation (17) can be obtained from (31) using a density argument. Similarly, we

see that we can pass to the limit in equation (23) to obtain (18).
As a third step, we want to prove the energy inequality. The basis for the proof is the precise

discrete energy inequality of Lemma 13. Due to the convergence results and the assumptions (A2)
and (A7), Lebesque’s generalized convergence theorem yields Eε(qM (t)) → Eε(q(t)) for almost all
t ∈ [0, T ]. The weak convergence of ∂tĉM , ∂tẑM and µM lead with the lower semi-continuity of the
L2-norm and of the integral functionals IA and IA? to∫ t

0

∫
Ω

−α∂tz + β|∂tz|2dx+A(c, µ) +A?(c,−∂tc)dt

=

∫ t

0

∫
Ω

−α∂tzdxdt+ β‖∂tz‖2L2(0,t;L2(Ω)) +

∫ t

0

A(c, µ)dt+

∫ t

0

A?(c,−∂tc)dt

≤ lim inf
M→∞

∫ t

0

∫
Ω

−α∂tẑM + β|∂tẑM |2dx+A(c−M , µM ) +A?(c−M ,−∂tĉM )dt.

Thus, we can perform the limit process M → ∞ in the discrete energy inequality (30) and obtain
the desired energy inequality (20) for the continuous case.

It remains to prove the existence of r ∈ L∞(0, T ;Lq(Ω)) with q = 1
2 min(2?, p) satisfying (v) of

Definition (3). Therefore, let be ξ ∈ Lp(0, T ;W 1,p
− (Ω)) with {ξ = 0} ⊇ {z = 0}. Applying Lemma 17

provides us with a sequence ξM ∈ Lp(0, T ;W 1,p
− (Ω)) and constants νM,t > 0 such that it holds

ξM → ξ in Lp(0, T ;W 1,p(Ω))

and

0 ≥ νM,tξM (t) ≥ −zM (t) a.e. in Ω for almost all t ∈ [0, T ].

Thus, we can use ξM (t) as a test function in (24). An integration from 0 to T leads to∫ T

0

∫
Ω

(
ε|∇zM |p−2 + 1

)
∇zM · ∇ξM +

(
W el
z (e(uM ), cM , zM ) + β∂tẑM − α

)
ξMdxdt ≥ 0.

In this inequality, we can pass to the limit and obtain∫ T

0

∫
Ω

(
ε|∇z|p−2 + 1

)
∇z · ∇ξ +

(
W el
z (e(u), c, z) + β∂tz − α

)
ξdxdt ≥ 0.

Clearly, this leads for almost all t ∈ [0, T ] to∫
Ω

(
ε|∇z|p−2 + 1

)
∇z · ∇ξ +

(
W el
z (e(u), c, z) + β∂tz − α

)
ξdx ≥ 0
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for all ξ ∈ W 1,p
− (Ω) with {ξ = 0} ⊇ {z(t) = 0}. Thus, the requirements of Lemma 18 are exactly

fulfilled and we conclude∫
Ω

(
ε|∇z|p−2 + 1

)
∇z · ∇ξ +

(
W el
z (e(u), c, z) + β∂tz − α

)
ξdx

≥
∫
{z(t)=0}

(
W el
z (e(u), c, z) + β∂tz − α

)+
ξdx

≥
∫
{z(t)=0}

(
W el
z (e(u), c, z)

)+
ξdx

(33)

for any ξ ∈ W 1,p
− (Ω) and almost all t ∈ [0, T ]. Now, we define r(t) = −χz(t)=0

(
W el
z (e(u), c, z)

)+
which fulfills inequality (19) by the above construction. Furthermore, it holds r ∈ L∞(0, T ;Lq(Ω))
and for any ξ ∈ L2

+(Ω) and almost all t ∈ [0, T ], it follows∫
Ω

r(t) (ξ − z(t)) dx = −
∫
{z(t)=0}

(
W el
z (e(u), c, 0)

)+
ξdx ≤ 0. (34)

�

We conclude this section with two remarks. First, we want to emphasize that the argument in
(32) essentially uses the regularization with ν > 0 of the Cahn-Hilliard reaction equation. Without
this trick we are not able to show, that the pair (∂tc, µ) solves the equation ∂tc = ∆µ with the
nonlinear Newton boundary condition ∇µν = R(c, µ) since we have neither the weak convergence of
∂tĉM (t) and µM (t) for almost all t nor the strong convergence of R(c−M , µM ) on Γ× [0, T ].

The second comment concerns the special choice of r. In particular, it is r = 0 if we assume
W el
z (e, c, 0) ≤ 0. This corresponds to the situation in which one can use a simpler approach to

deal with the constraint z ≥ 0 (compare [18] and [17]). It is possible to neglect the constraint in
the construction of the sequence zM and show afterwards using a comparison argument that the
constraint z ≥ 0 is fulfilled naturally. Nevertheless, in many physically meaningful models it is
W el
z (e, c, 0) > 0.

5. The limit ε→ 0

With the results obtained in the previous section we like to study the limit ε→ 0. As mentioned
before, this is not the complete vanishing viscosity limit since we keep the viscosity ν positive. The
energy inequality (20) constitutes the starting point for the analysis. Therefore, let z0 ∈ H1(Ω) be
the initial damage profile and let z0

ε ∈W 1,p(Ω) be an approximating sequence with z0
ε → z0 in H1(Ω)

and ε‖∇z0
ε‖
p
Lp(Ω;Rn) → 0. In the following, we will denote by a subscript ε a solution as constructed

in the previous section belonging to ε > 0. For ε ∈ (0, 1] we have for any u0 ∈ Ẇ 1,p(Ω;Rn)

Eε(uε(t), cε(t), zε(t)) +

∫ t

0

∫
Ω

−α∂tzε + β|∂tzε|2dx+Acε(µε) +A?cε(−∂tcε) + ν‖∂tcε‖2L2(Ω;RN )ds

≤ Eε(u0, c0, z
0
ε)

≤ E(u0, c0, z
0
ε) +

1

p
‖e(u0)‖pLp(Ω;Rn×n) +

ε

p
‖∇z0

ε‖
p
Lp(Ω;Rn)

≤ C.
This leads to the following a priori estimates.
Lemma 19. There exists a constant C > 0 - only depending on ν - such that

(i) ‖uε‖L∞(0,T ;Ḣ1(Ω)) ≤ C,

(ii) ε
1
p ‖uε‖L∞(0,T ;Ẇ 1,p(Ω)) ≤ C,

(iii) ‖cε‖L∞(0,T ;H1(Ω;RN )) ≤ C,
(iv) ‖zε‖L∞(0,T ;H1(Ω)) ≤ C,

(v) ε
1
p ‖zε‖L∞(0,T ;W 1,p(Ω)) ≤ C,

(vi) ‖∂tcε‖L2(ΩT ;RN ) ≤ C,
(vii) ‖∂tzε‖L2(ΩT ) ≤ C and

(viii) ‖µε‖L2(0,T ;H1(Ω;RN )) ≤ C
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holds for all ε ∈ (0, 1].

Proof. This follows from the above mentioned a priori estimate (compare the proof of Corollaries 9
and 14). �

Using standard compactness arguments we can extract weakly convergent subsequences which we
again index by ε.
Lemma 20. There exists a subsequence and a tuple q = (u, c, z, µ) ∈ U0 × C × Z0 ×M such that it
holds

(i) uε
?−⇀ u in L∞(0, T ; Ḣ1(Ω;Rn))

ε
1
p−1 e(uε)→ 0 in L∞(0, T ;Lp(Ω;Rn×n))

(ii) cε
?−⇀ c in L∞(0, T ;H1(Ω;RN ))

cε → c in Lq(0, T ;L2?−δ(Ω;RN ))

cε → c in L2#−δ(0, T ;L2#−δ(Γ;RN ))
cε(t) ⇀ c(t) in H1(Ω;RN ) a.e.
cε → c a.e. in ΩT
cε ⇀ c in H1(0, T ;L2(Ω;RN ))

(iii) zε
?−⇀ z in L∞(0, T ;H1(Ω))

zε → z in Lq(0, T ;L2?−δ(Ω))

ε
1
p−1∇zε → 0 in L∞(0, T ;Lp(Ω;Rn))
zε(t) ⇀ z(t) in H1(Ω) a.e.
zε → z a.e. in ΩT
zε ⇀ z in H1(0, T ;L2(Ω))

(iv) µε ⇀ µ in L2(0, T ;H1(Ω;RN ))

for any 1 ≤ q <∞ and δ > 0.

Proof. (i) and (iv) follows directly from the a priori estimates (i), (ii) and (viii) of Lemma 19. The
convergence results for c and z except for the third statement of (ii) and (iii) follows exactly the lines
of the proof of the convergence of cM in Lemma 10 since we have the same a priori estimates. The
third statement of (iii) is a direct consequence of the a priori estimate (v) of Lemma 19. Last but not

least, to prove the strong convergence of cε in L2#−δ(0, T ;L2#−δ(Γ;RN )) we use the compactness
of the trace operator. The weak convergence cε(t) → c(t) in H1(Ω;RN ) a.e. implies the strong

convergence cε(t) → c(t) in L2#−δ(Γ;RN ) a.e. Thus, using the boundedness ‖cε(t)‖L2#−δ(Γ;RN )
≤

C‖cε(t)‖H1(Ω;RN ) ≤ C we can apply Lebesgue’s dominated convergence theorem to obtain the desired
convergence. �

For uε we can strengthen the convergence result using a similar argument as in the proof of
Lemma 11.
Lemma 21. There exists a subsequence with

uε → u in Lq(0, T ; Ḣ1(Ω;Rn))

uε(t)→ u(t) in Ḣ1(Ω;Rn) a.e.

e(uε)→ e(u) a.e. in ΩT

for any 1 ≤ q <∞.

Proof. We would like to use a representative of the equivalence class uε − u as a test function in
(23) but since the representatives of u(t) are not necessarily in W 1,p(Ω) we need to approximate u.

Therefore, let ũk ∈ Lp(0, T ; Ẇ 1,p(Ω;Rn)) be an approximating sequence of u, i.e.

ũk → u in L2(0, T ; Ḣ1(Ω;Rn)) for k →∞. (35)

Since k is independent of ε, we can choose kε with

ε
1
p ‖e(ũkε)‖Lp(ΩT ;Rn×n) → 0 and kε →∞ for ε→ 0. (36)



EXISTENCE OF WEAK SOLUTIONS FOR THE CAHN-HILLIARD REACTION MODEL 23

We use any representative ξ of uε − ũkε as a test function in equation (23) and integrate from 0 to
T . Then, the assumption (A3) and the inequality (27) yield
η

2
‖e(u)− e(uε)‖2L2(ΩT ;Rn×n)

≤ η‖e(u)− e(ũkε)‖2L2(ΩT ;Rn×n) + η‖e(uε)− e(ũkε)‖2L2(ΩT ;Rn×n) + εCuc‖e(uε)− e(ũkε)‖
p
Lp(ΩT ;Rn×n)

≤ η‖e(u)− e(ũkε)‖2L2(ΩT ;Rn×n)

+

∫
ΩT

(
W el
e (e(uε), cε, zε)−W el

e (e(ũkε), cε, zε)
)

: (e(uε)− e(ũkε)dxdt

+ ε

∫
ΩT

(
|e(uε|p−2)e(uε)− |e(ũkε)|p−2e(ũkε)

)
: (e(uε)− e(ũkε)) dxdt

= η‖e(u)− e(ũkε)‖2L2(ΩT ;Rn×n) (37)

+

∫
ΩT

W el
e (e(uε), cε, zε) : (e(uε − ũkε) + ε|e(uε)|p−2e(uε) : (e(uε − ũkε))dxdt︸ ︷︷ ︸

= 0 by (22)

−
∫

ΩT

W el
e (e(ũkε), cε, zε) : (e(uε)− e(ũkε))dxdt

− ε
∫

ΩT

|e(ũkε)|p−2e(ũkε) : (e(uε)− e(ũkε))dxdt︸ ︷︷ ︸
=:I1

.

Due to the a priori estimate 19 (ii) and the convergence in (36), we conclude

|I1| ≤ ε‖e(ũkε)‖
p−1
Lp(ΩT ;Rn×n)‖e(uε)− e(ũkε)‖Lp(ΩT ;Rn×n)

≤

ε 1
p ‖e(ũkε)‖Lp(ΩT ;Rn×n)︸ ︷︷ ︸

→ 0 by (36)


p−1ε 1

p ‖e(uε)‖Lp(ΩT ;Rn×n)︸ ︷︷ ︸
≤ C by 19 (ii)

+ ε
1
p ‖e(ũkε)‖Lp(ΩT ;Rn×n)︸ ︷︷ ︸

→ 0 by (36)

 .

Furthermore, Lebesgue’s generalized convergence theorem leads with Lemma 20 to the strong con-
vergence

W el
e (e(ũkε), cε, zε)→W el

e (e(u), c, z)

in L2(ΩT ;Rn×n). The weak-star convergence of uε in L∞(0, T ; Ḣ1(Ω;Rn)) yields together with the
convergence in (35) the weak convergence

e(uε)− e(ũkε) ⇀ 0

in L2(ΩT ;Rn×n). Thus, all terms on the right hand side of inequality (37) converge to zero and

it follows the strong convergence e(uε) → e(u) in L2(ΩT ;Rn×n). As it is u(t) ∈ Ḣ1(Ω;Rn) and

uε(t) ∈ Ẇ 1,p(Ω;Rn) ⊂ Ḣ1(Ω;Rn) for a.e. t ∈ [0, T ], Korn’s inequality yields the convergence uε → u

in L2(0, T ; Ḣ1(Ω;Rn)) and the boundedness statement in Lemma 19 (i) yields the convergence in

Lq(0, T ; Ḣ1(Ω;Rn)) for any q ∈ [1,∞). The convergences uε(t) → u(t) in Ḣ1(Ω;Rn) for a.e. t and
e(uε)→ e(u) a.e. in ΩT are then immediate consequences. �

Now, we are in the position to prove the existence result also for ε = 0.

Proof of Theorem 5. With the previously obtained convergence results and Lebesgue’s generalized
convergence theorem, we can perform the limit ε → 0 in the integrated version of equation (17)
without problems for any ξ ∈ L2(0, T ;H1(Ω;RN )). For ξ ∈ Lp(0, T ;W 1,p(Ω;Rn)) we can also pass
to the limit in the integrated version of (18). Due to the a priori estimate 19 (ii) this leads to∫ T

0

∫
Ω

W el
e (e(u), c, z) : e(ξ)dxdt = 0
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and a density argument shows also the validity of (18) for all ξ ∈ H1(Ω;Rn). Due to the stronger
assumption (A5’), we can use cε as a test function in (17) and perform the limit. This yields

∫ T

0

‖∇cε‖2L2dt =

∫ T

0

∫
Ω

(
µε −W ch

c (cε)−W el
c (e(uε), cε, zε)− ν∂tcε

)
· cεdxdt

→
∫ T

0

∫
Ω

(
µ−W ch

c (c)−W el
c (e(u), c, z)− ν∂tc

)
· cdxdt

=

∫ T

0

‖∇c‖2L2dt.

Thus, we have the strong convergence cε → c in L2(0, T ;H1(Ω;RN )) and the equation (16) can be
shown exactly as in the proof of Theorem 4.

As a next step, we will show the existence of a function r satisfying the conditions of Defini-

tion 3 (v). We recall the choice rε = −χzε(t)=0

(
W el(e(uε), cε, 0)

)+
from the proof of Theorem 4.

Since χzε(t)=0 is bounded in L∞(ΩT ), we can extract a weak-? convergent subsequence with limit

χ ∈ L∞(ΩT ), i.e. χzε(t)=0
?−⇀ χ in L∞(ΩT ). Now, let ξ ∈ Lp(0, T ;W 1,p

− (Ω)) ∩ L∞(ΩT ) be a test
function. From Lemma 20 we know

∣∣∣∣∫
ΩT

ε|∇zε|p−2∇zε · ∇ξdxdt

∣∣∣∣ ≤ ε‖∇zε‖p−1
Lp(ΩT )‖∇ξ‖Lp(ΩT ) → 0.

Thus, taking the limit ε→ 0 in the integrated version of inequality (33), we conclude

∫
ΩT

∇z · ∇ξ +
(
W el
z (e(u), c, z) + β∂tz − α

)
ξdxdt ≥

∫
ΩT

χ
(
W el
z (e(u), c, 0)

)+
ξdxdt.

We set r = χ
(
W el
z (e(u), c, 0)

)+
. Then, it holds r ∈ Lq(0, T ;L1(Ω)) for any 1 ≤ q <∞ and

∫
Ω

∇z · ∇ξ +
(
W el
z (e(u), c, z) + β∂tz − α

)
ξdx ≥

∫
Ω

rξdx

for any ξ ∈ H1
−(Ω) ∩ L∞(Ω) and almost all t ∈ [0, T ]. Now, let be ξ ∈ H1

+(Ω) ∩ L∞(Ω) and
ζ ∈ L∞(0, T ) with ζ ≥ 0 a.e. on [0, T ]. Then, inequality (34) yields

0 ≥
∫ T

0

(∫
Ω

rε(t)(ξ − zε(t))dx
)
ζ(t)dt =

∫
ΩT

rε(ξ − zε)ζdxdt

→
∫

ΩT

r(ξ − z)ζdxdt =

∫ T

0

(∫
Ω

r(t)(ξ − z(t))dx
)
ζ(t)dt.

Since ζ was an arbitrary non-negative function, it also holds 0 ≥
∫

Ω
r(t)(ξ − z(t))dx for almost all

t ∈ [0, T ].
Thus, it only remains to prove the energy inequality. This can again be done similarly as in

the proof of Theorem 4. Due to the weak convergence of ∂tcε, ∂tzε and µε in L2(0, T ;L2)) and of
∇cε(t) and ∇zε(t) in L2 for a.e. t ∈ [0, T ], the semi-continuity of the L2-norm and of A and A? yield
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(compare proof of Theorem 4)

E0(u(t),c(t), z(t)) +

∫ t

0

∫
Ω

−α∂tz + β|∂tz|2dx+A(c, µ) +A?(c,−∂tc) + ν‖∂tc‖2L2(Ω;RN )ds

≤ lim inf
ε↘0

(
E0(uε(t), cε(t), zε(t))

+

∫ t

0

∫
Ω

−α∂tzε + β|∂tzε|2dx+A(cε, µε) +A?(cε,−∂tcε) + ν‖∂tcε‖2L2(Ω;RN )ds

)

≤ lim inf
ε↘0

(
Eε(uε(t), cε(t), zε(t))

+

∫ t

0

∫
Ω

−α∂tzε + β|∂tzε|2dx+A(cε, µε) +A?(cε,−∂tcε) + ν‖∂tcε‖2L2(Ω;RN )ds

)
≤ lim inf

ε↘0
Eε(u0, c0, z

0
ε)

= E(u0, c0, z0)

for any u0 ∈ Ẇ 1,p(Ω;Rn). The density of Ẇ 1,p(Ω;Rn) in Ḣ1(Ω;Rn) shows also the validity of the

inequality for u0 ∈ Ḣ1(Ω;Rn). �

6. Conclusion

In this paper, we have shown how to use a generalized gradient structure to deal with a non-linear
Newton boundary condition for the potential in the Cahn-Larché framework. In particular, we have
presented how this gradient structure can be used in order to construct a weak solution by a time-
discretization. For the passage of the limit from the discretization to the continuous solution we use
an additional viscosity term to regularize the solution in the first instance.

Furthermore, we have proven that the whole procedure can be performed simultaneously with the
discretization of an additional doubly nonlinear differential inclusion. In this way, we were able to
construct a solution of a coupled nonlinear system of evolution equations.
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