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Abstract

We study a stationary thermistor model describing the electrothermal behavior of
organic semiconductor devices featuring non-Ohmic current-voltage laws and self-
heating effects. The coupled system consists of the current-flow equation for the
electrostatic potential and the heat equation with Joule heating term as source. The
self-heating in the device is modeled by an Arrhenius-like temperature dependency of
the electrical conductivity. Moreover, the non-Ohmic electrical behavior is modeled by
a power law such that the electrical conductivity depends nonlinearly on the electric
field. Notably, we allow for functional substructures with different power laws, which
gives rise to a p(x)-Laplace-type problem with piecewise constant exponent.

We prove the existence and boundedness of solutions in the two-dimensional case.
The crucial point is to establish the higher integrability of the gradient of the electro-
static potential to tackle the Joule heating term. The proof of the improved regularity
is based on Caccioppoli-type estimates, Poincaré inequalities, and a Gehring-type
Lemma for the p(x)-Laplacian. Finally, Schauder’s fixed-point theorem is used to
show the existence of solutions.
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1 Introduction

This paper is devoted to the analysis of a stationary thermistor model that was recently
introduced in [18] to describe electrothermal effects, such as self-heating and inhomoge-
neous current distributions, in large-area Organic Light-Emitting Diodes (OLEDs). The
model consists of the current-flow equation for the electrostatic potential ϕ and the heat
equation with Joule heat source term for the temperature T in a domain Ω and reads as

−∇ · (σ(x, T, |∇ϕ|)∇ϕ) = 0,

−∇ · (λ(x)∇T ) = (1−η)σ(x, T, |∇ϕ|)|∇ϕ|2.
(1.1)
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Here, σ and λ are the electrical and thermal conductivities, respectively, and η ∈ [0, 1] is
the efficiency of the light outcoupling, which describes how much of the electric power is
emitted as light and not converted into heat. The key feature of the model is that the
electrical conductivity σ depends on the temperature and on the electric field E = −∇ϕ.
In [18], for organic semiconductor devices σ is proposed to be of the general form

σ(x, T, |∇ϕ|) = σ0(x)F (x, T )
[ |∇ϕ|
Vref/d

]p(x)−2
(1.2)

with σ0 being an effective conductivity, F (x, T ) is an Arrhenius-type temperature factor,
and Vref and d are a reference voltage and thickness, respectively. Notably, p(x) ≥ 2 is a
power-law exponent that depends on the spatial coordinate. In particular, OLEDs are thin-
film heterostructure devices based on organic molecules or polymers, where each functional
layer (electrode layer, electron and hole transport layers, emitting layer, see Fig. 1) has, in
general, its own current-voltage characteristics and material parameters. In the electrode
(made of Indium-Tin-Oxide), for example, an Ohmic behavior can be observed, which
means that p(x) = pITO = 2. For organic semiconductor materials we have non-Ohmic
behavior corresponding to exponents porg > 2. This has been experimentally verified in
[9] and [11] (in [9] a value of porg = 9.7 was obtained for OLED materials from fitting to
experimental data).

To take this behavior into account, we allow p(x) to be piecewise constant with different
values in each substructure of the device. In particular, this means that the current-
flow equation in (1.1) is of p(x)-Laplace type, which makes the mathematical analysis
challenging.

The temperature dependence of the conductivity is given by an Arrhenius-type factor

F (x, T ) = exp
[
− Eact(x)

kB

( 1

T
− 1

Ta

)]
, (1.3)

where Eact(x) ≥ 0 represents the activation energy in the materials, Ta is the ambient
temperature and kB is Boltzmann’s constant. Since the coefficient in front of the inverse
temperature is negative, a rising temperature leads to an increase of the electric current
for a constant applied voltage. By the Joule heat term in the second equation in (1.1),
this leads to even higher temperatures in the device. Thus, a positive feedback loop is
obtained, which continuously heats up the structure. Often physical experiments of this
kind lead to the destruction of the device by thermal runaway, see [10].

In the zero-dimensional (i.e. spatially homogeneous) setting discussed in [11], the current-
voltage characteristics for such devices show an S-shaped behavior for sufficiently high
activation energies (Eact > 4kBTa). In particular, a region of negative differential resis-
tance appears, which was also experimentally verified. This mechanism, together with the
high resistivity of the optically transparent ITO anode, is considered as explanation for
inhomogeneities in current distributions and unwanted pattern formation in the luminance
of large-area OLEDs, see [3, 9].

The system in (1.1) is complemented by boundary conditions that model the electrical
contacts and the thermal coupling to the environment. They read as

ϕ = ϕD on ΓD, σ(x, T, |∇ϕ|)∇ϕ · ν = 0 on ΓN ,

− λ(x)∇T · ν = κ(x)(T − Ta) on Γ := ∂Ω.
(1.4)
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Figure 1: Schematic cross section of an OLED with crossbar contacts.

Here, ϕD is the Dirichlet data corresponding to the applied voltage at the contacts lo-
cated at ΓD and ΓN is formed by that part of ∂Ω which does not belong to ΓD. The
Robin boundary condition for the heat flow equation expresses the heat transfer to the
environment. The spatially dependent heat transfer coefficient κ takes care of the varying
heat conduction of the surrounding materials. For a detailed discussion of the physical
background of the thermistor model, we refer to [18].

For the mathematical analysis of the thermistor system in (1.1) – (1.4) several features
of OLEDs have to be taken into account: We work in nonsmooth domains with mixed
boundary conditions. The parameters p,Eact, σ0, λ, η, and κ jump at interfaces between
different materials. In particular, the exponent p is spatially varying and piecewise con-
stant and takes values in the range of 2 (Ohmic material, e.g. ITO contacts) to 10 (organic
semiconductor material). Thus, subdomains Ωi ⊂ Ω with different exponents pi > 2 have
to be considered in the problem.

To treat the spatially varying exponent p we work in the generalized Sobolev spaces
W 1,p(·)(Ω) (see Subsection 2.2 or [5]). While the spaces W 1,p(·)(Ω) share several char-
acteristics with their classical counterparts W 1,p(Ω) for constant p, there are a number of
properties (e.g. Poincaré and Sobolev inequalities), which do not follow naturally with-
out additional assumptions on p. In particular, many results for W 1,p(·)(Ω) rely on the
assumption that x 7→ p(x) is log-Hölder continuous, which is not satisfied in our setting.

To prove the existence of solutions to (1.1) – (1.4) we apply Schauder’s fixed-point theorem
for the temperature distribution T . First, for a given T̃ we obtain a unique solution ϕ(T̃ )
of the current flow equation and prove L∞-bounds and regularity results for the potential
ϕ(T̃ ). Next, exploiting these regularity results we give a weak formulation for the coupled
problem and establish a priori estimates for the solution. Finally, we show that this
solution can be obtained via a fixed-point map Q : T̃ 7→ T , where T solves the heat
equation (2.1b) for the Joule heat given by the electrostatic potential ϕ(T̃ ) and F (T̃ ). In
particular, the proof follows the ideas in [18], where the case of a constant exponent p was
considered.

The crucial point in this procedure now is the regularity result for ϕ, which allows
us to exploit the elliptic theory for the heat equation. In particular, we show that
|∇ϕ| ∈ Ls

∗p(·)(Ω), where s∗ > 1 is a uniform exponent that does not depend on the
temperature T̃ . Following the ideas in [8] and adapting some steps to the case of two
different values of p in the localized situation depicted in Fig. 2, the higher regularity
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is obtained from Caccioppoli-type estimates, Poincaré inequalities, and a Gehring-type
Lemma in the version of Giaquinta-Modica (see [14, Theorem 6.6]) for the p(x)-Laplacian.
Let us note that higher regularity results for the p(x)-Laplacian are available in the log-
Hölder continuous case [1, 6, 22, 23]. In particular, the regularity result presented here is,
as far as we know, the first result for nonsmooth exponents p(x).

Plan of the paper. We start in Section 2 with a non-dimensionalization of the thermistor
system (1.1) – (1.4), which allows us to rewrite the system in a simpler, dimensionless form.
Moreover, we state the main assumptions on the data and the underlying domain and
introduce the function spaces Lp(·)(Ω) and W 1,p(·)(Ω) for variable exponents. In Section 3
we proof the main result of this paper – the existence of solutions to the coupled thermistor
system (1.1) – (1.4). Here, we apply Schauder’s fixed-point theorem and exploit that
solutions of the current-flow equation have a higher regularity in our setting. The proof
of the higher integrability of the gradient of ϕ is postponed to Section 4. In particular,
the result is obtained by localization of the problem to squares and careful estimates that
are uniform with respect to the diameter of subsquares. Finally, inequalities and auxiliary
results that are used throughout the proofs are collected in the Appendix.

2 Preliminaries

2.1 Non-dimensionalization of the system

For notational simplicity we work with dimensionless quantities. To this end, we intro-
duce reference values V0, I0, T0, and L0 for voltage, current, temperature, and spatial
coordinate, respectively. We set

ϕ̂ =
ϕ

V0
, T̂ =

T

T0
, and x̂ =

x

L0

and define the non-dimensionalized coefficients

σ̂0(x̂) =
V0L0

I0
σ0(L0x̂), β̂(x̂) =

Eact(L0x̂)

kBT0
,

λ̂(x̂) =
T0L0

I0V0
λ(L0x̂), κ̂(x̂) =

T0L
2
0

I0V0
κ(L0x̂).

We write the exponent p and the Arrhenius factor F as

p̂(x̂) = p(L0x̂), F̂ (x̂, T̂ ) = exp
[
− β̂(x̂)

( 1

T̂
− 1

T̂a

)]
with T̂a =

Ta
T0

and choose V0 and L0 such that (V0d)/(VrefL0) = 1 is satisfied. Having in mind that
∇x = 1

L0
∇x̂ we can rewrite the system in (1.1) – (1.4) in a dimensionless form for ϕ̂ and

T̂ . Finally, in the resulting system of equations we drop the hats above the symbols and
arrive at

−∇ · (σ(x, T, |∇ϕ|)∇ϕ) = 0 on Ω, (2.1a)

−∇ · (λ(x)∇T ) = (1−η(j, T ))σ(x, T, |∇ϕ|)|∇ϕ|2 on Ω, (2.1b)
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where
σ(x, T, |∇ϕ|) = σ0(x)F (x, T )|∇ϕ|p(x)−2. (2.1c)

The system is complemented with the mixed boundary conditions

ϕ = ϕD on ΓD, σ(x, T, |∇ϕ|)∇ϕ · ν = 0 on ΓN , (2.1d)

− λ(x)∇T · ν = κ(x)(T − Ta) on Γ := ∂Ω, (2.1e)

where ϕD is a function representing the non-dimensionalized Dirichlet values at all elec-
trical contacts.

2.2 Assumptions and notation

Here, we collect the essential assumptions on the domain Ω as well as on the given data
and fix the notation for the subsequent sections. In the following, we denote by Cr(y) ⊂ R2

the square with center y ∈ R2 and side length 2r and | · |∞ is the supremum norm on R2.
We start with the definition of regular domains due to Gröger.

Definition 2.1 (Regular domain [15]) We call G ⊂ R2 regular, if G is bounded and
if for every x0 ∈ ∂G there exist subsets Ux0 ⊂ R2 and a bi-Lipschitz transformation
Φx0 : Ux0 → C1(0) such that Ux0 is an open neighborhood of x0 ∈ R2, Φx0(Ux0) = C1(0),
and Φx0(x0) = 0. Furthermore, the image Φx0(Ux0 ∩G) is one of the following sets:

E1 := {y ∈ R2 : |y|∞ < 1, y2 > 0},
E2 := {y ∈ R2 : |y|∞ < 1, y2 ≥ 0},
E3 := {y ∈ E2 : y2 > 0 or , y1 > 0}.

Note that Poincaré-type inequalities and Sobolev’s embedding theorems are available on
regular domains, see e.g. [14, Theorems 3.11-3.13]. To treat the mixed boundary conditions
in (2.1d), we consider G = Ω ∪ ΓN and make the following assumptions for the analytical
investigations:

Assumption (A1)

(i) Ω ⊂ R2 is a bounded Lipschitzian domain and ΓD, ΓN are disjoint open subsets of
Γ := ∂Ω satisfying mes(ΓD) > 0, Γ = ΓD ∪ ΓN ∪ (ΓD ∩ ΓN ), and ΓD ∩ ΓN consists
of finitely many points. In particular, Ω ∪ ΓN is regular in the sense of Gröger [15],
see Definition 2.1.

(ii) Ω satisfies Ω =
⋃m
i=1 Ωi, where Ωi are disjoint subdomains, and x 7→ p(x) is such

that p(x) = pi ∈ [2,∞) for x ∈ Ωi.

(iii) There exists a finite number of points x0
j ∈ ∂Ω, for j = 1, . . . , N , and x0

j ∈ Ω, for j =
N+1, . . . ,M, with corresponding neighborhoods Uj and one-to-one bi-Lipschitzian
maps Φx0j

: Uj → C1(0) such that mes(Uj ∩Ωi) 6= 0 for at most two subdomains ΩjA

and ΩjB . Additionally, we assume that Φj(Uj) is one of the model sets C1(0) given

in Fig. 2 and
⋃M
j=1(Φx0j

)−1(C 1
24

(0)) ⊃ Ω is a finite covering of Ω.
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Figure 2: Model sets C1(0) with different constant exponents p with pA < pB and different
types of boundary conditions.

Assumption (A2)

(i) The Dirichlet datum satisfies ϕD ∈W 1,∞(Ω).

(ii) The electrical conductivity σ : Ω × R+ × R+ → R is of the form σ(x, T, z) =
σ0(x)F (x, T )zp(x)−2, where σ0 ∈ L∞(Ω) satisfies σ0 ≤ σ0 ≤ σ0 a.e. on Ω. The
Arrhenius factor is of the form F (x, T ) = exp

[
−β(x)

(
1
T −

1
Ta

)]
with β ∈ L∞+ (Ω) and

Ta ∈ R, Ta > 0.

(iii) The heat conductivity λ satisfies λ ∈ L∞(Ω) and λ ≥ c > 0 a.e. on Ω. The heat
transfer coefficient κ is such that κ ∈ L∞+ (Γ) and ‖κ‖L1(Γ) > 0.

(iv) The light-outcoupling factor η = η(x, T, j) is such that η : Ω × R × R2 → R is a
Caratheodory function and η(x, T, j) ∈ [0, 1] holds f.a.a. x ∈ Ω and ∀(T, j) ∈ R×R2.

For constant p ∈ (1,∞), we work with the Sobolev spaces

W 1,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ 1}

equipped with the norm

‖u‖p
W 1,p =

∑
|α|≤1

‖Dαu‖pLp

and
W 1,p
D (Ω ∪ ΓN ) = {u ∈W 1,p(Ω) : u|ΓD = 0}.

For p = 2, we also write H1(Ω) instead of W 1,2(Ω). Moreover, the dual space of a Banach
space X is denoted by X∗.

Following [17, 7, 5], we introduce the generalized function spaces Lp(·)(Ω) and W 1,p(·)(Ω),
where x 7→ p(x) is a measurable function satisfying p : Ω→ (1,∞). In particular, we write
p ∈ P(Ω) if p : Ω→ (1,∞) is measurable and define

p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x)
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and consider bounded variable exponents p ∈ P(Ω) with p+ < ∞. The generalized
Lebesgue space Lp(·)(Ω) consists of all measurable functions f for which the modular

ρp(·)(f) :=

∫
Ω
|f(x)|p(x) dx

is finite, see [17, 5]. With the Luxemburg norm

‖f‖Lp(·) := inf
{
τ > 0 : ρp(·)

(f
τ

)
≤ 1
}

Lp(·)(Ω) becomes a Banach space and it holds that ρp(·)(f) ≤ 1 if and only if ‖f‖Lp(·)(Ω) ≤ 1.

We collect some properties for Lp(·)(Ω) spaces for the case that 1 < p− ≤ p+ <∞, for the
more general situation see [17]: For all f with 0 < ‖f‖Lp(·) <∞ it holds true that

ρp(·)(f/‖f‖Lp(·)) = 1, (2.2)

and [5, Lemma 3.2.5] ensures for all f ∈ Lp(·)(Ω) the inequality

min
{
ρp(·)(f)

1
p− , ρp(·)(f)

1
p+

}
≤ ‖f‖Lp(·) ≤ max

{
ρp(·)(f)

1
p− , ρp(·)(f)

1
p+

}
. (2.3)

Moreover, according to [17, Formula (2.28)]

If p+ <∞, then ρp(·)(fn)→ 0 if and only if ‖fn‖Lp(·) → 0. (2.4)

The generalized Sobolev space W 1,p(·)(Ω) is the class of functions on Ω such that Dαf ∈
Lp(·)(Ω) for every multi-index α with |α| ≤ 1. It is equipped with the norm

‖f‖W 1,p(·) :=
∑
|α|≤1

‖Dαf‖Lp(·) , (2.5)

see [17] and [5, Def. 8.1.4., Rem. 8.1.5]. By the mapping u 7→ (u,∇u), the space W 1,p(·)(Ω)
is a closed subspace of Lp(·)(Ω) × (Lp(·)(Ω))n. Under assumption (A1) we introduce the

(closed) subspace W
1,p(·)
D (Ω) ⊂W 1,p(·)(Ω) of functions with homogeneous Dirichlet values

at ΓD,

W
1,p(·)
D (Ω) = {ϕ ∈W 1,p(·)(Ω) : ϕ|ΓD = 0}

equipped with the norm (2.5). The spaces W 1,p(·)(Ω) and W
1,p(·)
D (Ω) are separable, re-

flexive Banach spaces. Note, that for p− ≥ 2 we always have the continuous embedding
W 1,p(·)(Ω) ⊂ H1(Ω).

In our estimates, positive constants, which may depend at most on the data of our problem,
are denoted by c. In particular, we allow them to change from line to line.

For the local treatment of the p(x)-Laplace expressions we make use of the following
inequalities: For an arbitrary, constant exponent p ≥ 1 we consider the function z 7→ |z|p,
which due to its convexity satisfies the inequality∣∣∣z1 + z2

2

∣∣∣p ≤ |z1|p + |z2|p

2
for z1, z2 ∈ Rn. (2.6)
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Exploiting the subdifferential estimate gives the inequality

|z1|p ≥ |z2|p + p|z2|p−2z2 · (z1 − z2) if p ≥ 1, z1, z2 ∈ Rn. (2.7)

Additionally, we apply the inequality(
|z1|p−2z1 − |z2|p−2z2

)
· (z1−z2) ≥ 2−1

(
|z1|p−2 + |z2|p−2

)
|z1−z2|2

≥ 22−p|z1−z2|p if p ≥ 2, z1, z2 ∈ Rn,
(2.8)

which can be found in [19, Chapter 10]. Moreover, we use the lower estimate

(|z1|p−2z1 − |z2|p−2z2) · (z1−z2) ≥ c
(
|z1|+ |z2|

)p−2|z1−z2|2 for z1, z2 ∈ Rn, (2.9)

see [16, Lemma A.1] (with F (A) = 1
p |A|

p). Finally, for p ≥ 2 we note the estimate∣∣|z1|p−2z1 − |z2|p−2z2

∣∣ ≤ c(|z1|+|z2|
)p−2|z1−z2| for z1, z2 ∈ Rn. (2.10)

For a spatially dependent p ∈ P(Ω) we have to distinguish in some integral estimates
the subsets of Ω for which we have p(x) = 2 and p(x) > 2, respectively. Therefore, we
introduce the notation

Ω1 := {x ∈ Ω : p(x) = 2}, Ω0 := Ω \ Ω1, and p0− := ess inf
x∈Ω0

p(x). (2.11)

3 Analysis for the p(x)-Laplace thermistor model

3.1 Results for the current flow equation

In the first step, we turn our attention to the current-flow equation (2.1a) for the potential
ϕ. In particular, we consider an arbitrary but fixed T , which is assumed to lie in the set
of relevant temperature distributions given by

T := {T ∈ H1(Ω) ∩ L∞(Ω) : T ≥ Ta a.e. on Ω}. (3.1)

According to (A2), we find for T ∈ T that

σ0F (·, T ) ∈ L∞(Ω) and σ0(x)F (x, T (x)) ∈
[
σ0, σ0e‖β‖L∞/Ta

)
=: [σ1, σ2). (3.2)

For fixed T ∈ T , we introduce the operator AT : ϕD +W
1,p(·)
D (Ω)→ (W

1,p(·)
D (Ω))∗

〈AT (ϕ), v〉
W

1,p(·)
D

:=

∫
Ω
σ(x, T,∇ϕ)∇ϕ · ∇v dx, v ∈W 1,p(·)

D (Ω),

and consider the following problem: Find ϕ ∈ ϕD +W
1,p(·)
D (Ω) such that

〈AT (ϕ), v〉
W

1,p(·)
D

= 0 for all v ∈W 1,p(·)
D (Ω), (3.3)

which corresponds to finding a weak solution ϕ ∈ ϕD + W
1,p(·)
D (Ω) of the current-flow

equation (2.1a) with boundary conditions (2.1d) and fixed temperature distribution T ∈ T .
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Lemma 3.1 We assume (A1) and (A2). Let T ∈ T be a fixed given function. Then (3.3)
has exactly one solution ϕ, and for almost all x ∈ Ω this solution is bounded by

ess inf
x∈Ω

ϕD ≤ ϕ(x) ≤ ess sup
x∈Ω

ϕD. (3.4)

Moreover, there are constants cϕ > 0 and cint > 0, depending only on the data (Ω, ϕD,
σ0, σ0, Ta, and β) but not on T , such that

‖ϕ‖W 1,p(·) ≤ cϕ, ρp(·)(|∇ϕ|) =

∫
Ω
|∇ϕ|p(x) dx ≤ cint. (3.5)

Proof. In the following, we denote with h+ = max(0, h) the positive and with h− =
max(−h, 0) the negative part of a function h, respectively.

1. Uniform bounds. First, we show the bounds of solutions to (3.3). Let ϕD := ‖ϕD‖L∞ ,

ϕD := ess infx∈Ωϕ
D. Then, the test of (3.3) with (ϕ− ϕD)+ ∈W 1,p(·)

D (Ω) gives

0 =

∫
Ω
σ(x, T, |∇ϕ|)

∣∣∇(ϕ− ϕD)+
∣∣2 dx ≥

∫
Ω
σ1

∣∣∇(ϕ− ϕD)+
∣∣p(x)

dx

leading to ϕ ≤ ϕD a.e. in Ω. On the other hand, the test of (3.3) with −(ϕ−ϕD)− ensures

0 =

∫
Ω
σ(x, T, |∇ϕ|)

∣∣∇(ϕ− ϕD)−
∣∣2 dx ≥

∫
Ω
σ1

∣∣∇(ϕ− ϕD)−
∣∣p(x)

dx

and therefore ϕ ≥ ϕD a.e. in Ω. Therefore, (3.4) is verified.

To obtain the integral estimate (3.5) for the powers of the gradient, we use the test function
ϕ− ϕD for (3.3) to obtain∫

Ω
σ1|∇ϕ|p(x)dx ≤

∫
Ω
σ(x, T, |∇ϕ|)|∇ϕ|2dx

=

∫
Ω
σ(x, T, |∇ϕ|)∇ϕ · ∇(ϕ−ϕD)dx+

∫
Ω
σ(x, T, |∇ϕ|)∇ϕ · ∇ϕDdx

≤
∫

Ω
σ2|∇ϕ|p(x)−1|∇ϕD|dx ≤

∫
Ω

σ1

2
|∇ϕ|p(x)dx+ c

∫
Ω
|∇ϕD|p(x)dx,

where we have used that the first term in the second line vanishes since ϕ is a solution to
(3.3). Together with the assumed L∞-bounds for ∇ϕD (see (A2)) and ϕ (see (3.4)), this
estimate leads to the desired estimate for

∫
Ω |∇ϕ|

p(x) dx and
∫

Ω |ϕ|
p(x) dx. Thus, by (2.3)

we have proven (3.5).

2. Existence of a solution to (3.3). Since we assume that p ≥ 2 a.e. on Ω we obtain from
a pointwise application of (2.8) that

〈ATϕ1 −ATϕ2, ϕ1 − ϕ2〉W 1,p(·)
D

=

∫
Ω
σ0F (·, T )

(
|∇ϕ1|p(x)−2∇ϕ1 − |∇ϕ2|p(x)−2∇ϕ2

)
· ∇(ϕ1 − ϕ2) dx

≥
∫

Ω
σ122−p(x)|∇(ϕ1 − ϕ2)|p(x) dx ≥ 0,



10 A. Glitzky and M. Liero

which verifies that the operator AT is monotone. To prove the continuity of AT , we take

an arbitrary sequence ϕn − ϕ → 0 in W
1,p(·)
D (Ω) and show that ATϕn − ATϕ → 0 in

W
1,p(·)
D (Ω)∗. Having in mind (2.10) we have to estimate

‖ATϕn −ATϕ‖W 1,p(·)
D (Ω)∗

= sup
v∈W 1,p(·)

D (Ω), ‖v‖
W1,p(·)≤1

〈ATϕn −ATϕ, v〉W 1,p(·)
D

≤ sup
v∈W 1,p(·)

D (Ω), ‖v‖
W1,p(·)≤1

∫
Ω
cσ2

(
|∇ϕn|+ |∇ϕ|

)p(x)−2|∇(ϕn−ϕ)||∇v|dx

≤ sup
v∈W 1,p(·)

D (Ω), ‖v‖
W1,p(·)≤1

c
{
‖∇(ϕn−ϕ)‖L2(Ω1)‖∇v‖L2(Ω1)

+

∫
Ω0

(
|∇ϕn|p(x)−2 + |∇ϕ|p(x)−2

)
|∇(ϕn−ϕ)||∇v|dx

}
.

(3.6)

The first term in the supremum can be estimated by c‖∇(ϕn − ϕ)‖Lp(·)‖∇v‖Lp(·) . For the
second term we use the generalized Hölder inequality with three factors (see Lemma A.1)∫

Ω
|f(x)g(x)h(x)| dx ≤ cr,r′,r′′‖f‖Lr(·)‖g‖Lr′(·)‖h‖Lr′′(·)

for every f ∈ Lr(·)(Ω), g ∈ Lr
′(·)(Ω), h ∈ Lr

′′(·)(Ω), where 1
r + 1

r′ + 1
r′′ = 1. We set

f = |∇ϕn|p(·)−2 or f = |∇ϕ|p(·)−2, g = |∇(ϕn−ϕ)|, and h = |∇v|, r(·) = p(·)
p(·)−2 , r′(·) =

r′′(·) = p(·). Note that ρr(·)(|∇ϕ|p(·)−2) = ρp(·)(|∇ϕ|), which is finite for ϕ and ϕn, too.

Thus, for all v ∈W 1,p(·)
D (Ω) we find

〈ATϕn −ATϕ, v〉W 1,p(·)
D

≤
[
1 +

∥∥|∇ϕn|p(·)−2
∥∥
L

p(·)
p(·)−2 (Ω0)

+
∥∥|∇ϕ|p(·)−2

∥∥
L

p(·)
p(·)−2 (Ω0)

]
× c ‖∇(ϕn − ϕ)‖Lp(·)‖∇v‖Lp(·) .

(3.7)

For w = ϕ or ϕn, (2.3) ensures that on Ω0 and for p0− defined in (2.11)

∥∥|∇w|p(·)−2
∥∥
L

p(·)
p(·)−2 (Ω0)

≤ max
{
ρ p(·)
p(·)−2

(|∇w|p(·)−2)
p0−−2

p0− , ρ p(·)
p(·)−2

(|∇w|p(·)−2)
p+−2

p+

}
= max

{
ρp(·)(|∇w|)

p0−−2

p0− , ρp(·)(|∇w|)
p+−2

p+

}
which, due to (2.3), can be estimated from above by terms which are uniformly bounded

for w = ϕ or ϕn for the sequence ϕn − ϕ→ 0 in W
1,p(·)
D (Ω).

Here, we applied [5, Lemma 3.2.6] and the fact that due to the definition of the norm
in W 1,p(·)(Ω) and (2.3) we have the estimate ‖∇v‖Lp(·) ≤ c‖v‖W 1,p(·)(Ω). Thus, (3.6) and

(3.7) ensure that ‖ATϕn −ATϕ‖W 1,p(·)
D (Ω)∗

→ 0 as ϕn → ϕ in W
1,p(·)
D (Ω).
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Next, we prove the coercivity of AT . We apply (2.8) to estimate

〈ATϕ,ϕ− ϕD〉W 1,p(·)
D

≥
∫

Ω
σ0F (T )22−p(x)|∇(ϕ− ϕD)|p(x) dx−

∫
Ω
σ0F (T )|∇ϕD|p(x)−1|∇(ϕ− ϕD)|dx

≥
∫

Ω
σ122−p+ |∇(ϕ− ϕD)|p(x) dx− c‖|∇ϕD|p(·)−1‖

L
p(·)
p(·)−1

‖∇(ϕ− ϕD)‖Lp(·)

≥ c0ρp(·)(|∇(ϕ− ϕD)|)− c‖|∇ϕD|p(·)−1‖
L

p(·)
p(·)−1

‖∇(ϕ− ϕD)‖Lp(·) .

(3.8)

The factor ‖|∇ϕD|p(·)−1‖
L

p(·)
p(·)−1

in the last term is bounded since ϕD ∈ W 1,∞(Ω) and

(2.3) holds. Since by assumption (A1) mes(ΓD) > 0, the seminorm ‖∇(·)‖Lp(·) is an

equivalent norm on W
1,p(·)
D (Ω), compare Corollary A.1. According to (2.3) we can es-

timate ρp(·)(|∇(ϕ − ϕD)|) from below, either by ‖∇(ϕ− ϕD)‖p+
Lp(·)

or ‖∇(ϕ− ϕD)‖p−
Lp(·)

.
Note that both exponents are greater than 1. Dividing the previous estimate (3.8) by
‖∇(ϕ− ϕD)‖Lp(·) the right hand side goes to +∞ if ‖∇(ϕ− ϕD)‖Lp(·) → ∞ which guar-
antees that the operator AT is coercive.

In summary, the main theorem of monotone operators (see [12, 21]) ensures the existence
of a solution to (3.3).

3. Uniqueness. To show the uniqueness of the solution to (3.3) we assume that we had

two solutions ϕ1 and ϕ2 with ϕi − ϕD ∈ W 1,p(·)
D (Ω), i = 1, 2. Testing the equation (3.3)

for both solutions with ϕ1 − ϕ2 ∈W 1,p(·)
D (Ω) and using (2.8) gives

0 = 〈ATϕ1 −ATϕ2, ϕ1 − ϕ2〉W 1,p(·)
D

=

∫
Ω
σ0F (T )

(
|∇ϕ1|p(x)−2∇ϕ1 − |∇ϕ2|p(x)−2∇ϕ2

)
· ∇(ϕ1 − ϕ2) dx

≥
∫

Ω
σ122−p(x)|∇(ϕ1 − ϕ2)|p(x) dx

which ensures ∇ϕ1 = ∇ϕ2 a.e. in Ω. Since ϕ1 − ϕ2 ∈ W 1,p(·)
D (Ω), the uniqueness of the

solution to (3.3) follows. �

The next step is to establish higher regularity of the weak solution ϕ to (3.3) for given
T ∈ T , namely ϕ ∈ W 1,p(·)s∗(Ω) with a uniform s∗ > 1, as well as to verify global upper
and lower bounds for all arbitrarily given T ∈ T .

Theorem 3.1 We assume (A1) and (A2). Then there exist a constant s∗ > 1, p∗(·) =
p(·)s∗ ∈ P(Ω) and a cp∗ > 0 depending only on the data (Ω, ϕD, σ0, σ0, Ta, β, p−, and

p+) but not on T ∈ T such that the solution ϕ to (3.3) belongs to W 1,p∗(·)(Ω) with

ρp∗(·)(|∇ϕ|) + ρp∗(·)(ϕ) ≤ cp∗

uniformly for all given functions T ∈ T .

In the case that p is constant, Theorem 3.1 in [8] ensures the desired result. The general
case with spatially varying p is proven in Section 4.
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Corollary 3.1 We assume (A1) and (A2). Then for s∗ > 1 from Theorem 3.1 there exist
constants cs∗ , c∞ > 0 depending only on the data (Ω, ϕD, σ0, σ0, Ta, β, p−, and p+) such
that for all given functions T ∈ T the solution ϕ to (3.3) fulfills the estimates∥∥(1−η)σ0F (T )|∇ϕ|p(·)

∥∥
Ls∗
≤ cs∗ and max

x∈Ω
|ϕ(x)| ≤ c∞.

Proof. According to Theorem 3.1 we know that ρp∗(·)(|∇ϕ|) ≤ cp∗ which together with
Assumption (A2) and (3.2) ensures that the expression (1−η)σ(x, T, |∇ϕ|)|∇ϕ|2 belongs
to Ls

∗
(Ω). In particular, the norm can be estimated by∥∥(1−η)σ0F (T )|∇ϕ|p(·)

∥∥
Ls∗
≤ σ2

∥∥|∇ϕ|p(·)∥∥
Ls∗

= σ2ρp∗(·)(|∇ϕ|)
1
s∗ ≤ σ2(cp∗)

1
s∗ =: cs∗ .

By Theorem 3.1, ϕ belongs to W 1,p∗(·)(Ω). Since p∗− := ess infx∈Ω p
∗ = s∗ ess infx∈Ω p > 2

and because of the continuous embeddings of the spaces W 1,p∗(·)(Ω) ↪→W 1,p∗−(Ω) ↪→ C(Ω)
the estimate (3.4) from Lemma 3.1 is satisfied for all x ∈ Ω. �

3.2 The coupled p(x)-Laplace thermistor problem

To tackle the complete p(x)-Laplace thermistor problem in (2.1), we introduce the operator

A : (ϕD +W
1,s∗p(·)
D (Ω))× (H1(Ω) ∩ L∞(Ω))→ (W

1,p(·)
D (Ω))∗ ×H1(Ω)∗ by

〈A(ϕ, T ), (ϕ, T )〉 :=

∫
Ω

{
σ(x, T, |∇ϕ|)∇ϕ · ∇ϕ+ λ(x)∇T · ∇T

}
dx

−
∫

Ω
(1−η(j, T ))σ(x, T, |∇ϕ|)|∇ϕ|2T dx

+

∫
Γ
κ(T − Ta)T dΓ ∀ϕ ∈W 1,p(·)

D (Ω), ∀T ∈ H1(Ω)

(3.9)

and look for solutions to Problem (P)

A(ϕ, T ) = 0, ϕ ∈ ϕD +W
1,s∗p(·)
D (Ω), T ∈ H1(Ω) ∩ L∞(Ω) (P)

which correspond to the weak solutions to the system (2.1a) – (2.1e).

Theorem 3.2 (Bounds) We assume (A1) and (A2). Then there exist positive constants
cp∗ , cq∗ , c∞ and an exponent q∗ > 2 such that any weak solution (ϕ, T ) to Problem (P)
fulfills

ρp∗(·)(|∇ϕ|) + ρp∗(·)(ϕ) ≤ cp∗ , max
x∈Ω
|ϕ(x)| ≤ c∞,

‖T‖W 1,q∗ ≤ cq∗ , Ta ≤ T (x) ≤ c∞ for all x ∈ Ω.

Proof. 1. For the lower bound of the temperature we test (P) by −(0, (T − Ta)−) and
obtain ∫

Ω
λ|∇(T−Ta)−|2 dx+

∫
Γ
κ((T−Ta)−)2 dΓ ≤ 0
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which by (A2) ensures that T ∈ T .

2. If (ϕ, T ) is a solution to Problem (P) then ϕ is a solution to (3.3) for T , and the estimates
for the component ϕ of the solution to (P) result from Lemma 3.1 and Theorem 3.1.

3. According to Corollary 3.1, the Joule heat term in the right-hand side of the heat
equation, (1−η)σ(x, T, |∇ϕ|)|∇ϕ|2, belongs to Ls

∗
(Ω) and its Ls

∗
-norm can be estimated

by cs∗ . We use regularity results for second order elliptic equations with non-smooth data
in the case n = 2. According to [15, Theorem 1] there is a q̃ > 2 such that the strongly
monotone Lipschitz continuous operator B : H1(Ω)→ H1(Ω)∗,

〈BT,w〉 :=

∫
Ω

(λ∇T · ∇w + Tw) dx, w ∈ H1(Ω),

maps W 1,q(Ω) into and onto W−1,q(Ω) for all q ∈ [2, q̃]. Here, W−1,q(Ω) means W 1,q′(Ω)∗

with 1
q + 1

q′ = 1. Next we define q∗ ∈ (2, q̃] by

q∗ :=


q̃ if

s∗

s∗ − 1
∈
[
1,

2q̃

q̃ − 2

]
2s∗

2− s∗
if

s∗

s∗ − 1
>

2q̃

q̃ − 2

,
1

q∗
+

1

(q∗)′
= 1.

This definition guarantees that Ls
∗
(Ω) ↪→ W−1,q∗(Ω) = W 1,(q∗)′(Ω)∗. Remark 13 in [15]

then ensures W 1,q∗-estimates for solutions to problems of the form BT = R(T ), where R
is any mapping from W 1,2(Ω) into W−1,q∗(Ω). For our problem under consideration we
use

〈R(T ), w〉 :=

∫
Ω

(
(1−η)σ(x, T,∇ϕ)|∇ϕ|2 + T

)
w dx+

∫
Γ
κ(Ta − T )w dΓ,

for w ∈W 1,(q∗)′(Ω). Thus, we find cq∗ > 0 such that T ∈W 1,q∗(Ω) and ‖T‖W 1,q∗ ≤ cq∗ .
4. The continuous embedding of W 1,q∗(Ω) into C(Ω) supplies the pointwise lower and
upper bound of the temperature distribution T which sharpens the result of Step 1. �

Let us mention that according to the proof of Lemma 3.1, the upper and lower bounds
of the electrostatic potential ϕ of any solution to (P) are given by the upper and lower
bound of the Dirichlet function ϕD, respectively. The continous embedding W 1,p∗−(Ω) ↪→
C0,α1(Ω) for p∗− > 2 and 0 < α1 < (p∗−−2)/p∗− and W 1,q∗(Ω) ↪→ C0,α2(Ω) for q∗ > 2 and
0 < α2 < (q∗−2)/q∗ in two spatial dimensions ensures the following regularity result for
solutions to (P).

Corollary 3.2 We assume (A1) and (A2). Then any solution (ϕ, T ) to (P) is Hölder
continuous.

The following main result establishes the existence of weak solutions to the coupled p(x)-
Laplace thermistor system (2.1).

Theorem 3.3 (Existence of solutions) We assume (A1) and (A2). Moreover, let η ∈
L∞(Ω) satisfy η(x) ∈ [0, 1] for a.a. x ∈ Ω. Then there exists at least one solution to
Problem (P).
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Proof. 1. We intend to use Schauder’s fixed point theorem. We fix some q◦ satisfying 2 <
q◦ < q∗, with q∗ being the exponent from Theorem 3.2, and denote by cq◦ = cq∗,q◦cq∗ > 0
the product of the embedding constant cq∗,q◦ > 0 of the continuous embeddingW 1,q∗(Ω) ↪→
W 1,q◦(Ω) and of the constant cq∗ from Theorem 3.2. We work with the bounded, closed,
convex, nonempty set

M :=
{
T ∈W 1,q◦(Ω) : ‖T‖W 1,q◦ ≤ cq◦ , T ≥ Ta

}
.

We consider the following mappingQ : M 7→M. For given T̃ ∈M we solve problem (3.3),
see Lemma 3.1, and get a unique solution ϕ ∈W 1,p∗(·)(Ω), see Theorem 3.1. Corollary 3.1
ensures that (1−η)σ(x, T̃ , |∇ϕ|)|∇ϕ|2 ∈ Ls∗(Ω). Now we find the unique solution T of the
heat flow equation with the right hand side (1−η)σ(x, T̃ , |∇ϕ|)|∇ϕ|2 ∈ Ls∗(Ω) ⊂ H1(Ω)∗,
where s∗ > 1 is the exponent from Theorem 3.1. This is possible since the corresponding
operator L : H1(Ω)→ H1(Ω)∗,

〈LT,w〉 =

∫
Ω
λ∇T · ∇w dx+

∫
Γ
κTw dΓ, w ∈ H1(Ω),

is Lipschitz continuous and strongly monotone from H1(Ω) to H1(Ω)∗ (compare As-
sumption (A2)), which proves the solvability. The higher regularity of the solution is
guaranteed by the regularity result of Gröger for second order elliptic equations with
non-smooth data in the case n = 2 (see [15]). Note that the Joule heat term be-
longs to Ls

∗
(Ω) ⊂ W 1,(q∗)′(Ω)∗. Arguing as in Step 3 of the proof of Theorem 3.2

we find that ‖T‖W 1,q∗ ≤ cq∗ . The continuous embedding W 1,q∗(Ω) ↪→ W 1,q◦(Ω) gives
‖T‖W 1,q◦ ≤ cq∗,q◦‖T‖W 1,q∗ ≤ cq◦ . Moreover, T ≥ Ta is verified similar to the proof of

Theorem 3.2. By this procedure we define a mapping Q : M→M with T := Q(T̃ ). To
apply Schauder’s fixed point theorem, we show that Q : M→M is continuous as well as
compact.

2. We start with the continuity: Let T̃n → T̃ in W 1,q◦(Ω) and ϕn, ϕ ∈ W 1,p(·)(Ω) be the
corresponding solutions to the current-flow equation in (3.3). The continuity is proved
by four convergence results: First, we show that ϕn → ϕ in W 1,p(·)(Ω), then ϕn → ϕ in
W 1,pθ(·)(Ω), where pθ = θp+ (1−θ)p∗ and θ ∈ (0, 1) arbitrary. Next, we prove Tn → T in
H1(Ω), and finally Tn → T in W 1,q◦(Ω).

The test of (3.3) by ϕn − ϕ ∈W 1,p(·)
D (Ω) gives

∫
Ω
σ0F (T̃n)

(
|∇ϕn|p(x)−2∇ϕn − |∇ϕ|p(x)−2∇ϕ

)
· ∇(ϕn − ϕ) dx

=

∫
Ω
σ0

(
F (T̃ )− F (T̃n)

)
|∇ϕ|p(x)−2∇ϕ · ∇(ϕn − ϕ) dx.

(3.10)

In (3.10) we use (2.8), σ0F (·, T̃n) ≥ σ1, the definition of ρp(·), the Lipschitz continuity of
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F in T for arguments T ≥ Ta and Hölder’s inequality to obtain

σ1ρp(·)(|∇(ϕ− ϕn)|) = σ1

∫
Ω
|∇(ϕ− ϕn)|p(x) dx

≤ c
∫

Ω
|T̃ − T̃n||∇ϕ|p(x)−1|∇(ϕn − ϕ)|dx

≤ c ‖T̃ − T̃n‖L∞
∫

Ω
|∇ϕ|p(x)−1|∇(ϕn − ϕ)|dx

≤ c ‖T̃ − T̃n‖L∞‖|∇ϕ|p(·)−1‖
L

p(·)
p(·)−1

‖∇(ϕn − ϕ)‖Lp(·) .

(3.11)

According to (2.3) and Lemma 3.1 we have

‖|∇ϕ|p(·)−1‖
L

p(·)
p(·)−1

≤ max
{
ρp(·)(|∇ϕ|)

p−−1

p− , ρp(·)(|∇ϕ|)
p+−1

p+

}
≤ max

{
c

p−−1

p−
int , c

p+−1

p+

int

}
,

‖∇(ϕ− ϕn)‖Lp(·) ≤ max
{
ρp(·)(|∇(ϕ− ϕn)|)

1
p− , ρp(·)(|∇(ϕ− ϕn)|)

1
p+

}
.

The continuous embedding W 1,q◦(Ω) ↪→ L∞(Ω) ensures ‖T̃ − T̃n‖L∞ → 0 as n → ∞.
Therefore, we conclude from (3.11) the convergences

ρp(·)(|∇(ϕ− ϕn)|)→ 0, ‖∇(ϕ− ϕn)‖Lp(·) → 0 as n→∞. (3.12)

Here, we additionally used (2.4). Since ϕn−ϕ ∈W 1,p(·)
D (Ω), we obtain ‖ϕn − ϕ‖W 1,p(·) → 0,

see Lemma A.2.

Let be pθ ∈ P(Ω) with pθ(x) = θp(x) + (1−θ)p∗(x) for θ ∈ (0, 1). Then by Hölder’s
inequality

ρpθ(·)(v) =

∫
Ω
|v|θp(x)+(1−θ)p∗(x) dx ≤ c

∥∥vθp(·)∥∥
L

1
θ

∥∥v(1−θ)p∗(·)∥∥
L

1
1−θ

= c
∥∥vp(·)∥∥θ

L1

∥∥vp∗(·)∥∥1−θ
L1

= c ρp(·)(v)θρp∗(·)(v)1−θ

and similar for the gradient

ρpθ(·)(|∇v|) ≤ c ρp(·)(|∇v|)θρp∗(·)(|∇v|)1−θ.

Using these inequalities for v = ϕn−ϕ, taking into account the bounds from Theorem 3.2,
the convergence ϕn → ϕ in W 1,p(·)(Ω), and the relation (2.4) we obtain

ϕn → ϕ in W 1,pθ(·)(Ω) for all pθ < p∗. (3.13)

Let Tn and T denote the solutions to the heat flow equation with the arguments (T̃n, ϕn)
and (T̃ , ϕ) in the Joule heat term, respectively. We test these equations by Tn−T . Taking
into account Assumption (A2), we find

‖Tn − T‖2H1

≤ c
∫

Ω

(
F (T̃n)|∇ϕn|p(x) − F (T̃ )|∇ϕ|p(x)

)
|Tn − T | dx

≤ c
∫

Ω

(
F (T̃n)

∣∣|∇ϕn|p(x) − |∇ϕ|p(x)
∣∣+ |∇ϕ|p(x)|F (T̃n)− F (T̃ )|

)
|Tn − T |dx.

(3.14)
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From the vector inequality (see [20, p. 379] or [4, Chap. 4, p. 257])∣∣|z1|p−2z1 − |z2|p−2z2

∣∣ ≤ 3(p−1)|z1 − z2|(|z1|+ |z2|)p−2 for p ≥ 2, z1, z2 ∈ Rn

we derive ∣∣|z1|p−|z2|p
∣∣ =

∣∣|z1|p−2z1 · z1−|z2|p−2z2 · z2

∣∣
≤ |z1|

∣∣|z1|p−2z1−|z2|p−2z2

∣∣+
∣∣|z2|p−2z2

∣∣|z1−z2|
≤ c(p)|z1−z2|(|z1|+ |z2|)p−1.

Applying this inequality with the maximal c∗ = maxx∈Ω c(p(x)), p(x) ∈ [p−, p+], and using
the boundedness and the Lipschitz continuity of F for arguments greater or equal to Ta
we continue the estimate (3.14) by

‖Tn − T‖2H1

≤ c
∫

Ω

(
c|∇(ϕn−ϕ)|

(
|∇ϕn|+ |∇ϕ|

)p(x)−1
+ |∇ϕ|p(x)|T̃n − T̃ |

)
|Tn − T |dx

≤ c‖∇(ϕn−ϕ)‖Lpθ(·)
(∥∥|∇ϕn|p(·)−1

∥∥
L
p∗(·)
p(·)−1

+
∥∥|∇ϕ|p(·)−1

∥∥
L
p∗(·)
p(·)−1

)
‖Tn − T‖Lq(θ;·)

+ c
∥∥|∇ϕ|p(·)∥∥

Ls∗
‖T̃n − T̃‖L∞‖Tn − T‖Lq̃ ,

(3.15)

where s∗ and p∗ are defined in Theorem 3.1 and

pθ(x) ∈ (p(x), p∗(x)),
1

pθ(x)
+
p(x)− 1

p∗(x)
+

1

q(θ;x)
= 1, and

1

q̃
+

1

s∗
= 1.

Since 1
pθ(x)+ p(x)−1

p∗(x) ≤
p(x)
pθ(x) we can choose θ ∈ (0, 1) such that ess supx∈Ω

(
1

pθ(x)+ p(x)−1
p∗(x)

)
< 1

and a corresponding q(θ; ·) ∈ P(Ω). Additionally, we find some q satisfying q(θ;x) ≤ q <
∞ a.e. in Ω such that ‖Tn − T‖Lq(θ;·) ≤ c‖Tn − T‖Lq ≤ c(q)‖Tn − T‖H1 . By (2.3) and
Theorem 3.1 we estimate∥∥|∇ϕ|p(·)−1

∥∥
L
p∗(·)
p(·)−1

≤ max
{
ρp∗(·)(|∇ϕ|)

ess sup p−1
p∗ , ρp∗(·)(|∇ϕ|)

ess inf p−1
p∗
}
≤ c,

and similar for ϕn. For the treatment of the last line in (3.15), note that by Theorem 3.1
‖|∇ϕ|p(·)‖s∗

Ls∗
≤ cp∗ and ‖Tn − T‖Lq̃ ≤ c(q̃)‖Tn − T‖H1 . Following all these arguments for

the terms in (3.15) we arrive at

‖Tn − T‖2H1 ≤ c
{
‖ϕn − ϕ‖W 1,pθ(·) + ‖T̃n − T̃‖L∞

}
‖Tn − T‖H1 .

Dividing by ‖Tn − T‖H1 and taking into account that ‖T̃n − T̃‖L∞ → 0 as n→∞ as well
as (3.13) we finally obtain

‖Tn − T‖H1 → 0.

Since ‖Tn‖W 1,q∗ , ‖T‖W 1,q∗ ≤ cq∗ this convergence implies by interpolation arguments the
convergence Tn → T in W 1,q◦(Ω) for 2 < q◦ < q∗.

3. To show that Q is compact we start with any sequence (T̃n), T̃n ∈ M. Since M is
bounded in W 1,q◦(Ω) and W 1,q◦(Ω) is compactly embedded in L∞(Ω) we find a T̃ ∈ L∞(Ω)
and a subsequence (also denoted by (T̃n)) such that T̃n → T̃ in L∞(Ω). Therefore, we can
argue as in Step 2 of the proof to verify that QT̃n → QT̃ in W 1,q◦(Ω).

Thus, we can apply Schauder’s fixed point theorem, which proves the theorem. �
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4 Proof of the higher regularity of the potential

Here, we prove Theorem 3.1 by deriving the higher integrability of ∇(ϕ−ϕD). The higher
regularity of ϕ then results from the regularity assumption for ϕD in (A2) and the L∞-
estimate for ϕ. We proceed in several steps: First, we localize the problem to squares using
the model situations (a) – (h) in Fig. 2. Then, we derive Caccioppoli-type inequalities near
the boundary (Lemma 4.1) and use reflection arguments to extend the estimates from half
squares to full squares (Lemma 4.2). The Caccioppoli-type inequalities for interior squares
can be derived similarly and are hence only shortly mentioned (Lemma 4.3). Finally,
we establish the higher integrability of the gradient by applying a Gehring-type lemma
(Subsection 4.5).

4.1 Localization

As before, we denote by C1(0) ⊂ R2 the unit square centered at 0 with side length 2 and
by C+

1 (0) its upper half. For x0 ∈ ∂Ω let Φx0 : Ux0 ∩ Ω → C+
1 (0) and for x0 ∈ Ω let

Φx0 : Ux0 ∩ Ω→ C1(0) be bi-Lipschitz transformations with Φx0(x) = y, which exist due
(A1). Let

Ω ⊂
N⋃
i=1

Φ−1
x0i

(C 1
24

(0)) ∪
M⋃

i=N+1

Φ−1
x0i

(C 1
24

(0))

be a finite open covering of Ω. If x0 ∈ ∂Ω is such that ΓD ∩ Ux0 6= ∅, we denote Γ̂D =
Φx0(ΓD ∩ Ux0) the localized part of the Dirichlet boundary.

Moreover, we have assumed that p takes at most two different constant values pA, pB
in the set Φ−1

x0i
(C1(0)), which we always assume to satisfy pA < pB. We find constants

0 < γ ≤ γ <∞ such that for

γi(y) := |detDΦ−1
x0i

(y)|

it holds γi ∈ L∞(C1(0)) and γ ≤ γi(y) ≤ γ almost everywhere. For the center points x0
i ,

i = 1, . . . ,M we introduce

v := ϕ ◦ Φ−1
x0i
, vD := ϕD ◦ Φ−1

x0i
, v := ϕ ◦ Φ−1

x0i
,

σ̂(y) := σ
(
Φ−1
x0i

(y), T (Φ−1
x0i

(y))
)
, p̂(y) := p

(
Φ−1
x0i

(y)
)

and neglect the dependency on x0
i of the transformation Φx0i

.

In the following, we concentrate on the covering of the boundary. For i = 1, . . . , N , we
have x0

i ∈ ∂Ω. Let x0 be one of them. According to the transformation formula, we

obtain for the solution to problem (3.3) and for test functions ϕ ∈W 1,p(·)
D (Ω), having their

support in Ux0 ∩ (Ω ∪ ΓN ), that

0 =

∫
Ux0∩Ω

σ0(x)F (T (x))|∇ϕ(x)|p(x)−2∇ϕ(x) · ∇ϕ(x) dx

=

∫
C+

1 (0)
σ0

(
Φ−1(y)

)
F
(
T (Φ−1(y))

)∣∣∇xϕ(Φ−1(y)
)∣∣p(Φ−1(y))−2

∇xϕ
(
Φ−1(y)

)
· ∇xϕ

(
Φ−1(y)

)
|detDΦ−1(y)| dy
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which, for H(y) = DΦ|Φ−1(y), gives us the “localized” relation

0 =

∫
C+

1 (0)
σ̂(y)γ(y)

∣∣∇yv(y)H(y)
∣∣p̂(y)−2(∇yv(y)H(y)

)
·
(
∇yv(y)H(y)

)
dy. (4.1)

Note that 0 < σ1γ ≤ σ̂γ ≤ σ2γ a.e. in C+
1 (0). Moreover, we introduce the notation

π := min
i=1,...,M

{
min

{
ε
p−
2 , ε

p+
2
}

: ε is the smallest eigenvalue of DΦT
x0i
DΦx0i

on Ux0i
∩ Ω

}
,

π := max
i=1,...,M

{
max

{
ε
p−
2
n , ε

p+
2
n

}
: εn is the maximal norm of DΦT

x0i
DΦx0i

on Ux0i
∩ Ω

}
.

We have to discuss the different model cases for C1(0) depicted in Fig. 2. Note that
the situations (a), (c), (e) and (g) can be treated already by the methods provided in
[8]. Therefore, our discussion contains new ideas for the cases (d), (f) and (h) where
the corresponding x0 ∈ ∂Ω. The “interior” case (b) with x0 ∈ Ω follows from similar
arguments, hence, it is only briefly discussed.

4.2 Caccioppoli-type inequalities near the boundary

We consider additional squares Cs(y
0) with smaller side length 0 < 2s < 2 and center

at y0. In particular, for a given y0 ∈ C+
1/4(0) and 0 < r < 1

4 we have C3r(y
0) ⊂ C1(0).

We will often abbreviate Cr(y
0) with Cr and C+

r (y0) := {y ∈ Cr(y0) : y2 > 0} with C+
r ,

respectively. By (A1), p̂ takes at most two different values (denoted pA < pB) in C1(0).
For a given y0, we denote by C+

Ar (resp. C+
A3r) the part of C+

r (y0) (resp. C+
3r(y

0)), where
p̂ takes the value pA, and m+

Ar(v) (resp. m+
A3r(v)) stands for the mean value of a function

v on C+
Ar (resp. C+

A3r). For pB, we proceed analogously.

Lemma 4.1 We assume (A1) and (A2) and suppose that x0 ∈ ∂Ω and that Φx0 : Ux0 ∩
Ω→ C+

1 (0) is the corresponding bi-Lipschitzian map leading to one of the cases (c)-(h) in
Fig. 2. Let ϕ be the solution to (3.3) for any T ∈ T and v = ϕ ◦ Φ−1

x0
the corresponding

localized part of ϕ, v0 = ϕ ◦Φ−1
x0
−ϕD ◦Φ−1

x0
. Let y0 ∈ C+

1/4(0) and 0 < r < 1
4 . Then there

exists a constant c̃1 > 0 independent of y0, r and the involved T such that∫
C+
r
2

|∇v0|p̂(y) dy ≤ c̃1

∫
C+

3r

|∇vD|p̂(y) dy

+
c̃1

rpA

(∫
C+

3r

|∇v0|p̃A dy
) pA
p̃A +

c̃1

rpB

(∫
C+
B3r

|∇v0|p̃B dy
) pB
p̃B ,

(4.2)

where p̃A = 2pA/(pA+2) and p̃B = 2pB/(pB+2), respectively.

Proof. We fix an arbitrary y0 ∈ C+
1/4(0) and consider 0 < r < 1

4 . Moreover, we take t and

s such that r
2 ≤ t < s ≤ r. We work with cut-off functions ξ ∈ C1(R2; [0, 1]) fulfilling

ξ|Ct = 1, ξ|R2\Cs = 0, |∇ξ| ≤ θ

s− t
, (4.3)



4 Proof of the higher regularity of the potential 19

where θ ≥ 1 does not depend on t and s. For v0 as above we have

∇(v0ξ) = ξ∇v0 + v0∇ξ and |∇v| ≤ |∇v0|+ |∇vD|. (4.4)

Depending on the position of C+
r (y0) and p̂ we consider different test functions for the

localized current-flow equation (4.1). In particular, we choose v = (v0 − k)ξ, where k ∈ R
is a constant to be fixed. Assuming that v is an admissible test function we can use it to
test (4.1) to obtain with (4.4)

0 =

∫
C+
s

σ̂(y)γ(y)
∣∣∇vH(y)

∣∣p̂(y)−2(∇vH(y)
)
·
[
ξ∇v0 + (v0−k)∇ξ

]
H(y) dy. (4.5)

This identity, together with the estimate in (2.8) for z1 = ∇v(y)H(y) and z2 = ∇vDH(y)
as well as the definition of π and π, gives a constant c1 > 0 such that

c1

∫
C+
s

|∇v0|p̂(y)ξ dy ≤
∫
C+
s

ξ σ̂γ
(∣∣∇vH∣∣p̂(y)−2∇v −

∣∣∇vDH∣∣p̂(y)−2∇vD
)
H · ∇v0H dy

= −
∫
C+
s

σ̂γ
(

(v0−k)
∣∣∇vH∣∣p̂(y)−2(∇vH) · (∇ξH)

+
∣∣∇vDH∣∣p̂(y)−2(∇vDH) · (∇v0H

)
ξ
)

dy

≤
∫
C+
s

(
c|∇v|p̂(y)−1 |v0−k|

s− t
+
c1

2
ξ|∇v0|p̂(y) + cξ|∇vD|p̂(y)

)
dy,

where we have used (4.3) and Young’s inequality for the last line. Exploiting that ξ = 1
in C+

t and ξ ≤ 1, we restrict to the smaller domain C+
t in the left-hand side and finally

arrive with Hölder’s and Young’s inequality at∫
C+
t

|∇v0|p̂(y) dy ≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy+ c

∫
C+
s

|∇vD|p̂(y) dy+ c

∫
C+
s

( |v0−k|
s− t

)p̂(y)
dy. (4.6)

Case 1: If C+
r = C+

Ar and C+
r ∩ Γ̂D = ∅ we set k = m+

Ar(v0) and obtain with (4.6) and
p̂(y) = pA for y ∈ C+

r the estimate∫
C+
t

|∇v0|p̂(y) dy

≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+
s

|∇vD|p̂(y) dy + c

∫
C+
Ar

( |v0−m+
Ar(v0)|

s− t

)pA
dy

≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+

3r

|∇vD|p̂(y) dy +
c

(s− t)pA
(∫

C+
A3r

|∇v0|p̃A dy
) pA
p̃A .

(4.7)

In the last line we used the Poincaré-Sobolev inequality in Lemma A.4 on C+
Ar and for the

exponent p̃A = 2pA
2+pA

(with a uniform embedding constant, note that C+
Ar contains at least

a 2r × r rectangle). In particular, we have that

Ĉ := max
{

max{CPS,pi , CPF,pi}, i = 1, . . . ,m
}

is finite (4.8)
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(for CPS,p and CPF,p from Lemma A.4 and Lemma A.3, respectively, and pi being the
constant value of p on the subdomain Ωi ⊂ Ω). Finally, we have enlarged the integration
domain to C+

A3r. Putting

Z(t) =

∫
C+
t

|∇v0|p̂(y) dy, W1 = c
(∫

C+
A3r

|∇v0|p̃A dy
) pA
p̃A , Y = c

∫
C+

3r

|∇vD|p̂(y) dy

(note that due to (3.5) in Lemma 3.1 and (A2) W1 and Y are finite), W2 = 0, R = r,
ρ = r

2 , µ1 = pA, µ2 = 1, and ι = 1
2 we can apply Lemma A.5 to obtain from (4.7) that∫

C+
r
2

|∇v0|p̂(y) dy ≤ c
∫
C+

3r

|∇vD|p̂(y) dy +
c

rpA

(∫
C+
A3r

|∇v0|p̃A dy
) pA
p̃A . (4.9)

Case 2: If C+
r = C+

Ar and C+
r ∩ Γ̂D 6= ∅ we use k = 0 and derive from (4.6) the estimate∫

C+
t

|∇v0|p̂(y) dy

≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+
s

|∇vD|p̂(y) dy + c

∫
C+
A3r

( |v0|
s− t

)pA
dy

≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+

3r

|∇vD|p̂(y) dy +
c

(s− t)pA
(∫

C+
A3r

|∇v0|p̃A dy
) pA
p̃A .

(4.10)

In the last line we used Poincaré-Friedrichs inequality in Lemma A.3 on C+
A3r and for the

exponent p̃A (with a uniform embedding constant, note (4.8) and that C+
A3r contains at

least a r × 3r rectangle with Dirichlet boundary of length r). With the same meaning of
the quantities as in Case 1 we obtain by Lemma A.5 from (4.10)∫

C+
r
2

|∇v|p̂(y) dy ≤ c
∫
C+

3r

|∇vD|p̂(y) dy +
c

rpA

(∫
C+
A3r

|∇v0|p̃A dy
) pA
p̃A . (4.11)

The estimates for Case 1 and 2 can be done analogously for the situation C+
r = C+

Br using
p̃B = 2pB

2+pB
.

Case 3: If |C+
Ar|, |C

+
Br| > 0 and C+

3r ∩ Γ̂D = ∅ we set k = m+
B3r(v0) to obtain from (4.6)∫

C+
t

|∇v0|p̂(y) dy ≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+
s

|∇vD|p̂(y) dy

+ c

∫
C+
B3r

( |v0−m+
B3r(v0)|

s− t

)pB
dy +

∫
C+
A3r

( |v0 −m+
B3r(v0)|

t− s

)pA
dy.

(4.12)

For the first term on the last line, we apply the Poincaré-Sobolev inequality in Lemma A.4
on C+

B3r and for the exponent p̃B = 2pB
2+pB

(with a uniform embedding constant, note (4.8)

and that C+
B3r contains at least a r× 3r rectangle). Moreover, the second term in the last

line is estimated by the corresponding integral over C+
3r, note that pA < pB. Indeed, by

triangle inequality we have∥∥v0−m+
B3r(v0)

∥∥
LpA (C+

3r)
≤
∥∥v0−m+

3r(v0)
∥∥
LpA (C+

3r)
+
∥∥m+

3r(v0)−m+
B3r(v0)

∥∥
LpA (C+

3r)
,
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where the last term can be estimated as follows∥∥m+
3r(v0)−m+

B3r(v0)
∥∥
LpA (C+

3r)
=
∣∣m+

3r(v0)−m+
B3r(v0)

∣∣‖1‖LpA (C+
3r)

≤ 1

|C+
B3r|

∥∥v0−m+
3r(v0)

∥∥
L1(C+

B3r)
‖1‖LpA (C+

3r)

≤ 1

|C+
B3r|

∥∥v0−m+
3r(v0)

∥∥
LpA (C+

B3r)
‖1‖

LpA
′
(C+
B3r)
‖1‖LpA (C+

3r)

≤ 1

|C+
B3r|

∥∥v0−m+
3r(v0)

∥∥
LpA (C+

3r)
‖1‖

LpA
′
(C+

3r)
‖1‖LpA (C+

3r)
,

where 1
pA

+ 1
p′A

= 1. With this, we find

∥∥v0−m+
B3r(v0)

∥∥
LpA (C+

3r)
≤
(

1 +
|C+

3r|
|C+
B3r|

)∥∥v0−m+
3r(v0)

∥∥
LpA (C+

3r)

≤ 2|C+
3r|

|C+
B3r|

∥∥v0−m+
3r(v0)

∥∥
LpA (C+

3r)
.

Therefore, we apply the Poincaré-Sobolev inequality Lemma A.4 now on C+
3r and (4.8) to

obtain for the second term in the last line of (4.12)∥∥v0−m+
B3r(v0)

∥∥pA
LpA (C+

3r)
≤
[ 2|C+

3r|
|C+
B3r|

]p+∥∥v0−m+
3r(v0)

∥∥pA
LpA (C+

3r)
≤ c‖∇v0‖pALp̃A (C+

3r)
,

where the constant in front of the right-hand side is chosen independently of r and p̂. In
summary, we continue the estimate in (4.12) by∫

C+
t

|∇v0|p̂(y) dy ≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+

3r

|∇vD|p̂(y) dy

+
c

(s−t)pB
(∫

C+
B3r

|∇v0|p̃B dy
) pB
p̃B +

c

(s−t)pA
(∫

C+
3r

|∇v0|p̃A dy
) pA
p̃A .

(4.13)

Since v0 ∈W 1,p̃B (C+
B3r) and v0 ∈W 1,p̃A(C+

3r) we set µ1 = pB, µ2 = pA,

W1 := c
(∫

C+
B3r

|∇v0|p̃B dy
) pB
p̃B , W2 := c

(∫
C+

3r

|∇v0|p̃A dy
) pA
p̃A ,

and keep the other quantities as in the Cases 1 and 2 to apply Lemma A.5. This leads to∫
C+
r
2

|∇v0|p̂(y) dy ≤ c
∫
C+

3r

|∇vD|p̂(y) dy +
c

rpB

(∫
C+
B3r

|∇v0|p̃B dy
) pB
p̃B

+
c

rpA

(∫
C+

3r

|∇v0|p̃A dy
) pA
p̃A .

(4.14)

Case 4: If |C+
Ar|, |C

+
Br| > 0 and C+

3r ∩ Γ̂D 6= ∅ we use k = 0 in (4.6) to obtain∫
C+
t

|∇v0|p̂(y) dy ≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+
s

|∇vD|p̂(y) dy

+ c

∫
C+
B3r

( |v0|
s− t

)pB
dy + c

∫
C+
A3r

( |v0|
s− t

)pA
dy.

(4.15)
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For the first term in the second line, we applied the Poincaré-Friedrichs inequality in
Lemma A.3 on C+

B3r and for the exponent p̃B = 2pB
2+pB

(with a uniform embedding constant,

note (4.8) and that C+
B3r ⊂ C+

3r contains at least a r × 3r rectangle with a Dirichlet
boundary of length r). Finally, the second term in the last line of (4.15) is estimated by the
corresponding integral over C+

3r, and then the Poincaré-Friedrichs inequality Lemma A.3
on C+

3r with pA < pB is applied. The constant is uniform since C+
3r contains at least a

Dirichlet boundary part of length r and (4.8). In summary, we proceed with the estimate
in (4.15) by∫

C+
t

|∇v0|p̂(y) dy ≤ 1

2

∫
C+
s

|∇v0|p̂(y) dy + c

∫
C+

3r

|∇vD|p̂(y) dy

+
c

(s−t)pB
(∫

C+
B3r

|∇v0|p̃B dy
) pB
p̃B +

c

(s−t)pA
(∫

C+
3r

|∇v0|p̃A dy
) pA
p̃A

(4.16)

which is exactly the same as in (4.13) of Case 3. Therefore, with the same arguments as
for Case 3, we obtain the estimate (4.14) also for Case 4.

The estimates in the Cases 1 to 4 cover all situations (c) to (h) in Fig. 2. Hence, by adding
all (non-negative) terms on the right-hand sides of (4.9) and (4.14) and taking also for the
Cases 1 and 2 the terms for pB into account, we end up with (4.2). �

4.3 Reflection

We extend the estimates from Lemma 4.1 to full squares Cr/2(y0) and C3r(y
0), respectively.

To do this, we expand functions v from C+
1 (0) onto C−1 (0) by reflection at the hyperplane

{y ∈ R2 : y2 = 0}. Defining

ṽ(y) :=

{
v(y1, y2), if y ∈ C+

1 (0),

v(y1,−y2), if y ∈ C−1 (0),
(4.17)

and extending the Dirichlet function vD and the exponent p̂ by the same procedure to ṽD

and ˜̂p, respectively, gives ṽ ∈ W 1,˜̂p(·)(C1(0)) provided that v ∈ W 1,p̂(·)(C+
1 (0)). We work

with ṽ0 = ṽ − ṽD.

Lemma 4.2 Let the assumptions of Lemma 4.1 be fulfilled, and let y0 ∈ C1/4(0) and

0 < r < 1
4 . Then there exists a constant c̃2 > 0 independent of y0, r and the involved T

such that∫
C r

2

|∇ṽ0|
˜̂p(y) dy ≤ c̃2

∫
C3r

|ṽD|˜̂p(y) dy

+
c̃2

rpA

(∫
C3r

|∇ṽ0|p̃A dy
) pA
p̃A +

c̃2

rpB

(∫
CB3r

|∇ṽ0|p̃B dy
) pB
p̃B .

(4.18)

Proof. We follow the ideas in [8] and discuss separately the following two cases.
Case A: C3r(y

0) ∩ {y ∈ R2 : y2 = 0} 6= ∅:
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i) In case of y0
2 > 0 we use the estimate∫

C r
2

(y0)
|∇ṽ0|

˜̂p(y) dy ≤ 2

∫
C+
r
2

(y0)
|∇ṽ0|

˜̂p(y) dy = 2

∫
C+
r
2

(y0)
|∇v0|p̂(y) dy,

apply Lemma 4.1 and enlarge the integration domains from C+
3r(y

0) to C3r(y
0), from

C+
A3r(y

0) to CA3r(y
0), from C+

B3r(y
0) to CB3r(y

0) and change the integrands to the corre-
sponding prolongated quantities to verify the desired estimate of Lemma 4.2.

ii) If y0
2 < 0 we find for y0 = (y0

1,−y0
2) that∫

C r
2

(y0)
|∇ṽ0|

˜̂p(y) dy =

∫
C r

2
(y0)
|∇ṽ0|

˜̂p(y) dy ≤ 2

∫
C+
r
2

(y0)
|∇v0|p̂(y) dy.

Next we exploit Lemma 4.1 and with the estimate∫
C+
i3r(y

0)
|w|si dy ≤

∫
Ci3r(y0)

|w̃|si dy =

∫
Ci3r(y0)

|w̃|si dy

for integrands w = ∇v0, ∇vD and si > 0, i = 1, . . . ,m, we arrive at the desired result.

Case B: C3r(y
0) ∩ {y ∈ R2 : y2 = 0} = ∅:

i) If y0
2 > 0 then C+

r/2(y0) = Cr/2(y0) and C+
3r(y

0) = C3r(y
0) and ṽ0 = v0. Therefore we

can directly apply the result of Lemma 4.1.
ii) In case of y0

2 < 0 we find for y0 = (y0
1,−y0

2) that Cr/2(y0), C3r(y
0) ⊂ {y ∈ R2 : y2 > 0}

which ensures∫
C r

2
(y0)
|∇ṽ0|

˜̂p(y) dy =

∫
C r

2
(y0)
|∇ṽ0|

˜̂p(y) dy =

∫
C r

2
(y0)
|∇v0|p̂(y) dy.

Thus, again Lemma 4.1 and arguments as in Case A ii) give the desired estimate. This
finishes the proof. �

4.4 Caccioppoli-type inequalities for interior squares

Lemma 4.3 We assume (A1) and (A2) and suppose that x0 ∈ Ω and that Φx0 : Ux0∩Ω→
C1(0) is the corresponding bi-Lipschitzian map producing the cases (a) or (b) of Fig. 2.
Let ϕ be the solution to (3.3) for any T ∈ T and v = ϕ ◦ Φ−1

x0
the corresponding localized

part of ϕ, v0 = ϕ ◦ Φ−1
x0
− ϕD ◦ Φ−1

x0
. Let y0 ∈ C1/4(0) and 0 < r < 1

4 . Then there exists a
constant c̃3 > 0 independent of y0, r, and the involved T such that∫

C r
2

|∇v0|p̂(y) dy ≤ c̃3

∫
C3r

|∇vD|p̂(y) dy

+
c̃3

rpA

(∫
C3r

|∇v0|p̃A dy
) pA
p̃A +

c̃3

rpB

(∫
CB3r

|∇v0|p̃B dy
) pB
p̃B .

(4.19)

Proof. We work with the cut-off functions introduced in (4.3) and use the test func-
tion v0 − mAr(v0) for case (a) and v0 − mB3r(v0) for case (b) of Fig. 2, where mAr(v0)
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and mB3r(v0) denote the means of v0 on CAr(y
0) and CB3r(y

0), respectively. We can
follow all the arguments in the proof of Lemma 4.1, Case 1 and 3 substituting the sets
C+
t (y0), C+

s (y0), C+
r/2(y0), C+

3r(y
0), C+

A3r(y
0), C+

B3r(y
0), C+

1 (0) by the corresponding sets

Ct(y
0), Cs(y

0), Cr/2(y0), C3r(y
0), CA3r(y

0), CB3r(y
0), C1(0). Having in mind that the

uniform bound for the Poincaré-Sobolev embedding result in Lemma A.4 covers also this
situation, we obtain the result. �

4.5 Higher integrability of the gradient

Our aim is to apply the Giaquinta-Modica Theorem A.2 to establish the higher integra-
bility of the gradient stated in Theorem 3.1. If x0 ∈ ∂Ω let ṽ, ṽ0 be given as in (4.17),
while for x0 ∈ Ω we set ṽ = v, ṽ0 = v0. First, we rewrite the inequalities (4.18) and (4.19)
as follows: We estimate the second term in the right-hand side in (4.18) and (4.19) by

1

rpA

(∫
C3r

|∇ṽ0|p̃A dy
) pA
p̃A ≤ c

rpA

(∫
CA3r

|∇ṽ0|p̃A dy
) pA
p̃A +

c

rpA

(∫
CB3r

|∇ṽ0|p̃A dy
) pA
p̃A , (4.20)

where the last term can be estimated by

1

rpA

(∫
CB3r

|∇ṽ0|p̃A dy
) pA
p̃A ≤ 1

rpA

(∥∥|∇ṽ0|p̃A
∥∥
L

pA
p̃A (CB3r)

‖1‖
L

pA
pA−p̃A (CB3r)

) pA
p̃A

=
1

rpA

(
‖∇ṽ0‖p̃ALpA (CB3r)

‖1‖
L

pA
pA−p̃A (CB3r)

) pA
p̃A

≤ c‖∇ṽ0‖pALpA (CB3r)
r

2pA−p̃A(2+pA)

p̃A ≤ c‖∇ṽ0‖pALpA (CB3r)

= c

∫
CB3r

|∇ṽ0|pA dy

(4.21)

since 2pA− p̃A(2+pA) = 0. Denoting by χC the characteristic function of a set C ⊂ C1(0),
we introduce the functions

g(y) := χCA1(0)(y)
∣∣∇ṽ0(y)

∣∣pA + χCB1(0)(y)
∣∣∇ṽ0(y)

∣∣pB ,
h(y) := c

(
χCB1(0)(y)

∣∣∇ṽ0(y)
∣∣pA +

∣∣∇vD(y)
∣∣p̂(y)

)
.

(4.22)

With this, the left hand side in (4.18) and (4.19) can be written as r2
∫
Cr/2

g dy. Moreover,

dividing the inequality in (4.20) by r2, we have for the first term in the right-hand side

1

r2+pA

(∫
CA3r

|∇ṽ0|p̃A dy
) pA
p̃A ≤ 1

r2+pA

(∫
C3r

g
p̃A
pA dy

) pA
p̃A ≤ c

(∫
C3r

g
p̃A
pA dy

) pA
p̃A ,

where we have used again that 2pA − p̃A(2 + pA) = 0. The last term in (4.18) and (4.19)
can be estimated in a similar way using that 2pB − p̃B(2 + pB) = 0. Finally, we can
estimate the right-hand side in (4.21) and the first term in the right-hand side of (4.18)
and (4.19) via h to obtain∫

Cr/2

g dy ≤ c
(∫

C3r

g
p̃A
pA dy

) pA
p̃A + c

(∫
C3r

g
p̃B
pB dy

) pB
p̃B + c

∫
C3r

h(y) dy. (4.23)
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Let ω := 2+p+
2 > 1 such that ω p̃ApA , ω

p̃B
pB
≥ 1 and define g̃ := g1/ω. We can write∫

Cr/2

g̃ω dy =
1

r2
‖g̃‖ωLω(Cr/2),

(∫
C3r

g
p̃B
pB dy

) pB
p̃B =

( 1

36r2

) pB
p̃B ‖g̃‖ω

L
ω
p̃B
pB (C3r)

,

and similar for pA. Since pA > pB we have p̃A
pA

> p̃B
pB

and can estimate

‖g̃‖ω
L
ω
p̃B
pB (C3r)

=
(∫

C3r

g̃
ω
p̃B
pB dy

) pB
p̃B ≤

[
‖g̃ω

p̃B
pB ‖

L

pBp̃A
p̃BpA (C3r)

‖1‖
L

pBp̃A
pBp̃A−p̃BpA (C3r)

] pB
p̃B

≤ ‖g̃‖ω
L
ω
p̃A
pA (C3r)

‖1‖
pB
p̃B

L

pBp̃A
pBp̃A−p̃BpA (C3r)

.

Moreover, an elementary calculation shows that( 1

36r2

) pB
p̃B ‖1‖

pB
p̃B

L

pBp̃A
pBp̃A−p̃BpA (C3r)

=
( 1

36r2

) pA
p̃A .

Concluding, this enables us to estimate the second term in the right-hand side of (4.23)
so that we end up with∫

Cr/2

g dy ≤ c
{(∫

C3r

g
p̃A
pA dy

) pA
p̃A +

∫
C3r

h(y) dy
}
∀ y0 ∈ C 1

4
(0), ∀ r ∈ (0, 1

4). (4.24)

We are going to apply the Giaquinta-Modica result in Theorem A.2. For this, we set
QR := C 1

4
(0) and a := p̃A

pA
and take g and h as in (4.22). Since by assumption (A2)

ϕD ∈ W 1,∞(Ω), and we supposed pA < pB there is some b > 1 such that h ∈ Lb(C 1
4
(0)).

Then, (4.24) guarantees the assumptions of Theorem A.2 for all Q ⊂ Q̃ ⊂ QR, where Q̃ has
six times the diameter of Q. Thus, the Giaquinta-Modica Theorem A.2 and Remark A.1
yield an exponent s∗ > 1 and a constant c > 0 such that g = |∇ṽ0|p̂(·) ∈ Ls

∗
(C 1

24
(0)) and∫

C 1
24

(0)
|∇ṽ0|p̂(y)s∗ dy ≤ c

{(∫
C 1

4
(0)
|∇ṽ0|p̂(y) dy

)s∗
+

∫
C 1

4
(0)
h(y)s

∗
dy
}
.

This ensures∫
C 1

24
(0)
|∇ṽ0|p̂(y)s∗dy ≤ c

{(∫
C 1

4
(0)
|∇ṽ0|p̂(y) dy

)s∗
+

∫
C 1

4
(0)

(
χCB1

(y)|∇ṽ0|pA+|∇vD|p̂(y)
)s∗

dy
}
.

If x0 ∈ ∂Ω, restriction to the upper half square and back transformation by means of Φ−1
x0

(or only back transformation by means of Φ−1
x0

if x0 ∈ Ω) leads to∫
Φ−1

x0
(C 1

24
)∩Ω
|∇ϕ0|p(x)s∗ dx

≤ c
{(∫

Φ−1

x0
(C 1

4
)∩Ω
|∇ϕ0|p(x) dx

)s∗
+

∫
Φ−1

x0
(C 1

4
)∩Ω

(
χΩB (x)|∇ϕ0|pA + |∇ϕD|p(x)

)s∗
dx
}
,

where ϕ0 = ϕ−ϕD and χΩB is the characteristic function of the set {x ∈ Ω : p(x) = pB}.
This finishes the proof of Theorem 3.1, since by (A1) there exists a finite number of sets
Φ−1
x0

(C 1
24

) which cover Ω.
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A Appendix

Lemma A.1 (Generalized Hölder inequality) Let r(·), r′(·), r′′(·) ∈ P(Ω) be variable
exponents with r−, r

′
−, r

′′
− > 1, r+, r

′
+, r

′′
+ <∞, and 1

r(x) + 1
r′(x) + 1

r′′(x) = 1 a.e. in Ω. Then∫
Ω
|f(x)g(x)h(x)| dx ≤ c(r−, r′−, r′′−)‖f‖Lr(·)‖g‖Lr′(·)‖h‖Lr′′(·)

for every f ∈ Lr(·)(Ω), g ∈ Lr′(·)(Ω), h ∈ Lr′′(·)(Ω).

Proof. We generalize the proof given in [17] to the situation of three factors. We
suppose that ‖f‖Lr(·) , ‖g‖Lr′(·) , ‖h‖Lr′′(·) 6= 0 and set pointwise a = f(x)/‖f‖Lr(·) , b =
g(x)/‖g‖Lr′(·) , c = h(x)/‖h‖Lr′′(·) and use the inequality

abc ≤ ar

r
+
br
′

r′
+
cr
′′

r′′
,

integrate over Ω and apply (2.2) to find∫
Ω

|f(x)g(x)h(x)|
‖f‖Lr(·)‖g‖Lr′(·)‖h‖Lr′′(·)

dx

≤ ess sup
Ω

1

r(x)
ρr(·)

( f

‖f‖Lr(·)
)

+ ess sup
Ω

1

r′(x)
ρr′(·)

( g

‖g‖Lr′(·)
)

+ ess sup
Ω

1

r′′(x)
ρr′′(·)

( h

‖h‖Lr′′(·)
)
≤ 1

r−
+

1

r′−
+

1

r′′−
.

Then multiplication by ‖f‖Lr(·)‖g‖Lr′(·)‖h‖Lr′′(·) gives the desired result. �

Theorem A.1 (Poincaré-Friedrichs inequality, [2, Theorem 5.4.3]) Let Ω ⊂ Rn
be a bounded Lipschitzian domain and p ∈ [1,∞). Then for every w ∈W 1,p(Ω) with bound-
ary value zero on a set Γ0 ⊂ ∂Ω of positive measure, we have ‖w‖Lp(Ω) ≤ C‖∇w‖Lp(Ω),
where the constant C > 0 depends only on n, p, Γ0 and Ω.

The previous result is formulated for C1 domains in [2], however, all arguments in the
proof work also for Lipschitzian domains.

Lemma A.2 (Poincaré inequality) Let Ω ⊂ R2 be a bounded Lipschitzian domain with
mes (ΓD) > 0 and let p ∈ P(Ω) a variable exponent with 2 ≤ p− ≤ p+ <∞. Then there is
a constant c > 0 such that

‖v‖Lp(·) ≤ c‖∇v‖Lp(·) for all v ∈W 1,p(·)
D (Ω).

Proof. This lemma generalizes some assertion of [5, Theorem 8.2.18] to Sobolev functions
with mixed boundary conditions with zero boundary values on a part ΓD of the boundary

with positive measure. Note that in the situation n = 2 and p− ≥ 2 for u ∈W 1,p(·)
D (Ω) we

can make use of the following embedding results

W
1,p(·)
D (Ω) ↪→W

1,p−
D (Ω) ↪→ Lp+(Ω) ↪→ Lp(·)(Ω)
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comp. [5, Lemma 8.1.8], classical Poincaré-Sobolev inequality for the constant exponents
p− ≥ 2 and p+ <∞, Poincaré-Friedrichs inequality Theorem A.1 for p−, and [17, Theorem
2.8]. Therefore we find with changing constants c > 0 depending on Ω, p− and p+ that

‖v‖Lp(·) ≤ c‖v‖Lp+ ≤ c‖v‖W 1,p− ≤ c‖∇v‖Lp− ≤ c‖∇v‖Lp(·) ∀v ∈W 1,p(·)
D (Ω)

which gives the desired estimate. �

From the definition of the W 1,p(·)(Ω)-norm in (2.5) and the Poincaré inequality Lemma A.2
directly follows

Corollary A.1 Let Ω ⊂ R2 be a bounded Lipschitzian domain with mes (ΓD) > 0 and let

p ∈ P(Ω) with 2 ≤ p− ≤ p+ <∞. Then ‖∇·‖Lp(·) is an equivalent norm on W
1,p(·)
D (Ω),

c1‖∇v‖Lp(·) ≤ ‖v‖W 1,p(·) ≤ c2‖∇v‖Lp(·) ∀v ∈W 1,p(·)
D (Ω).

Lemma A.3 (Uniform Poincaré-Friedrichs type inequality) Let y0 ∈ C+
1
4

(0), ρ ∈

(0, 1
4 ]. Let G ⊂ (y0 + [−3ρ, 3ρ]2) ∩ [−1, 1] × [0, 1] be an axis parallel rectangle with length

(a0 + a1)ρ and hight a2ρ, where a0ρ = mes(G ∩ {y ∈ R2 : y1 ≥ 0, y2 = 0}) is the length
of the Dirichlet boundary and a1ρ = mes(G ∩ {y ∈ R2 : y1 < 0, y2 = 0}). Additionally we
assume that a0, a2 ∈ [1, 6] and a1 ∈ [0, 6]. Let p ∈ [p−, p+] be constant and p̃ = 2p

p+2 . Then
there is a constant CPF,p > 0 such that

‖w‖pLp(G) ≤ CPF,p‖∇w‖pLp̃(G)2
∀w ∈W 1,p̃

D (G)

for all G with admissible y0, ρ, a0, a1, a2.

Proof. For ρ ∈ (0, 1
4 ] and y0 ∈ C 1

4
(0) and a0, a2 ∈ [1, 6], a1 ∈ [0, 6] we introduce the affine

transformation V D
ρ,y0,a0,a1,a2

: C+
1 (0)→ G by

V D
ρ,y0,a0,a1,a2

(z) =

 a0+a1
2 ρ 0

0 a2ρ

 z + bDρ,y0,a0,a1,a2

with a suited translation bDρ,y0,a0,a1,a2 . Note that

| detDV D
ρ,y0,a0,a1,a2

| = (a0 + a1)a2

2
ρ2.

Let p ∈ [p−, p+] be fixed. Then the Poincaré-Friedrichs inequality Theorem A.1 for the
embedding W 1,p(C+

1 (0)) ↪→ Lp(C+
1 (0)) with the Dirichlet boundary part Γ0 := [2/3, 1]×

{0} can be applied.

By construction, for functions w on G with zero Dirichlet values on Γ̂D the function
ŵ(z) := w(V D

ρ,y0,a0,a1,a2
(z)) has zero Dirichlet values at least on Γ0 = [2/3, 1]×{0}. Apply-

ing the transformation formula, the classical Sobolev embedding result W 1,p̃(C+
1 (0)) ↪→
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Lp(C+
1 (0)), Theorem A.1 and back transformation we obtain with (from estimate to esti-

mate changing) constants c > 0 not depending on G

‖w‖pLp(G) =

∫
C+

1 (0)
|ŵ(z)|p | detDV D

ρ,y0a0,,a1,a2
|dz

≤ cρ2
(∫

C+
1 (0)

(
|ŵ(z)|p̃ + |∇zŵ(z)|p̃

)
dz
) p
p̃

≤ cρ2
(∫

C+
1 (0)
|∇zŵ(z)|p̃ dz

) p
p̃ ≤ c‖∇w‖p

Lp̃(G)
. �

Lemma A.4 (Uniform Poincaré-Sobolev type inequality) Let y0 ∈ C 1
4
(0) and ρ ∈

(0, 1
4 ]. Let G ⊂ y0 +[−3ρ, 3ρ]2 ⊂ [−1, 1]2 be an axis parallel rectangle with side lengths a1ρ

and a2ρ, a1, a2 ∈ [1, 6]. Moreover, let p ∈ [p−, p+] be constant and p̃ = 2p
p+2 . Then there

is a constant CPS,p > 1 such that

‖w −mG(w)‖pLp(G) ≤ CPS,p‖∇w‖pLp̃(G)2
∀w ∈W 1,p̃(G), mG(w) =

1

|G|

∫
G
w(y) dy

for all G with admissible y0, ρ, a1, a2.

Proof. For all p ∈ [p−, p+], the classical Poincaré-Sobolev inequality for the embedding
W 1,p̃(C1(0)) ↪→ Lp(C1(0)) gives an embedding constant cp which continuously depends on
p, and C0

PS := maxp∈[p−,p+] c
p
p is finite.

For ρ ∈ (0, 1
4 ] and y0 ∈ C 1

4
(0) and a1, a2 ∈ [1, 6] we introduce the affine transformation

Vρ,y0,a1,a2 : C1(0)→ G by

Vρ,y0,a1,a2(z) =

 a1
2 ρ 0

0 a2
2 ρ

 z + bρ,y0,a1,a2

with a suited translation bρ,y0,a1,a2 . Note that

|detDVρ,y0,a1,a2 | =
a1a2

4
ρ2,

|detDVρ,y0,a1,a2 |
|G|

=
a1a2ρ

2

4a1a2ρ2
=

1

4
=

1

|C1(0)|
.

Therefore, the mean value mG(w) can be expressed by mG(w) = mC1(0)(ŵ) with ŵ(z) =
w(Vρ,y0,a1,a2(z)). Using the transformation formula, the classical Sobolev embedding result

W 1,p̃(C1(0)) ↪→ Lp(C+
1 (0)) for the function ŵ−mC1(0)(ŵ), the classical Poincaré inequality

and back transformation we obtain with (from estimate to estimate changing) constants
c > 0 not depending on G∥∥w−mG(w)

∥∥p
Lp(G)

=

∫
C1(0)

∣∣ŵ(z)−mC1(0)(ŵ)
∣∣p | detDVρ,y0,a1,a2 | dz

≤ cρ2
(∫

C1(0)

(∣∣ŵ(z)−mC1(0)(ŵ)
∣∣p̃ + |∇zŵ(z)|p̃

)
dz
) p
p̃

≤ cρ2
(∫

C1(0)
|∇zŵ(z)|p̃ dz

) p
p̃ ≤ c‖∇w‖p

Lp̃(G)
. �
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Lemma A.5 Let Z(t) be a bounded non-negative function on the interval [ρ,R]. Let for
all ρ ≤ t < s ≤ R the inequality

Z(t) ≤
[
W1(s− t)−µ1 +W2(s− t)−µ2 + Y

]
+ ιZ(s) (A.1)

with W1, W2, Y ≥ 0 and µ1 > µ2 > 0 and 0 < ι < 1 be fulfilled. Then

Z(ρ) ≤ c(µ1, ι)
[
W1(R− ρ)−µ1 +W2(R− ρ)−µ2 + Y

]
.

This lemma is taken from [13, Lemma 6.1]. Some form of a generalized Gehring lemma is

Theorem A.2 (Giaquinta and Modica, Theorem 6.6 in [13]) Let be g, h ∈ L1(QR)
with g, h ≥ 0 a.e. and assume that for every pair of concentric cubes Q ⊂ Q̃ ⊂⊂ QR where
Q̃ has the double diameter of Q, we have for some constant ω > 0∫

Q
g dx ≤ ω

{(∫
Q̃
ga dx

) 1
a

+

∫
Q̃
hdx

}
,

with 0 < a < 1. Let the function h ∈ Lb(QR) for some b > 1. Then there exist constants
c > 0 and s∗ > 1 such that g belongs to Ls

∗
(QR/2) and∫

QR/2

gs
∗

dx ≤ c
{(∫

QR

g dx
)s∗

+

∫
QR

hs
∗

dx
}
. (A.2)

Remark A.1 As already mentioned in [8], an inspection of the proof of [13, Theorem
6.6] ensures that the result in the spirit of Theorem A.2 remains valid if Q̃ has six times
the diameter of Q. However, in this case the resulting estimate in (A.2) is obtained with
g ∈ Ls∗(QR/6) and the integration domain in the left-hand side of (A.2) has to be QR/6
instead of QR/2.
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[17] O. Kováčik and J. Rákosnik, On spaces Lp(x) and W k,p(x), Czechoslovak Mathematical Journal 41
(1991), 592–618.

[18] M. Liero, T. Koprucki, A. Fischer, R. Scholz, and A. Glitzky, p-Laplace thermistor modeling of
electrothermal feedback in organic semiconductor devices, ZAMP, to appear, DOI: 10.1007/s00033-
015-0560-8 (2015).

[19] P. Lindqvist, Notes on the p-Laplace equation, Report 102, University of Jyväskyla, Department of
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