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ABSTRACT. O&D revenue management (RM)
— either leg-based or PNR-based — has become
a standard in the airline industry. In this paper,
we present a new approach to O&D RM which
does not make any assumptions on demand dis-
tributions or on the correlations of the booking
process. Protection levels are determined for all
origin destination itineraries, fare classes, points
of sale and data collection points (DCPs). This
approach to the seat inventory problem is mod-
elled as a multistage stochastic program, where
its stages correspond to the DCPs of the book-
ing horizon. The stochastic passenger demand
process is approximated by a scenario tree gen-
erated from historical data by a recursive sce-
nario reduction procedure. The stochastic pro-
gram represents a specially structured large scale
LP that may be solved by standard LP software
(e.g. CPLEX). Preliminary numerical experience
is reported.

KEYWORDS: O&D Revenue Management,
Seat Inventory Control, Multistage Stochastic
Programming, Scenario Tree Generation

INTRODUCTION

Revenue management (RM) refers to strategies to
control the sale of (perishable) products or services
in order to maximize revenue. It started in the
early 70s with the work of Littlewood (1972) and
was enforced after the deregulation of U.S. airline
industry in 1979. For overviews we refer e.g. to
(Weatherford, 1998; McGill and van Ryzin, 1999; Pak
and Piersma, 2002; Klein and Petrick, 2003; Talluri



and van Ryzin, 2004).

The EMSRa and EMSRb methods (Belobaba, 1987;
Belobaba, 1989) became most popular for single leg
problems. They are commonly used under the as-
sumption that demand for each fare class is inde-
pendent and normally distributed. Extension for dif-
ferent types of distributions or dependencies may be
found in (Curry, 1990; Wollmer, 1992; Brumelle and
McGill, 1991; Brumelle et al., 1990). In (Glover et
al., 1982) the first network formulation of the RM
was given. Optimal booking limits were applied to
the network problem in (Curry, 1990). Smith and
Penn (1988) and Simpson (1989) proposed the bid
price concept for network revenue management. An
extensive study of bid prices in comparison with other
methodologies was done in (Williamson, 1992). The-
oretical properties of bid-price controls were provided
by (Talluri and van Ryzin, 1999). In (van Ryzin and
McGill, 2000) an adaptive scheme was used for up-
dating protection levels based on frequencies of cer-
tain fill events and for solving some optimality con-
ditions. The rate of occurence of the fill events was
determined directly from historical booking records.
Neither assumptions about the distributions nor un-
censoring was requested. General stochastic network
models based on Markov decision processes and sev-
eral types of approximations were developed and dis-
cussed in (van Ryzin and Talluri, 2003). Markov de-
cision processes and mathematical programming ap-
proaches were combined in (Cooper and Homen-de-
Mello, 2003).

In the present paper a scenario tree based stochas-
tic programming approach to the O&D revenue man-
agement problem is developed. For this purpose the
stochastic demand process is approximated by a sce-
nario tree consisting of a finite number of scenarios.
In the following section the stochastic programming
model is established in scenario and node formulation.
Furthermore, the generation of a booking and cancel-
lation scenario tree from historical data is described.
In the final sections, preliminary numerical experience
is reported and concluding comments are given.

STOCHASTIC PROGRAMMING
MODEL

Modelling

We consider an O&D network consisting of I origin-
destination-itineraries, J fare classes, K points of
sale, L legs with M (l) compartments in each leg
l=1,...,L We let the booking horizon be subdi-
vided into T" booking subintervals with data collection

points (dcps) t = 0,...,T. The booking process is
controlled over time by decisions on protection levels
P; j .+ for each fare class j € {1,...,J}, itinerary
1€ {l,...,I}, point of sale k € {1,..., K} and at
each decp t = 0,...,T — 1. The decisions at ¢ are
made for the next booking interval (¢,¢+ 1] based on
the previous process of bookings and cancellations up
to ¢t and recursively over time. Protection levels are
upper bounds for the inventory of booked, uncancelled
seats.

We assume that the fares and the compartment
capacities are given, i.e., they are deterministic in-
put variables. The booking demand and the cancella-
tion processes are regarded as a multivariate stochas-
tic process {&;}1_, over time, where &, represents a
known deterministic starting value. The components
of the random input vector & at t are the stochastic
booking demands d; ; .+ and stochastic cancellations
ci,jkt- Hence, & is a 2I.JK-dimensional random vec-
tor whose components are statistically dependent and,
furthermore, the random input vector &; depends on
its hiStOI’y (607517 AN 7£t—1)-

To state the stochastic programming (SP) model
we assume that S scenarios with probabilities 7% > 0,
s =1,...,8, of the booking demand and cancella-
tions process are given. These scenarios may be ob-
tained from stochastic demand models and by relying
on expert knowledge, respectively.

Scenario-based SP Model

To set up the SP model we need some further nota-
tion. We denote the index set of itineraries containing
leg I (i.e., the incidence set) by Z; C {1,...,I}, the
number of compartments on leg I by M(I) and the
index set of fare classes of compartment m on leg [
by Jm(l) C {1,...,J}. Further input data are the
fares f; j x+ and the capacities C} ,, of compartments
m e {1,...,M(I)} and legs I.

The stochastic input variables are the booking de-
mand d; F ikt and and the cancellations ¢} ikt The
bookings b” k¢ and the inventories of booked seats
B} .+ represent the stochastic state varlables of
the model while the protection levels P, , are the
stochastic decisions. Here, the superscript s always
refers to scenario s. As objective function we con-
sider the expected total revenue, where total refers to
the whole O&D network and booking horizon, all fare
classes and points of sale.

Summarizing, our scenario-based stochastic pro-
gramming model consists in maximizing

t=1 i=1 j=1 k=1
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subject to all protection levels P, , satisfying
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Finally, the integrality and nonnegativity constraints
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> 0
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and the nonanticipativity constraints have to be sat-
isfied, the latter meaning that

decisions at ¢ only depend on the data until ¢. (8)
Here, (1) corresponds to the total expected revenue,
(3) describes the update of the inventories of booked
seats and the constraint (5) expresses that, for each
leg, the corresponding protection levels may not ex-
ceed the physical capacities of the compartments on
the day of departure. While the protection levels, the
number of bookings and the inventory of booked seats
have to be nonnegative integers by nature, the con-
straint (8) expresses how the information flow evolves
over time. (8) may be modelled by linear equations
in various ways, see (Ruszczynski and Shapiro, 2003,
Chapter 3.6) and (Rémisch and Schultz, 2001). Al-
together, the model (1) — (8) represents a large scale
multistage stochastic integer program.

Input Scenario Trees

The nonanticipativity constraint (8) implies that the
finitely many scenarios {£5}7 , s =1,..., 5, can be
represented in the form of a scenario tree. The sce-
nario tree is based on a finite set A" = {0,1,..., N}
of nodes that are arranged at the stagest =0,...,T.
The root node n = 0 is the only node at stage ¢ = 0.
The number of nodes at stage t = 1 corresponds to
the number of different realizations of &. Each of
these nodes is connected with the root node by an
arc. In general, each node n € N, n # 0, has a
unique predecessor node denoted by n_ and a set
N (n) of successor nodes. Each node in NVy(n) is

connected with n by an arc. The set {0,...,n_,n}
of recursive predecessors of n is denoted by path(n),
which refers to the path from the root to n. t(n)
denotes the number of elements in path(n) minus 1
and, thus, refers to the stage to which n is arranged,
i.e., the nodes in N} := {n € N : ¢t = t(n)} cor-
respond to the different realizations of &. Nodes n
belonging to the set N7 have the property Ny (n) # 0
and are called leaves. Hence, a scenario corresponds
to a path from the root to some leaf, i.e., to path(n)
for some n € Nr, and its probability is renamed by
n™. We also say that 7" is the probability of the
leaf n. Clearly, we have {7"},eny = {7°}5_;. The
probabilities of nodes n & AN compute by the re-
cursion 7 = Zn+eN+(n) w"+. Clearly, we have

that Y cr, 7" = 1 and () = {§" }nen, for each
t=0,1,...,T.

t(n) T

Figure 1: Scenario tree with 7"=4, N = 21 and 11
leaves

The generation of scenario trees that approximate
the stochastic input process {£;}1_, is a challenging
task when solving multistage stochastic programs. In
(Dupatova et al., 2000) an overview of scenario tree
generation techniques is provided. More recent contri-
butions are based on the moment-matching principle
(Hgyland and Wallace, 2001), the use of distances
of probability distributions (Pflug, 2001) and (Growe-
Kuska et al., 2003), and Quasi-Monte Carlo methods
(Pennanen, 2004), respectively.

Next, we briefly describe the scenario tree construc-
tion approach of (Gréwe-Kuska et al., 2003). It starts
with a finite number of individual scenarios {£;}7,,
s = 1,...,85, with probabilities and common root
node, ie, & = ... = &5. This scenario fan is
modified by recursive bundling and deletion of sim-
ilar scenarios, respectively, leading to a tree structure.



a) Initial fan

b) 1st step

¢) 2nd step

d) 3rd step and final tree

Figure 2: Construction of a scenario tree

Its methodology is based on the scenario reduction
techniques developed in (Dupatovd et al., 2003) and
(Heitsch and Rémisch, 2003) and employs these tech-
niques backward in time starting at ¢ = T. The
bundling and deletion process relies on computing and
bounding the distance of the original distribution given
by the individual scenarios with their weights and of
the distributions of the approximate trees. Figure 2
illustrates the construction procedure starting from
a fan of individual scenarios on a time horizon with
T = 4. After three reduction steps at t = 3,2 and 1
the final result is shown in d). The final scenario
tree in d) exhibits possibly different branching struc-
ture at all stages, which is detected by the algorithm.
The tree is constructed such that the set of its real-
izations {€"},cn, at t is contained in the initial set
{€}5_,. The papers (Growe-Kuska et al., 2003) and
(Heitsch and Rémisch, 2004) contain a detailed de-
scription of the algorithm and its theoretical justifica-
tion. The important advantage of this tree generation
method consists in its applicability to (highly) multi-
variate stochastic processes with finitely many scenar-
ios without imposing further distribution assumptions.
Hence, it also applies in the context of O&D revenue
management and is used later to generate scenario
trees for the passenger demand process (see Section
Numerical Results).

SP Model in Node Form

Using the description of scenario trees, our SP model
(1) — (8) may alternatively be represented in node
formulation. To this end we introduce input, state
and decision variables at all nodes using superscript
n = 0,...,N. Making use of a mapping that as-
signs to each time-scenario pair (¢, s) the correspond-
ing node n with ¢t = ¢(n) and with path(n) being a
part of scenario s, we obtain the booking demands
de i cancellations ¢ ke bookings b” «» booking in-
ventories B}, ; and protection levels P"; ; at all nodes
n €N and all triples (i, 7, k). Then the node formu-
lation of our SP model consists in maximizing

I J
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subject to all protection levels Pi”j i satisfying
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where B;’j & 1S the inventory of booked seats, i.e.,
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and for all n € Nr_1 the leg capacity limits

K
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(13)

Finally, we have the nonnegative integer constraints

€ Z
> 0,

(14)
(15)

T T
ik P
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ik Bijis Pk

while the nonanticipativity constraints are satisfied
by construction. Altogether, the model (9) — (15)
represents a large scale structured integer program
which is of smaller dimension compared to its sce-
nario formulation. More precisely, it contains IJK +
3IJK(N—1-8)+2IJKS variables and 2I JK (N —
1)+ (X1, M(1))S constraints.

Since all variables are nonnegative and the bookings
are bounded from above, the objective function is also
bounded from above. Hence, the LP relaxation of
the integer program, i.e., when the constraint (14) is
ignored, is solvable. For its solution any standard LP
solver may be used.

The protection levels (P; ;)nen as solutions of
the multi-stage stochastic programs form a (multi-
variate) stochastic process over time having the same
tree structure as the input data.

e The (deterministic) protection levels of the first
dcp may be taken directly for the reservation sys-
tem CRS.

At the next dcp’s the information on the proba-
bility distribution (means, quantiles etc.) of the
relevant stochastic protection levels may be used
to determine an estimate of the protection levels.

If the latter estimates do no longer reflect reality,
say, at time tg > 0, the stochastic optimization
model is restarted with a new input scenario tree
having its root node at tg etc.

NUMERICAL RESULTS

In our preliminary numerical tests, the SP model was
set up and solved for a single leg flight (namely,
LH400, A340-300, Tue as day of departure). Table 1
shows the dimensions of the corresponding O&D RM
problem. The passenger demand was modelled start-

J
14

K
1

T
18

L
1

M(1)
3

1

Table 1: Dimensions

ing from historical data of the corresponding flight

ot

as follows. First the data was adjusted subject to
a suitable demand model. Next a data and clus-
ter analysis was processed, leading to four clusters
{Mon, Tue, Wed, Thu}, {Fri}, {Sat}, {Sun} (Gréwe-
Kuska and Rémisch, 2001). Then 300 scenarios were
drawn from the first cluster by resampling techniques.
Starting from these scenarios a scenario tree consist-
ing of 150 scenarios was generated by using the sce-
nario reduction and tree construction algorithms de-
scribed in (Growe-Kuska et al, 2003; Heitsch and
Rémisch, 2004) (see Section Input Scenario Trees).
The dimensions of the scenario tree and, thus, of the
SP model (9) — (15) are shown in Table 2. The tree
is shown in Figure 3. It contains branches at all dcps

S
150

N
1190

# Variables
47852

#Constraints
33742

Table 2: SP model dimensions

Scenario Tree

Figure 3: Scenario tree

and exhibits branches of varying degree, starting with
many branches at the root node.

Ignoring the integrality constraints (14) the SP
model was solved by CPLEX 8.1. An optimal solu-
tion was found by CPLEX 8.1 in less than 2 seconds
on a Linux-PC equipped with a 2 GHz Intel Celeron
processor. Figure 4 shows the optimal protection lev-
els at the first stage, i.e., for the interval [0,1), and
the corresponding fares. Figure 5 provides the trees
of optimal protection levels over the whole booking
horizon and the corresponding demand scenario trees
for selected fare classes. Each picture also contains
the mean value and the 5% and 95% quantile curves.
The similar structure of both trees for each class indi-
cates that the capacities of the compartments are not
exploited by most of the scenarios. An interesting ob-
servation is that the optimal protection levels satisfy
the integrality constraints although they were relaxed.



All in all, our results seem to be reasonable and raise
the expectation that moderately sized O&D network
problems may be solved in acceptable running times.

CONCLUSIONS

A stochastic programming approach to O&D revenue
management is proposed. It is based on modelling sce-
nario trees for the passenger demand and does not re-
quire any assumption on the underlying demand distri-
butions or on the correlations of the booking process.
The RM problem is modelled by a multistage stochas-
tic program in node form and solved by standard LP
software. Our numerical experience for a single leg
model indicates that the approach bears potential for
solving O&D network models in reasonable time. Our
future work will be directed to the following issues:

e Analysis of O&D data, the generation of O&D
demand scenarios and of demand scenario trees.

e Study of structural properties of the stochastic
RM model and of the adaptability of decomposi-
tion approaches.

e Numerical tests on entire networks.
e Comparison with other approaches.

e Completion of the model (noshows, denied

boarding cost).

e Study of modelling specific demand patterns
(seasonal demand, special events).
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