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Abstract

We discuss analytical and numerical methods for the optimization of optoelectronic devices by
performing optimal control of the PDE governing the carrier transport with respect to the doping
profile. First, we provide a cost functional that is a sum of a regularization and a contribution,
which is motivated by the modal net gain that appears in optoelectronic models of bulk or quantum-
well lasers. Then, we state a numerical discretization, for which we study optimized solutions for
different regularizations and for vanishing weights.

1 Introduction

Studies of semiconductor device optimization via optimal control methods have been the subject
of a number of previous studies, cf. e.g. [6–8]. In recent years there has been an increase in re-
search on optoelectronic devices, e.g. aimed at on-chip integration of lasers in order to increase
communication bandwidths for computing or telecommunication applications. For example, it has
been demonstrated recently that germanium can be used as an optically active medium, however,
advanced engineering techniques such as high doping or application of large strain, are necessary
to improve optical properties of laser cavities [1].

In the following, we present our first steps towards the optimal control of an optoelectronic device.
In Sec. 2 we introduce a model that has been used to describe optical modes, charge transport and
spontaneous emission in the cross-section of an edge-emitting laser. We first simplify this model to
the extend we believe is reasonable for a laser below lasing threshold. For this model we discuss
well-posedness in Sec. 3 relying on well-known existence results cf. e.g. [4,13,17,18]. In Sec. 4
we set up an optimal control problem with the goal to improve the optical properties of the laser.
Finally, in Sec. 5 we discuss the feasibility of the optimization concept at the hand of 1D-examples.

2 Mathematical model

The state of a semiconductor in a bounded domain Ω ⊂ Rd, with d = 1, 2, 3 is described by the
electrostatic potential ψ and by the carrier densities n, p for the electrons in the conduction band and
holes in the valence band, respectively. Steady-state solutions (ψ, n, p) solve the van Roosbroeck
system [4], which after non-dimensionalization using [x] = l, [ψ] = UT , [n, p, C] = N0 reads

−∆ψ = q(C + p− n), ∇ · jn = R, ∇ · jp = −R. (1a)

The current densities for electrons jn = −µnn∇ϕn and holes jp = −µpp∇ϕp are proportional
to the gradients of the quasi-Fermi potentials ϕn and ϕp, which are related to the carrier densities
through the equation of state

n = ni exp(ψ − ϕn), and p = ni exp(ϕp − ψ). (1b)

With C we denote the given doping concentration. In this model we rescaled the dimensional
mobilities by µ0, recombination rates by R0 = UTµ0N0/l

2, intrinsic densities by N0, and defined
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q = l2qeN0/(UT ε) and UT = kBT/qe. At Ohmic contacts ΓD these equations are supplemented
with the following special type of Dirichlet boundary conditions

ψ = ψbi + ψext, ϕn = ψext, ϕp = ψext, on ΓD, (1c)

using the built-in voltage ψbi and the given external voltage ψext, and on the insulating part with

∇ψ · ν = jn · ν = jp · ν = 0, on ΓN. (1d)

Rewriting the fluxes in (1) in terms of the densities n, p, one arrives at the well-known form

jn = −µn(n∇ψ −∇n), jp = −µp(p∇ψ +∇p), (2)

and at Ohmic contacts the boundary conditions become

ψ = ψbi + ψext =: ψD, n = nie
ψbi =: nD, p = nie

−ψbi =: pD, on ΓD, (3)

so that we have np = n2
i at ΓD.

In addition to the electronic transport model (1), an optoelectronic model needs to take into account
radiative recombination processes and should, in particular, capture the number of coherent photons
S generated by stimulated emission. Analogously to [9] we introduce the optical modes Ψ as
solutions of a Helmholtz eigenvalue problem, which prototypically for TE modes reads

[
∇2 +

(
nr + i

2(g − `− `1)
)2]

Ψ = β2Ψ,

with nr the refractive index of the material. The imaginary part of the eigenvalue enters the sta-
tionary balance of stimulated emission and spontaneous emission rsp as 0 = (2Imβ − `2)S + rsp,
where `1, `2 constitute additional loss mechanisms not consider here. With g and ` we denote the
gain and, as a representative loss mechanism, the free carrier absorption, which encodes the rate
at which photons S are created and annihilated and which both depend on carrier densities, i.e.
g = g(n, p) and ` = `(n, p). Motivated by one of our previous studies [2] we use

g(n, p) := g0(np)δ − g1(np)δ−1, (4a)

`(n, p) := fnn+ fpp, (4b)

where g0, g1, fn, fp > 0, δ ∈ (0, 1/2) are material dependent parameters (possibly depending on
wavelength, material quality, temperature, mechanical strain etc.) and which in the following are
taken to be constant in space. By a perturbation argument one can show that the imaginary part of
the eigenvalue can be approximated

Imβ '
∫

Ω
(g(n, p)− `(n, p))|Ψ|2 dx, (5)

where, to leading order, the form of Ψ does not depend on the charge distribution.

The recombination-generation term R = Rnorad + Rrad in (1) takes into account different non-
radiative and radiative recombination processes. The non-radiative Auger and Shockley-Read-Hall
recombination terms are of the form Rnorad = R̃(n, p)(np − n2

i ). In addition we have radiative
recombinations Rrad = R̃spont(np− n2

i ) + Rstim(n, p). In addition to spontaneous recombination
it contains the main ingredient for a laser, the stimulated radiative recombination

Rstim(n, p) ' g(n, p)|Ψ|2S, (6)
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which has the stimulated emission term Imβ in the algebraic equation for S as a counter-part. For
the purpose of this paper we consider the optimization of a laser below threshold 0 < S � 1. From
a practical point of view this implies that we neglect the influence of the optics on the electronic
transport and set S = 0, whereas it is taken into account in the optimization by using Imβ in (5)
as one part of the cost functional. Such a strategy is aimed at lowering the threshold current of a
semiconductor laser.

3 The existence of solutions

In the subsequent sections we assume that

• the domain Ω is bounded in Rd, d ∈ {1, 2, 3}, with Lipschitz boundary such that

ΓD 6= ∅ and ΓN = ∂Ω\ΓD ,

• R(n, p) = R̃(n, p)(np− n2
i ) with R̃ : [0,∞)2 → [0,∞) continuously.

(7)

In order to account for general Dirichlet data (ψD, nD, pD), we shall understand from now on ξD =
(ψD, nD, pD) as the extension of the data prescribed on ΓD into the domain Ω. The special case of
Ohmic contacts (1c) is included the existence Theorem 1. Moreover, we introduce H1

D(Ω) := {u ∈
H1(Ω), u = 0 on ΓD}. Then we set

H := [H1(Ω)]3, X := [H1
D(Ω) ∩ L∞(Ω)]3. (8)

Since we want to allow for some freedom in the choice of the cost functional later on in Sections
4 & 5, we keep the space C as general as possible, this means that C can be chosen accordingly

C := H1(Ω) or C := Lp(Ω) s.t. p > d/2 . (9)

In order to specify our notion of solution we shall interprete the system (1a,2,3) as an operator

ρvR(ξD; ·, ·) : X×C→ [H1(Ω)∗]3, ρvR(ξD; ξ, C) :=



−∆(ψ+ψD)−q(C+p+pD−n−nD)

∇ · jn −R
∇ · jp +R


 ,

where jn := ∇(n+nD) + (n+nD)∇(ψ+ψD) , jp := −∇(p+pD) + (p+pD)∇(ψ+ψD) , (10)

with ξ = (ψ, n, p) ∈ X and H1(Ω)∗ the dual of H1(Ω). In this way, a suitable notion for solutions
of the boundary value problem (1) can be stated as follows.

Definition 1 (Solution for the boundary value problem (1)) For the given data C ∈ C and ξD =
(ψD, nD, pD) ∈ [H1(Ω) ∩ L∞(Ω)]3 a triple ξ = (ψ, n, p) ∈ X is a solution to the boundary value
problem of the van Roosbroeck system (1) if

ρvR(ξD;ψ, n, p, C) = 0 in [H1(Ω)∗]3 . (11)

Arguing along the lines of [4,18,13,7] the following existence result can be obtained.

Theorem 1 (Existence of solutions) Let (7) be satisfied and ρvR(ξD, ·, ·) : X × C → [H1(Ω)∗]3

as in (8) & (10). Then for all given data C ∈ C and (ψD, nD, pD) ∈ [H1(Ω) ∩ L∞(Ω)]3 such that

‖ψD‖L∞(Ω) ≤ K, and 1
K ≤ nD, pD ≤ K a.e. in Ω (12)

for some K ≥ 1, there exists a triple (ψ, n, p) ∈ X such that (11) is satisfied and

‖(ψ, n, p)‖X ≤ L as well as 1
L ≤ n, p ≤ L a.e. in Ω (13)

with a constant L = L(Ω,K, ‖C‖C) ≥ 1.
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Remark 1 (Comments on the existence proof) For the shortness of the presentation we shall not
give a full proof of the existence Theorem 1, for all the details we refer to [4, Sec. 3]. The main
idea is to apply a fixed point argument based on Schauder’s fixed point theorem using a decoupled
iteration scheme. It is important to note that the bounds on the given data (12) and the choice of
C according to (9) allow us to find the bounds (13) on the solutions (ψ, n, p). In particular, it is
important to mention Stampaccia’s method [14] as one important step in the existence proof. Thanks
to this, it is possible to prove that a solution for the electrostatic potential is bounded in L∞(Ω) by
a constant which continuously depends on the Lp(Ω)-norm of the doping function, on the bound
corresponding to K for the Dirichlet datum, and on the space dimension, cf. also [11,12]. Given
that the space C is chosen as in (9), this implies, that ψ is also bounded in L∞(Ω) by a bound
featuring a continuous dependence on the C-norm of the doping function. This information will
play an important role in the optimization lateron.

Introducing, in accordance with the bounds (13), the topology τvR

(ψk, nk, pk, Ck)
τvR→ (ψ, n, p, C) ⇔





(ψk, nk, pk) ⇀ (ψ, n, p) in [H1(Ω)]3,

(ψk, nk, pk)
∗
⇀ (ψ, n, p) in [L∞(Ω)]3,

(ψk, nk, pk) → (ψ, n, p) in [Lq(Ω)]3 for all q ∈ (1,∞),
Ck ⇀ C in C

(14)
and the set

SvR :={(ξ, C) ∈ X×C, (ξ, C) satisfy (11) & (13) with ξD as in (12)} , (15)

it can be shown, thanks to (13), that SvR is compact in H × C with respect to the topology τvR.
This will be the crucial ingredient to verify the existence of a solution for the optimization problem
treated in Sec. 4.

Proposition 1 (Compactness of SvR) The set SvR defined in (15) is compact in H×C with respect
to the topology τvR.

Proof: Consider a sequence (ψ̂k, n̂k, p̂k, Ĉk)k ⊂ SvR such that ‖(ψ̂k, n̂k, p̂k, Ĉk)‖H×C ≤ M for
a constant M < ∞. Thus, ‖Ĉk‖C ≤ M and hence, by (13), also ‖(ψ̂k, n̂k, p̂k)‖[L∞(Ω)]3 ≤ L(M)
and 1/L(M) ≤ n̂k, p̂k ≤ L(M) a.e. in Ω. By the reflexivity of [H1(Ω)]3 we find a (not relabelled)
subsequence (ψ̂k, n̂k, p̂k)k and a triple (ψ̂, n̂, p̂) ∈ [H1(Ω)]3 such that (ψ̂k, n̂k, p̂k) ⇀ (ψ̂, n̂, p̂) in
[H1(Ω)]3. By the compact embedding [H1(Ω)]

3 b [L2(Ω)]
3 we have that (ψ̂k, n̂k, p̂k)→ (ψ̂, n̂, p̂)

in [L2(Ω)]3, which can be upgraded to strong convergence in [Lq(Ω)]3 for any q ∈ (1,∞) thanks
to the uniform L∞-bound. Indeed, this bound also implies the weak-star convergence in L∞(Ω)
of a further subsequence. Upon extrating a further subsequence that converges pointwise a.e. in Ω
we deduce that 1/L(M) ≤ n̂, p̂ ≤ L(M) a.e. in Ω. Finally, using Banach-Alaoglu’s theorem, the
uniform bound of (Ĉk)k in C, as a dual of a separable Banach space, allows us to conclude the
convergence of a subsequence to a limit Ĉ ∈ C. In conclusion, we have obtained that also the limit
(ψ̂, n̂, p̂, Ĉ) satisfies (13).

It remains to show that the limit (ψ̂, n̂, p̂, Ĉ) complies with (11). Thanks to the first and the fourth
convergence property of (14) we find that ψ̂ is a weak solution of the Poisson equation in (1), i.e. the
first line of system (11), with right-hand side q(Ĉ−n̂−nD+p̂+pD). In order to show that (ψ̂, n̂, p̂)
also solve the corresponding continuity equations note that with (n̂k, p̂k)k satisfying (13) we have
|R| ≤ max(n,p)∈[1/L,L] R̃(n+nD, p+pD) ((L+K)2 − n2

i ) pointwise a.e. in Ω, uniformly for all
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k ∈ N. Owing to the strongLq-convergence ensured in the third line of (14), we may extract a not re-
labelled subsequence such that (n̂k, p̂k)→ (n̂, p̂) pointwise a.e. and since all the reaction terms are
continuous according to (7), we find thatR(n̂k+nD, p̂k+pD)→ R(n̂+nD, p̂+pD) along this subse-
quence. Thus, thanks to the pointwise uniform bound, we find with the aid of the dominated conver-
gence theorem that

∫
ΩR(n̂k+nD, p̂k+pD)v dx →

∫
ΩR(n̂+nD, p̂+pD)v dx for any test function

v ∈ H1(Ω), hence the convergence of the right-hand sides in the second and third line of (11). Fi-
nally, we obtain the convergence of the corresponding left-hand sides by weak-strong convergence
arguments using the first of (14) and that ‖(n̂k − n̂)v‖2L2(Ω) ≤ ‖v‖2L2∗ (Ω)

‖n̂k − n̂‖2L(2∗)′ (Ω)
→ 0

thanks to the third of (14), and the corresponding argument for the hole density. Thus, (ψ̂, n̂, p̂, Ĉ)
satisfies (11) and alltogether we have verified that (ψ̂, n̂, p̂, Ĉ) ∈ SvR.

Remark 2 (Comments on the uniqueness of solutions to (11) and its effect on optimization)
Uniqueness of the solution has been proved in [13] under additional smallness assumptions on the
Dirichlet data and restrictions on K in (12) which ensure that the applied voltage is sufficiently
small and hence keep the carrier densities solving (11) sufficiently close to the thermal equilibrium
state. Further away from equilibrium, uniquess is in general not to be expected. This has the effect
that also an optimization problem based on (11) may admit multiple solutions. Also observe that,
due to the quasilinear character of the current continuity equations, it is unclear whether SvR from
(15) forms a convex set. This spoils the uniqueness of a minimizer, or at least its verification, for
an optimization problem involving functionals with equality constraint (11), even if the functional
itself is strictly convex. We refer to [8, Sec. 2], where the non-uniqueness of a minimizer has been
demonstrated for a particular choice of the cost functional.

4 Optimization problem

Our optimization goal is to maximize the optical output, i.e. the number of photons available in the
device, with respect to the doping profile C ∈ C injected into a device, whose electrical properties
are governed by the van Roosbroeck system (11). This will amount to a constrained minimization
problem for a suitable cost functional Q : X × C → R ∪ {∞} which shall be introduced now.
Following [2], the optical output is related to the modal net-gain

−Q1(n, p) = (g − `)|Ψ|2, (16)

with the representation of the optical mode Ψ ∈ C∞0 (Ω) as in (6) and with the material gain g and
the optical losses ` from (4). In view of this, we introduce the functional

Q̃1 : X→ R , Q̃1(ψ, n, p) :=

∫

Ω
Q1(ψ+ψD, n+nD, p+pD) dx , (17)

so that the maximization of the optical output will be realized by minimizing a functional that
involves Q̃1. In particular, since the doping profile C ∈ C shall be the control parameter of the
optimization problem, we shall combine Q̃1 with a second functional

Q̃2 : C→ R ∪ {∞} with domain dom Q̃2 = C0 ⊂ C a closed, convex subset (18a)

and we impose that Q̃2 : C→ R ∪ {∞} is:

• weakly sequentially lower semicontinuous on C , (18b)

• bounded from below and coercive: ∃ cQ2 , c̄Q2 > 0, r ∈ (1,∞),

∀C ∈ C : Q̃2(C) ≥ cQ2‖C‖rC − c̄Q2 . (18c)
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Making use of (15), (17), and (18a) we finally introduce the cost functional

Q : X×C→ R ∪ {∞}, Q(ψ, n, p, C) :=

{
Q̃1(ψ, n, p) + Q̃2(C) if (ψ, n, p, C) ∈ SvR,
∞ otherwise

(19)
and in what follows we shall treat the constrained minimization problem

min
X×C

Q(ψ, n, p, C) . (20)

Observe that the functional Q̃ := Q̃1 + Q̃2 : X × C → R ∪ {∞} only carries the compactness
property (18c) encoded in Q̃2 for the doping profiles, whereas Q̃1 does not give any compactness for
the densities. Therefore it is important to note that the functional Q gives this missing compactness
by constraining the minimization to the set SvR,which is compact by Prop. 1. This idea will be used
in order to prove the existence of a minimizer in (20). In particular, we now collect the following
properties of the functional Q:

Proposition 2 (Properties of Q) The functional Q : X×C→ R ∪ {∞}, defined by the relations
(15), (4a)–(19), enjoys the following properties:

• Q is bounded from below and coercive: ∃CQ1 ∈ (−∞, 0), ∃ cQ2 , c̄Q2 > 0, r ∈ (1,∞),

∀ (ψ, n, p, C) ∈ X×C : Q(ψ, n, p, C) ≥ CQ1 + cQ2‖C‖rC − c̄Q2 . (21a)

• Q is lower semicontinuous wrt. convergence in τvR . (21b)

Proof: Ad boundedness from below and coercivity (21a): For this, we first check that the density
Q1 = −(g − `) is bounded from below. Indeed, for any n, p > 0 observe by Young’s inequality
that −g(n, p) > −g0(np)δ ≥ −g0

2 (n2δ + p2δ) =: f(n, p). On the interval [0,∞) the function
F (n, p) := f(n, p) + `(n, p) has a global minimum at (n∗, p∗) :=

(
(2δg0
fn

)1/(1−2δ), (2δg0
fp

)1/(1−2δ)
)

since the Hessian D2F (n∗, p∗) = −(2δ−1)(2δ)g2
0 diag(n2δ−2

∗ , p2δ−2
∗ ) is positively definite because

of δ < 1/2. This yields that

−g(n, p) + `(n, p) > F (n, p) ≥ F (n∗, p∗) for any (n, p) ∈ [0,∞)2 , (22)

hence a bound from below on Q̃1. In combination with the bound (18c) on Q̃2 we thus obtain

Q(ψ, n, p, C) ≥ F (n∗, p∗)Ld(Ω) + cQ2‖C‖rC − c̄Q2 .

Ad lower semicontinuity (21b): Consider a sequence (ψk, nk, pk, Ck)
τvR→ (ψ, n, p, C). In the

case that (ψk, nk, pk, Ck) ∈ (X × C)\SvR for all but a finite number of indices, then there is
nothing to check because ∞ = lim infk→∞Q(ψk, nk, pk, Ck) ≥ Q(ψ, n, p, C). Assume that
(ψk, nk, pk, Ck)k ⊂ SvR for a not relabelled subsequence. By the compactness of SvR, ensured
by Prop. 1, we thus find that the limit (ψ, n, p, C) ∈ SvR. Therefore we may argue that the lower
semicontinuity estimate for Q in this case coincides with the lower semicontinuity of Q̃1 + Q̃2.
Then, lim infk→∞ Q̃2(Ck) ≥ Q̃(C) by (18b). We now check that Q̃1 is lower semicontinuous
with respect to strong convergence of (nk, pk)k in Lq(Ω) × Lq(Ω) for any q ∈ (1,∞), which
corresponds to convergence property 3 in (14). For this, we use that −g(nk, pk) + `(nk, pk) >
F (n∗, p∗), which serves as an integrable minorant according to (22), since in particular (n∗, p∗) =(
(2δg0
fn

)1/(1−2δ), (2δg0
fp

)1/(1−2δ)
)
∈ Lq(Ω)× Lq(Ω) for any q ∈ [1,∞]. Moreover, since strong Lq-

convergence implies the convergence of the sequence in measure, Fatou’s lemma ultimately yields
the lower semicontinuity.
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The existence of a minimizer can now immediately be concluded by employing the direct method
of the calculus of variations, making use of the boundedness from below, the coercivity ofQ and its
lower semicontinuity.

Theorem 2 (Existence of minimizers for the constrained minimization problem) Let the func-
tionalQ : X×C→ R∪{∞} be defined by (4a), (15), (16)–(19). Then the constrained minimization
problem (20) admits at least one solution (ψ, n, p, C) ∈ (X×C) ∩ SvR.

Remark 3 (Different choices of C and Q2) If C = H1(Ω), possible choices for Q2 are e.g. QD
2

or QN
2 defined by

QD
2 (C) :=

{
γ
2‖∇(C + CD − C̄)‖2L2(Ω) if C ∈ H1

D(Ω),

∞ otherwise,
(23a)

QN
2 (C) :=

{
γ
2‖C − C̄‖2H1(Ω) if C ∈ H1(Ω),

∞ otherwise,
(23b)

where γ > 0 is a weight, C̄ ∈ H1(Ω) is a given “desired” doping profile andCD ∈ H1(Ω)∩L∞(Ω)
the extension of a given Dirichlet datum into the domain. Note that in the first case a Poincaré
inequality is available to ensure the boundedness from below (18c) in terms of the fullH1(Ω)-norm.

If C = H1(Ω), the traces to the boundary are well-defined for the doping profile C. Then also
the Dirichlet boundary conditions for (ψ, n, p) can be formulated in terms of the corresponding
boundary datum of C, thus allowing for Ohmic contacts (1c), cf. [4,7], where the built-in potential
ψbi is determined by

CD + ni(e
−ψbi − eψbi) = 0, on ΓD. (24)

which results in nD =
(
CD + (C2

D + 4n2
i )

1/2
)
/2 and pD = CD − nD. Hence, in case of (23a)

one has to ensure that max{( 1
K −Kni), (niK −K)} ≤ CD ≤ min{(K − ni

K ), (niK − 1
K )}, in

order to match (3) with (12). In case of (23b) condition (12) is harder to meet as one has to
additionally impose that C ∈ L∞(ΓD). This can be achieved either by adding a further suitable
penalization term toQN

2 or, as we will do in Sec. 4, by treating the problem in space dimension d =
1, whereH1(Ω) compactly embeds intoC(Ω), i.e. ‖C‖C(Ω) ≤ c‖C‖C =: Z. For this latter case we
find with K(‖C‖C) := max{m(C),M(C)}, where m(C) := (minz∈[0,Z]{nD(z), pD(z)})−1, and
M(C) = maxz∈[0,Z]{nD(z), pD(z), ψD(z)} that K(‖C‖C)−1 ≤ nD(C), pD(C) ≤ K(‖C‖C) as
well as ‖ψD(C)‖L∞(Ω) ≤ K(‖C‖C). Thus, for the data (nD(C), pD(C), ψD(C)) from (3) in (11)
one has K = K(‖C‖C) in (12) and hence, L = L(Ω,K(‖C‖C), ‖C‖C). According to Remark
1, thanks to the continuous dependence of L on its parameters, both constants are bounded on
bounded sets in C. Hence, it remains true that SvR is compact in X×C with respect to τvR.

In the case C = Lp(Ω) a possible choice of Q2 would be

QL
p (C) =

{
γ
2‖C − C̄‖

p
Lp(Ω) if C ∈ Lp(Ω),

∞ otherwise,
(25)

where traces are generally not well-defined. In this case we adopt artificial Ohmic contacts by
defining the built-in potential as

C̄ + ni(e
−ψbi − eψbi) = 0, on ΓD. (26)

This choice is not driven by any physical meaning but in order to study its impact on optimized
doping profiles. In particular for γ → 0 the artificial Ohmic contact will in general strongly violate
the desired charge-neutrality.
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Remark 4 (The first order optimality system) First we notice that the mapping ρvR defined in
(10), is infinitely often Fréchet differentiable with derivatives vanishing for order greater than 2 ,
see [8, Sec. 1.2] and [7]. Moreover the following we assume that

dom Q̃2 = C and Q̃2 : C→ R is twice continuously Fréchet differentiable. (27)

Observe that Q̃1 : X → R is indeed twice continuously Fréchet differentiable. In this way, the
cost functional Q̃ = Q̃1 + Q̃2 : X ×C → R satifies the assumptions posed in [7, Sec.s 3,4] and
hence the first order optimality system and the existence of Lagrange multipliers can be obtained
following the lines of [7, Sec. 4]. Abbreviating ξ := (ψ, n, p), we write the Lagrangian associated
to the minimization problem (20)

LvR : X×C×H→ R , LvR(ξ, C, λ) := Q̃(ξ, C) + 〈ρvR(ξD; ξ, C), λ〉H . (28)

The associated first order optimality condition reads D(ξ,C,λ)LvR(ξ, C, λ) = 0 in X∗ ×C∗ ×H∗.
The existence and uniqueness of a Lagrange multiplier λ is verified in [7, Thm. 4.2] under an
additional smallness condition on the quotients j2

n/n and j2
p/p. For Ohmic contacts as in (3) and

(24) the derivative DCLvR also acts on the dependence of ξD on C at ΓD.

5 Numerical results

The numerics is based on a stationary formulation of (1) in terms of the original quasi-Fermi po-
tentials ϕn, ϕp introduced in (1b) and the electrostatic potential ψ in one spatial dimension. Unlike
the standard approach by Scharfetter-Gummel schemes [15], we use finite differences on a mesh
0 = x1 < ... < xk < ... < xN = 1 where the discrete electron current is expressed using
ϕn;k = ϕn(xk), ϕp;k = ϕp(xk), ψk = ψ(xk), ηp;k = (ϕp;k − ψk) and ηn;k = (ψk − ϕn;k) as

jn;k+1/2 = −µnni exp
(

1
2(ηn;k+1 + ηn;k)

)(ϕn;k+1 − ϕn;k

xk+1 − xk

)
,

jp;k+1/2 = −µpni exp
(

1
2(ηp;k+1 + ηp;k)

)(ϕp;k+1 − ϕp;k
xk+1 − xk

)
,

and approximate the divergence by ∂xjn ≈ (jn;k+1/2 − jn;k−1/2)/(xk+1/2 − xk−1/2). The hole
current jp = −µpp∂xϕp is discretized analogously. For sake of notation we use ξ = (ψ,ϕn, ϕp)

>.
Introducing the flux jψ;k+1/2 = −(ψk+1 − ψk)/(xk+1 − xk) the previous expressions can be com-
bined into the following discrete and nonlinear residual ρ̃vR : R3N × RN → R3N as

ρ̃vR(ξ, C) =




jψ;k+1/2−jψ;k−1/2

xk+1/2−xk−1/2
− Q̂k

jn;k+1/2−jn;k−1/2

xk+1/2−xk−1/2
−Rk

jp;k+1/2−jp;k−1/2

xk+1/2−xk−1/2
+Rk




for k = 2, ..., N − 1 and with the total charge Q̂k(ξ, C) = q
(
Ck + ni exp(ηp;k) − ni exp(ηn;k)

)
.

This residual is the equivalent to the operator introducted in (10). It depends on the doping through
the total charge and through the boundary conditions. The boundary conditions (1c) in ρ̃vR for
k = 1 and k = N are ψk = ψbi(Ck) +ψext;k and ϕn/p;k = ψext;k. The discretized van Roosbroeck
equation, which now reads ρ̃vR(ξ, C) = 0, is then solved using a Newton method ξn+1 = ξn −
(∂ξρ̃vR)−1ρ̃vR. In thermal equilibrium ψext = 0 we have ϕn = ϕp ≡ 0, so that since q � 1 it
makes sense to choose ξ0 = (ψ0, 0, 0)> with ψ0 so that Q̂k = q

(
Ck + ni(e

−ψ0
k − eψ0

k)
)

= 0. As
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the magnitude of the bias ψext is increased, the previous solution with smaller bias is used as the
starting-point for the Newton method.

For the present paper the recombination in (7) is R̃ = (Cnn+Cpp) + (τp(n+ni) + τn(p+ni))
−1,

with the parameters Cn = Cp = 10−1, τn = τp = 10, ni = 10−2. Additionally we have q = 102,
µn = µp = 1. The external potential is ϕext = 0.4 V/UT ≈ 15.47 for T = 300 K. These values are
somewhat realistic in the sense that usually one has 0 < ni � 1 and q � 1. The optical mode is set
to a Gaussian |Ψ|2 = exp

(
−(10(x− 1/2))2

)
and the parameters in the net-gain (4) are fn = 1/5,

fp = 1, δ = 0.3, g0 = e−1, g1 = n2
i .

The optimization strategy for (20) is similar to [8], where we discretize the cost functional Q1 by

Q1(ξ) =
N∑

k=1

hQ1(nk, pk), (29a)

with Q1 = −
(
g(nk, pk)− `k

)
|Ψk|2 and free-carrier absorbtion `k = fnnk + fppk.

The different regularization terms QN/D
2 from (23) for C = H1(Ω) or C = H1

0 (Ω) are treated
equally within our discretization by a functional Q2. Together with the functional QL

2 for C =
L2(Ω) we discretize using

Q2(C) =
γ

2

N−1∑

k=1

h
(
Ck+1−Ck+C̄k+1−C̄k

h

)2
, QL

2 (C) =
γ

2

N∑

k=1

h
(
Ck − C̄k

)2 (29b)

where h = xk+1− xk, which for this paper we assume to be constant. Note that forQN
2 from (23b)

the boundary values for C are not kept fixed. Hence, (23b) suggests to use the full H1(Ω)-norm
for regularization. However, here we study the effect of different regularizations and thereby use
the L2(Ω)-norm and H1(Ω)-seminorm separately. As before we use Q̃(ξ, C) = Q1(ξ) + Q2(C)
and introduce a Lagrange multiplier λ ∈ Rn, so that the first-order optimality conditions using
the discrete counterpart LvR : R3N × RN̂ × R3N → R of the Lagrangian in (28) is L′vR =
(LvR,ξ,LvR,C ,LvR,λ) = 0. For 〈u, v〉 we use the standard inner product in R3N . Note that, unlike
[8], ρ̃vR is not linear in C, if we do not fix the value of C1, CN . In this case N̂ = N , otherwise
N̂ = N−2. Due to the nonlinearity of the boundary conditions (24) in C, this produces the slightly
different reduced Hessian Q̂′′ of Q̂(C) = Q(ξ(C), C) being

Q̂′′ = Q,CC + 〈ρ̃vR,CC, λ〉+ ρ̃∗vR,Cρ̃
−∗
vR,λ [Q,ξξ + 〈ρ̃vR,ξξ, λ〉] ρ̃−1

vR,ξρ̃vR,C ∈ RN̂×N̂ .

As in [8] we have an outer Newton iteration Cr+1 = Cr + δCr, which utilizes an inner CG iter-
ation in order to solve Q̂′′(Cr)δCr = −Q̂′(Cr). In all the considered cases, the Newton scheme
converges quadratically within 7 or less iterations to our precision goal set to < 10−8 in the max-
norm of the discrete first order optimality condition. The number of iterations depends on the
value of γ, which can be explained by a loss of convexity as γ → 0. We deal with this fact using
a path-following approach constructing a sequence of optimizers for γk+1 = γkαpath, here with
αpath = 10−1, and using the previous optimizer as the initial guess for the next Newton method
k + 1 until we reach the desired γ = 10−6. The inner CG method, as expected, requires N̂ itera-
tions for the residual to drop below 10−12. In one spatial dimension this is not a serious restriction,
whereas for higher dimensions there are some practical options to keep the number of iterations
sufficiently small. One option is to modify the problem and reduce the dimension N̂ of the space of
admissible doping profiles to be much smaller than the number of unknowns in the PDE problem,
which in fact is reasonable when restricting to producible doping profiles. Another option is to
define suitable alternative stopping criteria for the CG iteration, as discussed in [8].
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The primary question in designing a realistic optoelectronic optimization problem is to find a cost
functional, which combines the desired optimality with mathematical simplicity. Furthermore the
cost functional should be feasible from a optimization point of view, for which it might be necessary
to add regularizing terms to the cost. Here we study the influence of such regularizing terms Q2

in (29b) of tracking type on the optimal solution. We study the influence of tracking the values in
L2(Ω) or the gradients in H1(Ω) with respect to a reference doping C̄. Furthermore we study the
influence of the corresponding regularization parameter γ and the boundary condition on the control
space C.
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Figure 1: (Left) optimal doping densities Copt for different regularization parameters γ and refer-
ence doping C̄ and (Right) corresponding modal net gain−Q1 = (g−`)|Ψ|2 compared to mode in-
tensity |Ψ|2 (arbitrary scaling). The values of the cost functional are Q1 = {0.05, 0.25, 0.30, 0.31}
for γ = {10−3, 10−4, 10−5, 10−6} and Q1 = −0.24 for C = C̄

In the left panel of Fig. 1 we show the optimal doping Copt for various regularization parameters γ
for gradient regularization without a fixed boundary condition, i.e. the case ofH1

0 (Ω). As γ → 0 we
observe that the optimal solution stabilizes/converges where the major part of the support of |Ψ|2 is
located (as indicated by the dotted light gray vertical lines), whereas the doping still increases where
|Ψ|2 ' 0. For larger regularization parameters γ > 10−5 the shape is still affected by the single-step
reference doping, whereas for smaller regularization parameters there is very little dependence on
the reference. At the same time one can see that −Q1 = (g− `)|Ψ|2 converges to a mostly positive
solution as γ → 0, whereas for γ > 10−3 large parts of −Q1 are still negative.

This can also be observed in Fig. 2. In its left panel the optimal doping is shown for H1(Ω) reg-
ularization with γ = 10−6 and two different reference dopings, e.g. a smoothed single-step and
a smoothed double-step doping. Where |Ψ|2 is located both optimal dopings agree and where
|Ψ|2 ' 0 the solutions are close. Even for entirely different regularization, the left panel shows that
the optimal dopings are basically the same for H1(Ω), L2(Ω), and H1

0 (Ω) regularization. The main
effect can be observed near the boundary, where |Ψ|2 ' 0. The L2(Ω) regularization is only a slight
restriction on the doping and hence the solution is largest near the boundaries. In this case also Q2

is slightly larger than for the H1(Ω) regularization, which, in turn, is slightly larger than for the
H1

0 (Ω) regularization. However, since the gains in all three cases are very similar, we can conclude
also here that for sufficiently small γ also the influence on Q1 is very small. We observed that when
the regularization parameter is sufficiently small, then the choice of the regularization mechanism
has an effect on the optimal solution but only small effect on the optimal gain.
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Figure 2: (Left) optimal doping densities Copt for different regularization functionals and spaces
H1(Ω), H1

0 (Ω), L2(Ω) for γ = 10−6 and reference doping C̄ and (Right) optimal doping densities
Copt for γ = 10−6 and two different reference dopings C̄1 = 10 tanh

(
25(1

2 − x)
)

and C̄2 =
5 tanh

(
25(0.3− x)

)
+ 5 tanh

(
25(0.7− x)

)

We conclude that, in 1D the choice regularization of the optimization problem has little influence
on the optimizer in regions, where the main part of the optical mode is located.
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