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Abstract. Uncertainty is inevitable when solving science and engineering application problems.
In the face of uncertainty, it is essential to determine robust and risk-averse solutions. In this work, we
consider a class of PDE-constrained optimization problems in which the PDE coe�cients and inputs
may be uncertain. We introduce two approximations for minimizing the conditional value-at-risk for
such PDE-constrained optimization problems. These approximations are based on the primal and
dual formulations of the conditional value-at-risk. For the primal problem, we introduce a smooth
approximation of the conditional value-at-risk in order to utilize derivative-based optimization al-
gorithms and to take advantage of the convergence properties of quadrature-based discretizations.
For this smoothed conditional value-at-risk, we prove di↵erentiability as well as consistency of our
approximation. For the dual problem, we regularize the inner maximization problem, rigorously
derive optimality conditions, and demonstrate the consistency of our approximation. Furthermore,
we propose a fixed-point iteration that takes advantage of the structure of the regularized optimal-
ity conditions and provides a means of calculating worst-case probability distributions based on the
given probability level. We conclude with numerical results.
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1. Introduction. In this work, we develop approximations and theory for the
conditional value-at-risk (CVaR) applied to optimization problems constrained by
partial di↵erential equations (PDEs). PDE-constrained optimization problems arise
in numerous engineering applications. Often in these applications, PDE coe�cients
and inputs are unknown and estimated from empirical data, adding uncertainty to
the optimization problem. In the face of uncertainty, it is essential to manage the
risk associated with an optimal design or control. There are a multitude of constructs
to measure risk: for example, one can control large deviations or rare-events in the
objective function to be minimized. Such optimization problems are considered in
[7, 8, 23, 22, 39].

In this work, we focus on sample-based discretizations of the PDE with uncer-
tain coe�cients. Sample-based discretizations allow us to more easily reuse existing
deterministic PDE solvers. Discretizations for PDEs with uncertain inputs are typi-
cally classified as either projection-based or sample-based. Projection-based methods
include polynomial chaos and stochastic Galerkin methods [4, 5, 19, 45], as well as
the more recent best N -term approximation and sparse-tensor discretization [20, 35];
sample-based methods include (quasi-)Monte Carlo and stochastic collocation or de-
terministic quadrature methods [3, 26, 25, 44].

Optimizing the conditional value-at-risk is common practice in financial mathe-
matics to determine risk-averse investment strategies, see e.g. [13, 32, 31, 37]. At
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a specified probability level, 0 < � < 1, the value-at-risk (VaR) is defined as the
�-quantile of a random variable. Building on the concept of VaR, the conditional
value-at-risk is the expected value of the �-tail distribution, see, e.g. [32, Def. 3].
Thus, CVaR emphasizes rare and low probability events when � � 0. In engineering
terms, tail-probability events often correspond to failure of the engineered system. As
such, it is important to conservatively manage these risks, e.g., by minimizing CVaR.

CVaR is a proper and coherent risk measure in the sense of [1]. Namely, CVaR is
convex, monotonic, translation equivariant, and positive homogeneous. Coherent risk
measures preserve desirable properties of the original objective function such as con-
vexity. Moreover, proper, coherent risk-averse optimization problems have equivalent
dual, minimax formulations [33, Th. 2]. In this paper, we investigate both the primal
and dual formulations of the CVaR problem for PDE-constrained optimization.

For the primal formulation, we approximate the expected value in the CVaR
objective function using a sample-based discretization [21]. Such sample-based dis-
cretizations include (quasi-)Monte Carlo and deterministic quadrature. Whereas
Monte Carlo methods exhibit a constant convergence rate of Q�1/2 where Q de-
notes the number of samples, deterministic quadrature exploits any regularity of the
integrand to accelerate convergence. Once discretized, our goal is to employ standard
gradient-based optimization algorithms to solve the CVaR problem. To ensure the
existence of derivatives and the regularity of the integrand, we smooth the condi-
tional value-at-risk. We analyze a general smoothing technique for CVaR based on
the previous work in [9, 29] and prove that the resulting smoothed CVaR is mono-
tonic, convex, and translation equivariant. In addition, we prove that the smoothed
CVaR function is di↵erentiable and determine rigorous upper bounds on the error
in the optimal control variables associated with smoothing. In [21], the first author
proves explicit quadrature error bounds for certain risk-averse optimal controls. Com-
bining the smoothing error bound with similar quadrature error bounds completely
characterizes the errors in the optimal controls.

For the dual approach, we treat the minimax reformulation as a nonsmooth opti-
mization problem. We derive di↵erential sensitivity results of the nonsmooth objective
functional and, using these results, we prove rigorous optimality conditions for the
minimax problem. After suitable regularization, the specific structure of the problem
allows the solution of the inner maximization to be reduced to a single nonsmooth
equation in one-dimension. Finally, we derive a primal-dual optimality system. This
system has two purposes. First, it can be used to define an alternating fixed-point
scheme to solve the optimal control problem. In the event that the fixed-point map-
ping is not contractive, we can still use the additional information to easily calculate
a worst-case probability measure associated with a given control value.

The remainder of the paper is outlined as follows. First, we present the problem
formulation for risk-averse PDE-constrained optimization. The problem we focus on is
the optimal control of a nonlinear PDE with a tracking-type objective function. Next,
we introduce the conditional value-at-risk and review some basic properties of CVaR.
Following this review, we present and analyze the primal approach to solve the CVaR
optimization problem in which we discuss the well-posedness and consistency of our
approximations. Subsequently, we present the dual problem formulation and discuss
theoretical and numerical aspects associated with this approach. Finally, we present
numerics confirming our theoretical results and provide some concluding remarks.

2. Problem Formulation. Let ⌦ ⇢ Rd (d 2 {1, 2, 3}), an open and bounded
subset with Lipschitz boundary @⌦, denote the physical domain and let (⇧, F , P )
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be a complete probability space. Here, ⇧ is the set of outcomes, F ✓ 2⇧ is a �-
algebra of events, and P : F ! [0, 1] is a probability measure. Although many
of the results in this paper apply to more general PDEs, we motivate this work by
considering optimization problems governed by the following nonlinear elliptic PDE
with uncertain coe�cients,

�rx · (b✏(!, x)rxu(!, x)) + bN(u(!, x),!) = bf(!, x), x 2 ⌦ (2.1a)

u(!, x) = 0, x 2 @⌦. (2.1b)

Here, we assume b✏, bN, and bf are su�ciently regular. The state variables are denoted
by u and are random fields. The control variables are denoted by z and are determin-
istic. The controls will enter (2.1) as a combination of distributed controls (appearing
on the right-hand side of (2.1a)) and Neumann controls (appearing as a boundary
flux, augmenting (2.1b)). Equation 2.1 is required to hold P -almost everywhere in ⇧.
For the optimization formulation, we consider (2.1) in the weak form. To formulate

the weak form of (2.1) we require b✏ 2 L1
P (⇧; L1(⌦)), bf 2 Lq

P (⇧; H�1(⌦)) for some

q 2 (1, 2], and the nonlinear term satisfies bN : H1
0 (⌦) ⇥⇧! H�1(⌦) such that

bN(u(·, x), ·) 2 Lq
P (⇧; H�1(⌦)), 8 u 2 Lp

P (⇧; H1
0 (⌦)),

where 1
p + 1

q = 1, i.e., p 2 [2, +1). The weak form is: Find u 2 bU = Lp
P (⇧; V) with

V = H1
0 (⌦) such that

Z

⇧

Z

⌦

b✏(!, x)rxu(!, x) · rxv(!, x) dxdP (!) +

Z

⇧

D
bN(u(!),!), v(!)

E
V⇤,V

dP (!)

=

Z

⇧

D
bf(!), v(!)

E
V⇤,V

dP (!), 8 v 2 bU . (2.2)

To simplify notation, we define the stochastic weak-form PDE operator as ba : V ⇥V ⇥
⇧! R such that

ba(u, v,!) =

Z

⌦

b✏(!, x)rxu(x) · rxv(x) dx +
D
bN(u,!), v

E
V⇤,V

(2.3)

and we define the stochastic forcing term on the right-hand side of (2.2) as bb : V⇥⇧!
R such that

bb(v,!) =
D
bf(!), v

E
V⇤,V

. (2.4)

The weak-form (2.2) is compactly written as: Find u 2 bU such that

Z

⇧

n
ba(u(!), v(!),!) �bb(v(!),!)

o
dP (!) = 0 8 v 2 bU .

As is common in the PDEs with uncertain coe�cients literature [4, 3], we employ
the finite-dimensional noise assumption to facilitate the numerical solution of (2.2).

Assumption 2.1. There exists an M -dimensional random vector ⇠ : ⇧ ! ⌅ =QM
k=1 ⌅k with ⌅k ✓ R and joint density ⇢ : ⌅! [0, +1) [ {+1} such that

b✏(!, ·) ⌘ ✏(⇠(!), ·), bN(·,!) ⌘ N(·, ⇠(!)), and bf(!, ·) ⌘ f(⇠(!), ·)
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for some ✏ 2 L1
⇢ (⌅; L1(⌦)), f 2 Lq

⇢(⌅; V⇤), and N : V ⇥ ⌅! V⇤ satisfying

N(u(·), ·) 2 Lq
⇢(⌅; V⇤), 8 u 2 U = Lp

⇢(⌅; V).

One can achieve Assumption 2.1, for example, using a Karhunen-Loève expansion
[18, 24, 3]. Furthermore, Assumption 2.1 permits the following change of variables
for (2.2)

Z

⌅

⇢(⇠)

Z

⌦

✏(⇠, x)rxu(⇠, x) · rxv(⇠, x) dxd⇠ +

Z

⌅

⇢(⇠) hN(u(⇠), ⇠), v(⇠)iV⇤,V d⇠

=

Z

⌅

⇢(⇠) hf(⇠), v(⇠)iV⇤,V d⇠ 8 v 2 U . (2.5)

As in (2.3) and (2.4), we have the parametrized state and forcing operators ba(·, ·,!) ⌘
a(·, ·, ⇠(!)) and bb(·,!) ⌘ b(·, ⇠(!)) where a : V ⇥ V ⇥ ⌅ ! R and b : V ⇥ ⌅ ! R are
defined analogously to (2.3) and (2.4), respectively.

We consider the optimal control problem

minimize
z2L2(⌦c)

bJ(z) =
1

2
�

Z

⌦o

(u(·, x; z) � ū(x))2 dx

�
+

↵

2

Z

⌦c

z(x)2 dx (2.6)

where ⌦o ✓ ⌦, ⌦c ✓ ⌦ [ @⌦, ū 2 L2(⌦o), ↵ > 0, and u(·, ·; z) = u 2 U solves

Z

⌅

⇢(⇠)

⇢
a(u(⇠), v(⇠), ⇠) � b(v(⇠), ⇠) �

Z

⌦c

z(x)v(⇠, x) dx

�
d⇠ = 0, 8 v 2 U . (2.7)

We consider controls, z, that are possibly a combination of distributed and Neumann
controls. To simplify notation, we denote the control space as Z = L2(⌦c). The

operator � : L
p/2
⇢ (⌅) ! R [ {�1} [ {+1} is a risk measure, see e.g., [33, 37]. Risk

measures are motivated by the need in science and industry to control large deviations,
tail probability, quantiles, and rare events. In this paper, we focus our attention on
the conditional value-at-risk (CVaR) [31, 42].

Throughout, we use the following notation to represent the weak form (2.7)

e(u, z, ⇠) = 0 2 V⇤ a.e. in ⌅,

for u 2 V and z 2 Z where e : V ⇥ Z ⇥ ⌅! V⇤ is defined as

he(u, z, ⇠), viV⇤,V = a(u, v, ⇠) � b(v, ⇠) �
Z

⌦c

z(x)v(x) dx.

Note, the assumptions that follow are independent of (2.7) and only refer to the
abstract nonlinear equation e(u, z, ⇠) = 0. Thus, the resulting theory applies to more
general PDEs than (2.7). The following assumption ensures the existence of solutions
to (2.7) and that (2.6) is well-defined, cf. [23].

Assumption 2.2. For each z 2 Z, there exists a unique u = u(z) 2 U = Lp
⇢(⌅; V)

which solves (2.7) and satisfies

ku(⇠; z)kV  (1 + kzkZ) a.e. in ⌅

for some  > 0 independent of z 2 Z and ⇠ 2 ⌅. Moreover, if {zn} ⇢ Z such that
zn * z 2 Z, then u(⇠; zn) * u(⇠; z) in V for almost every ⇠ 2 ⌅.
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One class of solution techniques discussed in this paper are gradient-based opti-
mization algorithms. In order to ensure the gradient of bJ(z) exists, we require the
following assumption.

Assumption 2.3. The nonlinear PDE residual operator is continuously Fréchet
di↵erentiable with respect to u 2 V and z 2 Z with derivatives

eu(u, z, ⇠) 2 L(V, V⇤) and ez(u, z, ⇠) 2 L(Z, V⇤) a.e. in ⌅,

respectively. Moreover, the PDE solution is continuously Fréchet di↵erentiable as a
function from Z into U with derivative

u0(z) 2 L(Z, U),

which uniquely solves the sensitivity equation s = u0(z)h 2 U for h 2 Z and
Z

⌅

⇢(⇠) h(eu(u(⇠), z, ⇠)s(⇠) + ez(u(⇠), z, ⇠)h), v(⇠)iV⇤,V d⇠ = 0,

for all v 2 U . Finally, there exists a unique solution � 2 U of the adjoint equation
Z

⌅

⇢(⇠)

✓
heu(u(⇠), z, ⇠)⇤�(⇠), viV⇤,V +

Z

⌦o

(u(⇠, x) � ū(x))v(⇠, x) dx

◆
d⇠ = 0,

for all v 2 U .

If the risk measure � : L
p/2
⇢ (⌅) ! R[ {�1}[ {+1} is Hadamard di↵erentiable,

then bJ(z) is also Hadamard di↵erentiable and Fubini’s theorem [12, Th. 2.39] implies
the following explicit gradient,

r bJ(z) = ↵z +

Z

⌅

⇢(⇠)r�

Z

⌦o

(u(·, x; z) � ū(x))2 dx

�
(⇠) ez(u(⇠), z, ⇠)⇤�(⇠) d⇠,

where � 2 U solves the adjoint equation and r�[X] 2 L
p/(p�2)
⇢ (⌅) for X 2 L

p/2
⇢ (⌅)

denotes the Hadamard derivative of the risk measure.

3. The Conditional Value-At-Risk. The conditional value-at-risk controls
uncertainty by minimizing the expected value of the random variable tracking term
over its quantiles. We denote the tracking term as

⇠ 7! T (⇠; z) =

Z

⌦o

(u(⇠, x; z) � ū(x))2 dx 2 Lp/2
⇢ (⌅) ✓ L1

⇢(⌅).

To define the conditional value-at-risk, we first define the value-at-risk (VaR). For
some 0 < � < 1, the �-VaR corresponds to the �-quantile of a random variable X,

VaR� [X] = inf { t 2 R : Pr[X  t] � � }.

Here, Pr[X  t] denotes the probability that the random variable X is less than or
equal to t. That is,

Pr[X  t] =

Z

{ ⇠2⌅ : X(⇠)t }
⇢(⇠) d⇠.

In [31, 32], Rockafellar and Uryasev show that the conditional value-at-risk is

CVaR� [X] = inf
t2R

F�(t, X),
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where F� : R ⇥ L1
⇢(⌅) ! R is given by

F�(t, X) = t +
1

1 � �
E
⇥
(X � t)+

⇤
and (x)+ = max{0, x}.

Here, we denote the expected value of X 2 L1
⇢(⌅) as E[X] =

R
⌅
⇢(⇠)X(⇠) d⇠. Using

these definitions, our risk-averse optimal control problem (2.6) is

minimize
z2Z

bJ(z) =
1

2
CVaR�

Z

⌦o

(u(·, x; z) � ū(x))2 dx

�
+

↵

2

Z

⌦c

z(x)2 dx. (3.1)

Therefore, Theorem 14 in [32] ensures that minimizing the �-CVaR in (3.1) is equiv-
alent to solving the augmented optimization problem

minimize
t2R, z2Z

J(t, z) =
1

2

 
t +

1

1 � �

Z

⌅

⇢(⇠)

✓Z

⌦o

(u(·, x; z) � ū(x))2 dx � t

◆+

d⇠

!

+
↵

2

Z

⌦c

z(x)2 dx. (3.2)

The conditional value-at-risk is a coherent risk measure in the sense of [1] and
has domain L1

⇢(⌅). That is, � = CVaR� satisfies the following four axioms: For
Y, Z 2 L1

⇢(⌅) and t 2 R
1. Monotonicity: If Y  Z a.e., then �[Y ]  �[Z]
2. Translation Equivariant: �[Y + t] = �[Y ] + t
3. Convexity: �[tY + (1 � t)Z]  t�[Y ] + (1 � t)�[Z] for t 2 (0, 1)
4. Positive Homogeneity: �[tY ] = t�[Y ] for t � 0.

A risk measure satisfying Axioms 1 and 2 is called a monetary risk measure while a
monetary risk measure also satisfying Axiom 3 is called a convex risk measure [13].

Note that if the random variable tracking term is convex with respect to z, then bJ(z)
is also convex with respect to z.

In this work, we develop two approaches for solving the CVaR optimal control
problem (3.2). The first approach is to approximate the expected value in (3.2) using
a sample-based discretization and solve the resulting PDE-constrained optimization
problem [21, 23, 22]. The second approach uses the Fenchel-Moreau duality theory
for convex risk functions [33, 37] to transform (3.2) into the minimax problem

min
z2Z

bJ(z) = sup
#2A

1

2

Z

⌅

#(⇠)⇢(⇠)

Z

⌦o

(u(⇠, x; z)� ū(x))2 dxd⇠+
↵

2

Z

⌦c

z(x)2 dx, (3.3)

where the feasible set of density functions A is defined as

A =

⇢
# 2 (L1

⇢(⌅))⇤ : 0  #(⇠)  1

1 � �
a.e. in ⌅,

Z

⌅

#(⇠)⇢(⇠) d⇠ = 1

�
. (3.4)

4. Primal Approach. The primal approach to minimizing the conditional value-
at-risk is to solve (3.2) directly. In this section, we first prove existence of solutions to
(3.2) and present the standard smooth, constrained reformulation of (3.2). We then
discuss a sample-based approach to discretizing (3.2) in sample space.

Theorem 4.1. Let Assumption 2.2 hold. Then there exists a solution to (3.2).
Proof. We first prove coercivity of J(t, z). Let X 2 L1

⇢(⌅) be such that X � 0
a.e. in ⌅ and notice that the monotonicity of (·)+ implies

F �(t, X) � F �(t, 0) = t + (1 � �)�1 max{0,�t} =

( ⇣
�

1��

⌘
|t| for t  0

t for t > 0.
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Hence, F �(t, 0) is convex, continuous, and nonnegative. Since T (⇠; z) =
R
⌦o

(u(⇠, x; z)�
ū(x))2 dx � 0 a.e. in ⌅, we have

F �

✓
t,

Z

⌦o

(u(⇠, x; z) � ū(x))2 dx

◆
� F �(t, 0).

Thus, J(t, z) � F �(t, 0) + ↵
2

R
⌦c

z(x)2 dx. Therefore, J(t, z) is coercive, i.e.,

�
|tn|2 + kznk2

Z
� 1

2 ! +1 =) J(tn, zn) ! +1.

We now prove weak lower semicontinuity of J(t, z). Note that since @⌦ is Lipschitz
and by Assumption 2.2, V ,! L2(⌦) is compact and the tracking term, T (⇠, z) =R
⌦o

(u(⇠, x; z) � ū(x))2 dx, is weakly continuous with respect to z 2 Z a.e. in ⌅.

Moreover, the penalty term, R(z) =
R
⌦c

z(x)2 dx is also weakly lower semicontinuous.

Now, let {(tn, zn)} ⇢ R ⇥ Z be such that (tn, zn) * (t, z) 2 R ⇥ Z. Thus, the
subadditivity of ( · )+ implies

(T (⇠, z) � t)
+  (T (⇠, z) � T (⇠, zn))

+
+ (T (⇠, zn) � tn)

+
+ (tn � t)+ a.e. in ⌅

and the a.e. weak continuity of T (⇠, z) implies

(T (⇠, z) � t)
+  lim inf

n!1
(T (⇠, zn) � tn)

+
a.e. in ⌅.

Taking expected values and applying Fatou’s Lemma [12, L. 2.18] yields

E
h
(T (·, z) � t)

+
i
 E

h
lim inf
n!1

(T (·, zn) � tn)
+
i
 lim inf

n!1
E
h
(T (·, zn) � tn)

+
i
.

Therefore, combining this result with the weak lower semicontinuity of the penalty
term, R(z) proves that J(t, z) is weakly lower semicontinuous.

Since Z = L2(⌦c) is a Hilbert space (namely, Z is reflexive) and J(t, z) is a coer-
cive, weakly lower semicontinuous function we can apply standard existence theorems
such as [2, Th. 3.2.5].

Before delving into solution techniques, we point out that (3.2) can be reformu-
lated into a smooth, constrained optimization problem by introducing the auxiliary
variables ⇣ 2 L1

⇢(⌅):

minimize
t2R, z2Z,⇣2L1

⇢(⌅)

1

2

✓
t +

1

1 � �

Z

⌅

⇢(⇠)⇣(⇠) d⇠

◆
+

↵

2

Z

⌦c

z(x)2 dx (4.1a)

subject to ⇣(⇠) �
Z

⌦o

(u(⇠, x; z) � ū(x))2 dx � t a.e. in ⌅ (4.1b)

⇣(⇠) � 0 a.e. in ⌅. (4.1c)

Though the objective function is smooth, (4.1) has a nonlinear, nonconvex system
of constraints with the form: G(z, t, ⇣, ⇠) � 0, a.e. in ⌅. For first-order optimality
conditions, one must show that the linearization of G at a solution is surjective onto

L
p/2
⇢ (⌅). For complex solution operators u(z), this can be quite challenging. In

addition, the resulting system contains multiple integral operators, thereby adding
extra challenge to the numerics.

In finite dimensional stochastic programming, this reformulation is typically solved
using sample average approximation (SAA). The SAA approach to minimizing CVaR
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has been extensively studied in [36, 37] in the context of, e.g., portfolio optimization,
but this approach has not been studied in the context of function-space or PDE-
constrained optimization. Although the discretized problem is a (large-scale) non-
linear program, the associated KKT system may be inconsistent with the true first-
order optimality system (assuming it even exists). In deterministic PDE-constrained
optimization problems with state constraints, numerical schemes developed for the
solution of the discrete problems typically exhibit mesh-dependent behavior as the
discretization is refined if the true Lagrange multipliers are not su�ciently regular.
Finally, we also note that, for many high-dimensional quadrature rules, the smooth
reformulation (4.1) may become ill-posed due to the presence of negative quadrature
weights; see the discussion below.

4.1. Sample-Based Approximation. As mentioned, our primal approach em-
ploys sample-based approximation to discretize the expected value in CVaR. Given
an independent and identically distributed set of samples with size Q, a typical Monte
Carlo approach achieves a convergence rate of Q�1/2. Thus, a potentially large num-
ber of samples are required to get significant reduction in the discretization error. On
the other hand, deterministic quadrature discretizations exploit any regularity of the
tracking term

⇠ 7! T (⇠; z) =

Z

⌦o

(u(⇠, x; z) � ū(x))2 dx 2 L1
⇢(⌅).

with respect to ⇠ 2 ⌅ to achieve fast convergence. One downside to deterministic
quadrature is that one often has to restrict ⌅ and ⇢ to tensor product probabil-
ity spaces, i.e., ⌅ is a tensor product of intervals and ⇢ is a tensor product of 1D
probability densities. Once discretized, our goal is to use standard gradient-based
optimization algorithms to solve (3.2). In addition, the convergence analysis for de-
terministic quadrature approximation is strongly dependent on regularity. To obtain
this regularity, we can either reformulate the sample-discretized problem as in (4.1)
or we can smooth (·)+.

Let {(⇠k,!k)}Q
k=1 ⇢ ⌅ ⇥ R denote a system of Q samples and their associated

weights. The discretized optimal control problem is

minimize
t2R, z2Z

1

2

 
t +

1

(1 � �)

QX

k=1

!k

✓Z

⌦o

(u(⇠k, x; z) � ū(x))2 dx � t

◆+
!

+
↵

2

Z

⌦c

z(x)2 dx. (4.2)

If the sample weights are all positive, i.e. !k > 0 for k = 1, . . . , Q, then we have the
equivalent reformulation

minimize
t2R, z2Z, ⇣k2R

1

2

 
t +

1

(1 � �)

QX

k=1

!k⇣k

!
+

↵

2

Z

⌦c

z(x)2 dx (4.3a)

subject to ⇣k �
Z

⌦o

(u(⇠k, x; z) � ū(x))2 dx � t k = 1, . . . , Q (4.3b)

⇣k � 0 k = 1, . . . , Q. (4.3c)

Although the reformulation (4.3) is smooth, for deterministic quadrature and high
dimensional ⌅ we often cannot satisfy the positive weight assumption. One common
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class of quadrature rules with non-positive weights is sparse grids [14, 15, 27]. To
circumvent this issue, we avoid the smooth reformulation (4.3) and smooth (·)+.

4.1.1. Smoothing the CVaR Risk Measure. In this subsection, we discuss
a general approach for smoothing ( · )+ motivated by the work in [9]. Let � : R ! R
satisfy the following assumptions:

Assumption 4.2.
1. � 2 C(R) and there exists 0 < K < 1 such that |�(x)|  K for all x 2 R;
2. �(x) � 0 for all x 2 R and

R1
�1 �(x) dx = 1;

3.
R1
�1 �(x)|x| dx < 1;

4. Either
R1
�1 �(x)x dx  0 or

R 0

�1 �(x)|x| dx = 0;
5. The support of �, supp(�) = { x 2 R : �(x) > 0 }, is connected.

We define the parametrized family of smoothed plus functions depending on " > 0 as

(x)+" =

Z x

�1
G"(⌧) d⌧ where G"(x) =

Z x

�1

1

"
�
⇣⌧
"

⌘
d⌧.

By Proposition 2.2 in [9], (x)+" is at least twice continuously di↵erentiable and satisfies

�"�2  (x)+" � (x)+  "�1 (4.4)

where

�1 =

Z 0

�1
�(x)|x| dx and �2 = max

⇢Z 1

�1
�(x)x dx, 0

�
.

Moreover, equation (4.4) implies the error bound

|(x)+" � (x)+|  c" (4.5)

for some c  max{�1,�2}. In addition, (x)+" is nondecreasing and convex with
0  @x(x)+" = G"(x)  1 and 0  @xx(x)+" = 1

"�
�

x
"

�
 K

" .
Some examples of such smoothed plus functions are

(x)+",1 = x + " log

✓
1 + exp

✓�x

"

◆◆
(4.6)

(x)+",2 =

8
><
>:

0 if x  0⇣
x3

"2 � x4

2"3

⌘
if x 2 (0, ")

x � "
2 if x � "

(4.7)

(x)+",3 =
⇣
x +

"

2

⌘+

",2
. (4.8)

The first smoothed plus function (·)+",1 is infinitely di↵erentiable while the second and
third are only twice continuously di↵erentiable. For fixed " > 0, we have:

(x)+",1 > (x)+",3 � (x)+ � (x)+",2 8 x 2 R. (4.9)

Moreover, the constant in (4.5) for each ` = 1, 2, 3 is c1 = log(2), c2 = 1
2 , and c3 = 3

32 .
For a given � 2 C(R) satisfying the above assumptions, we define the smoothed

auxiliary function F �
" : R ⇥ L1

⇢(⌅) ! R as

F �
" (t, X) = t +

1

1 � �
E
h
(X � t)

+
"

i
,
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which permits the following definition of smoothed �-CVaR:

��
" [X] = inf

�
F �
" (t, X) : t 2 R

 
.

Lemma 4.3. Let X 2 L1
⇢(⌅) and suppose � : R ! R satisfies Assumptions 4.2.

Then the smoothed �-CVaR satisfies

����
" [X] � CVaR� [X]

��  c

1 � �
".

Proof. Fix X 2 L1
⇢(⌅). By Theorem 10 in [32], there exists t⇤ = VaR� [X] 2 R

which is finite and minimizes F �(t, X). By (4.5) and the proof of Theorem 10 in [32],
we can show that the level sets of t 7! F �

" (t, X) are bounded and thus the conclusion
of the proof of Theorem 10 in [32] applies. Hence, there exists a finite minimizer
t⇤" 2 R of F �

" (t, X).
Now, suppose

R1
�1 �(x)x dx  0. By (4.4), (x)+" � (x)+. Therefore, the optimal-

ity of t⇤ and t⇤" implies

t⇤ +
1

1 � �
E
h
(X � t⇤)+"

i
� t⇤" +

1

1 � �
E
h
(X � t⇤")

+
"

i
= ��

" [X]

� t⇤" +
1

1 � �
E
h
(X � t⇤")

+
i

� t⇤ +
1

1 � �
E
h
(X � t⇤)+

i
= CVaR� [X].

On the other hand, suppose
R 0

�1 �(x)|x| dx = 0. By (4.4), (x)+"  (x)+. Again, the
optimality of t⇤ and t⇤" implies

t⇤" +
1

1 � �
E
h
(X � t⇤")

+
i
� t⇤ +

1

1 � �
E
h
(X � t⇤)+

i
= CVaR� [X]

� t⇤ +
1

1 � �
E
h
(X � t⇤)+"

i

� t⇤" +
1

1 � �
E
h
(X � t⇤")

+
"

i
= ��

" [X].

Additionally, the smoothed plus function error bound (4.5) gives

����
✓

t +
1

1 � �
E
h
(X � t)

+
"

i◆
�
✓

t +
1

1 � �
E
h
(X � t)

+
i◆���� 

c

1 � �
", 8 t 2 R.

Combining this error bound with the above inequalities yields the desired result.
Smoothed CVaR is a Convex Risk Measure. The smoothed �-CVaR risk

measure satisfies the three axioms for a convex risk measure: Monotonicity, transla-
tion equivariance, and convexity. In what follows, we prove these three properties.
Throughout, we assume the smoothed plus function is built on a function � : R ! R
satisfying Assumptions 4.2.

We first show that the smoothed �-CVaR satisfies the monotonicity property.
Proposition 4.4. For any " > 0, the smoothed �-CVaR, ��

" , satisfies

��
" [X] � ��

" [Y ] whenever X � Y a.e. in ⌅, X, Y 2 L1
⇢(⌅).
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Proof. Fix arbitrary " > 0. For arbitrary X, Y 2 L1
⇢(⌅) satisfying X � Y ⇢-a.e.

in ⌅ and arbitrary t 2 R, we have

��
" [Y ]  F �

" (t, Y ).

Since (·)+" : R ! R is nondecreasing, we have that

F �
" (t, Y )  F �

" (t, X).

Since t is arbitrary, we pass to the infimum to obtain the desired result.
In the subsequent proposition, we show that the smoothed �-CVaR is convex.
Proposition 4.5. For any " > 0, the smoothed �-CVaR, ��

" , satisfies

��
" [⌧X + (1 � ⌧)Y ]  ⌧��

" [X] + (1 � ⌧)��
" [Y ] 8 X, Y 2 L1

⇢(⌅) and ⌧ 2 (0, 1).

Proof. Fix arbitrary " > 0. For arbitrary X, Y 2 L1
⇢(⌅), ⌧ 2 (0, 1), and t 2 R, we

have

��
" [⌧X + (1 � ⌧)Y ]  F �

" (t, ⌧X + (1 � ⌧)Y ).

Since (·)+" : R ! R is convex, we have that

F �
" (t, ⌧X + (1 � ⌧)Y )  ⌧F �

" (t, X) + (1 � ⌧)F �
" (t, Y ).

Since t is arbitrary, we pass to the infimum to obtain the desired result.
Finally, we prove that the smoothed �-CVaR risk measure is translation equiv-

ariant.
Proposition 4.6. For any " > 0, the smoothed �-CVaR, ��

" , satisfies

��
" [X + ⌧ ] = ��

" [X] + ⌧ 8 X 2 L1
⇢(⌅) and ⌧ 2 R.

Proof. Fix arbitrary " > 0. For arbitrary X 2 L1
⇢(⌅) and ⌧ 2 R, we have

��
" [X + ⌧ ] = inf

⇢
t +

1

1 � �
E
h
(X + ⌧ � t)

+
"

i
: t 2 R

�

= inf

⇢
⌧ + (t � ⌧) +

1

1 � �
E
h
(X � (t � ⌧))

+
"

i
: t 2 R

�

= ⌧ + inf

⇢
t +

1

1 � �
E
h
(X � t)

+
"

i
: t 2 R

�

= ��
" [X] + ⌧.

This proves the desired result.
Due to the nature of the smoothed plus-functions (·)+" , the smoothed �-CVaR func-
tions are not positive homogeneous and, therefore, are convex but not coherent risk
measures.

Smoothed CVaR is Di↵erentiable. For the primal sample-based approach,
objective function evaluations require a PDE solve at each sample. Thus, it is ideal
to use rapidly converging derivative-based optimization algorithms if possible. Us-
ing several classical results on the di↵erentiability of convex integral functionals, we
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immediately obtain the following result. Note that a direct proof using the data as-
sumptions in conjunction with the Lebesgue Dominated Convergence Theorem [12] is
also possible.

Theorem 4.7. For fixed t 2 R, X 7! F �
" (t, X) is Hadamard di↵erentiable as a

function from L1
⇢(⌅) to R, where

@XF �
" (t, X, h) = (1 � �)�1E [G"(X � t)h] .

Moreover, for fixed X 2 L1
⇢(⌅), t 7! F �

" (t, X) is continuously di↵erentiable as a
function from R to R, where

@tF
�
" (t, X, h) =

�
1 � (1 � �)�1E [G"(X � t)]

�
h.

Proof. Given the data assumptions, it follows from [30, 3E], see also the discussion
in [10, Sect. 2.7], that the associated subdi↵erentials are singletons. Therefore, the
mappings in the statement of the theorem are Gâteaux di↵erentiable with the asserted
formulae. In light of the local Lipschitz continuity, we appeal to [6, Prop. 2.49] in
order to prove that both mappings are in fact Hadamard di↵erentiable.

Theorem 4.7 ensures the smoothed CVaR objective function is Hadamard di↵eren-
tiable. We can prove additional di↵erentiability properties in the case that X 2 L2

⇢(⌅).

Corollary 4.8. For fixed t 2 R, X 7! F �
" (t, X) is continuously Fréchet di↵er-

entiable as a function from L2
⇢(⌅) to R.

Proof. Since L2
⇢(⌅) ⇢ L1

⇢(⌅), F �
" (t, ·) is well-defined as a function from L2

⇢(⌅) to
R. Now, for any X, h 2 L2

⇢(⌅) and any t 2 R we have

F �
" (t, X + h) � F �

" (t, X) = (1 � �)�1E[(X + h � t)+" � (X � t)+" ].

Since ( · )+" is continuously di↵erentiable, the Integral Mean Value Theorem ensures

F �
" (t, X + h) � F �

" (t, X) = (1 � �)�1E
Z 1

0

G"(X + ⌧h � t)h d⌧

�
.

Since ( · )+" has bounded second derivatives, we have

|F �
" (t, X + h) � F �

" (t, X) � (1 � �)�1E[G"(X � t)h]|

 (1 � �)�1E
Z 1

0

|(G"(X + ⌧h � t) � G"(X � t))h| d⌧
�

 (1 � �)�1 K

4"
E[h2] (4.10)

where K > 0 is the uniform bound on �(x). Equation (4.10) is su�cient to prove
Fréchet di↵erentiability and the Fréchet derivative is

@XF �
" (t, X) = (1 � �)�1G"(X � t).

Moreover, given any ⌘ > 0, we have that if khkL2
⇢(⌅) < � = 2(1 � �)"K�1⌘, then the

boundedness of the second derivative of ( · )+" combined with the Integral Mean Value
Theorem ensures that

k(1 � �)�1G"(X + h � t) � (1 � �)�1G"(X � t)kL2
⇢(⌅) 

K

2"
(1 � �)�1khkL2

⇢(⌅)

<
K

2"
(1 � �)�1�  ⌘.
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Therefore, X 7! F �
" (t, ·) : L2

⇢(⌅) ! R is continuously Fréchet di↵erentiable.

Under additional assumptions on �, we can prove that F �
" is twice continuously

di↵erentiable in the case that X 2 L2
⇢(⌅).

Corollary 4.9. Suppose � : R ! R satisfies Assumptions 4.2 and, additionally,
� is Lipschitz continuous with Lipschitz constant � > 0. Then, F �

" (t, X) is twice
continuously Fréchet di↵erentiable.

Proof. By Corollary 4.8, X 7! F �
" (t, X) is continuously Fréchet di↵erentiable as

a function from L2
⇢(⌅) to R with derivative

@XF �
" (t, X) = (1 � �)�1G"(X � t).

Now, similar to the proof of Corollary 4.8, for any X, h 2 L2
⇢(⌅) and any t 2 R the

Integral Mean Value Theorem implies

G"(X + h � t) � G"(X � t) =
1

"

Z 1

0

�

✓
X + ⌧h � t

"

◆
h d⌧.

Since � is Lipschitz continuous, we have

(1 � �)�1kG"(X + h � t) � G"(X � t) � "�1�("�1(X � t))hkL2
⇢(⌅)

= (1 � �)�1"�1

����
Z 1

0

�

✓
X + ⌧h � t

"

◆
� �

✓
X � t

"

◆
d⌧ h

����
L2

⇢(⌅)

 (1 � �)�1"�2�

2
khk2

L2
⇢(⌅). (4.11)

Equation (4.11) is su�cient to prove the Fréchet di↵erentiability and the second
Fréchet derivative is

@XXF �
" (t, X) = (1 � �)�1"�1�("�1(X � t)).

Moreover, given any ⌘ > 0, we have that if khkL2
⇢(⌅) < � = 2(1� �)"2��1⌘, then the

Lipschitz continuity of � implies

(1 � �)�1"�1k�("�1(X + h � t)) � �("�1(X � t))kL2
⇢(⌅) 

�

2
(1 � �)�1"�2khkL2

⇢(⌅)

<
�

2
(1 � �)�1"�2�  ⌘.

Therefore, X 7! F �
" (t, X) : L2

⇢(⌅) ! R is twice continuously Fréchet di↵erentiable.

Similar arguments for @tXF �
" (t, X), @XtF

�
" (t, X), and @ttF

�
" (t, X) give

@tXF �
" (t, X) = @XtF

�
" (t, X) = �(1 � �)�1"�1�("�1(X � t)),

@ttF
�
" (t, X) = (1 � �)�1"�1E[�("�1(X � t))].

This completes the proof.

4.1.2. The Smoothed Optimal Control Problem. Since F �
" , is Hadamard

di↵erentiable, the smoothed conditional value-at-risk objective function

J"(t, z) =
1

2
F �
"

✓
t,

Z

⌦o

(u(·, x; z) � ū(x))2 dx

◆
+

↵

2

Z

⌦c

z(x)2 dx
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is continuously di↵erentiable with respect to t 2 R and Hadamard di↵erentiable with
respect to z 2 Z. This di↵erentiability follows because

z 7!
Z

⌦o

(u(·, x; z) � ū(x))2 dx

is Fréchet di↵erentiable by Assumption 2.3. Moreover, the smoothed objective func-
tions are convex with respect to the t variable. In addition, the inequalities (4.5) imply
that each smoothed objective function converges to J(t, z) linearly with respect to ".
That is,

|J"(t, z) � J(t, z)|  c

2(1 � �)
" (4.12)

for all t 2 R and z 2 Z.
We now prove existence of solutions to the optimization problem

minimize
t2R, z2Z

J"(t, z). (4.13)

Theorem 4.10. Let Assumption 2.2 hold. Then there exists a solution to (4.13).
Proof. Since J(t, z) is coercive and J"(t, z) � J(t, z)� c

2(1��)" for all (t, z) 2 R⇥Z,

J"(t, z) is also coercive.
We now prove weak lower semicontinuity of J"(t, z). Again, since @⌦ is Lipschitz

and by Assumption 2.2, the tracking term, T (⇠, z) =
R
⌦o

(u(⇠, x; z) � ū(x))2 dx, is

weakly continuous with respect to z 2 Z a.e. in ⌅ and the penalty term, R(z) =R
⌦c

z(x)2 dx is also weakly lower semicontinuous. Now, let {(tn, zn)} ⇢ R ⇥ Z be

such that (tn, zn) * (t, z) 2 R⇥Z. Define the sequence Tn(⇠) = infk�n(T (⇠, zk)� tk)
a.e. in ⌅. Then, Tn(⇠)  (T (⇠, zk) � tk) a.e. in ⌅ for k � n and since ( · )+" is
monotonically increasing,

(Tn(⇠))+"  (T (⇠, zk) � tk)+" a.e. in ⌅, k � n.

This implies that

(Tn(⇠))+"  inf
k�n

(T (⇠, zk) � tk)+" a.e. in ⌅.

Now, since ( · )+" is continuous from R to R,

(lim inf
n!1

(T (⇠, zn) � tn))+" = lim
n!1

(Tn(⇠))+"  lim inf
n!1

(T (⇠, zn) � tn)+" a.e. in ⌅.

The a.e. weak continuity of T (⇠, z) and continuity of ( · )+" imply

(T (⇠, z) � t)+"  lim inf
n!1

(T (⇠, zn) � tn)+" a.e. in ⌅.

Therefore, Fatou’s Lemma [12, L. 2.18] implies

E
⇥
(T (⇠, z) � t)+"

⇤
 E

h
lim inf
n!1

(T (⇠, zn) � tn)+"

i
 lim inf

n!1
E
⇥
(T (⇠, zn) � tn)+"

⇤
.

Since R(z) is weakly lower semicontinuous, J"(t, z) is also weakly lower semicontinu-
ous.
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Since Z = L2(⌦c) is a Hilbert space (namely, Z is reflexive) and J"(t, z) is a
coercive, weakly lower semicontinuous function, standard existence theorems such as
[2, Th. 3.2.5] apply.

For smoothing to be a feasible solution approach, we must be able to show that
the minimizers of J"(t, z) converge to a minimizer of J(t, z). We should also be
able to quantify the error committed by approximating ( · )+ with ( · )+" . Throughout
this section, we employ the following inner-product notation: for x = (t1, z1), y =
(t2, z2) 2 R ⇥ Z,

(x, y) = t1t2 + hz1, z2iZ .

Moreover, the associated inner-product induced norm is denoted k · k. We begin
by proving a technical lemma which gives an explicit lower bound on the smoothed
value-at-risk approximation.

Lemma 4.11. Let x⇤
" = (t⇤", z

⇤
" ) 2 R ⇥ Z be a minimizer of J"(t, z). Then,

t⇤" � �`(",�), where

`(",�) = max { `⇤(",�), 0 } ,

and `⇤(",�) = inf{ ⌧ : G"(⌧) � (1 � �) } is finite.
Proof. First, since G"(x) is continuous and nondecreasing, and since

R1
�1 �(x) dx =

1, we have that `(",�) is well-defined and finite.
Now by definition, T (⇠, z) =

R
⌦o

(u(⇠, x; z)�ū(x))2 dx � 0 ⇢-a.e. in ⌅ for all z 2 Z.

Suppose t⇤" < �`(",�). Then, (T (⇠, z⇤" ) � t⇤") > `(",�) ⇢-a.e. in ⌅. Note that since
supp(�) is connected, G"(x) is strictly increasing for all x 2 G�1

" ((0, 1)). Moreover,
by continuity of G", G�1

" ((0, 1)) is open and, in fact, G�1
" ((0, 1)) = " supp(�). If

`⇤(",�) � 0 or if `⇤(",�) < 0 and 0 2 G�1
" ((0, 1)), then di↵erentiating ( · )+" and

applying the previous results yields

G"(T (⇠, z⇤" ) � t⇤") > G"(`(",�)) � G"(`
⇤(",�)) � 1 � � ⇢-a.e. in ⌅,

but optimality of x⇤
", implies

1 � � = E [G"(T (⇠, z⇤" ) � t⇤")] > (1 � �).

This is a contradiction. Similarly, if `⇤(",�) < 0 and 0 62 G�1
" ((0, 1)), then

G"(T (⇠, z⇤" ) � t⇤") � G"(`(",�)) = 1 ⇢-a.e. in ⌅,

but, again, optimality of x⇤
", implies

1 � � = E [G"(T (⇠, z⇤" ) � t⇤")] � 1.

This, again, is a contradiction since � > 0. Therefore, t⇤" � �`(",�).
Using Lemma 4.11, we prove consistency for the smoothed approximations.
Theorem 4.12. Let {"k}1k=1 ⇢ (0,1) be a decreasing sequence of smoothing

parameters satisfying "k ! 0 as k ! 1 and let x⇤
k = (t⇤"k

, z⇤"k
) 2 R ⇥ Z be a

minimizer of J"k
(t, z). Then there exists subsequence of {x⇤

k} that converges weakly
to some x⇤ = (t⇤, z⇤) 2 R ⇥ Z where x⇤ is a minimizer of J(t, z).

Proof. The optimality of x⇤
"k

implies

J"k
(0, 0) � J"k

(t⇤"k
, z⇤"k

) � 1

2
t⇤"k

+
↵

2
kz⇤"k

k2
Z .
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Therefore, Lemma 4.11 gives the bounds

|t⇤"k
|  max {`("k,�), 2|J"k

(0, 0)|}

and

kz⇤"k
kZ 

p
2↵�1 (`("k,�) + |J"k

(0, 0)|).

Note that " 7! G"(⌧) for fixed ⌧ � 0 is a nonincreasing function and, therefore,
" 7! `(",�) is nondecreasing. Thus, since {"k}1k=1 ⇢ (0,1) is decreasing, "1 � "k and
`("1,�) � `("k,�) for all k � 1. Moreover, by (4.12), we have that

|J"k
(0, 0)|  c

2(1 � �)
"1 + |J(0, 0)|.

Thus, the sequence x⇤
k is bounded in the R⇥Z norm. Since R⇥Z is a Hilbert space,

there exists a subsequence that converges weakly to some limit point x⇤ = (t⇤, z⇤) 2
R ⇥ Z. We denote the subsequence as {x⇤

k}.
Now, by (4.12), we have that for all (t, z) 2 R ⇥ Z

c

2(1 � �)
"k + J(t, z) � J"k

(t, z) � J"k
(t⇤"k

, z⇤"k
) � J(t⇤"k

, z⇤"k
) � c

2(1 � �)
"k.

As shown in the proof of Theorem 4.1, J(t, z) is weakly lower semicontinuous. Hence,
passing to the limit-inferior yields

J(t, z) � lim inf
k!1

J"k
(t⇤"k

, z⇤"k
) � lim inf

k!1
J(t⇤"k

, z⇤"k
) � J(t⇤, z⇤) 8 (t, z) 2 R ⇥ Z.

Therefore x⇤ = (t⇤, z⇤) is a minimizer of J(t, z).
Theorem 4.12 demonstrates that as the smoothing parameter " decreases, the

minimizers of the smoothed objective function become more accurate. We now show
that, under certain assumptions, we can quantify the rate of convergence with respect
to the smoothing parameter.

Theorem 4.13. Let x⇤ = (t⇤, z⇤) 2 R ⇥ Z be a minimizer of J(x) = J(t, z) and
x⇤
" = (t⇤", z

⇤
" ) 2 R ⇥ Z be a minimizer of J"(x) = J"(t, z) for fixed " > 0. Suppose

hrJ"(x) �rJ"(x
⇤
"), x � x⇤

"i � ↵kx � x⇤
"k2 (4.14)

for all x = x⇤
" + ⌧(x⇤ � x⇤

") with 0 < ⌧ < 1. Then, there exists C > 0 such that

kx⇤ � x⇤
"k =

�
|t⇤ � t⇤"|2 + kz⇤ � z⇤"k2

Z
� 1

2  C"
1
2 .

Proof. Note that (4.12) implies

|J(x⇤
") � J"(x

⇤
")|  bC"

where bC = c
2(1��) . Using this inequality, we have

J(x⇤) � J"(x
⇤
") = J(x⇤) � J"(x

⇤) + J"(x
⇤) � J"(x

⇤
")

� � bC" +

Z 1

0

hrJ"(x
⇤
" + ⌧(x⇤ � x⇤

")), (x
⇤ � x⇤

")i d⌧.
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By the optimality of x⇤
" and our assumptions on x⇤ and J", we have

hrJ"(x
⇤
"+⌧(x⇤ � x⇤

")), (x
⇤ � x⇤

")i
= ⌧�1hrJ"(x

⇤
" + ⌧(x⇤ � x⇤

")) �rJ"(x
⇤
"), ⌧(x⇤ � x⇤

")i
� ⌧↵kx⇤ � x⇤

"k2.

Therefore, integrating this quantity gives us

↵

2
kx⇤ � x⇤

"k2  bC" + J(x⇤) � J"(x
⇤
").

Now, since x⇤ is optimal, J(x⇤) � J(x⇤
")  0 and

J(x⇤) � J"(x
⇤
") = J(x⇤) � J(x⇤

") + J(x⇤
") � J"(x

⇤
")

 J(x⇤
") � J"(x

⇤
")  bC".

Hence, combining these results gives

kx⇤ � x⇤
"k2  4 bC

↵
".

Taking the square root of both sides and defining C =
⇣

4 bC
↵

⌘ 1
2

=
⇣

2c
↵(1��)

⌘ 1
2

gives

kx⇤ � x⇤
"k  C"

1
2 .

Theorem 4.13 demonstrates that, under the directional convexity assumption (4.14),

the smoothing error decays at a rate of "
1
2 . For example, if the state equation (2.1)

is a linear PDE (i.e. u 7! N(u, ·) is linear), then the penalty term in J"(t, z) ensures
that J"(t, z) is uniformly convex with respect to z 2 Z. Moreover, the proof of
Theorem 4.12 ensures that the set of minimizers of J"(t, z) and J(t, z) is bounded.
Therefore, J"(t, z) is uniformly convex with respect to (t, z) 2 R⇥Z on this bounded
set. In this case, the assumptions of Theorem 4.13 are satisfied.

5. Dual Approach. In order to develop a primal-dual approach to solving the
minimax problem, we first consider a more general setting.

5.1. Formulation, Setting and Regularization. As mentioned earlier, the
CVaR problem enjoys an equivalent reformulation as a minimax problem. In order to
develop tractable numerical methods, we add a strongly concave regularization term
to the objective functional of the maximum problem:

maximize
#2L1

⇢ (⌅)

Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ (5.1a)

s.t. 0  #(⇠)  1

1 � �
, a.e.⌅,

Z

⌅

#(⇠)⇢(⇠) d⇠ = 1 (5.1b)

Here, " � 0, c(z, ·) 2 L1
⇢(⌅), d : Y ! R, where Y is a reflexive Banach space and

� 2 R with 0 < � < 1. We note that the vast majority of the following results do not
require " > 0 to be valid. As before, we let A be the feasible set in (5.1). This leads
us to consider the class of problems:

minimize
z2Y

D"(z), (5.2)

where D", for " � 0, is the optimal value function associated with (5.1).
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5.2. Sensitivity of the Optimal Value Function. Our goal is to derive first-
order optimality conditions for (5.2). This requires knowledge of the di↵erentiability
of D". We define the possibly set-valued mapping S" : Y ! 2A by

S"(z) := arg max
#

⇢ Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ : # 2 A
�

.

(5.3)
The following result is inspired by a well-known theorem by Danskin [11, Ch. 3], see
also [6, Sec. 4.3.1, Pr. 4.12, Th. 4.13]. Unfortunately, these results require certain
compactness or smoothness assumptions that are not amenable to our setting in which
the weak⇤ sequential topology on L1

⇢ (⌅) plays a role. For this reason, we provide our
own full proof.

Theorem 5.1. In addition to the standing assumptions, suppose that
1. d : Y ! R is directionally di↵erentiable in the sense of Gâteaux.
2. For all z, ⌘ 2 Y and ⇢-almost every ⇠ 2 ⌅ there exists a r(·, ⇠) and a positively

homogeneous mapping c0(z, ⇠; ·) : Y ! L1
⇢(⌅) such that

c(z + t⌘, ⇠) = c(z, ⇠) + tc0(z, ⇠; ⌘) + r(t, ⇠)

for which it holds that r(t, ·) 2 L1
⇢(⌅) and r(t, ·)/t ! 0 in L1

⇢(⌅) as t # 0.
3. c(z + ⌘, ·) ! c(z, ·) strongly in L1

⇢(⌅) for any ⌘ 2 Y with ⌘ ! 0.
4. d is continuous on Y .

Then D" is directionally di↵erentiable and the directional derivative at z in the direc-
tion ⌘ is

D0
"(z; ⌘) = sup

#⇤2S"(z)

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘). (5.4)

Moreover, if in addition
5. " > 0,
6. c0(z, ⇠; ⌘), is linear in ⌘, ⇢-a.e.,
7. d0(z; ⌘) = d0(z)⌘,

then S"(z) is a singleton and D" is Gâteaux di↵erentiable with

D0
"(z)⌘ =

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠)⌘ d⇠ + d0(z)⌘, #⇤ = S"(z). (5.5)

Proof. Begin by fixing an arbitrary t > 0, " � 0, z, ⌘ 2 Y . Since #⇤ 2 S"(z) ⇢ A,
it is feasible for the optimization problem associated with D"(z + t⌘). It follows that

D"(z + t⌘) � D"(z)

t
� 1

t

✓Z

⌅

#⇤(⇠)⇢(⇠)c(z + t⌘, ⇠) d⇠ + d(z + t⌘)�

"

2

Z

⌅

(#⇤(⇠))2⇢(⇠) d⇠ �
Z

⌅

#⇤(⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z) � "

2

Z

⌅

(#⇤(⇠))2⇢(⇠) d⇠

◆

=

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘) +
o(t)

t
+

Z

⌅

r(t, ⇠)

t
#⇤(⇠)⇢(⇠) d⇠

Hence,

lim inf
t#0

D"(z + t⌘) � D"(z)

t
�
Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘), 8#⇤ 2 S"(z),
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from which we deduce

lim inf
t#0

D"(z + t⌘) � D"(z)

t
� sup

#⇤2S"(z)

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘). (5.6)

Now fix an arbitrary #⇤
t 2 S"(z + t⌘). By definition, #⇤

t 2 A. Therefore, 0  #⇤
t (⇠) 

1
1�� for ⇢-almost every ⇠ in ⌅ and every t > 0, i.e., the set {#⇤

t }t>0 is uniformly

bounded in Lq
⇢(⌅) with 1  q  1. Moreover, we have the following relation

D"(z + t⌘) � D"(z)

t


1

t

✓Z

⌅

#⇤
t (⇠)⇢(⇠)c(z + t⌘, ⇠) d⇠ + d(z + t⌘) �

Z

⌅

#⇤
t (⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆

=

Z

⌅

#⇤
t (⇠)⇢(⇠)c

0(z, ⇠; ⌘) d⇠ + d0(z; ⌘) + t�1o(t) +

Z

⌅

t�1r(t, ⇠)#⇤
t (⇠)⇢(⇠) d⇠


Z

⌅

#⇤
t (⇠)⇢(⇠)c

0(z, ⇠; ⌘) d⇠ + d0(z; ⌘) + t�1o(t) +

Z

⌅

|t�1r(t, ⇠)||#⇤
t (⇠)||⇢(⇠)| d⇠


Z

⌅

#⇤
t (⇠)⇢(⇠)c

0(z, ⇠; ⌘) d⇠ + d0(z; ⌘) + t�1o(t) +
1

1 � �

Z

⌅

|t�1r(t, ⇠)|⇢(⇠) d⇠

Hence, the limit superior of the di↵erence quotient exists. Let tn # 0 be some sequence
such that

lim sup
t#0

1

t

✓Z

⌅

#⇤
t (⇠)⇢(⇠)c(z + t⌘, ⇠) d⇠ + d(z + t⌘) �

Z

⌅

#⇤
t (⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆
=

lim
n!1

1

tn

✓Z

⌅

#⇤
tn

(⇠)⇢(⇠)c(z + tn⌘, ⇠) d⇠ + d(z + tn⌘) �
Z

⌅

#⇤
tn

(⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆

According to the analysis above, the sequence {#⇤
tn

}n contains a weak⇤ convergent

subsequence {#⇤
tnl

}l in L1
⇢ (⌅) such that #⇤

tnl

⇤
* #⇤ 2 A. The feasibility of #⇤ follows

from the weak⇤ compactness of A in L1
⇢ (⌅), see e.g. [38, L. 4.2]. Moreover, one can

easily demonstrate that #⇤ 2 S"(z). Therefore,

lim sup
t#0

1

t

✓Z

⌅

#⇤
t (⇠)⇢(⇠)c(z + t⌘, ⇠) d⇠ + d(z + t⌘) �

Z

⌅

#⇤
t (⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆
=

lim
n!1

1

tn

✓Z

⌅

#⇤
tn

(⇠)⇢(⇠)c(z + tn⌘, ⇠) d⇠ + d(z + tn⌘) �
Z

⌅

#⇤
tn

(⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆
=

lim
l!1

1

tnl

✓Z

⌅

#⇤
tnl

(⇠)⇢(⇠)c(z + tnl
⌘, ⇠) d⇠ + d(z + tnl

⌘) �
Z

⌅

#⇤
tnl

(⇠)⇢(⇠)c(z, ⇠) d⇠ � d(z)

◆
.

Expanding and passing to the limit in the latter term yields:

lim sup
t#0

D"(z + t⌘) � D"(z)

t

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘)

 sup
#⇤2S"(z)

Z

⌅

#⇤(⇠)⇢(⇠)c0(z, ⇠; ⌘) d⇠ + d0(z; ⌘). (5.7)

Combining (5.6) and (5.7) yields (5.4). The final assertion follows from (5.4) under
the assumptions.
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Corollary 5.2. Let " � 0 and z⇤ an optimal solution of (5.2). If assumptions
1-4 of Theorem 5.1 hold, then

sup
#⇤2S"(z⇤)

Z

⌅

⇢(⇠)#⇤(⇠)c0(z⇤, ⇠; ⌘) d⇠ + d0(z⇤; ⌘) � 0, 8⌘ 2 Y. (5.8)

If, in addition, 5-7 hold, then

Z

⌅

#⇤(⇠)⇢(⇠)c0(z⇤, ⇠)⌘ d⇠ + d0(z⇤)⌘ = 0, 8⌘ 2 Y, #⇤ = S"(z). (5.9)

Remark 5.3. (5.9) implies that d0(z⇤) is equal to the expected valued of c0(z⇤, ·)
with respect to the new “risk-adjusted” measure #⇤⇢.

Conditions (5.8) and (5.9) are the first step towards workable optimality condi-
tions. In order to make full use of them, we will need to better characterize solutions
of the inner problem.

5.3. Optimality Conditions for the Max Problem. In this section, we
use a standard technique based on constraint qualifications, cf. [6, Ch. 3], to de-
rive multiplier-based (necessary and su�cient) first-order optimality conditions for
(5.1)

Proposition 5.4. Let " � 0, z 2 Y , and #⇤ 2 L1
⇢ (⌅). Moreover, define

Q ⇢ L1
⇢ (⌅) by

Q :=

⇢
q 2 L1

⇢ (⌅) : 0  q(⇠)  1

1 � �
a.e. in ⌅

�
. (5.10)

If #⇤ is an optimal solution of (5.1), then there exists a multiplier µ 2 R such that
the following relations hold:

Z

⌅

⇢(⇠)(µ + "#⇤(⇠) � c(z, ⇠))(#0(⇠) � #⇤(⇠)) d⇠ � 0, 8#0 2 Q, (5.11)

#⇤ 2 Q : E[#⇤] = 1. (5.12)

Conversely, if there exists a µ 2 R and #⇤ 2 A such that (5.11)-(5.12) hold, then #⇤

is an optimal solution of (5.1).
Proof. We start by noting that the structure of the pointwise constraints in Q

forces any ⇢-measurable function that satisfies them to be in L1
⇢ (⌅). Therefore, we can

consider (5.1) in Lq
⇢(⌅) with 1  q  1 and still obtain the same solution. The choice

of q < 1 e↵ects the definition of the tangent and normal cones to Q. In particular, we
may use the standard duality pairing between Ls

⇢-spaces with 1  s < 1. Therefore,
we assume that (5.1) is defined in Ls

⇢(⌅) with 1  s < 1.
Let G : Ls

⇢(⌅) ! R be defined simply by G(q) := E[q]� 1 and K := 0 2 R. Then
Robinson’s constraint qualification is said to hold at a feasible point #0 2 A provided
there exists some � > 0 such that

B�(0) ⇢ G(#0) + DG(#0)(Q � #0) � K. (RCQ)

In our case, (RCQ) reduces to the requirement: There exists some ⌧ > 0 such that
for any ⌧ 0 2 (�⌧, ⌧) there exists q0 2 Q for which it holds that ⌧ 0 = E[q0] � 1. This
can be easily verified. Indeed, if ⌧ 0 2 [0, 1

1�� � 1], then q0 = 1 + ⌧ 0 is an element of Q.
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Hence, E[q0]� 1 = ⌧ 0. Taking ⌧ 0 2 [�1, 0), we again set q0 = 1 + ⌧ 0, for which it holds
that q0 2 Q and E[q0] � 1 = ⌧ 0. Taking ⌧ = 1

1�� � 1 completes the proof.
Robinson’s constraint qualification guarantees the existence of a Lagrange multi-

plier. In our setting, this means: #⇤ is an optimal solution of (5.1) if and only if there
exists µ 2 R such that:

0 2 c(z, ·) � "#⇤ � µrG(#⇤) � NQ(#⇤), E[#⇤] = 1. (5.13)

Note that NQ(#⇤) is the standard normal cone from convex analysis, in the current
setting it is defined as follows: If #⇤ 2 Q, then

NQ(#⇤) := {� 2 X⇤ | h�,#0 � #⇤i  0, 8#0 2 Q} , (5.14)

otherwise NQ(#⇤) = ;. Here, h·, ·i is understood as the duality pairing for X = Ls
⇢(⌅)

with its (strong) topological dual X⇤ = Lt
⇢(⌅) with 1/t + 1/s = 1. It follows that the

optimality condition (5.13) can be written:
Z

⌅

⇢(⇠)(µ+ "#⇤(⇠)� c(z, ⇠))(#0(⇠)�#⇤(⇠)) d⇠ � 0, 8#0 2 Q, and #⇤ 2 Q : E[#⇤] = 1.

The next step is to rewrite (5.11) and (5.12) in a more convenient form. However,
this may not always be possible. In the case when ⇢ > 0 almost everywhere with
respect to the Lebesgue measure on ⌅ and " > 0, then the following result holds.
Such an assumption is reasonable, indeed if a subset B ⇢ ⌅ exists such that ⇢(B) = 0,
but the Lebesgue measure is positive, then we have chosen the “wrong” sample space
⌅. One could then replace ⌅ with e⌅ := ⌅ \ B and ⇢ with ⇢̃ = ⇢|e⌅.

Proposition 5.5. Let " > 0 and z 2 Y . If ⇢ > 0 almost everywhere on ⌅ with
respect to the Lebesgue measure, then the first-order necessary and su�cient optimality
conditions (5.11)-(5.12) reduce to the following: If #⇤ is the optimal solution of (5.1),
then there exists a multiplier µ 2 R such that

#⇤(·) = "�1(c(z, ·) � µ) + ("�1(µ � c(z, ·)))+ � ("�1(c(z, ·) � µ) � 1/(1 � �))+.
(5.15)

and E[#⇤] = 1. Conversely, if there exists µ 2 R such that

1 = E
⇥
"�1(c(z) � µ) + ("�1(µ � c(z)))+ � ("�1(c(z) � µ) � 1/(1 � �))+

⇤
. (5.16)

then #⇤ defined by (5.15) is the optimal solution of (5.1).
Proof. This result follows from standard results found in [40, L. 2.26, Th. 2.27,

Th. 2.28].
Using the results derived above, we return to our initial setting and derive the

following corollary.
Corollary 5.6. Let " > 0, Y = Z, c(·, z) :=

R
⌦o

(u(·, x; z)� ū(x))2 dx 2 L1
⇢(⌅),

d(z) = ↵
2

R
⌦c

z(x)2 dx, and u be the solution operator of the PDE (2.1) under the
standing assumptions. If z⇤ is an optimal solution, then

z⇤ =
1

↵

Z

⌅

⇢(⇠)#⇤(⇠) ez(u
⇤(⇠), z⇤, ⇠)⇤�⇤(⇠) d⇠, (5.17)

where #⇤ (along with some µ 2 R) satisfies (5.15) and �⇤ solves the adjoint equation
associated with u⇤ = u(z⇤) in Assumption (2.3).
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Note that (5.16) can be conveniently rewritten as a fixed point problem in one
dimension: Find µ 2 R such that

F (µ) � µ = 0, (5.18)

where F (µ) := E[c(z)]+E[(µ�c(z))+]�E[(c(z)�µ�"(1/(1��)))+]�". In general, F
is Lipschitz continuous with Lipschitz constant 1. In the following result, we provide
a formula for the directional derivative.

Proposition 5.7. The functional F is directionally di↵erentiable with

F 0(µ; ⌘) = ⌘Pr[B1(µ)] + (⌘)+Pr[B2(µ)] � ⌘Pr[B3(µ)] � (⌘)+Pr[B4(µ)],

where

B1(µ) = { ⇠ 2 ⌅ : µ � c(z) > 0 }, (5.19)

B2(µ) = { ⇠ 2 ⌅ : µ � c(z) = 0 } , (5.20)

B3(µ) = { ⇠ 2 ⌅ : c(z) � µ � "(1/(1 � �)) > 0 } , (5.21)

B4(µ) = { ⇠ 2 ⌅ : c(z) � µ � "(1/(1 � �)) = 0 } , (5.22)

and, as before, Pr[B] =
R

B
⇢(⇠)d⇠ denotes the probability of the event B ✓ ⌅.

Remark 5.8. It follows that F is Gâteaux di↵erentiable whenever Pr[B2(µ)] =
Pr[B4(µ)] = 0. In particular, a result by Uryasev [41, 32] shows that if the cumulative
distribution,  c(z)(t) = Pr[c(z)  t] is continuous with respect to t, then Pr[B2(µ)] =
Pr[B4(µ)] = 0 and F is continuously di↵erentiable.

Proof. The proof is standard: one formulates the di↵erence quotients and ap-
plies the Lebesgue Dominated Convergence Theorem after exploiting the Lipschitz
continuity of the integrand.

Proposition 5.7, in light of Remark 5.8, shows that the one-dimensional fixed point
equation (5.18) is solvable via a standard Newton step (barring certain pathological
cases). Moreover, since F 0(µ; ⌘) 2 (0, 1), reaching 1 only in pathological settings, one
could also solve (5.18) using a standard fixed point iteration. In future work, we will
consider an algorithm based on the simultaneous solution of the optimality conditions.
However, this goes beyond the scope of the current paper.

5.4. Consistency. It is important that we investigate the behavior of solutions
and stationary points associated with the regularization as " ! 0. We begin with the
following lemma.

Lemma 5.9. Let z 2 Y and " > 0. Let #" 2 A be the (unique) solution of the
problem:

maximize
#2A

Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠.

For any sequence "k ! 0, there exists a subsequence of solutions
n
#"kl

o
with #"kl

⇤
*

#⇤ in L1
⇢ (⌅), where #⇤ 2 arg max

� R
⌅
#(⇠)⇢(⇠)c(z, ⇠)d⇠ + d(z) : # 2 A

 
.

Proof. Let "k and #k := #"k
be defined as above. Then #k 2 A implies {#k} is

uniformly bounded in L1
⇢ (⌅). It follows that there exists a #⇤ 2 L1

⇢ (⌅) along with a
subsequence {#kl

} such that #kl
! #⇤ weak⇤ in L1

⇢ (⌅). Since A is convex and closed
in L1

⇢ (⌅), it is sequentially weak⇤ closed. In which case #⇤ 2 A [38, L. 4.2].
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Turning now to the definition of #k, we have

Z

⌅

#k(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "k

2

Z

⌅

#k(⇠)2⇢(⇠) d⇠

�
Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "k

2

Z

⌅

#(⇠)2⇢(⇠) d⇠, 8# 2 A

Since ⇢ � 0 almost everywhere, we have for every # 2 A:

Z

⌅

#k(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) �
Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) � "k

2

Z

⌅

#(⇠)2⇢(⇠) d⇠.

Replacing k with kl and passing to the limit proves the assertion.
Continuing, we prove the following technical lemma.
Lemma 5.10. Let " > 0, D" be defined as in (5.2), and z" a minimizer of D". If

c(·, ⇠) � 0 a.e. in ⌅ for all z 2 Y and d satisfies there exists a constant ⌧ > 0 such
that d(z) � ⌧ ||z||2 for all z 2 Y . Then the set {z"}">0 is uniformly bounded in Y .

Remark 5.11. The assumptions on c and d are consistent with the motivating
tracking-type objective function.

Proof. By definition,

d(z") + sup

⇢ Z

⌅

#(⇠)⇢(⇠)c(z", ⇠) d⇠ � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ : # 2 A
�

 d(z) + sup

⇢ Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ : # 2 A
�

, 8z 2 Y.

Then by setting z = 0 on the right hand side of the inequality and using the fact that
A is closed and bounded, we deduce the existence of a constant K 2 R such that

d(z") + sup

⇢ Z

⌅

#(⇠)⇢(⇠)c(z", ⇠) d⇠ � "

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ : # 2 A
�

 K.

Thus, the coercivity of d, the almost everywhere nonnegativity of c, and the bounds
on # 2 A imply

||z"||2Y  K + "K 0,

where K 0 = (1��)2

2 , from which the assertion follows.
In order to prove the convergence of (weak) accumulation points to minimizers of

the minimax problem, we employ a well-known result from the theory of variational
convergence.

Theorem 5.12. Define the family of functions {D"}">0 as in (5.2). If z 7!
c(z, ·) : Y ! L1

⇢(⌅) is weakly continuous and d is sequentially weakly lower semicon-
tinuous on Y . Then D" epiconverges in the sense of Mosco to the function D defined
by:

D(z) := sup
� R

⌅
#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) : # 2 A

 
. (5.23)

Remark 5.13. One could perhaps weaken the assumptions, however, for our
application they are su�cient.
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Proof. Fix an arbitrary z 2 Y and let zk * z and "k # 0. Then

D"k
(zk) �

Z

⌅

#(⇠)⇢(⇠)c(zk, ⇠) d⇠ � "k

2

Z

⌅

#(⇠)2⇢(⇠) d⇠ + d(zk), 8# 2 A

In particular, we may select any #⇤ 2 A such that D(z) =
R
⌅
#⇤(⇠)⇢(⇠)c(z, ⇠) d⇠+d(z).

Therefore, lim infk!1 D"k
(zk) � D(z). Finally, let z 2 Y be arbitrary, "k # 0, and

zk ⌘ z. Then D"k
(zk) = D"k

(z) 
R
⌅
#k(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) along with the closed

and boundedness of A in L1
⇢ (⌅), implies there exists some D⇤ 2 R such that

lim sup
k!1

D"k
(zk) = D⇤.

Let {km} ⇢ N be a subsequence such that

lim sup
k!1

D"k
(zk) = lim

m!1
D"km

(zkm
) = D⇤

According to Lemma 5.9, there exists a subsequence {kml
} ⇢ N such that

D"kml
(zkml

) !
Z

⌅

#⇤(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z)

= max

⇢ Z

⌅

#(⇠)⇢(⇠)c(z, ⇠) d⇠ + d(z) : # 2 A
�

= D(z).

But then lim supk!1 D"k
(zk) = limm!1 D"km

(zkm
) = D⇤ = D(z).

Corollary 5.14. Under the standing data assumptions, let "k # 0 and let
z"k

2 Y be a minimizer of D"k
. Then there exists a subsequence {kl} such that

zkl

Y
* z⇤ where z⇤ is a minimizer of D.
Proof. According to Lemma 5.10, the sequence {zk} is uniformly bounded in Y .

Since Y is assumed to be a reflexive Banach space, there exists a subsequence {zkl
}

and z⇤ 2 Y with zkl

Y
* z⇤. The assertion follows immediately in light of Theorem

5.12 and the definition of Mosco epiconvergence.
This concludes our study of the consistency of the regularized minimax problem.

In the future, we plan to investigate the convergence analysis of the optimality con-
ditions and path-following as in [17, 16] which may be required for the development
of e�cient numerical methods.

6. Numerical Results.

6.1. Optimal Control of an Elliptic Equation with Discontinuous Coef-
ficients. We consider the optimal control of a linear elliptic PDE with discontinuous
conductivity. For this problem, the location of the discontinuity is uncertain. This
problem was studied in [23]. Let ↵ = 10, ⌦o = ⌦c = ⌦ = (�1, 1), and ū ⌘ 1. Consider
the optimal control problem

minimize
z2L2(�1,1)

J(z) =
1

2
CVaR�

Z 1

�1

(u(·, x; z) � 1)2 dx

�
+

↵

2

Z 1

�1

z(x)2 dx

where u = u(z) 2 L2
⇢(⌅; H1

0 (�1, 1)) solves the weak form of

�@x (✏(⇠, x)@xu(⇠, x)) = f(⇠, x) + z(x) (⇠, x) 2 ⌅⇥ ⌦, (6.1a)

u(⇠,�1) = 0, u(⇠, 1) = 0 ⇠ 2 ⌅. (6.1b)
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⌅ = [�0.1, 0.1] ⇥ [�0.5, 0.5] is endowed with the uniform density ⇢(⇠) ⌘ 5, and the
random field coe�cients are

✏(⇠, x) = ✏l�(�1,⇠1) + ✏r�(⇠1,1), with ✏l = 0.1, ✏r = 10,

and f(⇠, x) = exp(�(x� ⇠2)
2). One can show that for any z 2 L2(�1, 1), the solution

to (6.1) has a unique solution u = u(z) 2 L2
⇢(⌅; H1

0 (⌅)) and ⇠ 7! u(⇠) is continuous

(see [23]). Hence, u(z) 2 L1
⇢ (⌅; H1

0 (⌅)) and the tracking term
R 1

�1
(u(·, x; z)�1)2 dx 2

L1
⇢ (⌅) ⇢ L2

⇢(⌅). Therefore, Corollaries 4.8 and 4.9 imply the smoothed CVaR objec-
tive function is twice continuously Fréchet di↵erentiable for certain smoothing distri-
butions, �.

To discretize the PDE in space, we use continuous piecewise linear finite elements
built on a mesh of 256 intervals. The mesh for the state variable changes for each
random sample. The state mesh is subdivided into to two uniform meshes of 128
intervals, one for (�1, ⇠1) and one for (⇠1, 1). The mesh for the control variable is
uniform on the subdomains (�1,�0.75), (�0.75,�0.25), (�0.25, 0.25), and (0.25, 1).
The first subdomain contains 1

4 of the mesh elements, the second contains 1
16 of the

mesh elements, the third contains 9
16 of the mesh elements, and the final contains the

remaining 1
8 of the mesh elements. We chose this subdivision because of the nature

of the optimal solution.
For the primal approach, we consider two discretizations of the ⌅ variables. First,

we discretize ⌅ using Q = 10,000 Monte Carlo samples. For our second discretiza-
tion, we use level 8 isotropic sparse grids built on one-dimensional Gauss-Patterson
quadrature points and weights. This sparse grid is exact for polynomials of total
degree 35 (see [28, Th. 1] and [14, Sect. 3.3] for more details). Moreover, note that
small smoothing parameters " may have an adverse e↵ect on the quadrature error.
Nevertheless, sparse grids lead to a considerable reduction in computational e↵ort for
fixed ". For example, solving the sparse-grid problem with � = 0.95 and " = 10�2

requires 147,026 PDE solves as opposed to 790,000 PDE solves for the Monte Carlo
problem.

We solve the resulting discretized, smoothed CVaR optimization problem for
� 2 {0.05, 0.5, 0.95} using a classic trust-region algorithm with truncated conju-
gate gradients (CG). For the trust-region iteration, we terminated when the norm
of the gradient was less than 10�8. For the truncated CG iteration, we terminated
when one of the following occurred: the maximum number of iterations (100) was
exceeded, the step was larger than the trust-region radius, negative curvature was
detected or the relative residual was less than 10�4. The iteration counts for the
trust-region procedure applied to the sparse-grid discretized problem with probability
levels � 2 {0.05, 0.5, 0.95} are listed in Table 6.1. The average number of CG iterations
per trust-region iteration rounded to the nearest integer is included in parentheses.
Note that when the number of trust-region iterations is large, the number of CG iter-
ations is typically small. This is due to the algorithm detecting unsatisfactory steps
and shrinking the trust-region radius.

Figure 6.1 displays the computed error in the value-at-risk, the error in the optimal
control, and the total error. The slope of the error in the value-at-risk is v = �1.685,
the slope of the error in the control is v = �1.203, and the slope of the total error
is v = �1.198. To compute these errors, we employ the aforementioned Monte Carlo
discretization and then solve the nonsmooth discretized CVaR problem using a bundle-
type method for nonsmooth optimization [34]. We terminate the bundle method when
the aggregate subgradient and aggregate linearization error are below 10�8, resulting
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log(")
0 -1 -2 -3 -4 -5 -6

�
0.05 6(4) 9(3) 10(3) 13(3) 20(2) 30(1) 33(1)
0.5 7(3) 11(3) 12(3) 15(3) 21(2) 35(2) 54(2)
0.95 7(3) 13(2) 15(2) 22(1) 24(1) 39(1) 46(1)

Table 6.1: The iteration counts for the primal approach. The numbers in parentheses
are the average number of truncated CG iterations per trust-region iteration rounded
to the nearest integer.

in an approximate solution that satisfies

J(xk)  J(x) + 10�8kx � xkk + 10�8 8x 2 R ⇥ Zh

where Zh denotes the finite-dimensional control approximation space [34, L. 2.2]. We
then solve the discretized smooth CVaR problems using the previously mentioned
trust-region algorithm. We terminate the trust-region iteration when the norm of
the gradient is below 10�8. Since we are using Monte Carlo, we can consider the
discretization of ⌅ as replacing the continuous probability measure with a sum of
point masses centered at the sample points. Thus, the results of Theorem 4.13 directly
apply. As can be seen in Figure 6.1, our numerical results confirm the theoretical
results proved in Theorem 4.13.
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Fig. 6.1: Left to right: a) Error in the value-at-risk for � = 0.05 (blue), � = 0.5
(green), and � = 0.95 (red). b) Error in the optimal control for � = 0.05 (blue),
� = 0.5 (green), and � = 0.95 (red). c) Total error for � = 0.05 (blue), � = 0.5
(green), and � = 0.95 (red).

For the dual approach, we solve the minimax problem using an alternating fixed-
point iteration. Our fixed-point algorithm consists of the following steps:

1. Given the current control, solve the state equation;
2. Solve (5.16) for µ using bisection;
3. Solve the adjoint equation and update the control using equation (5.17).

Since this is a fixed-point iteration, ↵ must be su�ciently large to ensure the op-
timality system is contractive. Moreover, since the dual approach requires a high-
dimensional integral of a nonsmooth function, deterministic quadrature may not
be a suitable discretization for the ⌅ variables. Instead we use Monte Carlo with
Q = 10,000 samples. We terminated bisection when the residual given by (5.16) was
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less than 10�10. We terminated the fixed point iteration when k↵(zk�1 � zk)kZ was
less than 10�8. Note that the di↵erence between consecutive steps scaled by ↵ is

↵(zk�1 � zk) = ↵zk�1 �
Z

⌅

⇢(⇠)#k�1(⇠)�k�1(⇠) d⇠

which is the Gâteaux derivative of D" (recall Theorem 5.1). Thus, the alternating
fixed-point iteration is exactly steepest descent with step scaling ↵�1. Here, �k�1 and
#k�1 denote the adjoint variable and dual distribution corresponding to zk�1, respec-
tively. Table 6.2 contains the iteration counts for our dual approach. The numbers in
parentheses are the average number of bisection iterations per dual iteration rounded
to the nearest integer. Notice that as the regularization parameter " decreases, the
number of bisection iterations also decreases. This is because the initial lower bound
used in the bisection iteration increases as " decreases, while the initial upper bound
remains fixed. That is, the e↵ective search area decreases with ". Figure 6.2 depicts

log(")
0 -1 -2 -3 -4 -5 -6 -7 -8

�
0.05 9(30) 9(30) 9(27) 9(27) 9(30) 9(28) 9(9) 9(7) 9(7)
0.5 9(32) 10(33) 9(32) 9(32) 9(32) 9(29) 9(26) 9(9) 9(9)
0.95 9(34) 11(34) 9(34) 9(32) 9(32) 9(7) 9(5) 9(5) 9(5)

Table 6.2: The iteration counts for the dual approach. The numbers in parentheses
are the average number of bisection iterations rounded to the nearest integer.

the dual distributions #⇤ sampled at the Q = 10,000 Monte Carlo samples for varying
probability levels � 2 {0.05, 0.5, 0.95}. The distributions only take values at the lower
and upper bounds, 0 and (1� �)�1, respectively. This observation points to one pos-
sible advantage of an algorithm based on the dual approach. The advantage is that
the computation of the dual distribution only depends on the state variable, thus to
update the controls one only needs to solve the adjoint equation for those values of #
which are nonzero. This could drastically reduce the number of PDE solves required to
solve the optimization problem. This could further lead to significant computational
savings in the case of optimization governed by large-scale time-dependent PDEs in
which checkpointing is required. The red dots correspond to #⇤ values of (1 � �)�1

while the blue dots correspond to #⇤ values of 0. For each �, the number of red dots
is (1 � �)Q.

6.2. Optimal Control of Burger’s Equation. In this section, we consider
the optimal control of the steady Burger’s equation with uncertain coe�cients. This
problem was studied in [23]. Let ↵ = 10�3, ⌦o = ⌦c = ⌦ = (0, 1), and ū ⌘ 1.
Consider the optimal control problem

minimize
z2L2(0,1)

J(z) =
1

2
CVaR�

Z 1

0

(u(·, x; z) � 1)2 dx

�
+

↵

2

Z 1

0

z(x)2 dx

where u = u(z) 2 L3
⇢(⌅; H1(0, 1)) solves the weak form of

�⌫(⇠)@xxu(⇠, x) + u(⇠, x)@xu(⇠, x) = f(⇠, x) + z(x) (⇠, x) 2 ⌅⇥ ⌦, (6.2a)

u(⇠, 0) = d0(⇠), u(⇠, 1) = d1(⇠) ⇠ 2 ⌅. (6.2b)
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Fig. 6.2: The resulting optimal probability density from the dual approach, #⇤ for
� = 0.05 (left), � = 0.5 (center), and � = 0.95 (right). The red dots correspond to #⇤

values of (1 � �)�1 and the blue dots correspond to #⇤ values of 0.

⌅ = [�1, 1]4 is endowed with the uniform density ⇢(⇠) ⌘ 2�4, and the random field
coe�cients are

⌫(⇠) = 10⇠1�2, f(⇠, x) =
⇠2
100

, d0(⇠) = 1 +
⇠3

1000
, and d1(⇠) =

⇠4
1000

.

Fix ⇠ 2 ⌅, then [43, Th. 2.13] ensures that equation (6.2) has a solution for
any z 2 L2(0, 1) and this solution is unique if ⌫(⇠) is su�ciently large. Moreover, if
z 2 L2(0, 1) \ C[0, 1], then [43, Th. 2.17] ensures that u(⇠) 2 C2(0, 1) \ C[0, 1] for all
⇠ 2 ⌅ and u0(x)  u(⇠, x)  u1(x) where

⇢
u0(x) = �0.001 � kzkC[0,1] + x
u1(x) = max

�
0.001 + kzkC[0,1], 1.001

 
+ x.

Therefore, if z 2 L2(0, 1)\C[0, 1], then u 2 L1
⇢ (⌅; H1(0, 1)) ⇢ L3

⇢(⌅; H1(0, 1)). More-

over, this implies that the tracking term
R 1

0
(u(·, x; z) � 1)2 dx 2 L2

⇢(⌅) and Corollar-
ies 4.8 and 4.9 ensure the smoothed CVaR objective function is twice continuously
Fréchet di↵erentiable for certain smoothing distributions, �.

The optimal control z⇤ exhibits boundary layers near x = 0 and x = 1 while
the optimal state u⇤ = u(z⇤) exhibits a boundary layer near x = 1. To reduce
the e↵ects of these layers, we discretize Burger’s equation using continuous piecewise
linear finite elements built on a piecewise uniform mesh of 256 intervals. To build the
mesh, we partition the domain into three subdomains ⌦ [ @⌦ = [0, 0.2] [ (0.2, 0.8) [
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[0.8, 1]. We mesh the first subdomain, [0, 0.2], with 80 uniform intervals; we mesh the
second subdomain, (0.2, 0.8), 16 uniform intervals; and we mesh the third subdomain,
[0.8, 1], with 160 uniform intervals. We adopt the same discretization for the control.
As with the previous example, we investigate two di↵erent discretizations for the ⌅
variables: Monte Carlo with Q = 10,000 samples and a level 8 isotropic Smolyak
sparse grid built on one-dimensional Clenshaw-Curtis quadrature. This sparse grid
is exact for polynomials of total degree 9 (see [28, Th. 1] and [14, Sect. 3.2] for
more information). Again note that small smoothing parameters " may have adverse
e↵ects on the quadrature error. We then solve the discretized nonlinear PDE at each
quadrature point using Newton’s method globalized with a backtracking line search.

For the primal approach, we solve the smoothed optimization problem using a
classic trust-region algorithm with truncated conjugate gradients. We vary � between
0.1 and 0.9 in increments of 0.1. Moreover, we vary log10(") between -5 and 0 in
increments of 1. The optimal controls, value-at-risks, and the cumulative distribution
function of the random variable tracking term

⇠ 7! T (⇠; z) =

Z 1

0

(u(⇠, x; z⇤�) � 1)2 dx

are plotted in Figure 6.3. We generated these results using the aforementioned sparse-
grid discretization. We plot the optimal controls for � 2 {0.1, 0.5, 0.9} and " = 10�5

in the left image and the value-at-risk for " = 10�5 in the center. The CDFs are
computed using sample average approximation. We increase the number of Monte
Carlo samples by 103 until the `1-norm error between subsequent approximations of
the CDFs is less than 10�4. For � = 0.1 we required 19,000 samples; for � = 0.5 we
required 17,000 samples; and for � = 0.9 we required 23,000 samples. Notice that the
optimal controls corresponding to increasing � reduce the variability in the tracking
term.
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Fig. 6.3: Left: Optimal controls for � = 0.1 (blue), � = 0.5 (green), and � = 0.9
(red). Center: Value-at-risk for varying �. Right: Cumulative distribution function
of tracking term for � = 0.1 (blue), � = 0.5 (green), and � = 0.9 (red).

In Figure 6.4, we plot the error for decreasing ". Figure 6.4-a depicts the value-at-
risk error which is decreasing at a rate of v = �1.116 with respect to ". Figure 6.4-b
depicts the control error which is decreasing at a rate of v = �0.840. Figure 6.4-c
depicts the total error which is decreasing at a rate of v = �0.871. To compute the
error, we use the previously mentioned Monte Carlo discretization and then solve the
nonsmooth discretized CVaR problem using a bundle-type method for nonsmooth
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optimization [34]. As in the prior example, we terminate the bundle method when
the aggregate subgradient and aggregate linearization error are below 10�8. We then
solve the discretized smooth CVaR problems using the trust-region algorithm (we
terminate when the norm of the gradient is below 10�8). As can by seen in Figure 6.4,
our numerical results confirm the theoretical results proved in Theorem 4.13.
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Fig. 6.4: Left to right: a) Error in the value-at-risk for � = 0.1 (blue), � = 0.5 (green),
and � = 0.9 (red). b) Error in the optimal control for � = 0.1 (blue), � = 0.5 (green),
and � = 0.9 (red). c) Total error for � = 0.1 (blue), � = 0.5 (green), and � = 0.9
(red).

The parameter configuration for this problem is not amenable to the fixed-point
iteration proposed in Section 6.1. We can instead use the control computed via the
primal approach along with the dual analysis to generate the dual distribution #⇤.
To generate #⇤, we solved the state equation at 100,000 Monte Carlo samples and
then solved (5.16) with dual regularization parameter " = 10�8 to determine the
distribution. As in Section 6.1, the dual distribution takes either the value #⇤(⇠) = 0
or the value #⇤(⇠) = (1 � �)�1. Figure 6.5 plots the histograms of the samples
corresponding to #⇤(⇠) = (1 � �)�1. The columns correspond to log10(⌫(⇠)) (first),
f(⇠) (second), d0(⇠) (third), and d1(⇠) (fourth). The rows correspond to � = 0.1
(top), � = 0.5 (middle), and � = 0.9 (bottom). The histogram for log10(⌫(⇠)) clearly
demonstrates that the most challenging scenarios to control correspond to ⌫(⇠) ⇡ 10�3

and ⌫(⇠) ⇡ 10�1. Similarly the histogram for f(⇠) shows more emphasis on larger
values of f(⇠). Finally, the histograms for d0(⇠) and d1(⇠) appear to be uniformly
distributed. This suggests that the optimal control problems is less sensitive to the
uncertainty in the boundary conditions.

7. Conclusions. In engineering optimization, it is essential to determine con-
trols and designs which are, in some sense, robust to uncertainty. The conditional
value-at-risk is a natural vehicle for producing such controls. In this paper, we have
developed and analyzed two approaches for minimizing the conditional value-at-risk
for PDE-constrained optimization problems. The primal approach is motivated by the
desire to use gradient-based optimization and involves smoothing the plus function
( · )+. We have demonstrated that this results in a consistent approximation, proving
that smoothed CVaR is a convex risk measure and is at least Hadamard di↵erentiable.
We have also demonstrated that the minimizers of our smoothed approximations con-
verge to minimizers of the true CVaR optimization problem, giving an explicit error
bound under a convexity assumption. We do not discuss e�cient numerical optimiza-
tion methods for solving this problem although some methods have been developed in
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Fig. 6.5: The rows correspond to � = 0.1 (top), � = 0.5 (middle), � = 0.9 (bottom).
The columns contain the histograms of the samples with #⇤ = (1 � �)�1. From left
to right: a) log10(⌫(⇠)); b) f(⇠); c) d0(⇠); d) d1(⇠).

[23, 22]. On the other hand, the dual approach is based on Fenchel-Moreau duality.
We derive rigorous optimality conditions for the resulting minimax problem and show
that to solve the inner maximization problem we only need to solve a one-dimensional
nonlinear equation. This result is a possible backbone for numerical methods for solv-
ing the minimax problem. We have provided a simple numerical scheme using these
conditions. Further development of numerical methods for the dual approach will be
investigated in future work.
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