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Abstract

Structure-preserving generic low-rank perturbations are studied for
classes of structured matrix pencils, including real symmetric, com-
plex symmetric, and complex Hermitian pencils. For singular pencils
it is analyzed which characteristic quantities stay invariant in the per-
turbed canonical form, and it is shown that the regular part of a struc-
tured matrix pencil is not affected by generic perturbations of rank
one. When the rank one perturbations involve a scaling parameter,
the behavior of the canonical forms in dependence of this parameter is
analyzed as well.
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1 Introduction

In this paper we study low-rank perturbations in the coefficients of linear
differential-algebraic equations (DAEs) of the form

Eẋ+Ax = f, (1)
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which arise as linearizations around stationary solutions of general nonlin-
ear DAEs of the form F (t, x, ẋ) = 0, see, e.g., [3]. The analysis of the
solution behavior of (1) can be characterized via the Kronecker canonical
form of the matrix pencil λE+A, see [2, 7, 11]. It is well known that small
perturbations can drastically change the canonical form and hence also the
solution behavior of (1). This is particularly unfortunate if perturbations
make the pencil λE + A singular, because then the perturbed system may
not be (uniquely) solvable any more. In view of these observations, a major
motivation for our work comes from structured pencils arising in stability
analysis.

Example 1 In the finite element analysis of disc brake squeal [8, 17], large
scale second order differential equations arise that have the form

Mq̈ + (D +G)q̇ + (K +N)q = f,

where M = MT > 0 is the mass matrix, D = DT ≥ 0 models material and
friction induced damping, G = −GT models gyroscopic effects, K = KT > 0
models the stiffness and N = −NT , is a nonsymmetric matrix modeling
circulatory effects. (Here > (≥) denotes positive (semi)-definiteness of a
matrix). An appropriate first order formulation is associated with the linear
pencil

λE +A+L := λ

[
M 0
0 K

]
+

[
D 1

2N
1
2N 0

]
+

[
G K + 1

2N
−(K + 1

2N) 0

]
,

where E is real symmetric, L is skew-symmetric, and A is symmetric.
The classical modal truncation approach [4] used in commercial finite

element packages computes the eigenvalues closest to 0 and the associated
eigenvectors of the symmetric eigenvalue problem λE +A, and projects the
full problem into the subspace spanned by these eigenvectors. In the analysis
presented in [8], it was noticed that the matrix pencil λE+A was close to a
singular pencil, and this effect was traced back to the introduction of a small
number of stiff springs instead of rigid connections. A similar behavior was
observed in [10]. These low-rank perturbations in the modeling process lead
to pencils that are close to being singular. This creates large difficulties in
the numerical methods, because these pencils numerically behave as if they
were singular pencils. Our analysis is motivated be the desire to understand
the effect of low rank perturbations in these situations.

The smallest perturbation (in some norm) that makes a pencil singular is
called the distance to singularity and it is a long time open problem [1] to
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determine this distance. Some progress in the solution of this problem has
been made recently in [15] for the structured pencils and the case that the
perturbations are restricted to be of rank-one. In this paper, we consider
a related, but slightly different point of view, by starting from a singular
pencil λE +A and investigating perturbations of the form

λE +A+ τ(λe+ a)uv>, (2)

In this paper we consider a related but slightly different point of view, by
starting from a singular pencil λE + A. For the case of pencils without
additional symmetry structure, the effect of low-rank perturbations for small
values of τ has been studied in great detail in [5, 6]. In the present work we
consider structured pencils and rank-one perturbations of the form

λE +A+ τ(λe+ a)uv>,

where u, v are vectors and a, e are scalars and τ goes through the whole
real line. We focus on the following structures: In this paper we consider
structured pencils and we focus on the following structures:

• Hermitian pencils, i.e., A,E ∈ Cn,n and A∗ = A, E∗ = E,

• real symmetric pencils, i.e., A,E ∈ Rn,n and A> = E>,

• complex symmetric pencils, i.e., A,E ∈ Cn,n and A> = E>,

where > denotes the transpose and ∗ the conjugate transpose. Other impor-
tant structures include real or complex T -alternating pencils λE+A, where
A = A> and E = −E>, or where A = −A> and E = E>. We will not
consider T -alternating pencils in the main part of this paper, but for the
sake of future reference, some preliminary results are formulated in a very
general fashion so that they also cover T -alternating pencils. We will also
mainly consider perturbations of the form (2) with a = 1 and e = 0; the
general case can, however, always be reduced to this case by applying an
adequate Möbius transformation [13].

As particular rank-one perturbations may have very specialized effects,
we will mainly consider generic rank-one perturbations, where genericity is
understood in the following sense. For F ∈ {C,R}, a set A ⊆ Fn is called
algebraic, if it is a set of common zeros of finitely many polynomials p1, . . . , pk
in n variables. An algebraic set A is called proper if A 6= Fn. A set Ω ⊆ Fn
is called generic if its complement Fn \Ω is contained in a proper algebraic
set. Throughout the paper, we use the following convention. The statement
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“for generic u ∈ Fn property X is satisfied” precisely means “there exists a
generic set Ω ⊆ Fn such that for all u ∈ Ω property X is satisfied”.

It is known that for a perturbed singular pencil as in (2), the eigenvalues
and their algebraic multiplicities are generically constant in the parameter
τ 6= 0, see [15]. Surprisingly, this need not be the case for the correspond-
ing partial multiplicities which may depend on τ , as the following example
shows.

Example 2 Consider the real symmetric singular pencil

P (λ) = λ


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

0 1 0 0 0
0 0 1 0 0

+


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

 .

Letting u = e1 + e4 =
[

1 0 0 1 0
]>

we obtain that

Pτ (λ) := P (λ) + τuu∗ =


τ 0 0 1 + τ 0
0 0 0 λ 1
0 0 0 0 λ

1 + τ λ 0 τ 0
0 1 λ 0 0

 .
For τ 6= 0 and

STτ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
−1+τ

τ 0 0 1 0
0 0 0 0 1

 ,
we then obtain

STτ Pτ (λ)Sτ =


τ 0 0 0 0

0 0 0 0 λ
0 0 0 λ 1
0 0 λ − 1

τ (1 + 2τ) 0
0 λ 1 0 0

 .
Thus, for all τ 6= 0, the pencil Pτ (λ) is regular and has the eigenvalue
infinity with algebraic multiplicity one and the eigenvalue zero with algebraic
multiplicity four. Note that for τ 6= −1/2 the pencil has a block of size four
corresponding to the eigenvalue zero in the structured Kronecker canonical
form, see (3) below, while for τ = −1/2 there are two blocks of size two.
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Although having an eigenvalue of multiplicity four is a non-generic property,
we will show that such change in the canonical form for a specific value of the
parameter τ is generic in the classes of real or complex symmetric pencils.
More precisely, we will show that if a singular pencil becomes regular after a
rank-one perturbation, then its regular part generically is not affected by the
perturbation. Furthermore, there appear new eigenvalues whose location is
independent of the norm of the perturbation as their algebraic multiplicities
are constant in τ , but their partial multiplicities will only be constant in
τ except for a specific value τ0. In the case of real symmetric pencils, this
discontinuity of the canonical form is accompanied by a switch of one sign
from the so-called sign characteristic of the pencil.

The paper is organized as follows. In Section 2 we present structured
canonical forms for Hermitian, real symmetric, and complex symmetric pen-
cils. Section 3 contains preparatory results that are applicable to several
kinds of structured matrix pencils and contain as an important result that
the regular part of a structured matrix pencil is not affected by generic per-
turbations of rank-one. In Section 4, we investigate Hermitian and real or
complex symmetric singular pencils that become regular after a structure-
preserving rank-one perturbation. In particular, the behavior of their canon-
ical forms in dependence of a scaling parameter in the rank-one perturbation
is analyzed.

2 Canonical forms of pencils

In this section, we recall basic decompositions for all three classes of struc-
tured pencils considered in this paper. We start with the canonical form for
Hermitian pencils, see e.g. [12, 18].

Theorem 3 (Hermitian canonical form) Let A,E ∈ Cn×n be Hermi-
tian. Then there exists an invertible matrix S ∈ Cn×n such that the pencil
S∗(λE + A)S is block-diagonal with diagonal blocks of one of the following
forms:

i) blocks corresponding to a real eigenvalue γ ∈ R:

J sk,γ(λ) := s


λ− γ

. .
.

1

. .
.
. .
.

λ− γ 1

 ∈ Rk×k, s ∈ {−1, 1} ; (3)
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ii) blocks corresponding to a pair of conjugate complex eigenvalues γ, γ,
where γ ∈ C+ := {z ∈ C | Im z > 0}:

Jk,k,γ(λ) :=

[
0 J 1

k,γ(λ)

J 1
k,γ̄(λ) 0

]
∈ C2k×2k, (4)

where J 1
k,γ(λ) and J 1

k,γ̄(λ) are defined as in (3);

iii) blocks corresponding to the eigenvalue infinity:

N s
k (λ) := s


1

. .
.
λ

. .
.
. .
.

1 λ

 ∈ Rk×k, s ∈ {−1, 1} ; (5)

iv) singular blocks:

L2k+1(λ) :=

[
0 Gk(λ)

G>k (λ) 0

]
∈ R(2k+1)×(2k+1), (6)

where

Gk(λ) =


1

λ
. . .

. . . 1
λ

 ∈ R(k+1)×k. (7)

The parameters γ ∈ C, s ∈ {−1, 1}, and k ∈ N (for blocks of type i)–iii) we
have k ≥ 1) depend on the particular block and hence may be different in
different blocks. Moreover, the canonical form is unique up to permutation
of diagonal blocks.

A Hermitian pencil is singular if and only if it contains blocks of the form (6)
and infinity is an eigenvalue if and only if it contains a block of the form (5).
The collection of the signs s appearing in the blocks associated with a fixed
real eigenvalue or the eigenvalue infinity, respectively, is called the sign char-
acteristic of the corresponding eigenvalue.

Note that the canonical form as we presented it here is consistent with
interpreting a Hermitian pencil as a degree one matrix polynomial λE +A.
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In the literature, Hermitian pencils are also written in the form λE−A and
then instead of N s

k (λ) a block of the form

Ñ s̃
k (λ) := s̃


−1

. .
.

λ

. .
.
. .
.

−1 λ

 ∈ Rk×k, s̃ ∈ {−1, 1}

is occurring in the canonical form. This has an effect on the definition of
the sign characteristic at infinity via the canonical form, because N s

k (λ) and

Ñ s̃
k (λ) are congruent, if k is odd, but if k is even, then N s

k (λ) and Ñ−s̃k (λ)
are congruent, see also [16] for a detailed discussion of this issue.

Next, we recall a corresponding theorem for the case of real symmetric
pencils, see [19]. Note that most of the blocks in the canonical form in
Theorem 3 are already real. Only for blocks of the form (4) a different
representation is needed.

Theorem 4 (Real symmetric canonical form) Let A,E ∈ Rn×n be sym-
metric. Then there exists an invertible matrix S ∈ Rn×n such that the pencil
S>(λE + A)S is block-diagonal with diagonal blocks of one of the following
forms:

i) blocks corresponding to a real eigenvalue γ ∈ R: J sk,γ(λ), where J sk,γ(λ)
is as in (3) and s ∈ {−1, 1};

ii) blocks corresponding to a pair of conjugate complex eigenvalues α± iβ,
where α, β ∈ R and β > 0:

Jk,k,α,β(λ) :=


λR2 −Mα,β

. .
.

R2

. .
.
. .
.

λR2 −Mα,β R2

 ∈ R2k×2k,

(8)
where

Mα,β :=

[
−β α
α β

]
∈ R2,2 and R2 :=

[
0 1
1 0

]
; (9)

iii) blocks corresponding to the eigenvalue infinity: N s
k (λ), where N s

k (λ)
is as in (5) and s ∈ {−1, 1};

8



iv) singular blocks: L2k+1(λ), where L2k+1(λ) is as in (6).

The parameters α, β, γ ∈ R, s ∈ {−1, 1}, and k ≥ 0 depend on the particular
block and hence may be different in different blocks. Moreover, the canonical
form is unique up to permutation of diagonal blocks.

The third class considered in the paper are complex symmetric matrices.
Here, we have the following canonical form, see [19].

Theorem 5 (Complex symmetric canonical form) Let A,E ∈ Cn×n
be symmetric. Then there exists an invertible matrix S ∈ Cn×n such that
the pencil S>(λE +A)S is block-diagonal with diagonal blocks of one of the
following forms:

i) blocks corresponding to a complex or real eigenvalue γ ∈ C:

Jk,γ(λ) :=


λ− γ

. .
.

1

. .
.
. .
.

λ− γ 1

 ∈ Ck×k, (10)

iii) blocks corresponding to the eigenvalue infinity: Nk(λ) := N 1
k (λ), where

N 1
k (λ) is as in (5);

iv) singular blocks: L2k+1(λ), where L2k+1(λ) is as in (6).

The parameters γ ∈ C and k ≥ 0 depend on the particular block and hence
may be different in different blocks. Moreover, the canonical form is unique
up to permutation of diagonal blocks.

With the discussed structured canonical forms under congruence available,
we will now discuss how these structures change under generic low-rank
perturbations.

3 Preparatory results

In this section we show that the regular part of a pencil of one of the struc-
tures mentioned in the introduction stays intact under generic rank-one per-
turbations. We present Theorems 6 and 7 below in a very general setting.
Note that they both cover not only the three main classes considered in the
paper, i.e., Hermitian pencils, real symmetric pencils, and complex symmet-
ric pencils, but also many other structures as real or complex T -alternating
pencils.
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Theorem 6 Let F ∈ {C,R}, let ? ∈ {∗,>}, and let A,E ∈ Fn,n be such
that A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}. Then there exists a
nonsingular matrix U ∈ Fn,n such that

λU?EU + U?AU =

 S(λ) 0 0
0 Rf (λ) 0
0 0 Ri(λ)

 ,
where Rf (λ) = λEf +Af with Ef nonsingular (this part contains the finite
eigenvalues of the pencil λE+A), Ri(λ) = λEi+Ai with Ai nonsingular and
Ei being nilpotent (this part contains the infinite eigenvalues of λE + A),
and

S(λ) = diag(L2k1+1(λ), . . . ,L2k`(λ))

with k1, . . . , k` ∈ N and

L2kj+1(λ) =

[
0 Gkj (λ)

δAG>kj (δAδEλ) 0

]
=

[
0 Gu + λG`

δAG
>
u + λδEG

>
` 0

]
,

(11)
where Gkj (λ) is as in (7) and

Gu =:

[
Ikj
0

]
, Gl :=

[
0
Ikj

]
. (12)

for j = 1, . . . , `. In particular, S(λ) is uniquely determined up to a permu-
tation of the ` singular blocks on its block diagonal.

Proof. The proof follows immediately by inspection from the canonical
form of pairs of Hermitian matrices in [18] or of real or complex pairs of
matrices that are either symmetric or skew-symmetric given in [19].

We call R(λ) = diag ((Rf (λ), Ri(λ)) the regular part and S(λ) the singu-
lar part of the pencil λE+A. Note that we have omitted the dependence on
δA and δE in the notation L2k+1(λ). It will become clear from the context
which of the possible structures is meant.

In the following, we will present a general result about the effect of
generic structure-preserving rank-one perturbations on the regular part of a
structured pencil λE +A. As before, we will present this theorem in a very
general setting by simultaneously considering real and complex cases and in
the complex case symmetry structures with respect to both the transpose
and the conjugate transpose. Instead of expressing the next theorem in
terms of rank-one perturbations in the form

λ(E + euu?) + (A+ auu?), (13)
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we rather consider the unperturbed pencil and the vector u separately,
thus interpreting (13) as a pair (P (λ), u), consisting of a structured pen-
cil P (λ) = λE + A with A,E ∈ Fn,n and a “perturbation vector” u ∈ Fn.
A congruence transformation on the pencil (13) will then take the form
(P (λ), u) 7→ (U?P (λ)U,U?u), where U ∈ Fn,n is nonsingular.

Theorem 7 Let F ∈ {C,R}, let ? ∈ {∗,>}, and let P (λ) = λE + A with
A,E ∈ Fn,n be such that A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}.
Furthermore, let P (λ) have at least one singular block L2m+1(λ), m ≥ 0 in
its canonical form. Then for a generic u ∈ Fn, there exists a nonsingular
matrix U ∈ Fn×n (depending on u) such that

U?P (λ)U =

[ ns nr

ns S(λ) 0
nr 0 R(λ)

]
, U?u =

[
ns us
nr 0

]
, (14)

where R(λ) and S(λ) are the regular and singular parts of the pencil, respec-
tively.

Proof. Without loss of generality we may assume that P (λ) has the form
discussed in Theorem 6. Furthermore, we may assume that it has one sin-
gular block L2m+1(λ) only. Similarly, we can consider Rf (λ) and Ri(λ)
from Theorem 6 separately, so we may assume without loss of generality
that R(λ) = λRE + RA, where RA, RE ∈ Fk×k and where either RA or RE
is invertible. By interchanging the roles of A and E if necessary, we may
further assume that it is RE which is invertible. Note that interchanging A
and E may change the actual structure of the pencil, e.g., in the case of an
alternating pencil from even to odd, but this is not of importance. Indeed,
if (14) is shown to hold for the pencil λA + E, then it obviously also holds
for the pencil λE +A.

Let u = [u>1 , u
>
2 , u

>
3 ]> ∈ Fn, where u1 ∈ Fm+1, u2 ∈ Fm, u3 ∈ Fk, and

let D ∈ Fk×(m+1) be a matrix satisfying

u3 = −Du1, (15)

with entries still to be determined. Then with

D :=

 Im+1 0 0
0 Im 0
D 0 Ik

? ,
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we obtain that D?u = [u>1 , u
>
2 , 0]>, and we have that Ã := D?AD and

Ẽ := D?ED take the forms

Ã =

 0 Gu 0
δAG

>
u 0 δAG

>
uD

?

0 DGu RA

 , Ẽ =

 0 G` 0
δEG

>
` 0 δEG

>
` D

?

0 DG` RE

 ,
respectively. Thus, the transformed vector D?u has the desired form, but
we have introduced unwanted nonzero entries in the (2, 3)- and (3, 2)-blocks
of Ã and Ẽ. We eliminate these blocks with the help of a transformation of
the form

X :=

 Im 0 0
0 Im−1 X
0 0 Ik

? ,
where X ∈ F(m−1)×k still has to be determined. Note that X ?D?u = D?u
and

Â := X ?ÃX

=

 0 Gu 0
δAG

>
u XDGu + δAG

>
uD
∗X? +XRAX

? δAG
>
uD

? +XRA
0 DGu +RAX

? RA


as well as

Ê := X ?ẼX

=

 0 Gl 0
δEG

>
l XDGl + δEG

>
l D

?X? +XREX
? δEG

>
l D

? +XRE
0 DGl +REX

? RE

 .
Suppose that X and D can be chosen such that

DGu +RAX
? = 0 and DGl +REX

? = 0, (16)

(we will show below that this is indeed possible). Then the (3, 2)-block
entries of Â and Ê are zero and by (skew-)symmetry this also holds for the
(2, 3)-block-entry. In that case, we can define the transformation

Y = Y ⊕ Ik,

where Y is chosen in such a way that the block upper 2 × 2 block of
Y?(λÊ + Â)Y is in the reduced form of Theorem 6. Then, due to (16),
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the pencil Y?X ?D?P (λ)DXY is in the corresponding form of Theorem 6 as
well. Hence,

Y ?

([
0 Gu
G>u ∗

]
+ λ

[
0 Gl
G>l ∗

])
Y =

[
0 Gu
G>u 0

]
+ λ

[
0 Gl
G>l 0

]
,

because Y?(λÊ+ Â)Y and P (λ) are congruent and thus Y?(λÊ+ Â)Y must
contain exactly one singular block L2m+1. Thus, choosing U = DXY, fin-
ishes the proof under the assumptions (15) and (16).

It remains to show that X and D can be chosen such that both (15)
and (16) are satisfied. Since we have assumed that RE is invertible, the
second equation in (16) can be solved for X? which gives X? = −R−1

E DG`.
Inserting this into the first equation in (16), we obtain

DGu = −RAX? = RAR
−1
E DG`,

or, equivalently,
R−1
E DGu = R−1

E RAR
−1
E DG`. (17)

Note that the matrix on the left hand side of (17) consists of the first m− 1
columns of R−1

E D while the matrix on the right hand side of (17) consists
of the last m− 1 columns of R−1

E RAR
−1
E D. Denoting R−1

E D = [d1, . . . , dm],
we thus obtain

R−1
E D =

[
(R−1

E RA)m−1dm . . . R−1
E RAdm dm

]
, (18)

i.e., the matrix is uniquely determined by its last column dm. Conversely,
for every choice of dm the matrix D defined by (18) satisfies (16). Thus, we
aim to choose dm in such a way that (15) is satisfied which translates into
the condition

R−1
E u3 = −R−1

E Du1.

Note that
−R−1

E Du1 = −Mdm,

where

M =

m−1∑
j=0

u1j(R
−1
E RA)j


and the u1j , j = 1, . . . ,m − 1, denote the components of u1. Thus, if M is
invertible then the choices dm = −M−1R−1

E u3,

D = RE
[

(R−1
E RA)m−1dm . . . R−1

E RAdm dm
]
,
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and
X? = −R−1

E DG`

satisfy both equations (15) and (16). The assertion follows by noting that
detM is a nonzero polynomial in the entries of u1 which shows that for a
generic vector u the matrix M is invertible.

As a direct corollary we obtain an invariance result for the regular part
under generic rank-one perturbations.

Corollary 8 Let F ∈ {C,R}, let ? ∈ {∗,>}, and let P (λ) = λE + A with
A,E ∈ Fn,n be such that A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}.
Furthermore, let P (λ) have at least one singular block L2m+1(λ), m ≥ 0
in its canonical form. Then for generic u ∈ Fn and for all (e, a) ∈ F2,
the regular part of λE + A is contained in the regular part of the pencil
λ(E + euu?) + (A+ auu?) in the following sense: There exists nonsingular
matrices U1, U2 ∈ Fn,n such that

U?1 (λE +A)U1 =

[
R1(λ) 0

0 S1(λ)

]
,

U?2 (λE +A+ (λe+ a)uu?)U2 =

[
R2(λ) 0

0 S2(λ)

]
,

and

R2(λ) =

[
R1(λ) 0

0 R̃(λ)

]
for some R̃(λ), where R1(λ) and R2(λ) are the regular parts of λE +A and
λ(E + euu?) + (A+ auu?), respectively.

Note that for the sake of structure-preservation, we may have to restrict
the sets of possible values for a and e in Corollary 8 depending on the
considered field and the corresponding involution ? in order to guarantee
that the perturbed matrix pencil is from the same set of structured pencils
as the unperturbed one. For example, if F = C, A∗ = A and E∗ = E,
i.e., the pencil λE + A is Hermitian, then we must have a, e ∈ R to ensure
that also λ(E + euu∗) + (A+ auu∗) is Hermitian. If, on the other hand, we
have, e.g., F = R, A> = −A and E> = E, i.e., the pencil λE + A is real
T -odd, then we must require that a = 0 and e ∈ R. However, note that the
statement of Corollary 8 remains true even in the case that a and e have
been chosen such that the perturbed pencil does no longer have the same
structure as the unperturbed pencil.
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4 Perturbation of a single singular block

For the remainder of the paper, we will focus on Hermitian, complex sym-
metric, and real symmetric pencils. We will investigate what happens to
a matrix pencil under a generic structure-preserving rank-one perturbation
when the given pencil has exactly one singular block in the structured canon-
ical form. We also focus on perturbations that perturb the constant coeffi-
cient matrix of the pencil only, which corresponds to setting e = 0 in (13).
As we have seen in the previous section that generically the regular part
of the given singular pencil will not be affected by a structure-preserving
rank-one perturbation, we can focus our attention on the singular part of
the pencil only.

We start the analysis with the following lemma on the roots of a certain
polynomial. Here and in the following, we use the notation q̄ for the poly-
nomial whose coefficients are the complex conjugates of the coefficients of
the polynomial q, i.e., if q(λ) = akλ

k + · · ·+ a1λ+ a0, then

q̄(λ) := ākλ
k + · · ·+ ā1λ+ ā0.

Lemma 9 Let F ∈ {C,R}. Then for a generic vector u ∈ Fk the polynomial

q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0 (19)

has simple complex roots only. Furthermore, if F = C is interpreted as
R2 then for generic (Reu, Imu) ∈ R2k and for each nonreal root λ0, the
conjugate λ̄0 is not a root of q(λ). If F = R, then for all u ∈ Rk and for
each nonreal root λ0, the conjugate λ̄0 is a root of q(λ).

Proof. For the proof let us recall that two polynomials p1, p2 have a common
root if and only if their Sylvester resultant matrix S(p1, p2) is singular, see,
e.g., [9, Theorem 5.7].

Under the generic assumption that u1 6= 0, the zeros of q(λ) coincide
with the zeros of u1q1(λ) = u1λ

k − u2λ
k−1 + · · · + (−1)kuk+1λ

0. To prove
the first assertion, note that detS(u1q1(λ), u1q

′
1(λ)) is a nonzero polynomial

in u1, . . . , uk.
To see the “furthermore” part, note that |detS(u1q1(λ), ū1q̄1(λ))|2 is a

real nonzero polynomial in the entries of (Reu, Imu) in the case F = C. The
statement for the case F = R is elementary.

Remark 10 Observe that the set Rk can be divided into two disjoint sub-
sets. The first set contains all vectors u ∈ Rk defined by the property that
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the polynomial q made of the components of u as in (19) has a real root,
while the second subset consists of all u ∈ Rk such that q has only complex
roots. Note that if k is even, then both sets have a nonempty interior while
if k is odd, then the latter set is empty.

4.1 Hermitian case

In this section, we will assume that the given singular pencil is Hermitian.

Proposition 11 Let u ∈ C2k+1, with u1 6= 0. If k ≥ 1, then for τ ∈ R\{0}
we have

det(L2k+1(λ) + τuu∗) = τ · (qq̄)(λ),

where
q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, infinity is an eigenvalue of L2k+1(λ) + τuu∗ with the corre-
sponding single block N s

1 (λ), where s = sgnτ . Also, if k = 0 then

det(L2k+1(λ) + τuu∗) = τ |u|2.

Proof. Consider

S :=


1
u1
−u2
u1

1
...

. . .

−u2k+1

u1
1


?

such that S?u = e1. Then

S?(Ln(λ) + τuu∗)S =

τ 1
u1

λ− u2
u1

1

−u3
u1

λ
. . .

...
. . . 1

−uk+1

u1
λ

1
ū1

λ− ū2
ū1
− ū3
ū1
· · · − ūk+1

ū1
−2Re

uk+2

u1
− ūk+3

ū1
. . . − ū2k+1

ū1

1 λ −uk+3

u1
. . .

. . .
...

1 λ −u2k+1

u1



,
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with the non-indicated entries being zeros. Eliminating the entries in the
positions (1, k + 2) and (k + 2, 1), by adding a multiple of the first row and
column, respectively, we obtain a congruent pencil

[τ ]⊕



λ− u2
u1

1

−u3
u1

λ
. . .

...
. . . 1

−uk+1

u1
λ

λ− ū2
ū1
− ū3
ū1
· · · − ūk

ū1
f(u) − ūk+3

ū1
. . . − ū2k+1

ū1
1 λ −uk+3

u1
. . .

. . .
...

1 λ −u2k+1

u1


, (20)

where

f(u) = −2Re
uk+2

u1
− 1

τ |u1|2
.

As the determinants of the upper-right and lower left-block are equal to q(λ)
and q̄(λ), respectively, the proof is finished.

Corollary 12 For every monic complex polynomial q of degree k ≥ 1 there
exists a vector u ∈ C2k+1 with u1 6= 0 such that the characteristic polynomial
of the pencil L2k+1(λ) + uu∗ equals (qq̄)(λ).

We now present the main theorem for Hermitian rank-one perturbations of
Hermitian pencils having exactly one singular block.

Theorem 13 Let A,E ∈ Cn be Hermitian and such that the pencil λE+A
has precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0.
Then for u ∈ Cn with (Reu, Imu) ∈ R2n being generic, the canonical form
of A+ τuu∗ + λE is constant for τ ∈ R \ {0} and equals

N s
1 (λ)⊕

k⊕
j=1

J1,1,λj (λ)⊕Rf (λ)⊕Ri(λ), (21)

where s = sgnτ , where λ1, . . . λk ∈ C+ are mutually distinct eigenvalues, and
where Rf (λ)⊕Ri(λ) is the (canonical form of) the regular part of λE +A.
In the case k = 0, the form (21) reduces to N s

1 (λ)⊕Rf (λ)⊕Ri(λ).

17



Proof. By Theorem 7 we may assume without loss of generality that we
have λE + A = L2k+1(λ). By Proposition 11, the statement is trivial for
the case k = 0 and for k > 0 the eigenvalues of λE+A+ τuu∗ are the roots
of q(λ) and q̄(λ). By Lemma 9 all roots of the polynomial q are generically
simple and different from their conjugates, which determines the canonical
form to be as in (21).

4.2 Real symmetric case

In this section, we assume that the given pencil λE + A is real symmetric.
As a direct consequence of Proposition 11 we get the following result.

Proposition 14 Let u ∈ R2k+1, with u1 6= 0. If k ≥ 1, then for τ ∈ R\{0}
we have

det (L2k+1(λ) + τuu>) = τq2(λ),

where
q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, infinity is an eigenvalue of L2k+1(λ) + τuu> with the corre-
sponding single block N s

1 (λ), where s = sgnτ .
Also, if k = 0 then

det(L2k+1(λ) + τuu>) = τu2.

Note that by Proposition 14 every root of q is precisely a double eigen-
value of L2k+1 + uu>, and in addition for each nonreal root of q there is a
corresponding complex conjugate root, see Lemma 9 and Remark 10.

We will study now the generic canonical structure corresponding to
these real and nonreal double eigenvalues. Recalling that the inertia index
ind(H) = (n+, n−, n0) of a Hermitian or real symmetric matrix H consists
of the numbers n+ of positive eigenvalues, n− of negative eigenvalues, and
n0 of zero eigenvalues, we introduce the following lemma.

Lemma 15 Let λ0 ∈ R be an eigenvalue of algebraic multiplicity two of the
real regular symmetric matrix pencil

P (λ) :=

[
0 λC +B

λC> +B> λF +D

]
,

where B,C,D, F ∈ Rn,n and D = D>, F = F>. Then exactly one of the
following statements hold:
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(i) The geometric multiplicity of λ0 is equal to one and the sign s of λ0

in the sign characteristic of P (λ) is given by

s =

{
+1 if ind(P (λ0)) = (n, n− 1, 1),
−1 if ind(P (λ0)) = (n− 1, n, 1).

(ii) The geometric multiplicity of λ0 is equal to two and the signs in the
sign characteristic of λ0 are +1 and −1.

Proof. For the first part of the proof, we will ignore that the pencil P (λ)
is real and consider it as particular complex Hermitian pencil. Clearly,
there exists unitary matrices U, V ∈ Cn,n such that U∗(λC + B)V is in
anti-triangular form. (This follows by computing the generalized Schur
decomposition of λC + B and then applying a row permutation.) Thus,
diag(U∗, V ∗)P (λ)diag(U, V ) is in anti-triangular form as well. Then it fol-
lows from [14, Remark 16 and Theorem 17] that for each real eigenvalue γ
of P (λ) in the (complex) canonical form, the number of blocks associated
with γ and having odd size is even, say 2m, and exactly m of them have
sign +1 in the sign characteristic (and the other m have the sign −1 in the
sign characteristic). To be more precise, if

J s1k1,γ(λ), . . . ,J s2mk2m,γ
(λ),J s2m+1

k2m+1,γ
(λ), . . . ,J s2m+`

k2m+`,γ
(λ)

are exactly the blocks associated with γ in the canonical form in Theorem 3,
where k1, . . . , k2m are odd and k2m+1, . . . , k2m+` are even, then exactly m
of the signs s1, . . . , s2m are equal to +1 and exactly m of them are equal to
−1. In the following we will call this condition the “sign restriction for γ”.

If we insert a value µ ∈ R \ {γ} in the pencil J sjkj ,γ(λ), then the inertia

index of the matrix J sjkj ,γ(µ) is given by
(
kj
2 ,

kj
2 , 0) if kj is even,

(
kj+1

2 ,
kj−1

2 , 0) if kj is odd and sj(γ − µ) > 0,

(
kj−1

2 ,
kj+1

2 , 0) if kj is odd and sj(γ − µ) < 0.

Thus, it follows that the sign restriction for γ has the effect that the inertia
index of the matrix

Jγ(µ) :=

2m+`⊕
j=1

J sjkj ,γ(µ) (22)
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is equal to (
aγ
2 ,

aγ
2 , 0) for all µ ∈ C \ {γ}, where aγ denotes the algebraic

multiplicity of the eigenvalue γ. A similar observation shows that we also
have

ind(J∞(µ)) = (a∞2 ,
a∞
2 , 0),

where a∞ is the algebraic multiplicity of infinity as the eigenvalue of P (λ),
and where J∞(µ) is defined analogously to (22). Thus, if J∞(λ) is the
matrix pencil consisting of all blocks associated with the eigenvalue infinity
of the pencil P (λ), then J∞(µ) is the matrix obtained by evaluating J∞(λ)
at λ = µ.

For the remainder of the proof, let us consider the real canonical form
S>P (λ)S of P (λ) as in Theorem 4. Although we have been arguing via
the complex canonical form so far, note that the blocks associated with real
eigenvalues or with the eigenvalue infinity coincide in the real and complex
canonical form. Thus, by our considerations above and observing that each
block of the form Jk,k,α,β(λ) as in (8) has inertia index (k, k, 0) for all λ ∈ R,
we see that the matrix P (λ0) obtained by evaluating the pencil P (λ) at
λ = λ0 has the inertia index

ind(P (λ0)) = (n− 1, n− 1, 0) + ind(Jλ0(λ0)).

Here the sum of inertia index is taken componentwise. By assumption, the
algebraic multiplicity of λ0 as an eigenvalue of P (λ) is equal to two and thus
its geometric multiplicity is either one or two. If it is one, then

Jλ0(λ) = Js2,λ0(λ) = s

[
0 λ0 − λ

λ0 − λ 1

]
for some sign s ∈ {+1,−1} and evaluating this at λ = λ0 it immediately
follows that

ind(Jλ0(λ0)) = (1+s
2 , 1−s

2 , 1) =

{
(1, 0, 1) if s = 1,
(0, 1, 1) if s = −1

which proves (i).
If on the other hand the geometric multiplicity of λ0 is two, then we have

Jλ0(λ) = Js11,λ0
(λ)⊕Js21,λ0

(λ) for some signs s1, s2 ∈ {+1,−1}. Since we have
two blocks of odd size 1 in this case, the sign restriction for λ0 requires that
the signs s1, s2 are opposite which proves (ii).

Using these lemmas we can prove the following theorem.
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Theorem 16 Let A,E ∈ Rn be symmetric and such that the pencil λE+A
has precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0.
Then for generic u ∈ Rn the canonical form of λE+A+ τuu> is as follows:

N s
1 (λ)⊕

k′⊕
j=1

J2,2,αj ,βj (λ)⊕
k′′⊕
j=1

S2,λj (τ, λ)⊕Rf (λ)⊕Ri(λ),

where

1) s = sgnτ ,

2) αj + iβj, j = 1, . . . , k′ are mutually distinct nonreal eigenvalues with
αj , βj ∈ R and βj > 0,

3) λj, j = 1, . . . , k′′ are mutually distinct real eigenvalues of algebraic
multiplicity two and the corresponding blocks have the form

S2,λj (τ, λ) =


J 1

2,λj
(λ) if τ−1 < τj ,

J 1
1,λj

(λ)⊕ J −1
1,λj

(λ) if τ−1 = τj ,

J −1
2,λj

(λ) if τ−1 > τj ,

where τ1, . . . , τk” ∈ R are some real numbers depending on u,

41) 2k = 4k′ + 2k′′,

5) Rf (λ)⊕Ri(λ) is (the canonical form of) the regular part of λE +A.

In the case k = 0, the canonical form reduces to N s
1 (λ)⊕Rf (λ)⊕Ri(λ).

Proof. By Theorem 7 we may assume without loss of generality that

λE +A = L2k+1(λ).

The case k = 0 is trivial, so we may assume k > 0 and we will continue
the congruence transformations from the proof of Proposition 11 starting
from (20). Note that all transformations appearing therein were real for
u ∈ R2k+1. We may simply assume first that u1 = 1, which gives that the
second diagonal block of the pencil in (20) has the form

R(λ, τ) :=

[
0 λI −A1

λI −A>1 B(τ)

]
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:=



λ− u2 1

−u3 λ
. . .

...
. . . 1

−uk+1 λ

λ− u2 −u3 · · · −uk+1 f(τ, u) −uk+3 . . . −u2k+1

1 λ −uk+3

. . .
. . .

...
1 λ −u2k+1


,

where

f(τ, u) = −2uk+2 −
1

τ

is the only entry depending on τ .
First let us consider the case k = 1. We make a generic assumption that

u3 6= 0. In this case[
0 λI −A1

λI −A>1 B(τ)

]
=

[
0 λ− u2

λ− u2 −2u3 − τ−1

]
,

which, since inserting u2 in R(λ, τ) gives R(u2, τ) = diag(0,−2u3 − τ−1),
has the canonical form

J1
2,u2

(λ) for τ−1 < −2u3,

J1
1,u2

(λ)⊕ J−1
1,u2

(λ) for τ−1 = −2u3,

J−1
2,u2

(λ) for τ−1 > −2u3

by Lemma 15. Now let us deal with the case k ≥ 2. Let λ0 be an eigenvalue
of A1. (For the moment, we do not fix this eigenvalue to be real or nonreal,
but if it is nonreal, we may assume Imλ0 > 0 by otherwise switching to its
conjugate which must also be an eigenvalue of P (λ).) Clearly, λ0 is then
also an eigenvalue of A>1 . Furthermore, by our initial assumption that q has
simple roots only, λ0 is a simple, nonzero eigenvalue of both A1 and A>1 .
Let us further transform the matrix

R(λ0, τ) =

[
0 λ0I −A1

λ0I −A>1 B(τ)

]
. (23)
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As λ0 is an eigenvalue of A1, there exists a nonsingular matrix T1 ∈ Ck×k
such that

(λ0 −A1)T1 =


0 1

0 λ0
. . .

...
. . . 1

0 λ0

 =: A2.

Indeed, let

T1 =


1
x3 1
...

. . .

xk+1 1

 ,
with

xk+1 =
uk+1

λ0

xj−1 =
uj−1

λ0
− xj
λ0
, j = k + 1, . . . 4,

so that the entries 2, . . . , k of the first column of (λ0−A1)T1 are eliminated.
Furthermore,

x3 =
u3

λ0
− u4

λ2
0

+ · · ·+ (−1)k
uk+1

λk−1
0

,

and hence, with q being the characteristic polynomial of the matrix A1, we
have

λ0 − u2 + x3 = λ−k+1
0 q(λ0) = 0,

which gives a zero in the (1, 1)-entry of (λ0I −A1)T .
Obviously, there exists a matrix T2 ∈ Ck×k such that

T2A2 =


0 1

0
. . .

...
. . . 1

0 0

 =: A3.

Note that we can take

T2 =


1

−λ0
. . .

...
. . .

. . .

(−1)kλk0 . . . −λ0 1

 .
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Setting T := diag(T>2 , T1), we obtain

T >
[

0 λ0I −A1

λ0I −A>1 B(τ)

]
T =

[
0 T2(λ0I −A1)T1

T>1 (λ0I −A>1 )T>2 T>1 B(τ)T1

]
=

[
0 A3

A>3 T>1 B(τ)T1

]
.

Observe that

T>1 B(τ)T1 =


g(τ, u) −uk+3 . . . −u2k+1

−uk+3

...
−u2k+1

 ,
with

g(τ, u) = −2uk+2 −
1

τ
− 2uk+3x3 − · · · − 2u2k+1xk+1. (24)

Let

S> :=



1
. . .

. . .

1

0 · · · · · · 0 1

u3

...
. . .

. . .
...

. . .

u2k+1 0 1


,

then

S>T >
[

0 λ0I −A1

λ0I −A>1 B(τ)

]
T S =


Ik−1

0 0
0 g(τ, u)

Ik−1

 , (25)

where the indicated zeros in the matrix on the right hand side are scalar
entries.

First, consider the case that λ0 is nonreal. Recall that we work under
the generic assumption u1 6= 0. We add another generic assumption that
uk+1 6= 0. Observe that x3, . . . , xk+1 depend polynomially on u1, . . . , un+1

and that xk+1 is nonreal. Hence, for generic u the expression g(1, u) is
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nonreal which implies that the expression g(τ, u) is nonzero for all τ ∈ R\{0}.
Thus, for generic u we have

dim kerR(λ0, τ) = 1, τ ∈ R \ {0} ,

i.e., λ0 is an eigenvalue of L(λ0) + τuu∗ of geometric multiplicity one for all
τ ∈ R \ {0}. Hence, if we set λ0 = α + iβ, then there is a block J2,2,α,β(λ)
in the real canonical form of the pencil L(λ0) + τuu∗ for all τ ∈ R \ {0}.

Next, consider the case that λ0 is real. Then for generic u we have that

τ0 := −2uk+2 − 2uk+3x3 − · · · − 2u2k+1xk+1 6= 0. (26)

Indeed, τ0 depends polynomially on the entries of u and is nonzero as a
polynomial, because for uk+2 6= 0 and uj = 0, j = k + 3, . . . , 2k + 1, we
have τ0 6= 0. It is now clear that for τ−1 6= τ0 there exists a Jordan chain
of length two corresponding to the zero eigenvalue of the matrix R(λ0, τ)

and thus one block of size two J
s(τ)
2,λ0

(λ) corresponding to λ0 occurs in the
canonical form of R(λ, τ). By Lemma 15 applied to the pencil R(λ, τ), in
view of (25), we have that the sign s(τ) is equal to the sign of g(τ, u) which
clearly is

s(τ) =

{
+1 if g(τ, u) > 0, i.e. τ−1 < τ0

−1 if g(τ, u) < 0, i.e. τ−1 > τ0.

Finally, dim kerR(λ0, τ
−1
0 ) = 2 and therefore, taking into account Lemma 15

again, there are two blocks J1
1,λ0

(λ) and J−1
1,λ0

(λ) in the canonical form of
P (λ).

4.3 Complex symmetric case

Finally, we consider a complex symmetric rank-one perturbation of a com-
plex symmetric pencil: λE + A + τuu>, where u ∈ Cn is a generic vector
and the parameter τ is complex. Similarly to Proposition 11 we obtain the
following result.

Proposition 17 Let u ∈ C2k+1, with u1 6= 0. If k ≥ 1, then for τ ∈ C\{0}
we have

det (L2k+1(λ) + τuu>) = τq2(λ),

where
q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, infinity is a simple eigenvalue of L2k+1(λ) + τuu>. Also, if
k = 0 then

det(L2k+1(λ) + τuu>) = τu2.
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Proposition 17 states that each finite eigenvalue of L2k+1(λ) + τuu> is a
double eigenvalue. Now let us investigate the block structure for these double
eigenvalues.

Theorem 18 Let A,E ∈ Cn be symmetric and such that the pencil λE+A
has precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0.
Then for generic u ∈ Rn the canonical form of λE + A + τuu> (τ ∈ C) is
as follows:

N1(λ)⊕
k⊕
j=1

S2,λj (τ, λ)⊕Rf (λ)⊕Ri(λ),

where

1) λj, j = 1, . . . , k′ are mutually distinct complex eigenvalues of algebraic
multiplicity two and the corresponding blocks have the form

S2,λj (τ, λ) =

{
J2,λj (λ) if τ−1 6= τj ,

J1,λj (λ)⊕ J1,λj (λ) if τ−1 = τj ,

where τ1, . . . , τk are some complex numbers depending on u,

2) Rf (λ)⊕Ri(λ) is (the canonical form of) the regular part of λE +A.

In the case k = 0, the canonical form reduces to N1(λ)⊕Rf (λ)⊕Ri(λ).

Proof. We repeat the congruence transformations from the proof of The-
orem 16 to get (25) and (24), having in mind that now they are complex
congruences. Note that the same argument as in the real case applies to
prove that τ0 6= 0, where τ0 is defined as in (26). The remainder of the proof
follows the same lines as the proof of Theorem 16 with the simplification
that now no sign characteristic is involved.

Conclusions

We have analyzed the behavior of the structured Kronecker canonical form
of singular structured matrix pencils under generic structured rank-one per-
turbations. In this case the regular Kronecker structure of the pencil is not
affected by the perturbation and the behavior of the canonical form of the
newly generated regular blocks can be characterized when the perturbations
involve a scalar parameter.
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