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AbstractWe present an iterative procedure for computing the optimal Bermudanstopping time. We prove convergence and, as a consequence, the methodallows for approximation of the Snell envelope from below. By using duality,we then deduce a convergent procedure for approximating the Snell envelopefrom above as well. We provide numerical examples for Bermudan swaptionsin the context of a LIBOR market model.1 IntroductionEvaluation of American style derivatives on a high dimensional system of underlyingsis considered a perennial problem for the last decades. On the one hand such highdimensional options are diÆcult, if not impossible, to compute by PDE methods forfree boundary value problems. On the other hand Monte Carlo simulation, which isfor high dimensional European options an almost canonical alternative to PDE solv-ing, is for American options highly non-trivial since the (optimal) exercise boundaryis usually unknown. In the past literature, many approaches for Monte Carlo sim-ulation of American options are developed. With respect to Bermudan derivatives,which are in fact American options with a �nite number of exercise dates there is,for example, the stochastic mesh method of Broadie & Glasserman (1997, 2000),a cross-sectional regression approach by Longsta� & Schwartz (2001), a dual ap-proach by Rogers (2001) (and independently Haugh & Kogan (2001) for Bermudanstyle instruments), a multiplicative dual approach by Jamshidian (2003a,b), and forBermudan swaptions a method by Andersen (1999). Further recent papers on meth-ods for high-dimensional American options include Belomestny & Milstein (2004),Milstein, Rei� & Schoenmakers (2003), Berridge & Schumacher (2004), and for amore detailed and general overview we refer to Glasserman (2003) and the referencestherein.The central result in this paper is an iterative construction of the Bermudan Snellenvelope by a convergent sequence of stopping times, corresponding lower boundsand (dual) upper bounds, obtained by probabilistic methods. We underline that thepresented method is quite general and can in principle be applied to any discreteoptimal stopping problem, regardless the nature of the underlying process.1



The paper is organized as follows. In Section 2 we give a concise re-cap of theBermudan pricing problem. In Section 3 we show that a family of stopping times(�i) can be improved if this family possesses some natural properties. By using theprocedure developed in Section 3 we construct in Section 4 a sequence of stoppingtimes and lower approximations of the Snell envelope which converge to an optimalstopping time and the Snell envelope, respectively. Then, in Section 5, we recall dualupper bound representations for the Snell envelope by Rogers, Haugh & Kogan andJamshidian and give some extensions. Based on the dual approach, the convergentlower approximations constructed in Section 4, and an approximation theorem byKolodko & Schoenmakers (2003), we deduce a sequence of upper bounds whichconverges to the Snell envelope from above. Finally, in Section 6, we apply ourmethod to Bermudan swaptions in the context of a LIBOR market model. Wegive a numerical comparison with Andersen's lower bound method and its dualconsidered by Andersen and Broadie (2001). As a result, starting from a trivialstopping family, by two iterations of our procedure we obtain lower approximationsof more factor based Bermudan swaptions which are more or less in the middle ofAndersen's lower bound and its corresponding dual upper bound.2 The Bermudan pricing problemWe consider general Bermudan style derivatives with respect to an underlying pro-cess L(t); over some �nite time interval [0; T ] with time horizon T <1: The processL is assumed to be Markovian with state space RD. For example, L can be a systemof asset prices, but also a not explicitly tradable object such as the term structureof interest rates, or a system of LIBOR rates.Consider a set of dates T := fT0;T1; : : : ;Tkg with 0 = T0 < T1 < T2 < � � � < Tk �T: An option issued at time t = T0; to exercise a cash-ow CT� := C(T� ; L(� )) at adate T� 2 T to be decided by the option holder, is called a Bermudan style deriva-tive. Naturally, we may also consider Bermudan derivatives where the collection ofexercise dates is some subset of T:With respect to a pricing measure P connectedwith some pricing numeraire B; the value of the Bermudan derivative at a futuretime point t (when the option is not exercised before t) is given byV (t) = B(t) sup�2f�(t);:::;kgEFt CT�B(T�) (1)with �(t) := minfm : Tm � tg: Note that V (t) can also be seen as the price of aBermudan option newly issued at time t; with exercise opportunities T�(t); : : : ;Tk:In (1) it is assumed that for each �xed exercise date the corresponding cash-ow2



has �nite expectation. The fact that (1) can be considered as the fair price for theBermudan derivative is due to general no-arbitrage principles, e.g. see DuÆe (2001).The supremum in (1) is taken over all integer valued F-stopping times � with valuesin the set f�(t); :::; kg; where F := fFt; 0 � t � Tg denotes the usual �ltrationgenerated by the process L:The F-stopping time � �t is called an optimal stopping time in the [t; T ], ifY �(t) := V (t)B(t) = EFt CT��tB(T��t ) = sup�2f�(t);:::;kgEFt CT�B(T� ) :The process (Y �) is called the Snell envelope process.3 A one step improvement upon a given family ofstopping timesIn what follows we will consider the process Y � at the exercise dates fT0;T1; :::;Tkgand de�ne Y �(j) := Y �(Tj); 0 � j � k. Further we denote a corresponding optimalstopping family by (� �i ), where � �i := � �Ti :With respect to the discrete �ltration �F (j)�0�j�k with F (j) := FTj ; 0 � j � k,we consider a family of integer valued stopping indexes (�i), with the followingproperties, i � �i � k; �k = k;�i > i) �i = �i+1; 0 � i < k; (2)and the process Y (i) := EF(i) CT�iB(T�i) : (3)For example, �i := inffj � i : L(Tj) 2 Rg;where R is a certain region in RD; or, as a more trivial example, the family �i � i:Generally, the process (Y (i)) is a lower approximation of the Snell envelope process(Y �(i)) due to the family of (sub-optimal) stopping times (�i): Based on the family(�i) we are going to construct a new family (b�i) satisfying (2), which induces a newapproximation of the Snell envelope.We �rst introduce an intermediate processeY (i) := maxp: i�p�k EF(i) CT�pB(T�p) : (4)3



Using eY (i) as a new exercise criterion we de�ne a next family of stopping indexesb�i : = inffj : i � j � k; eY (j) � CTjB(Tj)g (5)= inffj : i � j � k; maxp: j�p�kEF(j) CT�pB(T�p) � CTjB(Tj)g; 0 � i � k;and consider the process bY (i) := EF(i) CTb�iB(Tb�i) (6)as a next approximation of the Snell envelope. Clearly, the family (b� ) satis�esthe properties (2) as well. As an example, the trivial family �i � i gives for eYthe maximum of still alive Europeans and for bY the second \canonical example"in Kolodko & Schoenmakers (2003). As another example, �i � k gives for eY theEuropean option process due to the last exercise date k andb�i := inffj : i � j � k; EF(j) CTkB(Tk) � CTjB(Tj)g; 0 � i � k:By the next theorem, (bY (i)) is generally an improvement of (Y (i)).Theorem 3.1 Let � (i) be a family of stopping times with the property (2) and (Y (i))be given by (3). Let the processes (eY (i)) and (bY (i)) be de�ned by (4) and (6), respec-tively. Then, it holds Y (i) � eY (i) � bY (i) � Y �(i); 0 � i � k:Proof.The inequalities Y (i) � eY (i) and bY (i) � Y �(i) are trivial. We only need to show themiddle inequality. We use induction in i. Due to the de�nition of eY and bY , we haveeY (k) = bY (k) = CTkB(Tk). Suppose that eY (i) � bY (i) for some i with 0 < i � k: We willthen show that eY (i�1) � bY (i�1). Let us writebY (i�1) = EF(i�1) CTb�i�1B(Tb�i�1) = 1b�i�1=i�1 CTi�1B(Ti�1) + 1b�i�1>i�1EF(i�1)EF(i) CTb�iB(Tb�i)= 1b�i�1=i�1 CTi�1B(Ti�1) + 1b�i�1>i�1EF(i�1) bY (i):Then, by induction,bY (i�1) � 1b�i�1=i�1 CTi�1B(Ti�1) + 1b�i�1>i�1EF(i�1) eY (i)= 1b�i�1=i�1 CTi�1B(Ti�1) + 1b�i�1>i�1EF(i�1) maxp: i�p�kEF(i) CT�pB(T�p)� 1b�i�1=i�1eY (i�1) + 1b�i�1>i�1 maxp: i�p�kEF(i�1) CT�pB(T�p) ; (7)4



since for b�i�1 = i� 1 we have i� 1 = inffj : i� 1 � j < k; eY (j) � CTjB(Tj)g; and soeY (i�1) = maxp: i�1�p�kEF(i�1) CT�pB(T�p) � CTi�1B(Ti�1) :We may write (7) asbY (i�1) � eY (i�1) + 1b�i�1>i�1(maxi�p�k EF(i�1) CT�pB(T�p) � maxi�1�p�kEF(i�1) CT�pB(T�p)):Thus, after showing that b�i�1 > i� 1 impliesEF(i�1) CT�i�1B(T�i�1) � maxp:i�p�kEF(i�1) CT�pB(T�p) ;it follows that bY (i�1) > eY (i�1). It holds,EF(i�1) CT�i�1B(T�i�1) = 1�i�1=i�1 CTi�1B(Ti�1) + 1�i�1>i�1EF(i�1) CT�iB(T�i)� 1�i�1=i�1 CTi�1B(Ti�1) + 1�i�1>i�1 maxp:i�p�kEF(i�1) CT�pB(T�p) : (8)Then, on the set b�i�1 > i� 1 we haveCTi�1B(Ti�1) < maxp: i�1�p�kEF(i�1) CT�pB(T�p) ;so if (b�i�1 > i� 1) ^ ( �i�1 = i� 1) it follows thatCTi�1B(Ti�1) < max( CTi�1B(Ti�1) ; maxp: i�p�kEF(i�1) CT�pB(T�p)):Hence, if (b�i�1 > i� 1) ^ (�i�1 = i� 1),CTi�1B(Ti�1) < maxp: i�p�k EF(i�1) CT�pB(T�p) :Thus, from (8) we have for b�i�1 > i� 1;EF(i�1) CT�i�1B(T�i�1) � 1�i�1=i�1 maxp: i�p�kEF(i�1) CT�pB(T�p) + 1�i�1>i�1 maxp: i�p�kEF(i�1) CT�pB(T�p)= maxp: i�p�k EF(i�1) CT�pB(T�p) :5



4 Iterative construction of the optimal stoppingtime and the Snell envelope processNaturally, we may construct by induction via the procedure (5)-(6) a sequence ofpairs �(� (m)i )0�i�k; (Y m(i))0�i�k�m=0;1;2;:::in the following way: Start with some family of stopping times (� (0)i )0�i�k; whichsatis�es (2) and the additional requirement,Y 0(i) := EFi CT�(0)iB(T� (0)i ) � CTiB(Ti) ; 0 � i � k: (9)A canonical starting family is obtained, for example, by taking � (0)i � i. Supposethat for m � 0 the pair �(� (m)i ); (Y m(i))� is constructed, whereY m(i) := EFi CT�(m)iB(T� (m)i ) � CTiB(Ti) ; 0 � i � k;and the stopping time family (� (m)i ) satis�es (2). Then de�ne� (m+1)i : = inffj : i � j � k; maxp: j�p�k EF(j) CT�(m)pB(T� (m)p ) � CTjB(Tj)g= inffj : i � j � k; eY m+1(i) � CTjB(Tj)g; 0 � i � k; (10)with eY m+1(i) := maxp: i�p�k EF(i) CT�(m)pB(T� (m)p )being an intermediate dummy process. Clearly, � (m+1)i satis�es (2) as well, and dueto Theorem 3.1 we haveCTiB(Ti) � Y 0(i) � Y m(i) � eY m+1(i) � Y m+1(i) � Y �(i); 0 � m <1; 0 � i � k:(11)By the following proposition, for each �xed i the sequence (� (m)i )m�1 is nondecreasingin m and bounded by any optimal stopping time � �i .Proposition 4.1 Let � �i be an optimal stopping time. For each m: 1 � m < 1and i: 0 � i � k, we have � (m)i � � (m+1)i � � �i :6



Proof. Suppose that � �i < � (m)i for some m � 1 and some i with 0 � i � k. Then,by (11) and the de�nition of � (m)i ,Y �(��i ) � eY m(��i ) > CT��iB(T��i ) ;so � �i is not optimal, hence a contradiction. Thus, the right inequality is proved.Next suppose � (m+1)i < � (m)i for some m � 1 and some i with 0 � i � k. Then, bythe de�nition of � (m)i we haveeY m(� (m+1)i ) > CT�(m+1)iB(T� (m+1)i ) :On the other hand, according the de�nition of � (m+1)i , we haveeY m+1(� (m+1)i ) � CT�(m+1)iB(T� (m+1)i ):So, we get eY m(� (m+1)i ) > eY m+1(� (m+1)i ); which contradicts (11).We now may de�ne a limit lower bound process Y 1 and a limit family of stoppingtimes (�1i ) byY 1(i) := (a.s.) limm"1 " Y m(i) and �1i := (a.s.) limm"1 " � (m)i ; 0 � i � k; (12)where the uparrows indicate that the respective sequences are non-decreasing. It isclear that the family (�1i ) satis�es (2). Moreover, we haveY 1(i) = (a.s.) limm"1 " EF(i) CT�(m)pB(T� (m)p ) = EF(i) CT�1iB(T�1i ) ; 0 � i � k:by dominated convergence.We are now ready to present our main result.Theorem 4.2 The constructed limit process Y 1 in (12) coincides with the Snellenvelope process Y � and (�1i ) in (12) acts as a family of optimal stopping times.We have Y �(i) = Y 1(i) = EF(i) CT�1iB(T�1i ) ; 0 � i � k: (13)7



Proof. The Snell envelope �Y �(i)� is the smallest supermartingale which dominatesthe discounted cash-ow process � CTiB(Ti)� (see, e.g. Shiryayev (1978), Elliot &Kopp, 1999). So, by (12) and the �rst inequality in (11) it is enough to show thatthe process �Y 1(i)� is a supermartingale. Note, that for each i: 0 � i � k,EF(i)Y 1(i+1) = EF(i)EF(i+1) CT�1i+1B(T�1i+1)= EF(i)1�1i =iEF(i+1) CT�1i+1B(T�1i+1) + EF(i)1�1i >iEF(i+1) CT�1i+1B(T�1i+1)= EF(i)1�1i =i CT�1i+1B(T�1i+1) + 1�1i >iY 1(i)= Y 1(i) + 1�1i =i(EF(i) CT�1i+1B(T�1i+1) � Y 1(i)): (14)Since eY m(i) is non-decreasing in m, it easily seen that�1i = inffj : i � j � k; maxp: j�p�kEF(j) CT�1pB(T�1p ) � CTjB(Tj)g; 0 � i � k;by letting m " 1 in (10) (the de�nition of � (m)i ). So, for each j, 0 � j � k, withj < �1i we have maxp: j�p�k EF(j) CT�1pB(T�1p ) > CTjB(Tj) ;and maxp: �1i �p�kEF(�1i ) CT�1pB(T�1p ) � CT�1iB(T�1i ) :Then, in particular,1�1i =iEF(i) CT�1i+1B(T�1i+1) � 1�1i =i maxp: i�p�kEF(i) CT�1pB(T�1p ) � 1�1i =i CTiB(Ti) ; 0 � i � k:Therefore, by (11) and (14) it follows thatEF(i)Y 1(i+1) � Y 1(i) = 1�1i =i(EF(i) CT�1i+1B(T�1i+1) � Y 1(i)) (15)� 1�1i =i( CTiB(Ti) � Y 1(i)) � 0; 0 � i � k;and so the process (Y 1(i)) is a supermartingale.8



Remark 4.3 In addition, we can prove the following expression for the distancebetween two consequent iterations,Y m+1(i) � Y m(i) = � (m+1)i �1Xp=i (EF(p)Y m(p+1) � Y m(p)) � 0; (16)see Appendix.Remark 4.4 (variance reduced Monte Carlo simulation of Y m) Monte Carlo simu-lation of Y m requires computation of the vector (Y m�1(i))0�i�k along each simulatedtrajectory. Thus, assuming that we can compute European claims in closed form,Y 1 can be computed with a standard (linear) Monte Carlo simulation, but then Y 2will require a nested (quadratic) Monte Carlo simulation, and so on. So, the cost ofthe method grows rapidly with each new iteration. Fortunately, we can reduce thenumber of Monte Carlo simulations for Y m by using the following variance reducedrepresentation,Y m(i) = EFiZ� (m)i = EFiZ� (m�1)i + EFi(Z� (m)i � Z� (m�1)i ); with Zi := CTiB(Ti): (17)One can expect that Z� (m�1)i and Z� (m)i are strongly correlated and thus the varianceof (Z� (m)i � Z� (m�1)i ) will be less than the variance of Z� (m)i . So, the computation ofEFi(Z� (m)i �Z� (m�1)i ) for a given accuracy, can usually be done with less Monte Carlosimulations than needed for direct simulation of EFiZ� (m)i .5 Iterative upper bounds by the dual approachBased on the convergent family of lower bound processes Y m developed in the pre-vious section, we will deduce in this section a convergent family of upper boundprocesses by a duality approach developed in the works of Davis & Karatzas (1994),Haugh & Kogan (2001), Rogers (2001).The duality approach is based on the following observation. For any supermartingale(S(j)) with S(0) = 0 we have,Y �(0) = sup�2f0;:::;kgEF0 CT�B(T� ) � sup�2f0;:::;kgEF0( CT�B(T�) � S(�))� EF0 max0�j�k( CTjB(Tj) � S(j)); (18)hence the right-hand side provides a (dual) upper bound for Y �(0).9



Rogers (2001) and independently Haugh & Kogan (2001), provide a representationof Y �(0) as an in�mum over a set of supermartingales,Y �(0) = infS2S EF0 max0�j�k( CTjB(Tj) � S(j)); (19)where S denotes the set of supermartingales S with S(0) = 0:Moreover, the in�mumis attained at the martingale part of the Doob-Meyer decomposition of Y �,MY �(0) = 0; MY �(j) = jXl=1 (Y �(l) � EFl�1Y �(l)); (20)and also at the shifted Snell envelope processS(j) = Y �(j) � Y �(0): (21)Recently, Jamshidian (2003a,b) proved a multiplicative analogue of the representa-tion (19), Y �(0) = infM2MEF0 max0�j�k CTjB(Tj)M (k)M (j) ; (22)where M is the set of positive martingales. Jamshidian shows that in (22) thein�mum is attained at the martingale part of the multiplicative Doob-Meyer de-composition of Y �, NY �(0) = 1; NY �(j) = jYl=1 Y �(l)EFl�1Y �(l) : (23)Lemma 5.1 and Lemma 5.3 below give a somewhat more general characterization ofthe supermartingales and martingales where the in�ma in (19) and (22) are attained,respectively.Lemma 5.1 Let S be the set of supermartingales S with S(0) = 0: Let S 2 S besuch that CTjB(Tj) � Y �(0) � S(j), 1 � j � k. Then,Y �(0) = max0�j�k( CTjB(Tj) � S(j)) a:s: (24)Proof. From the assumptions it follows that CTjB(Tj) �Y �(0) � S(j), 0 � j � k, then,using (18),0 � EF0 max0�j�k( CTjB(Tj) � S(j))� Y �(0) = EF0 max0�j�k( CTjB(Tj) � S(j) � Y �(0)) � 0:Hence, we have EF0 max0�j�k( CTjB(Tj) � S(j) � Y �(0)) = 0 and CTjB(Tj) � S(j) � Y �(0) � 0,which yields (24). 10



Note that both (20) and (21) satisfy the conditions of Lemma 5.1. Moreover, byProposition 5.2 it turns out that, somewhat remarkably, the multiplicative martin-gale part of the Snell envelope which minimizes (22) also provides the in�mum inthe additive dual representation (19).Proposition 5.2 By taking S(j) = (NY �(j) � 1)Y �(0);where NY � is given by (23), the equality (24) holds.Proof. By rearranging (23) and using the supermartingale property of Y � we getNY � (j)Y �(0) = Y �(j) j�1Yl=0 Y �(l)EFlY �(l+1) � Y �(j) � CTjB(Tj) (25)and, consequently, (NY �(j) � 1)Y �(0) � CTjB(Tj) � Y �(0):Now the equality (24) follows Lemma 5.1.Lemma 5.3 Let M be the set of positive martingales M , such that M (0) = 1. LetM 2 M be such that CTjY �(0)B(Tj) �M (j), 1 � j � k. Then,Y �(0) = EF0 max0�j�k CTjB(Tj)M (k)M (j) : (26)Proof. First of all we observe thatY �(0) = sup�2f0;:::;kgEF0 CT�B(T�) = sup�2f0;:::;kgEF0 CT�B(T�) EF�M (k)M (�)= sup�2f0;:::;kgEF0 CT�B(T�) M (k)M (�) � EF0 max0�j�k CTjB(Tj) M (k)M (j) : (27)Then, by the assumptions, it follows thatY �(0) � EF0 max0�j�k CTjB(Tj)M (k)M (j)= Y �(0)EF0 max0�j�k CTjY �(0)B(Tj)M (k)M (j) � Y �(0)EF0M (k) =M (0)Y �(0) = Y �(0);hence (26). 11



Note, that due to (25), the martingale (23) satis�es the conditions of Lemma 5.3.Moreover, by Proposition 5.4 it turns out, that the martingale part of the Doob-Meyer decomposition of the Snell envelope which minimizes (19) also provides thein�mum in the multiplicative dual representation (22).Proposition 5.4 By taking M (j) = MY �(j)Y �(0) + 1;where MY � is given by (20), equality (26) holds.Proof. By rearranging (20) and using the supermartingale property of Y � we getMY �(j) + Y �(0) = Y �(j) + j�1Xl=0 �Y �(l) � EFlY �(l+1)� � Y �(j) � CTjB(Tj)and, consequently, MY �(j)Y �(0) + 1 � CTjY �(0)B(Tj) :Now (26) follows from Lemma 5.3.The duality representation provides a simple way to estimate the Snell envelopefrom above, using a lower approximation process denoted by Y ; hence Y � Y �. LetM be the martingale part of the Doob-Meyer decomposition of Y , satisfyingM (0) = 0;M (j) =M (j�1) + Y (j) � EF(j�1)Y (j) = jXl=i+1 Y (l) � jXl=i+1EF(l�1)Y (l); j = 1; : : : ; k:Then, according to (18),Y �(0) � EF0 max0�j�k( CTjB(Tj) �M (j)) =: Y (0)up : (28)By the next theorem (taken from Kolodko & Schoenmakers, (2003)), the gap be-tween Y (0) and Y (0)up depends, in some sense, on how far the lower bound process Yis away from being a supermartingale.Theorem 5.5 Suppose, that Y (i) � CTiB(Ti) , i = 0; : : : ; k. Then,0 � Y (0)up � Y (0) � EF0 k�1Xj=0 max(EFjY (j+1) � Y (j); 0):12



Proof. By de�nition (28), we haveY (0)up = EF0 max0�j�k( CTjB(Tj) � jXl=1 Y (l) + jXl=1 EF(l�1)Y (l)) (29)= Y (0) + EF0 max0�j�k( CTjB(Tj) � Y (j) + j�1Xl=0 EF(l)(Y (l+1) � Y (l))) =: Y (0) +�(0):We thus have the following estimate,�(0) = Y (0)up � Y (0) � EF0 max0�j�k j�1Xl=0 (EF(l)Y (l+1) � Y (l))� EF0 max0�j�k j�1Xl=0 max(EF(l)Y (l+1) � Y (l); 0)� EF0 k�1Xj=0 max(EF(j)Y (j+1) � Y (j); 0):Let us now consider the sequence of lower bound processes Y m from the previoussection. Analogously to (28) we now deduce a sequence of upper bound processesY m(i)up := EFi maxi�j�k( CTjB(Tj) � jXl=i+1 Y m(l) + jXl=i+1EF(l�1)Y m(l))=: Y m(i) +�m(i):By Theorem 5.5 it then follows that0 � �m(i) � EFi k�1Xj=i max �EFjY m(j+1) � Y m(j); 0� :By letting m " 1 on the right-hand side and using Theorem 4.2, we obtain(a.s.) limm!1�m(i) = 0; 0 � i � k:Hence, the sequence Y mup converges to the Snell envelope, i.e.,(a.s.) limm!1 Y m(i)up = (a.s.) limm!1 Y m(i) = Y �(i); 0 � i � k:13



6 A numerical example: Bermudan swaptions inthe LIBOR market modelLet us �rst recall the LIBOR Market Model with respect to a tenor structure 0 <T1 < T2 < : : : < Tn in the spot LIBOR measure P �; induced by the numeraireB�(t) := Bm(t)(t)B1(0) m(t)�1Yi=0 (1 + ÆiLi(Ti))with m(t) := minfm : Tm � tg denoting the next reset date at time t: The dynamicsof the forward LIBOR Li(t), de�ned in the interval [0; Ti] for 1 � i < n; is governedby the following system of SDE's (Jamshidian 1997),dLi = iXj=m(t) ÆjLiLj i � j1 + ÆjLj dt+ Li i � dW �: (30)Here Æi = Ti+1 � Ti are day count fractions, and t! i(t) = (i;1(t); : : : ; i;d(t)) aredeterministic volatility vector functions de�ned in [0; Ti]; called factor loadings. In(30), (W �(t) j 0 � t � Tn�1) is a standard d-dimensional Wiener process under themeasure P � with d; 1 � d < n; being the number of driving factors.A swaption contract with maturity Ti and strike � with principal $1 gives the rightto contract at Ti for paying a �xed coupon � and receiving oating LIBOR at thesettlement dates Ti+1,: : : ,Tn. So by this de�nition, its cash-ow at maturity isSi;n(Ti) :=  n�1Xj=i Bj+1(Ti)Æj (Lj(Ti)� �)!+ :We here consider Bermudan swaptions for which the exercise dates coincide withthe LIBOR tenor structure. I.e. k = n and Ti = Ti; for 1 � i � n.A Bermudan swaption, issued at t = 0, gives the right to exercise a cash-owCT� := S�;n(T�)at an exercise date T� 2 fT1; : : : ; Tng to be decided by the option holder. The valueof the Bermudan swaption is given by (1).Remark 6.1 In practice it is more realistic to assume, that the Bermudan swaptioncannot be exercised at t = T0 = 0. This assumption is equivalent to the assumptionCT0 = 0 in Section 2. 14



For simulation experiments we use the following LIBOR volatility structure,i(t) = cg(Ti � t)ei; where g(s) = g1 + (1� g1 + as)e�bsis a parametric volatility function proposed by Rebonato (1999), and ei are d-dimensional unit vectors, decomposing some input correlation matrix of rank d.For generating LIBOR models with di�erent numbers of factors d, we take as abasis a correlation structure of the form�ij = exp(�'ji� jj); i; j = 1; : : : ; n� 1 (31)which has full-rank for ' > 0; and then for a particular choice of d we deduce from� a rank-d correlation matrix �d with decomposition �dij = ei � ej; 1 � i; j < n;by principal component analysis. We note that instead of (31) it is possible to usemore general and economically more realistic correlation structures. For instancethe parametric structures of Schoenmakers & Co�ey (2003).Further we take over the following model parameters used in Kolodko & Schoen-makers (2003): A at 10% initial LIBOR curve over a 40 period quarterly tenorstructure, and the parametersn = 41; Æi = 0:25; c = 0:2; a = 1:5; b = 3:5; g1 = 0:5; ' = 0:0413: (32)For a \practically exact" numerical integration of the SDE (30), we used the log-Euler scheme with �t = Æ=5 (e.g., see also Kurbanmuradov, Sabelfeld and Schoen-makers 2002).In Kolodko & Schoenmakers (2003) we studied lower and upper estimations of di�er-ent Bermudan swaptions. As lower estimation we considered a lower bound processYA, obtained by the Andersen method (Andersen (1999), strategy I). Then, basedon YA, we computed an upper estimation Yup;A via (28) like in Andersen & Broadie(2001). It turns out that for 1-factor models Andersen's method gets very close tothe Snell envelope. In fact, for one factor the relative distance between YA and by YAinduced upper bounds does not exceed 1.5% in the examples considered by Kolodko& Schoenmakers (2003) (see for more examples Andersen & Broadie (2001)). How-ever, in Kolodko & Schoenmakers (2003) it is shown that when the number of factorsis larger than 1, this distance increases from ITM to OTM strikes. For OTM strikesand more than 2 factors this distance is even larger than 10% relative.We now compute, according to the method developed in Section 4, starting from� (0)i � i, three successive lower bounds Y m(0): Y 0(0), Y 1(0) and Y 2(0) for OTMcases. The results are compared with the lower and upper estimations due to theAndersen's lower bound process YA. For computing the iteration Y 2(0), we apply15



the variance reduction technique (17). We use 5 000 000 Monte Carlo trajectoriesfor Y 0(0) and Y 1(0) and 20 000 Monte Carlo trajectories (with 100 inner simulations)for computation of Y 2(0)�Y 1(0). Then, the standard deviations of Y 2(0) are roughlyequal to the corresponding deviations due to the second term in (17), and are alsocomparable with the standard deviations of Andersen's lower bounds, reported inKolodko & Schoenmakers, 2003. The results are given in Table 1.Table 1.� d Y 0(0) (SD) Y 1(0) (SD) Y 2(0) (SD) Y (0)A (SD)y Y (0)up;A (SD)y1 10.2(0.0) 119.3(0.1) 131.0(0.9) 133.5(0.7) 135.4(0.1)0.12 2 5.2(0.0) 114.5(0.1) 123.4(0.8) 119.7(0.7) 127.4(0.3)(OTM) 10 3.0(0.0) 104.2(0.1) 110.5(0.6) 102.8(0.6) 113.6(0.3)40 2.7(0.0) 101.4(0.1) 106.1(0.6) 98.8(0.5) 110.3(0.3)It turns out that in all cases, except for the 1-factor case, the secondly iteratedlower bound Y 2(0) is signi�cantly higher than Y (0)A . Remarkably, for 10 and 40factors already the �rst iteration Y 1(0) is slightly higher than Y (0)A . In the 1-factorcase, where Andersen's lower bound and corresponding dual upper bound are within1.5% relative, Y 2(0) is 1.5% relative below Y (0)A . Note that for more than 1 factorthe computed lower bound Y 2(0), hence the second iteration, can be found more orless in the middle of Y (0)A and Y (0)A;up.Remark 6.2 The construction of the new stopping time b� from � via (5) providesa general method for improving any given stopping time � with properties (2). So inprinciple we can improve Andersen's process YA by constructing bYA via (6). In thisrespect, we report that preliminary computations for two factor OTM cases yieldedcomparable values for bYA and Y 2(0).Concluding remarksThe implementation of the proposed iterative procedure is straightforward, andthus can be done in a generic way for a variety of (not necessarily �nancial) optimalstopping problems. Although such an implementation gives rise to nested MonteCarlo simulations and therefore may be not too fast, we saw that for m = 2 (hencewith a quadratic Monte Carlo simulation) practically correct Bermudan swaptionprices can be obtained. So the method may serve at least as a Benchmark tool.yThe results are taken from Kolodko & Schoenmakers, 200316



In general, provided that Europeans can be priced analytically, computation of Y mrequires about O(Nm) simulations of the underlying process. However, a personwhich is only interested in the optimal exercise decision (for instance the buyer ofthe Bermudan product) can decide the stopping time � (m) at a cost of only O(Nm�1)simulations.Finally we predict that, when the producers of microprocessor chips keep \ridingthe exponential", the computation of higher order iterations (hence almost exactprices) will become feasible in the near future.Appendix.We now prove the equality (16).Proof. Let us writeY m+1(i) � Y m(i) = 1� (m+1)i =i �Y m+1(i) � Y m(i)�+ 1� (m+1)i >i �Y m+1(i) � Y m(i)� : (33)Note that the �rst term in (33) is zero. Indeed, if � (m+1)i = i, then Y m+1(i) =EF(i) CT�(m+1)iB(T�(m+1)i ) = CTiB(Ti), and on the other hand, CTiB(Ti) � Y m(i) � Y m+1(i).Now we consider the second term in (33). If � (m+1)i > i, then � (m+1)i = � (m+1)i+1 andso Y m+1(i) = EF(i) CT�(m+1)iB(T� (m+1)i ) = EF(i) CT�(m+1)i+1B(T� (m+1)i+1 ) = EF(i)Y m+1(i+1):We thus obtain,
17



Y m+1(i) � Y m(i) = 1� (m+1)i >i �EF(i)Y m+1(i+1) � Y m(i)�= 1� (m+1)i >iEF(i)(Y m+1(i+1) � Y m(i+1)) + 1� (m+1)i >iEF(i)(Y m(i+1) � Y m(i))= 1� (m+1)i >iEF(i) �1� (m+1)i+1 >i+1EF(i+1)(Y m+1(i+2) � Y m(i+2))+1� (m+1)i+1 >i+1EF(i+1) �Y m(i+2) � Y m(i+1)��+1� (m+1)i >iEF(i) �Y m(i+1) � Y m(i)�= EF(i)(1� (m+1)i+1 >i+1(Y m+1(i+2) � Y m(i+2))+1� (m+1)i+1 >i+1(Y m(i+2) � Y m(i+1))) + 1� (m+1)i >iEF(i)(Y m(i+1) � Y m(i))= EF(i)1� (m+1)i+1 >i+1(Y m+1(i+2) � Y m(i+2)) ++EF(i)1� (m+1)i+1 >i+1 �Y m(i+2) � Y m(i+1)�+1� (m+1)i >iEF(i) �Y m(i+1) � Y m(i)� ;then by induction from i to k and the fact that Y m+1(k) = Y m(k),Y m+1(i) � Y m(i) = k�1Xp=i 1� (m+1)p >pEF(p) �Y m(p+1) � Y m(p)�= � (m+1)i �1Xp=i �EF(p)Y m(p+1) � Y m(p)�References[1] Andersen L. (1999): A simple approach to the pricing of Bermudan swaptionsin the multifactor LIBOR market model. Journal of Computational Finance,3, No. 2, 5{32.[2] Andersen L., Broadie M. (2001): A primal-dual simulation algorithm for pricingmultidimensional American options. Working paper.[3] Belomestny D., Milstein G.N. (2004): Monte Carlo evaluation of Americanoptions using consumption processes. Working paper.[4] Berridge S.J., Schumacher J.M. (2004): An irregular grid approach for pricinghigh-dimensional American options. Working paper.18
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