On the homogenization of thin perforated walls of finite length

Bérangere Delourme®!, Kersten Schmidt®<, Adrien Semin®

a: Université Paris 13, Sorbone Paris Cité, LAGA, UMR 7539, 93430 Villetaneuse, France
b: Research center Matheon, 10623 Berlin, Germany
c: Institut fiir Mathematik, Technische Universitit Berlin, 10623 Berlin, Germany

Corresponding author: Kersten Schmidt, Institut fiir Mathematik, Technische Universitit Berlin, Berlin, Germany
Address: Technische Universitit Berlin, Sekretariat MA 6-4, Stralle des 17. Juni 136, D-10623 Berlin

E-mail: kersten.schmidt@math.tu-berlin.de

Tel: +49 (0)30 314 - 25795

Abstract

The present work deals with the resolution of the Poisson equation in a bounded domain made of a thin and pe-
riodic layer of finite length placed into a homogeneous medium. We provide and justify a high order asymptotic
expansion which takes into account the boundary layer effect occurring in the vicinity of the periodic layer as well
as the corner singularities appearing in the neighborhood of the extremities of the layer. Our approach combines
the method of matched asymptotic expansions and the method of periodic surface homogenization.
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Introduction

The present work is dedicated to the construction of a high order asymptotic expansion of the solution to a Poisson
problem posed in a polygonal domain which excludes a set of similar small obstacles equi-spaced along the line
between two re-entrant corners. The distance between two consecutive obstacles, which appear to be holes in the
domain, and the diameter of the obstacles are of the same order of magnitude §, which is supposed to be small
compared to the dimensions of the domain. The presence of this thin periodic layer of holes is responsible for
the appearance of two different kinds of singular behaviors. First, a highly oscillatory boundary layer appears in
the vicinity of the periodic layer. Strongly localized, it decays exponentially fast as the distance to the periodic
layer increases. Additionaly, since the thin periodic layer has a finite length and ends in corners of the boundary,
corners singularities come up in the neighborhood of its extremities. The objective of this work is to provide a
sophisticated asymptotic expansion that takes into account these two types of singular behaviors.

The boundary layer effect occurring in the vicinity of the periodic layer is well-known. It can be described using a
two-scale asymptotic expansion (inspired by the periodic homogenization theory) that superposes slowly varying
macroscopic terms and periodic correctors that have a two-scale behavior: these functions are the combination
of highly oscillatory and decaying functions (periodic of period J with respect to the tangential direction of the
periodic interface and exponentially decaying with respect to d/d, d denoting the distance to the periodic interface)
multiplied by slowly varying functions. This boundary layer effect has been widely investigated since the work of
Sanchez-Palencia [37, 36], Achdou [2, 3] and Artola-Cessenat [5, 6]. In particular, high order asymptotics have
been derived in [4, 27, 12, 9] for the Laplace equation and in [34, 35] for the Helmholtz equation.

On the other hand, corner singularities appearing when dealing with singularly perturbed boundaries have also
been widely investigated. Among the numerous examples of such singularly perturbed problems, we can men-
tion the cases of small inclusions (see [29, chapter 2] for the case of one inclusion and [8] for the case of several
inclusions), perturbed corners [15], propagation of waves in thin slots [23, 24], the diffraction by wires [13], or
the mathematical investigation of patched antennas [7]. Again, this effect can be depicted using two-scale asymp-
totic expansion methods that are the method of multiscale expansion (sometimes called compound method) and
the method of matched asymptotic expansions (see [38, 29, 22]). Following these methods, the solution of the
perturbed problem may be seen as the superposition of slowly varying macroscopic terms that do not see directly
the perturbation and microscopic terms that take into account the local perturbation.

IPart of this work was carried out where the author was on research leave at Laboratoire POEMS, INRIA-Saclay, ENSTA, UMR CNRS
2706, France.



Recently, Vial and co-authors [39, 10] investigated a Poisson problem in a polygonal domain surrounded by a
thin and homogeneous layer, while Nazarov [31] studied the resolution of a general elliptic problem in a polyg-
onal domain with periodically changing boundary. In their studies they have combined the two different kinds
of asymptotic expansions mentioned above in order to deal with both corner singularities and the boundary layer
effect. Based on the multiscale method, the authors of [39, 10] constructed and justified a complete asymptotic
expansion for the case of the homogeneous layer. For the periodic boundary in [31] the first terms of the asymptotic
expansion have been constructed and error estimates have been carried out. This asymptotic expansion relies on
a sophisticated analysis of solution behavior at infinity for the Poisson problem in an infinite cone with oscillat-
ing boundary with Dirichlet boundary conditions by Nazarov [30], where he published an analysis for Neumann
boundary conditions in [32]. In the present paper, we are going to extend the work for the homogeneous layer
and the periodic boundary by constructing explicitely and rigorously justifying asymptotic expansion for the above
mentioned periodic layer transmission problem to any order (with Neumann boundary conditions on the perfora-
tions of the layer).

The remainder of the paper is organized as follows. In Section 1 we are going to define the problem and show
the main ingredients of the asymptotic expansion following the method of matched asymptotic expansions. The
asymptotic expansion for the solution away from the corners, the far field, is given in Section 2, where the problems
for the terms of the far field expansion and their behaviour when approaching the corners is analysed in Section 3.
The terms of this expansion take into account the boundary layer effect due to the thin layer with small perforations
and satisfy transmission conditions. The asymptotic expansion of the solution close to the re-entrant corners in
stretched coordinates, the near field, is derived in Section 4. Then, the matching of the far field and near field
expansions and the iterative construction of the terms of the asymptotic expansions are conducted in Section 5.
Finally, in Section 6 the asymptotic expansion is justified with an error analysis. Not to stress the main line of the
justification too much we have released some details in the appendices.

1 Description of the problem and main results

1.1 Description of the problem

In this section we are going to define the domain of interest Q° € R2, its limit when § — 0 and the problem
considered. With the coordinates x = (1, x2) of R? let Qp and Q1 be the two adjacent rectangular domains
defined by

Qp =(-L,L) x (—Hp,0), Qr = (-L',L") x (0, Hr) ,
where L' > L, Hg and Hr are positive numbers. We denote by I" the common interface of Q5 and Q, i. e.,
FT'=005Nd0r and T = (-L,L)x {0}.
and we consider the (non-convex) polygonal domain (see Fig. 1a)
Q=0pUQrUl,

which has two reentrant corners at x% = (+L,0) with both an angle of ‘%T
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Figure 1: Illustration of the polygonal domain € and the domain of interest 2°.



Besides, let Qhole € R? be a smooth canonical bounded open set (not necessarily connected) strictly included in
the domain (0, 1) x (—1,1). Then, let N* := N\ {0} denote the set of positive integers and let § be a positive real
number (that is supposed to be small) such that

2L
— =q€N". (1.1)
)

Now, let ngle be a thin (periodic) layer consisting of g equi-spaced similar obstacles which can be defined by

scaling and shifting the canonical obstacle ﬁhole (see Fig. 1b):

q

e = [J {~Ler + 5 + (¢ = Der} | (1.2)
(=1

Here, e; and e, denote the unit vectors of R? and § is assumed to be smaller than Hr and Hpg such that Q7 ,. does
not touch the top or bottom boundaries of €2. Finally, we define our domain of interest as

Q0 = (QUQTUT\,,..

Its boundary 00 consists of the boundary of the set of holes I’ = 902, and Tp = 9Q° \ T° = 99, the
boundary of €). Here and in what follows, we denote by n the outward unit normal vector of 900, Note, that in
the limit & — 0 the repetition of holes degenerates to the interface I, the domain €° to the domain Q1 U Qp and
its boundary 09 to 9Q U T.

The domain Q° being defined, we can introduce the problem to be considered in this article: Seek u® solution to
—Au=f  inQ,
Vil -n= 0, onI?, (1.3)

u’ =0, onl'p,
where f € L*(Q°). It is natural to search for u® € Hf._(Q°) where
Hf, (%) = {ue H(Q°) suchthatu=0onTp}. (1.4)
The well-posedness of problem (1.3) in Hy, | (929) directly follows from Lax-Milgram theorem:

Proposition 1.1 (Existence, uniqueness and stability). Let f € L?(Q2°). Then, for any 6 > 0 there exists a unique
solution u® of problem (1.3) in H%D (%), and with a constant C (independent of ) it holds

HuéHHl(QJ) < C | fllrzgosy - (1.5)

The objective of this paper is to describe the behavior of u’ as § tends to 0. For the sake of simplicity, we shall
assume that f has a compact support in a subset of {2 with distance §; > 0 to I'. Our work relies on a construction
of an asymptotic expansion of u° as d tends to 0.

Remark 1.2. The construction is for simplicity for the specific geometrical setting, where 1" is a straight line
ending in two corners of the polygonal boundary 9K, where the angles between I" and OS2 are both ends at angles
5 orm, respectively. Nevertheless, the study may be extended to a polygon ) of different angles.

Remark 1.3. It is worth noting that the choice of the boundary condition imposed on the small obstacles T'? consti-
tuting the periodic layer, here homogeneous Neumann boundary conditions, has a strong impact on the asymptotic
expansion. A homogeneous Dirchlet condition would yield to a completely different asymptotic expansion (see for
instance Appendix A in [16], or [11]).

Remark 1.4. The smoothness of ﬁhole is not required for the existence of u’ € H'(Q°). The well-posedness result

remains valid if Qnole is a Lipschitz domain. However, we use this assumption in the forthcoming analysis (In
particular in Proposition 4.5 and Section 6).

1.2 Ansatz of the asymptotic expansion

As mentioned in the introduction, due to the periodic layer, it seems not possible to write a simple asymptotic
expansion valid in the whole domain. We have to take into account both the boundary layer effect in the vicinity
of I" and the additional corner singularities appearing in the neighborhood of the two reentrant corners. To do so,
we shall distinguish a far field area located * far’ from the reentrant corners xé and two near field zones located in
the vicinity of them (see Fig. 2).
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Figure 2: Schematic representation of the overlapping subdomains for the asymptotic expansion. The far field area
+

(hatched) away from the corners x; is overlapping the near field area (light grey) in the matching zone (dark grey).
1.2.1 Far field expansion

Far from the two corners x£ (hatched area in Fig. 2), we shall see that u’ is the superposition of a macroscopic
part (that is not oscillatory) and a boundary layer localized in the neighborhood of the thin periodic layer. More
precisely, we choose the following ansatz:

ul(x) = Z 5%"+qu5FF,n7q(x), (1.6)
(n,q)€EN?

where x = (21, x5), and for (n, q) € N?

s )
un, (X) if ‘J}l‘ > L7
U ing(X) = { s 5 . 1.7)
X (%) ud (%) + 100, (21, %) if [a1] < L.
Here x : R +— (0, 1) denotes a smooth cut-off function satisfying
1 if ¢ > 2,
- (1.8)
0 if|t] <1.

fu o are defined in the limit domain Q21 U 2. A priori, they are not continuous across I'.
As for the boundary layer correctors Hth(xl,Xl,Xﬂ (also sometimes denoted periodic correctors), and as
usual in the periodic homogenization theory, there are 1-periodic with respect to the scaled tangential variable X;.

Consequently, they are defined in (— L, L) x B, where B is the infinite periodicity cell (see Fig. 3a):

The macroscopic terms u

B ={(0,1) x R} \ Dot (1.9)

Moreover, the periodic correctors are super-algebraically decaying as the scaled variable X5 tends to oo (they
decay faster than any power of X5), more precisely, for any (k, £) € N2,

: kot 4
‘lellglm X504, 115 = 0. (1.10)

The macroscopic terms as well as the boundary layer corrector terms might have a polynomial dependence with
respect to In : there is N(n, ¢) € N such that

N(n,q) N(n,q)
ufw = Z (Ind)® wy q,5, and Hfl’q = Z (Ind)°IL,, 4 s»
s=0 s=0

where u,, 4,5 and 11, 4 s do not depend on 4.

Remark 1.5. Here and in what follows, although it might be surprising at first glance, we call far field expansion
the expansion (1.6), i. e., the superposition of the macroscopic terms and the boundary layer correctors. Besides,
it should also be noted that, for any k € N, we consider 525 ang § % HaH2R) 4 different scales as they
would be different powers of §. In fact, we shall see that n and q play a different role in the asymptotic procedure.
Finally, following Remark 1.2, the consideration of the more general case of two angles of measure o, would yield

to an expansion of the form (1.6) substituting 5% +a for 6" +4 (see [10]).




1.2.2 Near field expansions

In the vicinity of the two corners xg (light grey areas in Fig. 2), the solution varies rapidly in all directions.

Therefore, we shall see that
5 X — Xi
§ 5% ST L ( > O) , (1.11)

(n,q)EN2

for some near field terms U2 1n.q,+ defined in the fixed unbounded domains
- :/C_\ U {§h01e+€e1}, §+ :’C+\ U {ﬁhole—ﬂel} (112)
LeN LEN*
shown in Figure 3b and 3c, where K* are the unbounded angular domains

= {X = R*(cos 6F,sin6F), R* € R}, 6F € [T} e R?

of angular sectors It = (0, 3”) and I~ = (=%, ). If the domain Qhole is symmetric with respect to the axis
X1 = 1/2, then the domain O is nothing but the domain QF mirrored with respect to the axis X; = 0. However,
this is not the case in general. Similarly to the far field terms the near field terms might also have a polynomial
dependence with respect to In d, i. e., for all (n, q) € N, there is N(n, q) € N such that

N(n,q)
Uy = (6)°Ungss,
s=0

where the functions U, 4 + s do not depend on .
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(a) The periodicity cell B. (b) The domain Q. (c) The domain Qr.

Figure 3: The periodicity cell B and the normalized domains 0.

1.2.3 Matching principle

To link the two different expansions, we assume that they are both valid in two intermediate areas Q‘j\’,ti (dark
shaded in Fig. 2) of the following form:

0 = {x= (21,22) €9,V < dlx,x5) <25},

where d denotes the usual Euclidian distance. The precise definition of the matching areas is not important. The
reader might just keep in mind that they correspond to a neighborhood of the corners xé of the reentrant corners
for the far field terms (macroscopic and boundary layer correctors) and to R* going to +oo for the near field terms
(expressed in the scaled variables).

1.3 Far and near field equations

The ’ansatz’ being assumed, the next objective is to construct the terms un 2 H5 and U 6 gt of the far and near
field expansions (the asymptotic expansions are justified later, by proving error estlmates) This is by far the longest
part of the work (Sections 1 to 5). The usual starting point of this construction consists in the formal derivation of
the near field and far field problems, that is to say problems satisfied by the near and far field terms.



1.3.1 Far field equations: macroscopic and boundary layer correctors equations

Inserting the far field expansion into the initial problem (1.3) and separating the different powers of § (the complete
procedure, based on the separation of the scales, is explained in [18] ( Appendix A)) gives a collection of equations
for the macroscopic terms and the boundary layer terms:

Macroscopic equations The macroscopic terms qu o satisfy

f ifn=q=0,.
—Au = in Qr UQg, 1.13
ma {O otherwise, T B ( )

together with homogeneous Dirichlet boundary conditions on I'p
uw® =0on I'p. (1.14)

n.q

Boundary layer corrector equations The boundary layer correctors satisfy

—AXIT (z1,X) = G%, inB, 01s)
anH27q = 0 on 6ﬁhole. '
where, for any p € N,
9. Pyl (X,5)P . orul (X2)P
Gf = — P () 0T)[A, x < 2 >—|— — AP (0, 07)[A, x— < 2 )
1,q 1)2:% 8$2p ( 1 )[ +] p' prt 8:62;0 ( 1 )[ y ] p|
+ 02 100 _o(x1,X) + 20,,0x, 115 ,_(z1,X).  (1.16)

Here, for any sufficiently smooth function v, [A, v] denotes the commutator between A and v, that is to say
[A,v]u = A(vu) — vAu = Vo - Vu + uAw.

Moreover, the smooth truncation functions y 4 are defined by

x(Xs3), if+ X5 >0,
X+(X2) = (%2) > (X (X2) = Lz x,50)X(X2)), (1.17)
0 otherwise,
and, for p € N,
Pyl Pul
n,q—p 0t) = 1 n,q—p n).
axzp (xlv ) hl}gi 8.’172p (1’17 )

Note that equations (1.13-1.14), posed in the domains Q2 and (g, do not define entirely the macroscopic terms.
Indeed, we first have to prescribe transmission conditions across the interface I" (for instance the jump of their trace
and the jump of their normal trace across I'). This information will appear to be a consequence of the boundary
layer equations (Section 2). Then, we also have to prescribe the behavior of the macroscopic terms in the vicinity
of the two corner points xé. This information will be provided by the matching conditions (Section 5).

1.3.2 Near field equations

The near field equations are obtained in a much more direct way. Inserting the near field ansatz (1.11) into the
Laplace equation (1.3) and separating formally the different powers of 4, it is easily seen that the near field term
U? . satisfy

n,q

~AxUj,= 0 inQ*,
Ul,= 0 ondK*, (1.18)

9.UL .= 0 ondQE, =00\ oK.



1.4 Outlook of the paper and main result

The remainder of the paper is organized as follows. In Section 2, we investigate the boundary layer problems. We
derive transmission condition for the macroscopic term uflv 4 up to any order (Proposition 2.4). We also obtain an
explicit formula for the periodic correctors Hfl) q (see (2.30)). In particular, we shall see that the periodic corrector
Hf% ¢ is completely determined providing that the macroscopic terms ufl_’p are defined for p < q.

Then, Section 3 is dedicated to the analysis of the far field problems (consisting of the far field equations (1.13) to-
gether with the transmission conditions (2.29a),(2.29b)). We first introduce two families of so-called macroscopic
singularities si, o (Proposition 3.5 and Proposition 3.8). These functions are particular solutions of the homoge-
neous Poisson equations (with prescribed jump conditions across the interface I') that blow up in the vicinity of
the reentrant corners. These two families are then used to derive a quasi-explicit formula for the far field terms
(Proposition (3.27)). This quasi-explicit formula defines the macroscopic terms ufl) q € HL (Qr UQg) up to the
prescription of 2n constants called Efm(uf%q), 1<m<n.

Section 4 deals with the resolution of the near field problems (1.18). As done for the macroscopic terms, we de-
fine two families of near field singularities S;-, that are particular solutions of the homogeneous Poisson problem
posed in O* that blow up at infinity (Proposition 4.8). Based on these near field singularities, we then derive a
quasi-explicit formula for the near field terms (4.21). Here again, this quasi-explicit formula defines the near field
terms Ugﬁqi up to the prescription of n constants called ‘fm(U,f, gt) 1 <m<n.

Section 5 is dedicated to the derivation of the matching conditions and the definition of the terms of the asymptotic
expansions. Based on an asymptotic representation of the far field terms close to the reentrant corners and of the
near field terms at infinity, we obtain a collection of matching conditions (5.11),(5.13),(5.14) and (5.15) that permit
to determine the constants ., (U} , ) for the near fields and the constants Efm(ufh o) for the macroscopic fields.
As a consequence, all the terms of the asymptotic expansion are then constructed (through an iterative procedure).

Finally, Section 6 deals with the justification of the asymptotic. We prove the following macroscopic error estimate:

Theorem 1.6. Let Ny > 0 such that 3Ny is an integer and let D, denote the set of couples (n,q) € N? such that
%n + q < Ny. Furthermore, for a given number o > 0, let

Qo =W\ (~L—a,L+a)x (—a,a).

Then, there exist a constant 69 > 0, a constant C = C(«,dg) > 0, and a constant k = k(Ny) > 0 such that for
any ¢ € (0,69)
l® = 3" 85w o, < C3NOTS ()", (1.19)

(n,9)€D N,

2 Analysis of the boundary layer problems: transmission conditions

This section is dedicated to the analysis of the boundary layers problems (1.18). It permits us to derive (necessary)
transmission conditions for the macroscopic fields ufl o across I' (Proposition 2.4). For a given n € N, we shall
propose a recursive procedure to write the jump of the trace and of the normal trace of uf% 4 s linear combinations
of the mean values of the macroscopic fields of lower order ufl’ « (E < @) and their tangential derivatives. This
procedure is done by induction on the index ¢ and is completely independent of the index n and of the superscript
o (of ufu o)- Thatis why we shall omit the index n and the superscript 4 in this section.

For any sufficiently smooth function v defined in 1t U Qp, we denote by [u(z1,0)]r and (u(z1,0))r its jump and
mean values across I': for |z1] < L,

. 1.
[ule1, 0y = Tim (u(z,h) = u(er,—h), (e, 0)r = 5 lm (u@s,h) +uler,—h). @D
Let (f,)qen be a sequence of functions belonging to L?(Q1) N L?(Qp) that are compactly supported in Q. We
consider the following sequence of coupled problems (obtained by rewriting (1.13),(1.14),(1.15) and omitting the
index n):
{ —Aug= f, inQpUQg, { ~AxIly(z1,X) = Gu(x1,X) inB, 22

Ug = 0 on FD, 8an =0 on aﬁhole 3



where

Gl X) = 3 (20 (X))@ 0,0)) 1 + 5 [0p(X)] (08,041, 0)],. )

p=0
+20,,0x, g1 4+ 02 My—n. (2.3)
Here, we use
! X3 X3

(9p(X)) == Z[A, x4+ + x-] o) l9p(X)] == [A, x4+ — x-] )P €N, (2.4)
and later also gzjf(X)) = (A, x%] (%,5) will be needed. As previously, we impose II, to be 1-periodic with

respect to X and to be super-algebraically decaying as | X»| tends to +oo: for any (k, ) € N2,
lim  X50%,1I, =0. 2.5
|Xs[—too 2 2 2)

Note that the right-hand side G, in (2.3) corresponds to the right-hand side thq of Problem (1.15) (for a given
n). The problems for II;, ¢ € N are coupled to the others by the source terms. In difference, the problems for u,,
g € N are not complete and their coupling to other problems will be exposed in following.

The present section is organized as follows: in Section 2.1, we give a standard existence and uniqueness result
(Proposition 2.2), which shows that under two compatibility conditions the boundary layer problems for II; in (2.2)
have a unique decaying solution. In Section 2.2, we use Proposition 2.2 to derive transmission conditions for the
first two terms ug and u; (see (2.12)-(2.18)-(2.19)-(2.27)), and we obtain an explicit tensorial representation for
the associated boundary layer correctors (cf. (2.13)-(2.20)). Finally the approach is extended in Section 2.3 to
obtain transmission conditions up to any order for the macroscopic fields u,.

Remark 2.1. The asymptotic construction described in this section is entirely similar to the construction of a
multi-scale expansion for an infinite periodic thin layer (without corner singularity). A complete description of
this case may be found in [37], [3], [1], [35] and references therein.

2.1 Preliminary step : existence result for the boundary layer problem

In this subsection, we give a standard result of existence for the boundary layer corrector problems for I1; in (2.2).
It will be subsequently used to construct exponentially decaying boundary layer correctors. Let us introduce the
two weighted Sobolev spaces

VE(B) = {II € H (B),11(0, X2) = TI(1, X5), and (TTwZ) € H(B)}, (2.6)
where the weighting functions wF (X1, Xo) = x(X2) exp(:t‘X—;l). The functions of V™ (B) correspond to the
periodic (w.r.t. X;) functions of H;._(B) that grow slower than exp(l);—”) as X5 tends to +o00. By contrast, the

functions of VT (B) correspond to the periodic functions of H}. (B) decaying faster than exp(—@) as X tends

to +0o. As a consequence, they are super-algebraically decaying, means they satisfy (2.5) for / < 1. Note also
that V*(B) Cc V= (B).

Based on this functional framework, we consider the following problem: for given g € (V= (B))’ find IT € V= (B)
such that

—Axn = g inB,
o1 = 0 on 9 hoge, (2.7)
8X1H(0,X2) = 8X1H(1,X2), X2 e R.

Proposition 2.2. 1. Problem (2.7) has a finite dimensional kernel of dimension 2, spanned by the functions
N =15 and D, where D is the unique harmonic function of V= (B) such that there exists Dy, € R

D(X1, X2) = D(X1, X2) — x+(X2)(X2 + Do) — x—(X2)(X2 — Do)

belongs to VT (B). The constant Do, only depends on the geometry of the periodicity cell B.



2. If f is orthogonal to D and N in the 1.?(B) sense, meaning that
[ axpxjax o €p)
B
[ sneax=o €
B

then, there exists a unique solution Il € V¥ (B).

3. Conversely, if problems (2.7) admits a solution T € V¥ (B), then it satisfies the compatibility conditions
(Cp), Ca)

For the proof of the previous proposition we refer the reader to [32, Prop. 2.2] and [14, Sec. 5]. General results
on the elliptic problems in infinite cylinder can be found in [26] (Chapter 5). Note that all these results remain the
same with a different exponential growth or decay constant in the definition of wZ unless it does not exceed an up-
per bound which is determined by the least exponentially decaying or growing functions in the kernel of —A in B.

Based on the previous proposition, we shall construct IT;(z1,X) in C ((—L, L), V*(B)). Transmission conditions
for the macroscopic terms [uy]r and [0y, uq]r will directly follow from the compatibility conditions (Cp), (Car)
applied to Problem (2.2) for II,, ¢ € N. It will guarantee that the boundary layer correctors II, are exponentially

decaying. Let us give a couple of useful relations, which are easy to obtain by direct calculations (noting that
ggc = [A, x+]1), and will be extensively used in the next subsections:

Lemma 2.3. The following relations hold:
/ (90(X))D(X)dX = 0, / [90(X)] D(X)dX = 2,
B B
/ (g0 (X))N (X)dX = 0, / l90(X)] N (X)dX = 0,
B B
/ (91 (X))D(X)dX = D, / [92(X)] D(X)dX = 0,
B B

/(91(X)>N(X)dX =0, / [g1(X)] M (X)dX = 2.
B B

2.8)

2.2 Derivation of the first terms

We can now turn to the formal computation of the first solutions of the sequence of Problems (2.2). We emphasize
that the upcoming iterative procedure is formal in the sense that we shall provide necessary transmission conditions
for the macroscopic terms u, but we shall not adress the question of their existence in this part (this question will
be investigated in Section 3). Throughout this section, we assume that the macroscopic terms exist and are smooth
above and below the interface I'.

2.2.1 Step 0: [uo|r and II,

The limit boundary layer term (or periodic corrector) I1j is solution of

{—AXHO(ml,X) = Go(r1,X) inB, (2.9)

ol = 0 on 0 hole,

where G (21, X) = 2(go(X)) (uo(z1,0))r+3 [g0(X)] [uo(z1, 0)]1-. Problem (2.9) is a partial differential equation
with respect to the microscopic variables X; and X5, wherein the macroscopic variable z; plays the role of a
parameter. For a fixed z; in (—L, L) (considered as a parameter), Go(z1,-) belongs to (V~(B))’ since it is
compactly supported. Then, in view of Proposition 2.2, there exists an exponentially decaying solution ITy(z1, ) €
V¥ (B) if and only if the two compatibility conditions (Cp, Car) (Prop. 2.2) are satisfied. Thanks to the second line
of Lemma 2.3,

/ o1, XN (X)dX = 0, 2.10)
B

which means that (Cxr) is always satisfied. Besides, in view of the first line of Lemma 2.3,

/BG()("El, X)D(X)dX = — [’U,()(C,Ul, 0)]F . (211)



As a consequence, we obtain a necessary and sufficient condition for I to be exponentially decaying:
[uo(z1,0)] = 0. (2.12)

This condition provides a first transmission condition for the limit macroscopic term ug. Under the previous
condition, G (z1, X) = 2(go(X))(uo(x1,0))r, and, using the linearity of Problem (2.9), we can obtain a tensorial
representation of ITy € C ((—L, L), V*(B)), in which macroscopic and microscopic variables are separated:

o (21, X) = (up(z1,0))r W (X). (2.13)

Here the profile function W (X) is the unique function of V't (B) satisfying

—AxWHX) = FYX) in B,
W = 0 on Onole,  Fy(X) = 2 (go(X)). (2.14)
GXIWS(O,XQ) = 8X1WS(I,X2), X € R,

A direct calculation shows that

Wi(X) = (1 — x(Xa2)). (2.15)
Note that the continuity of ITy with respect to x is a consequence of the continuity of G with respect to .
2.2.2 Step 1: [0,,uo]rs [u1]r, and I1;

In view of the general sequence of problems (2.2), the second boundary layer (or periodic corrector) I1; satisfies

{ —Axﬂl(l‘l,X) = Gl(l’],X) in B’ (216)

9,1, = 0 on 9hole.
where, thanks to (2.15) (Ox, W¢ = 0),

G (21,X) = (91 (X)) [Bantio (21, 0)]y + » [90(X)] s (22, 0)] -

2 2
+ F5(X) (w1 (21,0))r +2(91(X)) (9, u0(21,0))r. (2.17)

As for Ily, Problem (2.16) is a partial differential equation with respect to the microscopic variables X; and
X5, where the macroscopic variable x; plays the role of a parameter. For a fixed =1 in (—L, L), G1(x1,) is
compactly supported in B3, and, consequently, belongs to (V™ (B))’. Then, thanks to Proposition 2.2, there exists
an exponentially decaying solution IT; (1, -) € VT (B) if and only if the two compatibility conditions (Cp), (Cxr)
are satisfied. In view of Lemma 2.3, F}(X), [g0(X)], (91(X)) are orthogonal to N. Then, the second formula of
the fourth line of Lemma 2.3 gives

/B G (1, XN (X)X = [0, o (21, 0)]. -

Therefore, the compatibility condition (Cxs) is fulfilled if and only if
[0, u0(21,0)] = 0. (2.18)

Next, using the first and third lines of Lemma 2.3, we obtain
/ G (1, X)D(X)AX = — [ur (21, 0)]. + 2D (Do g (1, 0))1
B

Therefore, the compatibility condition (Cp) is fulfilled if and only if
[ul(ml,O)]F = ZDOO <8$2U0($1,O)>1“. (219)

Under the two conditions (2.18)-(2.19), Problem (2.16) has a unique solution IT; in C ((—L, L), V*(B)) (the
continuity of II; with respect to x; results from the continuity of G'; with respect to x1). Using (here again) the
linearity of Problem (2.16), we can write 1I; as a tensorial product between profile functions that only depend
on the microscopic variables X; and X5, and functions that only depend on the macroscopic variable x; (more
precisely, the latter functions consist of the average traces of the macroscopic terms of order 0 and 1 on I'):

Hl(xl,X) = <U1(ZE1,0)>[‘ WS(X) + <8x2u0(x1, O)>F W{I(X), (220)
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where W is defined by (2.14) and W}* € VT (B) is the unique decaying solution to the following problem:

—AxWPX) = FPX)+ G 00(X)] inB,
WP = 0 on Qe (2.21)
Ox, W0,Xs2) = 0x, Wi, Xa), X2 €R,
where,
F'(X)=2(¢:1(X))r and D = /BFI“(X)D(X)dX =2D. (2.22)

It is easily seen that the right-hand side of (2.21) is orthogonal to both A/ and D. A direct computation shows that
Wi(X) = D(X), (2.23)

the function D being defined in the first point of Proposition 2.2.

2.2.3 Step 2: [&CQul]p ([UQ]]_" and HQ)

We can continue the iterative procedure started in the two previous steps as follows. The periodic corrector I,
satisfies the following equation
{ —AXHQ(xl,X) = GQ(iEhX) in B,

~ 2.24
8”1_[2 =0 on thole~ ( )

Here,

Ga(1,X) = 5 g0(X)] [ty + 5 91 ()] [Puytn] g + FE(X) (uz)r
+ F(X) (Onun)r + F5(X) 05, (uo)r + F3(X) 0z (Onyuo)r-  (2.25)
F}(X) and F}}(X) are given by (2.14)-(2.22), and,
Fi(X) = =2(g2(X)) + W§(X), F3(X) =20x, WH(X). (2.26)

In formula (2.25), for the sake of concision, we have omitted the dependence on x; of the macroscopic terms.
To obtain this formula, we have replaced Il and II; with their tensorial representations (2.13),(2.20), we have
substituted —02_ug(z, 0%) by 92 uo(x,0%) using the macroscopic equation (2.2) (Aug = 0 in the vicinity of I')
and we have taken into account the jump conditions (2.12),(2.18) for ug.

For a fixed 1 € (—L, L), it is easily verified that G2(z1, ) belongs to (V~(B))": indeed, the first five terms
of (2.25) are compactly supported and the last one is exponentially decaying (more precisely, w; Fy and w] F}
belong to L?(B)). Then again, the existence of an exponentially decaying corrector Ia(z1,-) € VT (B) results
from the orthogonality of Ga(z1,-) with A/ and D. As previously, enforcing the compatibility condition (Car)
provides the transmission condition for the jump of the normal trace of u; across I':

[0z, ur]r = N3 02, (ug)r + N3 0y, (Duyu0)T (2.27)

where

NE=— / FAX)N(X)dX, NP =— / FMNX)N (X)dX. (2.28)
B B

Then, enforcing the compatibility condition (Car) provides the jump [uz]r, and the existence of Il is proved.
Naturally an explicit expression of [ug]r and a tensorial representation of Il can be written (see the upcoming
formulas (2.29a)-(2.30)), but, for the sake of concision, we do not write it here.

2.3 Transmission conditions up to any order

We are now in a position to extend the previous approach up to any order. For each ¢ € N, similarly to the first
steps, our global iterative approach relies on the following procedure:

1. We compute the right-hand side G(x1,X) of the periodic corrector problem (2.2) of order ¢g: we write
G, as a tensorial product between functions that only depend on the microscopic variables X; and X3 and
functions that only depend on the macroscopic variable x1. More specifically, the latter functions consist of
the trace and normal trace of the macroscopic terms of order lower than ¢ and their tangential derivatives
(see (2.9),(2.17),(2.25)).
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2. We compute the normal jump [0,,u4—1(x1,0)]r by enforcing G, to be orthogonal to N, i. e., to satisfy the
compatibility condition (Cx/) (see (2.12),(2.19)).

3. We compute the jump [u,(z1,0)]r by imposing G, to satisfy the compatibility condition (Cp) ensuring that
G, is orthogonal to D (see (2.18),(2.27)).

4. We write a tensorial representation of the periodic corrector I, introducing at most two new profile functions
(see formulas (2.13),(2.20)).

Applying this general scheme, we can prove the following proposition, whose proof can be found in [18](Proposition
2.4, Appendix B.1).

Proposition 2.4. Assume that the macroscopic terms uq satisfying (2.2) exist. Then, there exists four sequences of
real constants N}, N;, Dy, D;‘) such that

q
[ug(21,0)]r = Y Dy (ug_p(x1,0))r  + Z D2 P 0y ug—p(w1,0))r (2.29a)
p=1
q
[0, tq(21,0)]r = ZN$+1 O (ug_p(z1,0))r + ZN,;‘+1 O (Opytig—p(21,0))r (2.29b)
p=1 p=1

Moreover, there exist two families of decaying profile functions Wg and W' belonging to VT(B) such that the
periodic corrector 11, € C ((—L, L), V' (B)) admits the following representation:

q
(21, X) = > 02 (ug_p(1,0) Zap Y0y ug—p(21,0)) r W2 (X). (2.30)

p=0

In the previous definition,we have used the superscript t (in D, ./\/pt) to refer to some constants associated with
tangential derivatives of the average trace of the macroscopic terms. Similarly, the superscript n (in D}, ./\/;;‘) is
used for the constants associated with tangential derivatives of the average of the normal trace of the macroscopic
terms. The definitions of the functions W} and W} and of the constants D}, Nf, D}, N are given explicitely in
(A.1),(A.3),(A.4), and (A.6).

We point out that the periodic correctors 11, do not appear (explicitly) in (2.29b): they have been eliminated. In
other words, the resolution of macroscopic and boundary layer problems are decoupled and the construction of II,
can be made a posteriori.

3 Analysis of the macroscopic problems (macroscopic singularities)

Thanks to the previous section (see in particular Proposition 2.4, reminding that the index n and the superscript §
have been deliberately omitted in the previous section), we can see that if the macroscopic terms u ¢ (solution to
(1.13)) exist, they satisfy the following transmission problems: for any (n, q) € N2,

—A’U,i’q = fmq in QT U QB7

5 _ 0 .
I:'U/n,q(xla 0)]1’* - gn,q7 f _ f ifn = q= O, (3 1a)
[%ui,q(m, 0)]1“ = h‘th, il 0 otherwise, '
uth =0 onl'p,
where
q
g o) =D Dy ok (uh ,(x1,0))r +ZD" 02 Oyl (1, 0)r (3.1b)
p=1
q
B (1) = > Npp 8 ud - (21,0) F+ZN;+1 (02,18, o (1,0))r - (3.1c)
p=1 p=1

As previously mentioned, the constants Df, N qt, Dy, N, ¢ » Which only depend on the geometry of the periodicity
cell B, are defined in (A.3)-(A.6).
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The present section is dedicated to the analysis of Problems (3.1). In Subsection 3.1, we give general results
of well-posedness for transmission problems: we first introduce a variational framework, then we present an
alternative functional framework based on weighted Sobolev spaces. In Subsection 3.2, we explain the reason why
the variational framework is not adapted for the resolution of Problem (3.1) for ¢ = 1 (and higher). This leads
us to consider singular (extra-variational) macroscopic terms that may blow up in the vicinity of the two corners.
In Subsection 3.3, we construct several sequences of singular functions that are used in Subsection 3.4 to write a
general formula for the macroscopic terms (Proposition 3.11).

3.1 General results of existence for transmission problem

The problems under consideration can be investigated using the general framework for transmission problems
posed in polygonal domains developed in [33]. In the present paper, we first recall a classical well-posedness
result based on a variational form of the problem. Then, based on weighted Sobolev spaces, we describe the
behavior of the solutions close to the two reentrant corners.

3.1.1 Variational framework

Let us introduce the classical Hilbert spaces associated with our problems
Hr, (QrUQp) ={ueH' (QrUQg), stu=0onTp} ,

which incorporates discontinuous functions over I' (see Figure 1a). Its restrictions to 1 and g are denoted by

Hf. (1) and Hf. (€23). We denote by H(lj/(f (T') the restriction of the trace of the function Hy._ (€1) to T (for a
complete description of the trace of functions, we refer the reader to [19].), i. e.,

H./2(T) = {u € HY2(I'),s.t.3v € H: (1) :v = pron F} .

Naturally, the space HS/OZ (T) is also the restriction of the trace of the functions of Hf. (Qg) to T'. Based on a
variational formulation, and thanks to the Lax-Milgram lemma, we can prove the following well-posedness result:

Proposition 3.1. Letf € L*(Q), g € H(l)/o2 (T'), and b € L*(T"). Then, the following problem has a unique solution
u belonging to H._ (Qp U Qp):
—Au=f inQrUQg,
ulp =9 onT, (3.2)
Oz, ulr =h onT.

3.1.2 Weighted Sobolev spaces and asymptotic behaviour

In the next subsections, we shall study the behavior of the macroscopic terms in the neighborhood of the two
reentrant corners. It is well-known that the Hilbert spaces H™ (2g) (resp. H™(§21)) are not well-adapted to this
investigation. By contrast, the weighted Sobolev spaces provide a more convenient functional framework. We
refer the reader to the Kondrat’ev theory (see [25], [26, Chap. 5 and Chap. 6] for a complete presentation of these
spaces and their applications). In this part, we introduce the weighted Sobolev spaces associated with our problem
following the presentation of [26, Chap. 6]. Let us first define the polar coordinates (r*, §*) centered at the vertex
X(i), ie.,

x1 — (x5)1 = r¥cos(0F), w2 — (x5)s = rEsin(6%). (3.3)

Next, we consider the two infinite angular (or conical) domains chi) centered at x% of opening %’r
C

3
IC)% ={( *cos 0%, rEsinfF) e R2 rF > 0,0% ¢ Ii}, It = (0, §)7 I~ = (—g,w), (3.4)
and, for £ € {0,1, 2}, we define the space Vﬁ ﬁ(le(i)) as the closure of C° (K:x(i) \ {0}) with respect to the norm

1/2

Hu||V2‘7_B(ICxi) = /IC Z (Ti>2(ﬁ—4+\a|)|a;¢118:(c¥22u|2dx ) o= (a17a2) € N27 |0é| =1 + Q2. (35)
) O

x3 a|<e

Then, let
Xz (x) = (1= x(2r*/L)) 3.6)
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be the cut-off function equal to one in the vicinity of x% and vanishing in the vicinity of x5 (the support of XjL[
is localized in the neighborhood of the vertice xé), and let XY = 1 — xJ — x7. We remind that the truncation
function x is defined by (1.8). For ¢ € {0, 1, 2}, we introduce the space Vﬁﬁ 9

Vzp’,B(Q) = {U € Hp (), HXZUHV;B(K ot ||XIU||V2‘B(IC ot Ix2ull ey < +oo} ; 3.7
sk O
equipped with the following norm
||UHv22ﬁ(Q) = ||XZU||v;ﬁ(zc ot \\XZU\|v;ﬁ(K T HX%U”HZ(Q) . (3.8)
, 8K 8Kt

Here, we have used the convention HY(2) = L?(9). Note, that the space VQZ 5(§2) is independent of the exact
choice of x and so the truncation functions X% and that

Vi 5/(Q) C V5 4(Q) forany ' < 3. (3.9)

In the same way, we also define Vf 5(€21) (resp. VQZ 5(€2B)) as well as their associated norm || - HVfﬁ(QT) (resp.
|- HV;E(QB)) replacing Q with Qr (resp. 2p) in the definitions (3.7) and (3.8). Finally, for ¢ € {1, 2}, we introduce

the space V;El/ ?(T") of the trace of the functions in VQ‘Z 5(§21) on the interface I'. As norm in V;gl/ *(T) we take

||u||v21’é2(1,) = inf {HUHVZ{B(QT) HONS V21’57v|p = u} . (3.10)

When studying the behavior of the far field terms close to the reentrant corners, the set
2m
A=\, €R, suchthat)\m:?, m € Z\ {0} (3.11)

of singular exponents will play a crucial role (see [19, Chap. 1 —4]). It consists of the real numbers A whose square
A? is an eigenvalue of the unbounded operator A which maps D(A) = H{} (0, 22)NH?(0, 2) into L?(0, 3Z') such
that Au = —u". Note that the associated eigenvectors are given by

Wi (t) = sin(Apt), meZ\ {0} (3.12)

The following proposition, which is a standard result in the literature on elliptic problems in angular domains
(cf. [33, Theorem 3.6 and Corollary 4.4] for the proof), provides an explicit asymptotic representation of the
solution of the transmission problems in a neighbourhood of the corners (see also [26, Chap. 6] for a complete and
detailed explanation of the overall approach):

Proposition 3.2. Let 3 < 0 be a real number such that1—3 ¢ A. Assume that f € V3 5(Q0)NV3 5(Qp) C L*(Q),

g€c V;gz(f‘) C H3*(T) and b € Vzlgz(F) C H'Y2(T). Then, the unique solution w € H{. (1) NHf._(QB) of
Problem (3.2) admits the following decomposition:

= Z g (F)Mwg0+(0%) + wr, (3.13)
1<q<3(1-B8)

where wt € Vfﬂ (QT)OVQ%B(QB), Wq,0,4 (1) = wq(t) and wqo,— () = wy(t—7F) (where wy were given in (3.12)).
Moreover, there exists a constant C' independent of u such that

lo* vz o + 0%z, 0+ 30 el <C (g @ + ilvp,@m ) - G149

1<g< 3“;5)

The expansion (3.13) is nothing but a modal expansion of the solution w is the vicinity of the two corners. Without
doubt a similar expansion could be obtained using the technique of separation of variables (see [20, Chap. 2]). The
sum Zl§q<%(1—ﬁ) cflt (r®)* wy 0.+ (0%F) is an asymptotic expansion for 7* — 0 whose remainder w* decays
faster to zero as any term in the sum. Obviously, due the embedding (3.9) asymptotic expansions of higher order
in T are obtained when § is decreased (or | 3| increased).
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3.2 The necessary introduction of singular macroscopic terms
3.2.1 The limit macroscopic term and its behavior in the vicinity of the corners

The limit macroscopic term u&o satisfies Problem (3.2) with f = fo 0 = f € L*(Q27) N L?(2p), g = Oand h = 0.
In view of Proposition 3.1, there exists a unique solution uf , belonging to H{ . (€r) NHy. (2p). Indeed, uf
is independent of § (it will be denoted by ug o) and belongs to H{ (£2), since its trace does not jump across I'.

The existence and uniqueness of ug o being granted, we can investigate its behavior in the neighborhood of the two
reentrant corners. Since we have assumed that f is compactly supported in 2, f € V) 5(f2T)N vy 5(§2p) for any
B € R. Then, in view of Proposition 3.2, ug o has the following asymptotic expansion in the vicinity of the two

corners vertices x25: for any k € N, there exists . ; € Vjﬂ(QT) N VQ%B(QB) forany 8 > 1 — @, such that
: + oo\ +
Ug,0 = Z G (175) 7 W 0,2(07) + wo 0k, (3.15)
m=1

- are real constants continuously depending on || f \\VQOﬂ(Q). Here again, the expansion (3.15) could also

be obtained using the method of separation of variables.

where ¢

3.2.2 A singular problem defining ug’l

To illustrate the fact that the macroscopic terms of higher orders cannot always be variational (i. e. belonging
to H'(Q1) N HY(OQB)), let us consider the problem satisfied by ugﬁl, investigating the regularity of gg,l and
h871 defined in (3.1b) and (3.1c) (we deliberately omit the term “(1;,0 for a while). In view of the asymptotic
expansion (3.15) of ug g,

9871 ~ co’l,i(ri)_l/?’ and hg’l ~ do’l,i(ri)_‘l/?’

as 7 tends to zeros. The constants co,1,+ and dp 1 + can be explicitly determined (but, there is not need to write
their complete expression). As a consequence, g&l does not belong to H& 7/02(11) and th is notin L2(T). It follows
that we are not able to construct ug)l € H'(Qr UQg). However, we shall see that it is possible to build a function
u ; that blows up as (r*)~1/3 as r* tends to 0. Since this function is not in H*(Qr U Qg), we say that this
function is singular. To distinguish from singular functions, we denote functions in H'(Q1 U Qp) as regular (so
not meaning C'*°-regular functions).

Remark 3.3. The previous analysis explains why, contrary to the case of an infinite thin periodic layer (see [34],
[14]), it is not possible to construct an asymptotic expansion of the form

W (anw2) = 0" (un(x) + a1, X))

neN

where u,, € H&FD (QT)N H%D (Qp) and 11,, are periodic functions with respect to X exponentially decaying as
X5 tends to £oo.

Remark 3.4. Since it is not possible to construct regular macroscopic terms, we shall construct singular ones.
Nevertheless, the exact solution u’ is not singular. As a consequence the far field expansion (1.6), which contains
singular terms, can not be valid in the immediate surrounding of the two corners. Here, a near field expansion
(1.11) has to be introduced, which replace the singular solution behavior towards the corners in their immediate
neighborhood.

3.3 Two families of macroscopic singularities ijmq

In this section, we introduce two families of functions, that are sfw g and s, for the right and left corner,

that will facilitate the definition of the macroscopic terms. The functions are defined recursively in ¢ for each
m € N\ {0}. The following subsection is dedicated to the definition of Sﬁm,()’ where the functions sfm, "
g € N\ {0} are defined by induction afterwards.

3.3.1 Harmonic singularities Sfm,o (m e N\ {0}
For any positive integer n, the terms Ufho are harmonic in 2. It does not imply that they vanish because we allow

for singular behaviors in the vicinity of the two corners. The present subsection is dedicated to the definition of a
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set of harmonic functions that admit singularities in the vicinity of the two corners xoi. The forthcoming analysis
is done for the right corner Xg but a strictly similar approach may be carried out for the left corner. To start with,
we exhibit a sequence of harmonic functions s'_"m o that behave like r~2m/3 in the vicinity of xar, and which are

regular in the vicinity of x; .
Proposition 3.5. Let m € N\ {0}. There exists a unique harmonic function Stm,O vanishing on I p of the form

2m

S womo+(01)XE +57,,0, (3.16)

st o=

where 5T belongs to H}(Q).

—m,0

Proof. Remarking that A'éfm’o belongs to L2(£2), the proof of Proposition 3.5 directly follows from the Lax-
Milgram lemma. O

It is worth noting that s_m o does not depend on the cut off function x} . Besides, it is easily verified that s_m 0
belongs to V2 5(21) N V3 3(Qp) for any § > 1+ 2. For instance, it belongs to V} a1 Q1) NV 2w 2 (D).
; 2,8 2,204 1

3
Naturally, for m € N'\ {0}, we can also prove the existence of a set of functions s_,,,  of the form

_ 2m

T =) B Wm0~ (07)XE + 500 S € Hy (). (3.17)

S

As for ug,o, we shall write an explicit asymptotic expansion of Sfm,o in the vicinity of the two corners. Applying
Proposition (3.2) to the function 5%, ; (noting that A5™,  ; vanishes for 7= < L/2), we can prove the following
proposition:

Proposition 3.6. Let m € N\ {0} and k € N. Then, there exist a function r* m.k.+ belonging to Vi s(Qr) N
V3 5(QB) forany g > 1 — Q(kgl) and k real coefficients U (s*,, o), 1 < q < k, such that

k
o = () F w0 (07) + D05 (5%, ) (1) wg 04 (07) +08, L (3.18)

Analogously, there exist a function v belonging to Vfﬁ (Qr)Nn VQQB (Qp) forany 8 >1— @ and k real

m,k,

coefficients f ( T, 0) 1 < g <k, such that
—m 0 — Zg —m 0 )Aqwq,o,—(ei) + TthC’,- (319)

@, there exists a constant C such that

Moreover, for any § > 1 —

hE

(165 (57 ) | + 165 (5F o)) + 1Tyl m) + 17T ks 2, )
1

=)
Il

2m
+%

+ L vz, @0 + [E—ry vz, £ C <|3m o||v22 @) 5T, o||v222m+7(93)> (3.20)
The formulas (3.18),(3.19) provide asymptotic expansions of s, 0 in the neighborhood of xg. Again, despite their

apparent complexity, they are essentlally modal expansions of 5T that can be also obtained using the separation

—m,0

of variables. Note that the remainder 7" is orthogonal to the functions wg g 4, for ¢ < k:

—m,k,+

/I+ Ti‘m’k#(?ﬁ,9+)wq70,+(9+)d9+ =0 Vg<k,

if 7 is small enough (i. e., where x7& 7. = 1). In this case, the coefficients Ki( T n.0) can be computed as
_29 ~
g(:]l: (Stm,O) = (Ti) g /Ii si_m,O(riv ei)wq,Qi(ei)dei- (321)

Remark 3.7. It is known [26, Chap. 6] that any function v € VQQB Q)N VP 5(Qp) for B> 1 + 2 = satisfying
Av = 0in Q is a linear combination of the functions sf,%o, <k<m.
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3.3.2  The families s, ., m € N\ {0},¢ € N\ {0}

In order to construct the macroscopic terms, it is useful to introduce the family of functions sfw g (M, q) € (N *)2
(remember that N* = N\ {0}), corresponding to the *propagation’ of Stm,O (recursively) through the transmissions
conditions (3.1b),(3.1c¢c):

Proposition 3.8. For any (m,q) € (N*)? there exists a unique function s*,, , € Vi 5(Qr) N V3 5(QB) for
B> 14 20 1 g satisfying

—Asfm)q = 0 in QT n QB,
Sfm’q = 0 onlp,
[Stm,q(xla 0)]F = Zpt —m ,q— p($170)>F + ZDn ap 1 —m ,q— p(xla 0)>F »  (3.22)
[angtmg(th)]p = Z 8p+1 —mq » .131, F + Z p+1 Si—m,q—p(‘rlvo»l“a

which admits the following decomposmons

gkt Delonging to V3 5 (Q8)NV3 5, (Qr) for any ' > 1—@
and real constants 0} (s*,, ), 0<p<q 1<n<(k+1)+ 3psuch that

e Foranyk € N, there exists a function r*

_m_
Si_m,q = (T+) qw—m »q, +(9+7 ln T+)

+ Z Z E:(sfm’qu)(r+))‘"—pwn)p)+(0+,ln7“+) + rfm,qvk# , (3.23)
p=0 1<n<(k+1)+3p

where wy, 0.+ (07,Inrt) = w, o 4 (07) are given in Proposition 3.2 and, for p > 1, wy, , + (60", Inr") are
polynomials in Inr+ whose coefficients (functions of 0%) belong to C>([0,]) N C>([r, 2]) (here [a, b]
denotes the closure of the intervall (a, b)).

e Foranyk € N, there exists a function Ti—m,ch,— belonging to V5 5, (1) NV3 5, () for any ' > 1— @

and real constants (;; (s*,, ), 0<p<q 1<n<(k+1)+ 3psuch that

_mq Z Z K;(sfmﬁq_p)(r_)’\”_pwn,p,,(0_,lnr_) + rfm7q7k7_, (3.24)

=0 1<n<(k+1)+2

where wy 0, (07, Inr") = wy0,-(07) (see Prop. 3.2) and wy, , — (0~ ,Inr~) are polynomials in lnr-

whose coefficients (functions of 0~ ) belong to C>([0, 5]) N C*°([%, 2F]).

A complete proof of Proposition 3.8 in [18] (Section C). It is strongly based on the explicit resolution of the Laplace
equation in so-called infinite conical domains for particular right-hand sides of the form 7*(In7)", A € R, n € N
(see Section 6.4.2 in [26] for similar results). As for s_m o» the proof consists of constructing an explicit lift of
the singular part of the jump values (3.23) in order to reduce the problem to a variational one (as already done for

Si_m,O)'

Remark 3.9. In the same way, for each m € N* we can define by induction a sequence of functions (s:m’ q) qEN
as follows: s, . is the unique function belonging to Vfﬁ (QT) ﬂVQQ’ﬁ (Qg) forany B > 1422 +q that satisfies the
transmission problem obtained from (3.22) by substituting s+ moq—p JOT $_p q—p in the jump conditions, and the

asymptotic expansions obtained interchanging (3.23) and (3.24), replacing the superscripts plus by superscripts
minus.

3.3.3 Annotations to the singular functions

Let us comment the results of the previous proposition and of Proposition 3.6:

— For m > 0 fixed, the family (s qen provides particular singular solutions to (3.1).

—-m q)

— The exponents A of »~ and T appearing in the asymptotic expansions (3.23),(3.24) are singular exponents
A € A as well as “shifted” singular exponents of the form A = A\, —p, A,, € A, where the integer p is between

1 and q. The most smgular part of ¥, in the vicinity of x; is (rt)=3m=9_,, . (0F,InrT), while

the most singular part of s™,,,  in the vicinity of xg is £7 (s™,, o) (r7)5 9wy 4 (07, Inr~). Consequently

s*_‘m o 18 "less singular’ in the vicinity of the left corner than in the vicinity of the right one.

—m,q
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— The function sfm’ o depends only on the functions s for p < q. In others words, providing that n # m,

the definition of the families {s™,, ..q € N}, {sT, . ¢ € N} are independently defined.

+

—m,p

— The functions wy,, 4 + are defined in (A.7). However, for the forthcoming derivation of the asymptotic ex-
pansion and its analysis their explicit expression is not important. Even so these functions will appear again
in the definition of the near field singularities (see Lemma 4.3).

— Problem (3.22) alone does not uniquely determine the function s™ Indeed, in view of Remark 3.7 the

—m,q"
solution of (3.22) is defined only up to a linear combination of {an,o’ n<m+ %q} However, imposing
additionally the singular behavior close to the corners given by (3.23) and (3.24) (using the fact that the

functions w,, 4,4 are uniquely determined) restores the uniqueness (cf. Remark 3.7).

— For a given k € N, the constants (i (s*,, ), 1 < ¢ < k, and the remainders 7, o+ Satisfy an estimate

of the form (3.20) that has been omitted for the sake of concision.

— The constants Eff(sfm q) are intrinsic to the singularity functions and can be obtained by similar kind of

formulas as (3.21). Each constant £ (s©

T n.q) appears in the decomposition of several singularity functions
in (3.23) and (3.24).

3.4 An explicit expression for the macroscopic terms

These part is dedicated to the derivation of a quasi-explicit formula of the macroscopic terms uf% o by introducing
particular solutions to Problem (3.1). As mentioned before, we shall allow u’ o to be singular. In view of the
previous construction, we shall impose that

2
qu,q € Vi5(Qr) N V5 5(Qp) forany B >1+ ?n +q, n>0,

1
ug,q € Vfﬁ(QT) N VQQH@(QB) for any § > 3 +q.

3.4.1 The macroscopic terms ugﬂ pd€EN

We remind that the limit macroscopic field ug o (remember that ug,o = Ug, € H&FD (Q2)) satisfies Problem (3.2)
withf = f € L?(Q1) N L?(QB), g = 0 and h = 0 (see Section 3.2.1). In this subsection we define the functions

ug = Uo,q in the large class of possible singular solutions of (3.1) by imitating the iterative procedure of the

previous subsection for the definition of the singular functions sfm’q (i. e., by 'propagating’ ug ¢ (recursively)

through the transmission conditions (3.1b),(3.1c)), by which in turn no additional singular functions are added.

Proposition 3.10. For any g € N* there exists a unique function ug’q =Ugq € ‘/—226 (1) ﬂVfﬂB (QB) for B > %—l—q
of (3.1) which admits the following decompositions:

e Forany k € N, there exists a function ra"q’kﬂr belonging to Vfﬁ/ Q)N ‘/2%5,(QT)for g >1- Z(kTH) and
real constants 0} (ug q—p), 1 <p<qgl1<n<(k+1)+ %p such that

q
we=Y S o) T w07, ) ol (0T) . (325)
p=0 1<n<(k+1)+3p

e Analogously, for any k € N, there exists a function r0+q k. belonging to Vfﬁ/(QT) N ‘@%B/(QB) for any
g >1- @ and real constants £y, (ugq—p), 1 <p < q 1 <n < (k+1)+ 2psuch that

q
Ug,q = Z Z 0 (uo.g—p) () Py, (07, InrT) + r&q’kﬁ(r_,ﬁ_) . (3.26)
=0 1<n<(k+1)+4p

Note that the functions w,, ;, + in (3.25) and (3.26) were used already in Proposition 3.8 and are defined in (A.7).

Similar to the singular functions the constants £;- (uo,p) are intrinsic and fixed, when uyg o is fixed. From now on
we consider the macroscopic terms u87 q = Uo,q to be defined by Proposition 3.10.
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3.4.2 The macroscopic terms uj, ,,n € N\ {0},g € N

We construct u®, q as follows:

Proposition 3.11. Letn > 0. For any p € N, let éfk(ufl’p), 1 < k < n be 2n given real constants. Then, the

family of functions
ZZD )$ kg 4EN, (3.27)

+ p=0k=1

satisfies the family of macroscopic problems (3.1). Moreover; the term u’, g belongs to V22 5(82r) N V3 5(QB) for
any B > 1+ %n +q.

We remind that the functions s*,, 4 are defined in Proposition 3.5 for ¢ = 0 and Proposition 3.8 for ¢ > 0 and

8y, q Are defined in (3.17) (¢ = 0)7 and Remark 3.9 (¢ > 0).

Proof. The *most singular’ part of u q 1 > 0, defined by (3.27) corresponds to Doy * (U Uy, O)Si[n o which, in

view of Proposition 3.8 belongs to V22 5(QT) nV3 5(Qp) forany 8 > 1+ 2” + q. As a consequence u’, belongs

to V5 5(Qr) N V3 5(2m) forany g > 1 + 28 4+ g. Next, let us show by mductlon on ¢ that the family ( Uy, 4)qeN
is a particular solution to the family of problems (3.1). The base step (¢ = 0) is trivial. For the induction step, it

is clear that un . is harmonic in Q27 and in Qg and fulfills homogeneous Dirichlet boundary conditions on I'p. It

remains to show the jump conditions across I'. Substituting the definition (3.27) into (3.1b) we can assert that

q n
[ui,q]F = Z Z Z F_:k(uz,p) (’D; 8;:1 <ka,qu7r>l“ + Dy 8;1_1 <aw237k,qu7r>1l) .

Interchanging the sum over r and p, using the induction hypothesis, we get the expected jump:

q n q
:Z Diagr—i_pnar 1 Zzzgi S k,q—p— T :Z 'D:8;1+D“67’ 1)< n,q— T>F'
r=1

+ p=0k=1 r=1
The condition for the normal jump follows accordingly, and the proof is complete. O

Letn > 0 and ¢ € N be fixed. We emphasize that the function u o (defined by (3.27)) is determined up to

the specification of the 2n constants Ejfk( n,q)’ 1<k<n (There are 2n degrees of freedom). The matching
procedure will provide a way to choose these constants in order to ensure the matching of far and near field
expansions in the matching areas.

3.4.3 Expression for the boundary layers correctors

Assume now that u? _ is defined by (3.27).Then, inserting this definition into the formula (2.30) defining the

n,q
boundary layer correctors IT¢ _, we find them to be given by

n,q’

Z x1 uO,q P (21,0))r + an 3p 1 aibz Uo,qu(xlao»l“v

and, forn > 0,

n

ZZ<ZWtZ€i nr fkq p—r) F+ZWHZF POT H0a S—’“I P T>F) ’
k=1 r r—

3.4.4 Asymptotic of the far field terms close to the corners

Thanks to the previous formulas, we have a complete asymptotic expansion describing the behavior of both macro-

scopic and boundary layer correctors terms in the vicinity of the reentrant corners: for any k£ € N there exists a
2(k+1)

function w,, 4 1 belonging to Vi 5(Qr) N V5 3(Qp) forany g > 1 — such that
q k+ir ,
Up, q Z Z CI’rb,q rym,+ T+) . w77l77“,+(9+7 In 7‘+) + Un,q,k,+ » (328)

r=0m=—n
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where, for any (n,j,m) € N? x Z,

Qs =OhWog), @l =Y Y Z£ (s5p,_p), n>0. (3.29)

+ k=max(1,—m) p=0
Here, we have used the convention that w , + = 0 for any 7 € N, that £ (s 5Ty p) =0foranym < —kandp € N.

Moreover, the notation Zm__n denotes the sum over the integers m € Z such that —n < m < k+ %r (the integer
index m does not exceed |k + 31|, where |a] and [a] denote the largest integer not greater or the smallest integer
not less than a, respectively).

For m < 0, the expression of a,, jm, + can be simplified since £}, (s~ ) vanishes, and £} (s*) ) =0

unless k = —m and ¢ — p — r = 0 (in the latter case, £}, (s;}, o) = 1):
@ gomet = L (U )- (3.30)

One can also give an asymptotic expansion for I12 4 for (xJOr)l — 1 sufficiently small (we remind that xg =

((x5)1, (x35)2) denotes the coordinates of the vertlce x3):

q k+ r
2m . T X
Z Z XO 1= 1‘1) ’ afL,q—T,m,—&- Pm,r+ (ln((xg)l - zl)a Flv ?2) + H7z,q,k,+7 (3.31)

r=0m=—n

where,

Pt (Int, 2, 22) Z Ghnrppor (Int) Wi (51,22) 4 Z Gy (nt) W (522) . 332)

The functions gy, ., . and gﬁnm’ . are polynomials in Int. Their definitions are given in (A.13),(A.14). The
remainder I, ;. + can be written as

q

gk (21, X) = > (wh, , (21,0)) ) + Z wh (@1, 0)WH(X), (3.33)
p=0
where one can verify (using a weighted elliptic regularity argument, see [26, Corollary 6.3.3]) that the functions

wy, ,p and w}; , belong to Vi (1) NV 5(Qp) forany 5> 1 — @

Naturally, similar asymptotic expansions occur in the vicinity of the left corner.

4 Analysis of the near field equations and near field singularities

The near field terms U, J . satisfy Laplace problems (see (1.18)) posed in the unbounded domain QF (defined
in (1.12)) of the form
—Au= f inQF,
u= 0 ondK*, 4.1)
Oou= g onTE, =o0%\aK*.

In this section, we first present a functional framework to solve the model problem (4.1) (Subsection 4.1). We
pay particular attention to the asymptotic behavior of the solutions at infinity (Proposition 4.5). Based on this
result, we construct two families Sét, q € N*, of "near field’ singularities, i. e., solutions to (4.1) with f = 0 but

growing at infinity as (Ri)%q (Subsection 4.2). Finally, we use these singularities to write a quasi-explicit formula
(see (4.21)) for the near fields terms U 1n.q.+ (Subsection 4.3). Here again, most of the results are explained for the

problems posed in Q' but similar results hold for Q.

4.1 General results of existence and asymptotics of the solution at infinity
4.1.1 Variational framework

As fully described in Section 3.3 in [10], the standard space to solve Problem (4.1) is

VO = {ve HL (O, Voe L2(QF), ———— e L2(QF), 0 =00n K" §, (4.2)
+ (R*)?
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which, equipped with the norm
9 1/2

+ Vol
L2(0+)

||U||m(§+) = 4.3

L2(9F) ’

v
1+ (RT)?
is a Hilbert space. The variational problem associated with Problem (4.1) is the following:

find u € V(QT) such that a(u,v) = (X)) u(X)dX + /A g(X)v(X)do, YveBOQT),
aQ+ ot

hole

where a(u, v) fQ+ Vu(X) - Vu(X)dX. It is proved in [10, Proposition 3.6] (cf. also [39, Lemma 2.2]), that

2
[, 80Xy do < CU+ R gl g o

hole

and that the bilinear form a is coercive on 0(Q+) (the seminorm of the gradient || Vv|| [2(6+) isanormon B(QH)).
As a consequence, the following well-posedness result holds:

Proposition 4.1. Assume that \/1+ (R+)>f € L*(QF) and (1 + (R™)*)/*g € L2(T.,.). Then, Problem (4.1)

has a unique solution u € %(SAZ*).

4.1.2 Asymptotic expansion at infinity

As usual when dealing with matched asymptotic expansions, it is important (for the matching procedure) to be
able to write an asymptotic expansion of the near fields as R* tends to infinity. In the present case, because of
the presence of the thin layer of periodic holes this is far from being trivial: there is no separation of variables.
However, Theorem 4.1 in [32] helps to answer this difficult question.

For the statement of the next results, we need to consider a new family of weighted Sobolev spaces. For £ € N (in
the sequel, we shall only consider ¢ € {0,1,2}), we introduce the space ‘Z}e (Q*) defined as the completion of

e (Q+) with respect to the norm

1

ollae @) = =D [+ BRI =t oy || L o p=14 (L4 RY)OT — . (4.4)
p=0
The norm || - ||m2 (@) is a non-uniform weighted norm. The weight varies with the angle §7. Away from the

periodic layer, i. e., for |§T — 7| > & for some ¢ > 0 and R sufficiently large, we recover the classical weighted
Sobolev norm V7 (IC*) (cf. (3.5)):

¢ 1/2
B—+
vllvepery = (Z I(RY) ”vallia(m) : 4.5)

p=0

Indeed, in this part p ~ 1 4+ RT for Rt — oo. In contrast, close to the layer, i. e., for 7 — 7 for R fixed, we
have p — 1, and the global weight in (4.4) becomes (1 + R*)#~7=%.0,

In the classical weighted Sobolev norm (4.5), the weight (R*)ﬁ —te depends on the derivative (p = 0 orp = 1)
under consideration. It increases by one at each derivative. This is linked to the fact that the gradient of a function

of the form (R+))‘g(9), which is given by (R*)’\*1 (Ag(8)e, + g’ (0)eg), decays more rapidly than the function
itself as R tends to +oo (comparing (1~~3+)>‘_1 and (R*)’\). This property does not hold anymore for a function
of the form (X;")*g(X;", X5) where X* = (X;", X5) = R*(cos*,sinf%) and g € V*(B) (g is periodic
with respect to X" and exponentially decaying with respect to X,). Indeed, in this case

V((X)9) = (MX g+ (XF) 0xrg) e1 + (X])0yrg o2,
which does not decrease as (X 1+ )A~1. This remark gives a first intuition of the necessity to introduce a weighted
space with a weight adjusted in the vicinity of the periodic layer, i. e., for  — 7. Note that in the case of Dirichlet

boundary conditions on the holes, the appropriate weighted space to consider is slightly different (see [30]).

To be used later we mention the following properties related to these new function spaces (see [18], Section D.1
for the proof):
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Proposition 4.2. Let v € (%, 1), p € {1,2}, N € R, g € N. Let x and x+ be the cut-off functions defined in (1.8)
and (1.17).

- The function v = xP) (X)) x_(X;") (RT)* (In R*)? belongs to QTOBN(@*) providing that

B<y—A+1/2.

- The function vy = x(RT)(RT)*(In RT)? belongs to QT%’,Y((AW) providing that
B<1—M\

- Let w = w(X;", X5) be a 1-periodic function with respect to X" such that ||w e|X2+|/2HL2(B) < +oo.

Then, the function vz = x_(X;7)|X;H 21 (In | X)) 9w (X, X3) belongs to %%77(5\2'*‘) providing that
B<y—A+3/2.

Letw € VT (B) N H}

loc

(B) such that

/<W;wf+ﬂ@ﬁwﬁ+V&ﬂ&;MﬂemﬁdX+<+m.
B 1 2

Then, the function vy = x_(X;7)|X;H 21 (In RT)9w(X;F, X7 belongs to Q]%’,y(ﬁ+) providing that

B<vy—A+1/2.

In absence of the periodic layer the solutions of the near field equations might be written as linear combina-
tion of harmonic functions (R*)*mw,, o4+ (In RT,0%), m € N* for R — oo where w,, . have been de-
fined (A.7). With the periodic layer the behavior far above the layer remains the same, but has to be corrected by
I X1 poo 4 (In | XS], X5, X5F) (with pyy, -+ defined in (3.32)) to fulfill the homogeneous boundary conditions
on fhole This correction is not harmonic and has a particular decay rate for Rt — oo. It can be (macroscopically)
corrected by (R*)*» 1w, ; , and in the neighbourhood of the layer by | X |* ~1p,, 1+ (In| X} ], Xi7, X35).
Then, through a consecutive correction in the form (the cut-off function x has been defined in (1.8)

P
D> (R T wn i (In R0 (X)) + X (X)X P py (I X, X, X5)) (46)
r=0

the Laplacian becomes more and more decaying for RT™ — oo, where any decay rate can be achieved, which
becomes, at least formally, zero for p — oco. The previous observation will be justified in a more rigorous form in
the following lemma which turn out to be very useful in the sequel.

For this let us introduce a smooth cut-off function Ymacro,+ (see Fig. 4) that satisfies

x(XS)  for X < —1,

Xmacr07+(X1+aX2+) = 1 for Xf_ > 7% R (47)

1 for X7 > —1,|X5 | >3,

and for m € Z \ {0} the asymptotic block (we adopt this notion from [32])

p
Z/{m,p, <X1 ’XJF Z (Xmacro,+ Xl ’X+) (R+))\ - Wm,r +(R 0+)
r=0
X () X P (XL XL X)) L 48)

where the cut-off function y _ has been defined in (1.17).

Lemma 4.3. Under the condition y € (1/2,1) the Laplacian AUy, p, 4 of the asymptotic block Uy, p.+ belongs to
W%W(QJr)for any B3 that satisfies
f<2=Antp 4.9)
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6t =0

Figure 4: Schematic representation of the cut-off function Xmacro,+ defined in (4.7)

The functions p,, 4 + are polynomials in In | X;"|. They are periodic with respect to X~ and exponentially decaying
as X5 tends to +-00. The functions w,, , 1 are polynomials in In R*. Note that, for R* large enough, if X;" < —1,

p
U p+ = Z <(R+)>\m_rwm,r,+(lnR+a9+)X(X;_) + ‘XN)\M_TPW,T,-‘:-(IH|Xf_|va_7X;—)) (4.10)
r=0

and, if X;" > —1,
p

Unpt =D (RO "y . 4.11)
r=0
The usage of the cut-off functions Xmacro.+» X— (X;"), and x(R™T) in (4.8) is simply a technical way to construct
function defined on the whole domain Q* (and more precisely belonging to HZ (21)) that coincides with Uy, ,, +
for large R™ as given in (4.10) and (4.11). The proof of Lemma (4.3) is postponed in Section A.3.

Remark 4.4. In view of Proposition 4.2, reminding that p,, o(In | X" |, X;7, X7 is proportional to (1 — x (X)),
forany vy € (1/2,1), the asymptotic block U, ,, + belongs to QT%W(Qﬂfor any B <1— A\

Defining Xmacro,— (X7 ; X5 ) = Xmacro,+(—X7 , X5 ), we can also define the asymptotic blocks associated with
)~ as follows:

P
Unip— = X(B7)D (xmaero - (X7, X57) (B (R, 67)4

r=0
X (X [XT P - (I |XT | X7 X7)). (412)

We are now in a position to write the main result of this subsection, which proves that for R™ large and for
sufficiently decaying right-hand sides, the solutions of Problem (4.1) can be decomposed into a sum of radial
contributions corrected by periodic exponentially decaying correctors in the vicinity of the layer of equispaced
holes. In the following, a real number 3 is said to be admissible if 5 — 1 ¢ A.

Proposition 4.5. Let k € Nand v € (1/2,1). Assume that f € ‘,U%W(Q*)for some admissible 8 > max(3,1 +
%) (and so \/1+ (RT)2f € L2(§+)) and that g € H1/2(fhole) is compactly supported. Then, the unique
solution u of Problem (4.1) belongs to ‘1](@"‘) N m%/77(§+) for any ' < L. Moreover, u admits, for v — 1

sufficiently small, the decomposition

k
2
u=> L (WU _ppmy+ + G p(n)=max(l, 150k =m)), (4.13)

n=1

where the asymptotic blocks U_,, ;) 4+ are defined in (4.8), £_(u), 1 < n < k, denote k constants, and, the
remainder u € W%ON(Q"‘) for any B° such that f° < B. In addition, there exists a constant C' > 0 such that

k
lallgs, e+ 2 1Ll < C (Il @) + 90 ) - (4.14)

n=1
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We remind that [a] (used in (4.13)) stands for the smallest integer not less than a.

The proof of Proposition 4.5 (see Section B.3 in [18]), deeply relies on successive applications of the following
lemma, which is a direct adaptation of Theorem 4.1 in [32]. To long to be presented in this paper, its proof requires
the use of involved tools of complex analysis that are fully described in [32].

Lemma 4.6. Let vy € (%, 1). Let B! and B? be two admissible exponents such that B* < % and 3% — B! < 1.
Assume that v € U2, W(Q“‘) satisfies Problem (4.1) with f € 3%, 7(Q+) and a compactly supported g €
HY/ 2(fhole). Then, for v — 1 < 0 sufficiently small u admits the decomposition

U= > ez g + 1, (4.15)
2(1-42)<k<2(1-p1)

where the asymptotic blocks Uy, 5+ are defined in (4.8) and for any admissible 3° € (B, %) the remainder
€ V2, ,Y(QJ“). In this case, there exists a positive constant C' > 0 such that

filz, @t 5 lal < € (Mg, o+ Mg, @n+Ioln) - @10
v 3(1-p2)<k<3(1-p1)

We emphasize that the powers of Rt (or X;") appearing in (4.13) (see (4.8)) are of the form —%n —q,n €N,
q € N. Thus, they coincide with the ones obtained for the far field part (see for instance Proposition 3.8). More-
over, as can be expected, the ’leading’ singular exponents % correspond to those of the problem without periodic
layer (here again, as for the macroscopic terms).

Remark 4.7. The assumption on g in Proposition 4.5 and Lemma 4.6 could be weakened by using the trace spaces
associated with the weighted Sobolev spaces Q]f,’ 7(Q+) (see [32]).

4.2 Two families of near field singularities
This subsection is dedicated to the construction of two families of functions S, m € N*, hereinafter referred to
as the near field singularities for the right and left corner, satisfying the homogeneous Poisson problems
~ASE = 0 inQF,
St = 0 ondK*, 4.17)
OnSE = 0 on 90\ OKE

and behaving like (RE) 7w, o+ (6" ) for RE large, where wy, o 4 = sin(220™) and wy, 0, = sin(3 (6 —
(defined in Proposition 3.2).

)

IR

Proposition 4.8. There exists a unique function S}, € %%77(?2*) Jorany B < 1— A\, and~ € (1/2,1), satisfying
the homogeneous equation (4.17) such that the function

St =85 — U f142,71+ (4.18)

belongs to QJ((AZJF). Moreover, for any k € N*, choosing 1 — +y sufficiently small, there exists a function R, €
02, ,(QF) for any admissible B <1+ @ and k constants £—,,(S,) (1 < k < n) such that S,}, admits the

decomposition
k

+
Sm - u””7"2(k:”L)]7+ + Z gfn(sjw)u_mﬁ(k;")],_i_ + Rm,k- (419)

n=1

In addition, for any < 1 — \,,,, there is a constant C' > 0 such that
k
+

In the same way as the near field singularities for the right corner S, the near field singularities for the left corner
S, can be defined. Note that for m > 2 there are several functions satisfying the homogeneous equations (4.17)
and behaving like (RT) 1w, 0.+ (leading term) for large R*. Indeed, admitting the existence of the functions
S, any function of the form S}, + > el akS would also fulfill these requirements. Nevertheless, the (4.19)

restores the uniqueness by fixing (arbitrary) ay, k = 1,. —1to0.
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Proof. The proof is classical and is very similar to the proof of Propositions 3.5, 3.6 and 3.8. We first prove the
existence of S;},. The function S}, satisfies

—ASH = fm in (AZJF,
St 0 ondKT, fn = =AU 140074
On St 0 ondQt\ oK,

In view of Lemma 4.3, f,, belongs to %g’ﬁ(fﬁ) for 5 < 2 — A, + [1 4+ \y,]. Noting that 2 — X\, + [1 +

Am |23, Proposition 4.1 ensures the existence and uniqueness of 5”;; S QT((AZJF), and, hence, the existence of S:,g.
Uniqueness of S; follows directly from the fact that difference of two possible solutions is in the variational space
‘I}(Q*) and satisfies (4.17). Finally, the asymptotic behavior for large R™ results from a direct application of
Proposition 4.5 to the function S — U, , + choosing p sufficiently large so that A(S;; — Uy, .+ ) belongs to

m%ﬁ(fﬁ) for a real number 8 > max(3,1 + Q(k%l) (which is, thanks to Lemma 4.3, always possible). O

4.3 An explicit expression for the near field terms

As done for the macroscopic terms in Section 3.4, we can write a quasi-explicit formula for the near field terms
U?s 1.q,+- We shall impose that the functions U? .q,+ do not blow up faster than (RT)* for Rt — oo. Since Ung g
satisfies the near field equations (1.18), it is natural to construct U, 3 nq+ asa linear combination of the near ﬁeld
singularities Sfct, 1 < k < n, namely

Uéq = Z"S’ﬂk n,q,+ )S]:gta 4.21)
k=1

where 2, (U} J . ) are constants that will be determined by the matching procedure and that might depend on 4.

Naturally, the functions U, 4 + (defined by (4.21)) satisfy the near field equations (1.18) and belong to %B,v( )
forany 8 < 1 — Ay, and y € (1/2,1). It is worth noting that the definition (4.21) implies that

USy+=0 VgeN. (4.22)

Asymptotic behavior for large R™ To conclude this section, we slightly anticipate the upcoming matching
procedure by writing the behavior of U? 1.q,+ at infinity. Thanks to the asymptotic behavior of St for RT — oo
(Proposition 4.8), we see that, for any K € N*,

7%‘1, Z Z "E/pk nq + (S ﬂjih[@]# + Rn,q,K,-‘,—y (423)
k=11=—k
where R, . x,+ € ‘172 B0 (Q+) for any 30 < 1+ Q(K'H) . Here, for the sake of concision, we have posed
Z(5F)=0 foranyr e Nsuchthat0 <r <gq—1,

and Uy j+ = 0 for any j € N. Then, substituting the asymptotic blocks {/_; 142 + for their explicit expres-
sion (4.8), we obtain the decomposition

K 25
2,
Ui,q,+ = Xmacro, +(X) Z Z Afz7q7—l,+ (R+) ¢ w—l,r,+(R+a %)
l=—n r=0
e, (4.24)
X+ Z Z Anq—l—i—‘X | p—l,r,+(ln|Xf_|aXr7X;_)+Rn,q,K,+7
l=—n r=0
where we have used the convention wg »+ = 0 and pg , + = 0 for any r € Z. Here,
V(g ) EN*xZ, A} v= Y LU, LS. (4.25)
k=max(1,l)
Note that for n = 0, An et = = 0. Moreover, for [ > 0, % (Sk) = 9%, and consequently
Afqu-i-_ﬁ( nq+) (426)
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Finally, with the change of index —/ — m and summing up over n and ¢, we can formally obtain an asymptotic
series of the near field: For X~ < —1,

Z 5% SR =

(n,q)EN?
2n 2m M_T
Y sEe Y Al g D (B F 7w (07,0 RNXE) + X7 D (I | X, X))
(n,q)EN2 m=-—oo reN
4.27)
and, for X;" > —
Z (52"+4U5,q+— Z s ta Z Anq,m+z:R+ )5 w4 (07, I RY) | (4.28)

(n,q)EN? (n,q)EN? m=—00 reN
The near field terms U2 .q,— can be decomposed in strictly similar way by substituting formally the superscript

plus into a superscnpt minus in (4.24) and (4.25). Here, it should be noted that the way to compute %} (U2 7 _)is

different how % (U2 .¢.+) are computed.

S Matching procedure and construction of the far and near field terms

We are now in the position to write the matching conditions that account for the asymptotic coincidence of the far
field expansion with the near field expansion in the matching areas. Based on the matching conditions, we provide
an iterative algorithm to define all the terms of the far and near field expansion (to any order), which have not been
fixed yet.

5.1 Far field expansion expressed in the microscopic variables

We start with writing the formal expansion of the far field >, ,\cne 55 T4y 0 dX)x(x2/8) + 105 (21, %))
(cf. (1.7)) in the matching area located in the vicinity of the right corner (i. e. for small ™). Collecting (3.28) and
(3.31), summing over the pair of indices (n, ¢) € N? and applying the change of scale x* /5 = (x —x})) /6 — X+

and so 77 /§ — RT we formally obtain for X; < —1,
> ot (u, <x>x<%> T 4 (21,3)) =

(n,q)EN
Z §3nta Z an mqm+z< (RT) e ,T7+(9+,lnR++1H5)X(X;)

(n,q)€ENZ m=-—00 reN

XTI s (10 X5+ Ind, X7 )) NCRD)
and for X; > —1
SoosEtd (x) = Y gin Z g O (B F w07 IMRT +1nd) . (5.2)
(n,q)€EN (n,q)EN? m=—oo reN

Note, that the coefficients a’, .q,m.+» defined in (3.29), depend for n > 0 on ¢ only through the constants = L (ud )

which we are going to fix in the matching process. In the equations (5.1) and (5.2) the terms w,y, ;. 4 and Dm,r+
appear with a second shifted argument, i. e., In R* 4 In § instead of In R* and In | X;| 4+ In § instead of In | X{"|.
The following lemma is a reformulation of these terms as linear combinations of non-shifted ones and will prove
very useful in the matching procedure. It is based essentially on the fact that the terms w,, , + are polynomials in
the second argument and p,, - 4+ in the first. The proof of the lemma finds itself in Appendix A 4.

Lemma 5.1. The equalities

/2] .
Wit (05, M RE +106) = > wi gk o2k + (05, RF) Y Cropit (In6)7 (5.3)
=0
and
Lr/2] k .
Pt (I | X5+ 106, X5) = ) pro_gp ok (0 [XF[ XE) Y Crpopiae (In6) (5.4)
k=0 =0
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hold true, where for any integer i,k such that 0 < i < k and using the notation wmﬂgk}i(ﬁi,ln R*) =
Zf:o (In R*)'wyy, ok i+ (07), the constants Cyy, oy i+ are given by

4 37 T
Cmoki+ = 3. /i Wiy 2kei 4 (05 )W 31,0+ (0F)d0F, T = (0, ?), Im =(—5,m). (5.5)
I

2
Remark 5.2. With the convention that wg o+ = 0 it follows that Cp, ox s, + = 0 for k = m/3. Moreover, in view

of the orthogonality conditions (A.16) Cy, 21 0,4 always vanishes if k # 0 and Cy, 90+ = 1.

Inserting (5.3) into (5.2) and noting that 2 (m — 3k) — (r — 2k) = 2m — r, we obtain

n
+4q — gn+q s
PO R PR ID DL LD DI R

(n,q)EN? (n,q)€EN? m=—o00
[r/2] 2o
Z Z R+ —r= 2k)wm 3k, r—2k +(9+ 111]%+ Zcm ng_(lné)
reN k=0 =0

Then, the changes of indices » — 2k — r and m — 3k — m give

n

SooaEtad = N st N ad Y (B T, (07 IR, X >0, (5.6)

(n,q)€EN2 (n,q)€EN2 m=—oo reN
where
[n/3] k
V(n,q,0) EN* X Zy @ gt = D G0 sk gmisks D Cmtskakis(In0). (5.7)
k=0 1=0

In particular, for m < 0, thanks to (3.30) (and using Remark 5.2), we have

[n/3] k
de,q,m,+ = é’;";L( Uy, q) + Z afb—i‘)k‘,q,m—&-?)k,—&- Z Om+3k72kyi7+(ln 5)2 (5.8)
k=1 i=0
Analogously, for X f‘ < —1, we obtain,
2n
Z 53 Tl (x)x(22/6) +H  (1,%x/6) =

(n,q)€N

n

~ 2m g 2m g
S0 ST @ e 3 (B H w1 (0%, 10 ROX(X) + X5y (] X, X))

(n,q)EN? m=—o00 reN

(5.9)

The previous two expressions have to be compared with formula (4.27) and(4.28), in which the coefficients
A2 n.q,m,+ are still not determined, since the constants £, e a+)>» m = 1,...,n are not fixed yet. We aim
to match the expansions in the matching zone and, hence, define these constants uniquely.

5.2 Derivation of the matching conditions

Arrived at this point, the derivation of the matching conditions is straight-forward. It suffices to identify formally
all terms of the expansions (5.9) and (5.6) of the far field with all terms of the expansions (4.27) and (4.28) for the
near field. We end up with the following set of conditions:

AS =al Y(n,q) € N2, and m € Z, m < n, (5.10)

n,g,m,+ = “'n—m,q,m,+>

where A° gm,+ and as_,. amt were defined in (4.25) and (5.7). As the coefficients Ai,q,m, . are linear combi-
nations of the constants .%,,, (U2 g4+)sm =1,...,n and the coefficients d‘fL’ q,m,+ are linear combinations of the

constants ﬂfm(ui,p), m = 1,...,n for some p € N we aim now to obtain conditions between those constants.

Here, we will proceed separately for the the cases m > 0, m = 0 and m < 0.

For 0 < m < n, using the equality (4.26), we have for any (n,q) € N* x N,

gm(Ug,q,-&-) = &fL—m,q,m,—&- . (511)
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For m = 0, for any (n,q) € N, there is nothing to be matched. Indeed, both left and right-hand sides of (5.10)
vanish (G, 4,0,+ = 0 because C3, 21,5, + = 0, see Remark 5.2).

For m < 0, in view of (5.8) and substituting A,, 4, + for its definition (4.25), we have for any (n, q) € N2,

[(n—m)/3] k n
‘erfﬁ,(uifm,q) = - Z afL—m—Sk,q,m—&-fﬁk,—l— Z Cm+3k,2k,i,+(1n 5)l + Zg (Ug ,q, +)$m(sl:r)7 (512)
k=1 =0 k=1

which may also be red as follows: for any (n, g, m) € N3 such that, n > 1,and 1 < m < n,

[n/3] n—m
L ) ==Y add g, m+3k+Zam+3k2m<ln6 + > LU g ) Lom(SE). (5.13)
k=1 =0 k=1

Here again, we can write similar matching conditions for the matching area located close to the left corner. These

conditions link the macroscopic terms u?, o to the near field terms Uy 5 _:for1 < m < nand for any (n,q) €
N* x N,
Ln(Un g,-) =l g.m,— (5.14)

and, for any (n,q,m) € N® such that, n > 1,and 1 < m < n,

[n/3] n—m
£ Z al, 3k,q,— m+3k—zc—m+3k ok, (In6)" + Z LUy g )L-m(S; ). (5.15)

Here, a,, 4,m are defined by

[n/3] k
V(n,q, l) € N? x Z, afz,q,m, Z a’n 3k,q,m+3k,— Z Cm+31€ 2k,i,— (ln 6)
k=0 1=0
with
n j
Y (j,m) € NxZ, ag7j)m7_ ={,.(50,), andan]m_ Z Z Zfik (s* Trj_p) ifn>0.

+ k=max(1,—m) p=0

5.3 Construction of the terms of the asymptotic expansions

The matching conditions then allow us to construct the far field terms u and Hfl o and the near field terms
U 1.q.+ Dy induction on n. The base case is obvious since we have seen that the macroscopic terms 1 ¢ are entirely
determined by Proposition (3.10), the boundary layer correctors Iy , are defined by (2.30), and the near field terms

U .+ =0,q € Nby (4.22).

Then, assuming that um q and Uy, J g, 4 are constructed for any m < n — 1, we will see that (5.11),(5.13) and
(5.14),(5.15) permit to define both un, q (and consequently H ) and Un o for any ¢ € N.

Far field terms We remind that, for a given ¢ € N, the complete definition of the macroscopic terms un q only
requires the knowledge of the E“_—Lm(uf% q) for any integer m between 1 and n. In fact, the conditions (5.13) define
exactly €_m( uy, ,): in the right-hand side of (5.13), the quantities £ (S;") are known (S, is uniquely defined)

and %, (US_,, a0 +) are known since U2 _, .q,+ are already defined (induction hypothesis). In addition, since
n—3k
+ .
g _ Z Z ZE r " 3k7P —m+3k( —r,q—p) if n —3k 7& 07
An—3k,q,—m+3k,+ = + r=max(1,m—3k) p=0
etm+3k(80»q) ifn—3k = 0,

the coefficient a® ;. \q—mt3k,+ is well defined for any k such that 1 < k < [1/3] (¢7(un_3,4) is known by the
induction hypothesis). Naturally the conditions (5.15) define £, (u? ) 1s the same way. Finally, the definition of
the boundary layer terms Hn, o follows from (2.30).
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Near field terms ~ Similarly, the definition of the near field terms U? 1.q,+ Tequires the specification of the quantities
L (US a ) for any integer m between 1 and n. The condition (5.11) exactly provides this missing information

for U? Indeed, in the right-hand side of (5.11), the computation of @’ . requires the knowledge of

n,q,+* n—m,q,m,

q
6 _ Z Efr(ufz—m—?;k,p) €;+3k(8fr,q—p) ifn—m—3k 7é Oa
an7m73k:,q,m+3k:7+ - + r
é;+3k(50,q) ifn—m—-3k=0.

for k between 0 and |(n — m)/3]. But, since m > 0, £, (u? ) are well defined thanks to the induction
hypothesis. Then, U? n.q,+ 18 entirely determlned In the same way, the condition (5.14) allows us to define U? g

by £, (s%, a—p)» ™ € Zand all occurences £}, (s0,4) by £;,,(50,4)

nm3k

as well, replacing all occurences of ém(
m € Z in the previous formulas.

—r,q— p)

Remark 5.3. We point out that the variables n and q play a very different roles in the recursive construction of the
terms of the asymptotic expansion. Indeed, the construction is by induction only in n. At the step n, we construct
J andU‘Sqiforanyqu

n,q’

6 Justification of the asymptotic expansion

To finish this paper, we shall prove Theorem (1.6), which shows the convergence of the truncated macroscopic
series toward the exact solution in a fixed domains that excludes a neighbordhood of the the corners :vg and the
interface I'.

As usual for this kind of work (See e. g. [24] (Sect. 3), [21] (Sect. 5.1), [17] (Sect. 4)), the proof is based on the
construction of an approximation ujsvo of the solution 1’ on the whole domain 2° obtained from the four truncated
series (at order Ny) of the macroscopic terms, the boundary layer terms and the near field terms:

. . 5
- The truncated macroscopic series Uy,

5 - x1— L 1+ L T2
Xmacro,total(x) = X+ ( S ) X— ( 5 ) X ( 5 )
1 FL z 1 FL
+ ZXmacro,:t (167 ;) (1 — XF (16>> ) (61)
+

which is equal to 1 for |z1| > L, and which coincides with x (%2 ) in the region |z1| < L —0 (see Fig. 5). The
cut-off functions x, X+ and Xmacro,+ are defined in (1.8)-(1. 17) and (4.7). We then define the macroscopic
approximation as follows:

N, We introduce the macroscopic cut-off function

1 2n+q
umacro,No Xmacro total Z 93 u ) (62)
(n,q)€Do

- The truncated periodic corrector series H?VO: it is given by

113,00 = (1 = x(e)x (D (2

DI A G x1,§). 6.3)

(n,9)€Do

The function y (5% ) (25H2) permits us to localize the function H‘?VU (x) in the domain |z1| < L while
the introduction of the function (1 — x(z2)) ensures that H‘?VU (x) vanishes on I'p.

- The truncated near field series U 1{707 L (x):

n 5 X
UN07 ( ;D 6 3 +qUn q 5 ) (64)
n,q (0]

We shall construct a global approximation ujg\, that coincides with Ujf,o_i in the vicinity of the two corners, with

H?V in the vicinity of the periodic layer and with u?
we introduce the cut off functions

X5 (%) = x (&;) and ° (x) = x (;(;)) : (6.5)

macro, N, aWay from the corners and the periodic layer. To do so,
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Figure 5: Schematic representation of the cut-off function X;;am,wml.

where 17(9) : R™ — R™ is a smooth function such that

- _ im 1) _
%1_{% n(d) = 0 and %1_% 5 = T (6.6)

For instance for s € (0,1), n(d) = * satisfies these conditions. Finally the global approximation u?vo of uf is

defined by

ulyy (%) = X5(%) Ungt + X2(0) Ung— + (1= x5 (%) = x2 (%)) (tpgero, v, (2) + I, (). (6.7)

Note that u?vo belongs to H, llD (929) but does not satisfy homogeneous Neumann boundary conditions on I"°.

The aim of this part is to estimate the H'-norm of the error €%, = u’ —uf;, in Q° (We remind that u® € Hf. (9°)
is the ’exact’ solution, i. e. the solution of Problem (1.3)). It is in fact sufficient to estimate the residue Ae‘]svo and the
Neumann trace ane‘;\,o. Then, the estimation of ||e‘15\,0 | z71 () directly results from a straightforward modification
of the uniform stability estimate (1.5) (Proposition 1.1): there exists a constant C' > 0 such that, for § small
enough,

e Iy < C (16N, lIn2as) + 110ned, llL2(rs) ) - (6.8)

The main work of this part consists in proving the following proposition:

Proposition 6.1. There exist a constant C > 0 and a constant 6o > 0 such that, for any € > 0, for any § € (0, &),

o (O NY L 1.
1AeX, 25y + 10ned, lL2(rs) §C<5 2 (77(5)) + 0 n(8)No~s ) (6.9)

As a direct corollary, choosing 1(§) = V6, ¢ = %, we obtain the following global error estimate: there exist a

constant C' > 0 and a constant §; > 0 such that, for any 6 € (0, &o),

e, sy < C 323, (6.10)

. 6 . . . 6
Since ey, coincides with u® =3

and the triangular inequality.

n,q)€Dn, 5§"L+qui’q in Q,, for 0 small enough, Theorem 1.6 follows from (6.10)

Remark 6.2. We emphasize that u‘JSVO is certainly not the best choice to minimize the global error. As shown
in [15], a global estimate based on the truncated far and near field terms obtained by the compound method might
provide a better global error. Nevertheless, for the sake of simplicity and since we are mainly interested in the
macroscopic error estimate (that can always be made optimal thanks to the triangular inequality), we prefer using
here u‘ls\,u.

Sketch of the proof of Proposition 6.1. In this paper, we only explain the main ingredients of the proof but a de-
tailed proof may be found in [18] (Section 6). Remarking that the supports of the derivatives of Xi and \° are
disjoint (for § small enough), using additionaly that AUﬁm . = 0, we can decompose the residue as

_Aetls\[0 = Emod t Ematch, (6.11)
where,
gmatch = - Z[Aa Xéi(x)](UNo,i - U’r(;acro,No (.13) - H?VO (Z‘)), (612)
+
and
Emoa = F — (1= x%(%) = X2 (X)) A (Uhaer0.n, (%) + %, (7)) - (6.13)

30



Ematen TEpresents the matching error. Its support, which coincides with the union of the supports of in and Vy? ,
is included in the union of the rings 7(§) < |r*| < 2n(J). It measures the mismatch between the far and near
field truncated expansions in the matching zones. Because of the matching principle, this term is expected to be
small. Enod, representing the modeling error (or consistency error), measures how the expansion fails to satisfies
the original Laplace problem.

As for the residue on the boundary, is it easily seen that

Oney = D 0o (x) (Ung 2 — Ty, (@) (6.14)
+

so that the error on the boundary data is supported in the matching areas, and therefore can be treated as the
matching error. The remainder of the proof consists in proving the following error estimates for the matching and
modeling errors: There exist a positive constant C > 0 and a positive number dy > 0, such that, for any 6 € (0, do),

o (SN .
||5m0d||L2(Qé) + HgmatChHLz(QLS) + ||an€§vo||L2(pa) <C (5 2—¢ (77(5)> 446 1n(5)No G a) ) (6.15)
Although long and technical, the proof of the previous estimate is rather standard. O
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A Appendix: proofs of technical results

A.1 Definition of the profile functions 1V, and W

Forp > 0, W; € V1 (B) is the unique decaying solution to

th Nt
—AxWp(X) = Fy(X)+ FFloo(X)) + 5[ (X)] in B,
67LVVJL = Oon 6§holea (A.D

6X1 (0 XQ) = (9)(1 (1 XQ) X5 €R,

where, by convention W; = 0 for any negative integer p. The right hand side F; is given by
Fp(X) = 20x, Wy (X) + Wp_5(X) + (—D“’m (2{g(X)) 5““)

+ Z Lk/QJ gk 5evenDt_ + Z [k/2j )} 5odd Nt pi1s (A2)
and the constants D} and N} are given by

D, = / Fy(X)D(X)dX, Nj=-— / Fi(X)N(X)dX. (A.3)
B B

In formula (A.2), 5;’,‘” is equal to the remainder of the euclidian division of p by 2 (i. e. 6gdd is equal to 1 if p is odd

and equal to 0 if p is even) and §,"" = 1 — 6;‘“ (6" is equal to 1 if p is even and equal to 0 otherwise). Moreover,
|r| denotes the floor of a real number 7.

Similarly, setting WI‘,‘ =0, for p <0, and, for p > 1, W; € V1 (B) is the unique decaying solution

Dn Nn '
—AxWp(X) = FpX)+ oo (X)) + <01 (X)) in B,

8 I/Vn 0 on aﬁhole, (A4)

6)(1 (O XQ) = 8)(1 (1 X2) Xy € R,
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where

F(X) = 20x, Wp_1(X) + WyLo(X) + (=12 (2(g,(X)) 5"

~—

P
p—1 p—1
gk X even n 0 ﬂ
k=2 k=2
and the constants D), and N; are given by
/ F)(X)D(X)dX, N, = / F}(X)N(X)dX. (A.6)
B

Remark A.1. The well posedness of Problem (A.4) and Problem (A.1) results from the application of Propo-
sition 2.2. By construction, the right-hand sides of Problem (A.4) and Problem (A.l) satisfy the compatibility
conditions (Cp) and (Cy), ensuring that W, and W} belong to V* (B).

A.2 Definition of the families w,, , 1

We shall construct the functions wy, ;, + as
p
Wy p+ (0%, Inrt) = an’p’q’i(ei)(ln rEY, neZpeN, wnpat € COO( ) ne=(1; ), (A7)
q=0

where I = (a*,7F), IF = (v%,bF) with at = 0,yT = 7, b = 3% and,a” = —%,7" =0,b" =m. The

construction of w,, j, + is by induction on p. The functions w, o+ have already been defined in Proposition 3.2:
wmo,i(Gi, In7%) = sin(\,0%). (A.8)
For p > 1, we construct wy, p, + of the form (A.7), such that the function

Vin,p,+ (Tiv ai) = (Ti))\nipwn,pd: (eﬂ:’ In Ti)

satisfies
Avpps = 0inKHIAKH2,
Vn,p-,ﬂ:(ai) = 0,
Vnp(b5) = 0, VneZ*, VpeN*,  (A9)
Vo (5 7 okt inocse = (PN Payp e (Inr),
[0+ Vi p, = (rF, 75 ot anacs2 = (1) Py p s (Inr®),
where

K= ={(r"cosft,rsing") € KF, 6% € Ili} K=2 ={(r"cosft,rsind") € K=, 6% € I;E}, (A.10)
and,

p—1

an,p,+ (ln Ti) = Z (D;—rgrtz,r,p—r,i (ln T:t) + D;—rg:;,r,p—r,i (ln Ti)) ’ (A 1 1)
r=0
p—1

bn,p,ﬂ:(ln ri) = Z ( ;—&-1 7hn , TP, :t(ln Ti) + ;—i—l—rhg,r,p—r,i(ln Ti)) . (Alz)
r=0

The functions g, ,. . 4. gn ., + are defined by the following relations: for n € Z*,r € N, g € N,

—r— o1 —r

(Ti))\n e gft’z,r,q,:l:(ln 7’+) - (:Fl)q (8Ti)q [(TJF))\TL <wn,7“,:|:(’yia In ri»aKi’lﬁ@KiﬂQJ 5 (A.13)
—r—q n A —r—

(Ti))\n a gn,r,q,i(ln ’I"+) = (:Fl)qW [(ri))\n ! <89iwn,r,i(ryialn Ti»a)ci-,lnalciﬂ} a(q > 1)

(A.14)
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g;,r,O,i = O’ and’
n

h;,r,q,ﬂ: = :Fg:z,r,qul,:l: and hn,r,q,:ﬁ: = :Fg:l,r,qul,:l:' (AlS)

The recursive procedure to construct the terms w,, p + is the following: assume that the terms wy, 4,+ are known
for any n € Z* and ¢ < p — 1. To construct wy, , + we need to know the source terms a,, , + and b, ;, 4+, which
require the computation of grtz,r,p—r,i and gy, .,y forr < p—1. But, g:zmp—r,i and gy, ., only depend on
the function wy, - +, which, thanks to the induction hypothesis is known. Similarly, to construct by, ,, +, we need
to define h;,r,p—r,i and hy, ..., 4 forr < p— 1. These terms only depend on wy, 1, and, as a consequence, are
known. The existence w,, j, + of the form (A.7) results from Lemma C.1 in [18] (see also Chapter 3 in [28] and the
Section 6.4.2 in [26] for the proof).

. . . t n t
Of course, we could have written a recursive formula to obtain g, ,. ., 4 (tesp. gp , o+l g 4

hy r.q,4+) starting
form g, . o 4 (tesp. g .0 +-h5, 0.+l 0 +) but we shall not need to explicit this formula.

Remark A.2. If \,, —p € A (which is the case as soon as p is even, except if A\, —p = 0), the functions wy, p + is
not uniquely defined by (A.9). In that case, we add the somehow arbitrary condition
bi

/ Wnpo+ 05, InrE)w, 0 £ (0F)dOF =0, (N, —p€A,p>1) (A.16)
at

to restore the uniqueness (see (A.7) for the definition of wy, 0.+ ). As a consequence, we can see that the sum over
q in (A7) goes from 0 to |p/2] (and not p): in other words, wy, , + is a polynomial of degree at most |p/2|.

A.3 Proof of Lemma 4.3
U, p,+ 1s a sum of a macroscopic contribution

P

U pmacro = ¥ _(RT) ™ "wy 1 (In RT,67),
r=0

modulated by the cut-off function Xmacro,+» and a boundary layer contribution (exponentially decaying with respect
to | X))

p
Unn pBL = Z('X;r|)>\m_rpm,r,+(ln(|X;r|)aXf_vxg_)'
r=0

modulated by the cut-off function x_ (X;"). Consequently,

AZ/lm,p,—i- = [AyX(R+)](Xmacro,+um,p,macro+x—(Xr)um,p,BL)+X(R+)A (Xmacro,+um,p,BL + X- (Xr)um,p,macro) .
(A.17)
The first term in the right-hand side is compactly supported (since Vx(R') and Ax(R™) are compactly sup-

ported). Therefore it belongs to QT%, ~ (ﬁ*) for any real numbers /3 and ~. It remains to estimate the terms of the sec-

ond line. The proof is technical but the main idea to figure out is that A (Xmacro,+Um,p Br.) and A (x_ (X f )um,p,macm)
counterbalance (up to a given order).

We start with the explicit computation of A (Xmacro,+ Unm.,p,macro)- We consider the function
Vim,r,+ (X1+7 X2+) = (R+)/\m_rwm,r,+ (9, In R+)7

already defined in (A.9). v, , 4 is defined in the union of the two cones K1 and K12 (see (A.10)). It is smooth
on K1 and K2 and it satisfies Av,, -+ = 0in K1 and K2, Using the fact that maero,+ = X(X3) on the
support of x _ (Xf) (Xmacro,+ = X(X;) for Xfr < —1), we have

p P

A (Xmacro.,Jr um,P,mﬂCTO) = X- (X1+) Z A(X(X;)Vmﬂ”,Jr) + (1 —X- (XlJr)) Z {A(Xmacro,+(X1+7 X;)me+)} .
r=0 r=0
(A.18)

The second term in (A.18) belongs to QT%W((AZJ“) for any real numbers /3 and vy because (1 — X,(Xf))mecm,Jr
and is (1 — x— (X fL ))AXmacro,+ are compactly supported and Av,, . = 0. Next,

A (X(X;_)me%—) = 2X/(X;)8X,jvmm+ + X//(X;)me—k-
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Using the Taylor expansion with integral remainder,

K-1
Vm,r,-&-(Xf_aX;) = a;cq—vmm(Xi‘—»Oi)
k=0

X+
(X;_)k 1 / 2 8Kvm,r,+(Xi~_vt) (X;_ B t)Kfldt7
0

W TR oD FTS

reminding that [0%  v,,, ;. 1| is smaller than C|X |} ~"~  In|X"|" on the support of the derivative of x(Xy"),
2
it is verified that

p—r
1
AX(XS )V +) = Z spen(—1) /2l <28§(1+ (Vinr+)(9K) + iaﬁ(f [Vmﬂ',-&-][gko
k=0

p—r
_ 1 5o
A (2050 )0+ 505 0 ot 91]) (XX, (A9
k=0

where 7, 4., is @ smooth function whose support is included in the band 1 < | X7| < 2 that satisfies
m -1
[Pmrpl < CIXS PP~ n | X[ (A.20)

for a constant C' depending on m, r and p. We remind that (v,,, , 4} and [v, » ;] denote the mean and jump values
of v, + across the interface K1 N G2 and that the functions (gx) and [gx] are defined in (2.4). These
functions only depend on X, and their support coincides with the support of x’(X; ). To obtain (A.19), we have
used the fact that Av,, . .~ = 0 on the support of {gx) and [gx] so that we can use the formulas

ale agfvm,r,+(xlu Oi) = (_1)kaﬁf2kvm,h+ (w1, Oi)a

aé 82k+1vm’r’+((517 Oi) = (—1)kaﬁj2kaxzvm,r,+(ml7 Oi)

T1 T X2

Noting that a’;q Vit (X1, 0%) = (=1)*0k  {(R")* ~"w, . 4 (In R, 7%)}, and using the definition (A.13)

of gy, . 1..» We see that
O () = (<140l (R P w0 (RO} = X P gl (X (A2D)

Analogously, replacing the [V, 1] = [(RT)*" "wy, , 4] with its explicit expression (A.11) and substituting
[8)(; Vi) = —(RT)A="=10g w4 (In RT, )] for its explicit expression (A.12) (using the relation (A.15))
we get

a;}l [aX;Vm,r,+] = (| XA rr ZN:+lfjg;z,j,k+r7j,+(ln | X5F1) +N7?+1fjg;1n,j,k+rfj,+(1n|X1+|)
j=0
(A.22)
Substituting the left-hand sides of the last four equalities for their right-hand sides in (A.19), summing the contri-
bution (A.19) from r = 0 to p, we end up with

A (Xmacro,Jr um,p,macro) = Rm,p,macro(Xler X;r)

T

p
X=X DX (9 WX DAL + gy (I X DARXS)) (A23)

r=0 k=0
where,
p P
Ry, p macro = X*(Xfr) Z Tmyr,P(XlJrv X2+) +(1— X*(Xf)) Z {A(Xmacro,+(X1+v X2+)Vm,n+)} , (A24)
r=0 r=0
and, thanks to (A.2)-(A.5),
Al = AW = 205+ Wiy — Wiy R =S AWE =20 Wy — Wi, (A.25)

Applying the first point of Proposition 4.2, we note that R, p macro belongs to ‘BO& . ((AZ*) for B <v—(Am—p)+3,
and therefore for any 8 < 2 — (A, — p).
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The computation of A (X, (X f )Um,szL) (last term to evaluate in (A.17)) is much easier. We remind that p,,, , 4
is defined in (3.32). Then, using the definition (A.14) of g, ., | we see that
A{IXTE P G oo X)) W)} = (X g g (I [ X)) AWR(XY)

TP (208 e (0 X ) Dy W) ) [XF P72 (g ([ XT ) WH(XT)).
(A.26)

The reader may verify that a similar formula holds for A { |X
t with n . It follows that

’\"'L*Tg;;“_k7k7+ (In| X)) }, replacing the subindex

A (X= (X W ppL) = Rmp (X7, X5
—x-(XH (Y2 < X ( Irmr—tego,+ (I X DAL 4 g o+ (I X5 |>Az>> , (A27)
r=0
where,

Rm,p,BL(X;ra X;_) =
p+1

X— (X)X PPt Z (29;1,p+17k,k,+(1n‘Xf|)8XfWI:71 + 2921,p+17k,k,+(1n|X1+|)8X1+Wl?71)
k=0
p+2 r
X-(X7) Z Z | XA (I rege e O IXTWE oy + g e (I [ XYW )
r=p+1 k=0

+ 2VX—(X{") - VU p s + U p, s A(X - (XT)).  (A28)

The support of the terms of the fourth line are included in a band B = supp(x’_(X;")) N Q. Since, the
function and the derivative of U, p macro are exponentially decaying in this band, it is verified that these terms

also belong to m%ﬂ(ﬁ‘*) for any real numbers 3 and 7. The terms of the second and third lines are of the

form | X;F AP~y (In | X |, X, X3) or | XM =P~ 2wy (In | X |, X, X5) where w; and ws are polyno-
mial functions with respect to In | X |: fori = 1ori = 2, w;(t,X;, X)) = 39_ t°g:,s(X;, X5 ). The

functions g; s belong to L?(B) and are such that || gi}Se‘X2+ 1/2|| 25y < 400 (they are exponentially decaying).

Therefore, the third point of Proposition 4.2 ensures that R, ,, g1 belongs to ‘I?% 7(SATF) for B <v—(Am—p)+3,
and consequently for any 8 < 2 — (A, — p).

Finally, collecting (A.23)-(A.25) and (A.27), we see that

AZ/[m,p,+ = 2VX(R+)'V(Xmacro,Jrum,p,macro"‘Xf (Xf)um,p,BL)'i‘AX(R—i_)(Xmacroum,p,macro'f'xf(Xf)um,p,BL)
+ Rm,p,BL(Xf_a X2+) + Rm,p,macro(Xi‘—y X;_)

which belongs to m%ﬁ(fﬁ) for forany 8 < 2 — (A, — D).

A.4 Proof of Lemma 5.1

We first prove (5.3) by induction. The base case ¢ = 0 is obvious because w,, o + is independent of In R and
Cm,0,0 = 1 (cf. Remark 5.2).

Before we prove the inductive step, it is interesting to consider the cases r = 1 and r = 2 separately. For r = 1,
we remark that wp, 1,4 (67, In R™) does not depend on In R™. Indeed, A, — 1 = 2m — 1 does not belong to A
(Am — 11is not a singular exponent). Then, Lemma C.1 in [18] ensures that wy, 1+ (67, In RT) = w,, 1 4+ (67). It
follows that Wy, 1,4+ (01, In RT +1In8) = wp,1,4(07) = wim1,4+ (61, In RT). By contrast, For r = 2 and m # 3,
Am — 2 belongs to A. More precisely A\, — 2 = A, —3. Then, we know that

wm72,+(9+, In R+) = wm,2,07+(9+) + wm72,17+(9+) In R+, with wm72,17+(0+) = me_3,07+(9+).
and C' = ;- fo%ﬂ Win2.1,4(07), Wi—3,0,+(07)dO™. Therefore,

wm727+(9+, InRT +In 5) = wm727+(9+, In R+) + C’m,271,+w,n_3,07+(0+) In 5,
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which proves formula (5.3) for » = 2. The previous argument may then be repeated inductively. The key point to
figure out is that for any ¢ € N such that ¢ # m/3, \,,, — 2q is always a singular exponent, which corresponds to
Am—3q-

Let us start the inductive step. Let » € N, and assume that formula (5.3) is valid up to order » — 1. Let us denote
by w9 ;¢ and w ¢ the left and right-hand sides of (5.3), i. e.,

wlys(@, mnRT) = W  (0F,InR* +1nd),
Lr/2) K |

whasO@TMRY) = > wp gk ok 4 (07, InRY) (Zcm,%,i,i (husy).
k=0 i=0

w? 17 and w ¢ have both a polynomial dependance with respect to In § and In R*. We shall see that v§ ;¢ =
(RT)*m="wd g and vy e = (RT)M "wdy, ¢ satisfy the same problem and apply Lemma C.1 in [18] to
conclude. First, we can rewrite v ;5 as

v g (0, In RT) = 5" (° (R+))A"“" wd, o (07, In (P°(RY))) with *(RY) = RT4.

m,r,+

Then, in view of the formula (RT0g+) {g(¢°(RT))} = ¢?(RT)g'(¢°(R*)) and reminding that the function
© "Wy, (07, In ) is harmonic in £ +! and K2, we have

AV%HS = AV%HS =0 in ’C+71 U IC+’2.

Then, we evaluate separately the jump values of w) ;¢ and w% -

r—1 r—1
[wLHS ZD: pgmpr p+(1nR +11’1(5 +ZD;} pgmpr p+(1nR +1H(S)
p=0 p=0

But, the reader may verify (using homogeneity arguments) that

o7
O(R*)I

(R gy 5 (I RY +1nd) = (-1)/ (R wp 4 (m, I RY +1n0))) .

Then, for p < r — 1, using the induction hypothesis and the fact that A, — p = \;,_3, — (p — 2¢), we have

lp/2] q
Iprpr MRT +108) = Y (00)" Con 2,64 I 3q.p—200—p,4 (WRT), (A.29)
q=0 i=0
and, analogously,
p/2] q '
G prpy MR +100) = > > " (In6)’ Con2g.i+ G—3g.p-200—ps (MRT) (p<7T—1).  (A30)
q=0 i=0
Therefore,
r—11p/2] ¢
[wéLHS Z Z Z n4)" C, 12q,%,+ (DT Pgm 3¢,p—2q,r—p, +(1nR ) + Dy Im—3q.p—2q,r—p,+ (10 R+)) ‘
p=0 =

(A.31)
On the other hand, [w% ;4] = Zg;/zj SL o(In6)" Con2g,is+ [Wim—3g,r—2p,+] is given by

/2] q¢ r—2q—1
Z Z Z (I00)" Crn 2g.i.+ (D:‘—2q—pgftn—3q7pﬂ‘—2q—p7+(ln RT) + Dy 24 pIm—3¢.p.r—2g—p,+ (10 R"))
p=0

q=0 i=0

Then, using the change of index p < p + 2¢, and interchanging the sums over p and ¢, we see that [wrps] =
[wrmg). Similar arguments yield [Og+ wras] = [Og+ wrms). Finally

A(vras —Vvras) =0, [Op+(wras —wrus) =0, and [wrgs —wrms] =0.

To conclude we consider separately the case r odd or r = 277” from the case and r even and r # 277” If r is odd or

r= 277”, Am — 7 is not a singular exponent. Then, Lemma C.1 in [18] ensures that v5L HS = v‘;% mg- If ris even and
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r # 22, then Lemma C.1 in [18] guarantees that v ;¢ — v is proportional to w,,_3,/2.0,+. In other words,
writing

[r/2] Lr/2]
wiHS(0+,lnR+) = Z wLH5'7 ) R*)" | and wéRHs(aJrvlnRJr) = Z wRHSv )(InR)" |,

we know that w) yyg . = why g, fori # 0, and wi 5o = Whygo + C(6)Wn—r 2,04 We shall see that C(4)
vanishes. Indeed,

3777 [r/2] 7"
| wharsol0) oo s (018" = 3 1007 [ w0 ar20(6 8"
0 s 0
3 r/2
7TZ(J,,m+(1n<5) (A32)
1=0

On the other hand, using the orthogonality condition (A.16) for k < r/2, k # m/3, the fact that Crmoki+ =0
for any integer ¢ such that 0 < ¢ < k if k = m/3 (See Remark 5.2), we see that

. r/2] & 3x

/0 w?%HS(H—F)wm73r/2,0,+(9+)d9+:Z ZCm,Qk,L—&-(lnd)i | Win—35,r—216,0,+ (07 )W —37/2,0,+ (07)dOT
k=0 i=0
|r/2] 4 3z 3 r/2
= Z Cm,’r,i,+(1n 6)2 / |wm 3r/2 0 + 9+>| d9+ Z Cm i +(hl 6)2 (A33)
i=0 0 i=0

As a consequence W g o = Why 5,0 and the proof of formula (5.3) is complete.

Finally, Formula (5.4) then directly results from (A.29)-(A.30) (which finally hold for any (n,p,r) € N3), and
(3.32).
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