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Abstract

AMS MSC 2000: 49M37, 90C55, 90C06

We propose a composite step method, designed for equality constrained optimization
with partial differential equations. Focus is laid on the construction of a globalization
scheme, which is based on cubic regularization of the objective and an affine covariant
damped Newton method for feasibility. We show finite termination of the inner loop
and fast local convergence of the algorithm. We discuss preconditioning strategies for
the iterative solution of the arising linear systems with projected conjugate gradient.
Numerical results are shown for optimal control problems subject to a nonlinear heat
equation and subject to nonlinear elastic equations arising from an implant design problem
in craniofacial surgery.
Keywords: composite step methods, cubic regularization, affine covariant, optimization
with PDEs

1 Introduction

Subject of this work is the construction of an algorithm for nonlinear equality constrained
optimization with a particular focus on the efficient solution of optimization problems with
partial differential equations as constraints. These problems are originally posed in function
space and become – after discretization – large scale problems with special structure, inherited
from the infinite dimensional setting.

To fix the problem setting, consider a Hilbert space (X, 〈·, ·〉) and in addition a reflexive
Banach space P . In this setting we consider the following optimization problem

min
x∈X

f(x) s.t. c(x) = 0. (1)

Here f : X → R is a twice continuously Fréchet differentiable functional with suitable smooth-
ness properties. The twice continuously Fréchet differentiable nonlinear operator c : X → P ∗

maps into the dual space of P so that it can model a differential equation in weak form:

c(x) = 0 in P ∗ ⇔ c(x)v = 0 for all v ∈ P.
∗Supported by the DFG Research Center Matheon ”Mathematics for key technologies”
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Here we use that P is a reflexive space, expressed a little sloppily by the relation P = P ∗∗. In
the context of optimal control it is common to split the variable x into two parts X = Y ×U
and x = (y, u), where y denotes the state and u the control. This splitting comes from the
special structure of the equality constraints

c(x) = A(y)−Bu,

where A : Y → P ∗ is a nonlinear differential operator with continuous inverse, and B : U →
P ∗ a linear, compact operator. Under these structural assumptions it is possible to show
existence of minimizers and corresponding optimality conditions via the implicit function
theorem and the closed range theorem. Often, invertibility of A is used to eliminate the
state y from the system and consider the reduced problems minu∈U f(y(u), u) where y(u) :=
A−1(Bu).

Our algorithmic approach is that of a composite step method. This class of methods is well
established in nonlinear optimization and the basis for a couple of competitive optimization
codes. Its way to cope with the double aim of feasibility and optimality is to split the full
Lagrange-Newton step δx into a normal step δn and a tangential step δt, and to modify
them separately for the purpose of globalization. More precisely, δn is a minimal norm
Gauss-Newton step for the solution of the underdetermined problem c(x) = 0, and δt aims
to minimize f on the current nullspace of the linearized constraints. A couple of variants
have been proposed in the literature [13, Sec. 15.4]. Our approach resembles the Vardi
approach [35] in the sense that normal steps are computed as damped Newton steps for the
underdetermined equation c(x) = 0 and thus always satisfy νc(x) + c′(x)δn = 0 for some
damping factor ν ∈ ]0, 1]. Compared to the approach of Byrd-Omojokun [28, 7, 6], where
normal steps are computed as minimizers of ‖c(x)‖ in a trust region, Vardi methods need in
addition surjectivity of c′(x) as a prerequisite for the computation of steps. This is widely
considered as a weakness of this class of methods as a basis for a general purpose solver.

For our purpose, however, a Vardi type method is an appropriate choice for two reasons.
First, due to the above described structure of optimal control problems one can usually exclude
the case of non-surjective c′(x), so the extra assumption imposed by Vardi type methods is
fulfilled.

Second, we avoid the computation of norms of residuals c(x) ∈ P ∗. This is important
in our context, because the space P ∗ of residuals c(x) is a dual space, which is often quite
irregular and its norm is hard to compute. Rather, our globalization strategy for feasibility
relies on the ideas of affine covariant Newton methods (which are invariant against affine
transformations of the codomain space) for underdetermined problems, as described in [16,
Sec. 4.4]. In fact, if f = const , our algorithm reduces to the one proposed there. In this
context, a Vardi-like damping strategy is the natural result.

For the tangential step we employ a cubic regularization method, as used in [38, 8, 9, 31],
and our algorithm reduces to this method in the absence of equality constraints. In total, we
solve the following local problems, where ν ∈]0, 1] is an adaptively computed damping factor,
[ωc] and [ωf ] are algorithmic parameters, adapted during the iteration, and Θaim ∈]0, 1[ is a
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user provided desired contraction factor:

min
δx∈X

f(x) + f ′(x)δx+
1

2
Lxx(x, p)(δx, δx) +

[ωf ]

6
‖δx‖3

s.t. νc(x) + c′(x)δx = 0,

[ωc]

2
‖δx‖ ≤ Θaim.

This step is the basis of a globalization procedure which automatically results in the follow-
ing algorithmic behavior: far away from a feasible point priority is given to come close to
a feasible solution. In this phase the method behaves like a damped Newton method for
underdetermined systems. Close to the feasible manifold optimality is stressed, with the re-
striction that the iterates remain in the Kantorovich neighborhood of contraction around the
feasible set. For this we use parametrized models for the nonlinearity of the functional and
the constraints. Since our model for the functional is quadratic, we use a cubic model for the
error, while our linear model for the constraints is augmented by a quadratic model for the
error.

The purpose of this paper is to develop a practical algorithm along these ideas and to
establish some preliminary theoretical results, such as finite termination of the “inner loop”
and fast local convergence. A proof of global convergence is not in the scope of this publication,
and will certainly require some modifications of the algorithm. In particular, it is known that
affine covariant Newton methods, although very successful in practice, lack a rigorous proof
of global convergence, because due to affine covariance the evaluation of ‖c(x)‖ and thus the
usual globalization mechanisms are not available.

The functional analytic framework for our algorithms forces us to distinguish precisely
between primal and dual quantities. In particular, we stress the distinction between the
linear functional f ′(x) ∈ X∗ and the gradient ∇f(x) ∈ X. Both are connected by the Riesz
isomorphism M : X → X∗ which maps v ∈ X to the linear functional 〈v, ·〉 ∈ X∗. In our
context, M is usually a non-trivial mapping. Similarly, we use the derivative c′(x) : X →
P ∗, instead of ∇c(x), which is widely seen in the literature, but not useful in a functional
analytic setting. Concerning adjoint mappings, we use Banach space adjoints, throughout,
i.e., c′(x)∗ : P → X∗ is defined by (c′(x)∗p)(v) = pc′(x)v = p(c′(x)v).

Let us quickly comment on related, existing approaches of equality constrained opti-
mization in the context of optimal control. Composite step trust-region methods of Byrd-
Omojokun type have been considered in [23, 29], where focus was laid on inexact iterative
solution techniques of the arising linear systems, cf. also the earlier work [24], while similar
issues were considered in [5, 14] in a line-search context. In [12, 40] an algorithm is discussed
that integrates adaptive mesh refinement into a composite step trust-region method. An
alternative invariance concept has been used in [36] for local inexact SQP methods.

2 Lagrange multipliers and normal steps

Let us consider the generic equality constrained optimization problem (1), on the Hilbert
space X. Under standard assumptions, we can derive its KKT conditions at a stationary
point x∗. To be accurate, we require that f and c are continuously Fréchet differentiable
at x∗ and c′(x∗) : X → P ∗ is surjective. Under these conditions there exists a Lagrange
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multiplier p ∈ P ∗∗ ∼= P (recall that P is reflexive), such that

f ′(x∗)v + pc′(x∗)v = 0 ∀v ∈ X (2)

c(x∗) = 0. (3)

Here (2) expresses the stationarity condition in ker c′(x∗):

(2) ⇔ f ′(x∗) ∈ ran c′(x∗)
∗ ⇔ f ′(x∗)v = 0 ∀v ∈ ker c′(x∗). (4)

The last equivalence is due to the closed range theorem (cf. e.g. [4, Thm. 2.19]). Thus, to
show (2) it is sufficient to verify f ′(x∗)v = 0∀v ∈ ker c′(x∗). This can be done via Ljusternik’s
theorem (cf. e.g. [26, Sec. 0.2.4]), a variant of the implicit function theorem.

As X is a Hilbert space, equipped with scalar product 〈·, ·〉, we can perform the splitting

X = ker c′(x∗)⊕ ker c′(x∗)
⊥

of X into ker c′(x∗) and its orthogonal complement ker c′(x∗)
⊥. Application of this splitting

to (2) then yields the equivalence

(f ′(x∗) + pc′(x∗))v = 0 ∀v ∈ X ⇔


f ′(x∗)v = 0 ∀v ∈ ker c′(x∗)

(f ′(x∗) + pc′(x∗))w = 0 ∀w ∈ ker c′(x∗)
⊥.

The first condition on the right hand side characterizes stationarity of x∗ and neither depends
on p, nor the scalar product. In contrast, the second condition

f ′(x∗)w + pc′(x∗)w = 0 ∀w ∈ ker c′(x∗)
⊥, (5)

depends on the scalar product 〈·, ·〉 and involves p. We will see that the validity of (5) has
nothing to do with the stationarity of x∗.

Rather, (5) holds for arbitrary x ∈ X as long as c′(x) is surjective, and the correspond-
ing Lagrange multiplier px can be computed by solving a linear system, where the Riesz
isomorphism M : X → X∗ (characterized by (Mv)(w) = 〈v, w〉) enters:(

M c′(x)∗

c′(x) 0

)(
v
px

)
+

(
f ′(x)

0

)
= 0. (6)

Theorem 2.1. For x ∈ X assume that c′(x) : X → P ∗ is bounded and surjective. Then there
is a unique element px ∈ P that solves (6) and satisfies

f ′(x)w + pxc
′(x)w = 0 ∀w ∈ ker c′(x)⊥. (7)

Proof. It is well known that block operators of the form encountered in (6) are continuously
invertible (in a Hilbert space context), as long as c′(x) is bounded and surjective and the
symmetric bilinear form 〈v, w〉 = (Mv)(w) is elliptic on ker c′(x) and continuous. This is the
result of the famous Brezzi splitting theorem (cf. e.g. [3, Thm. 4.3]).

Now we test the first row of (6) with w ∈ ker c′(x)⊥.

(Mv)(w) + pxc
′(x)w + f ′(x)w = 0.

Since w ∈ ker c′(x)⊥ and v ∈ ker c′(x) by the second row of (6) we conclude (Mv)(w) = 0
and thus (7).
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Definition 2.2. We call the element px in Theorem 2.1 the Lagrange multiplier of problem (1)
at x (w.r.t. the scalar product 〈·, ·〉).

We will see in the following section that our special Lagrange multiplier enjoys a couple
of very favorable properties, also far away from an optimal solution.

Remark 2.3. In the literature a Lagrangian multiplier that is computed via (6) is known
as a “least-squares estimate for p”, in the context of the standard scalar product of Rn:
〈v, w〉2 := vTw. The motivation is that p minimizes ‖f ′(x)T + c′(x)T p‖2. It seems, however,
that (7), which turns out to be very helpful in the context of our algorithm, is not widely
known.

Lemma 2.4. Let x0 ∈ X and assume that f ′ and c′ depend continuously on x. Further,
assume that c′(x0) : X → P ∗ is a bounded, surjective linear operator. Then the Lagrange
multiplier px at x is given as a continuous implicit function of x in some neighborhood around
x0.

Proof. We apply the implicit function theorem to (6), which is of the form F (x, p) = K(x)p+
r(x) = 0. In this context, x is the parameter, and px = p(x) is the desired implicit function.
We observe that F is linear and thus differentiable in p and that ∂/∂pF (x, p) = K(x) is
continuously invertible at x0 and depends continuously on x by our assumptions. Thus, we
can apply the implicit function theorem (cf. e.g. [39, Thm 4.B]) to get the desired result.

Lagrangian function. Let us discuss our result in terms of the Lagrangian function

L(x, p) := f(x) + pc(x),

where p = px is chosen as in Theorem 2.1. In this context our result implies that normal
steps δn ∈ ker c′(x)⊥ do not change the Lagrangian function up to first order:

Lx(x, px)δn = f ′(x)δn+ pxc
′(x)δn = 0 ∀δn ∈ ker c′(x)⊥.

Thus, our px makes L(·, px) stationary in ker c′(x)⊥. In contrast, for tangential steps δt, which
are contained in ker c′(x), the relevant relation is:

Lx(x, px)δt = f ′(x)δt+ pxc
′(x)δt = f ′(x)δt ∀δt ∈ ker c′(x).

Thus, their contribution is, up to first order, independent of the choice of p. Taken together,
this yields for the composite step δx = δn+ δt:

Lx(x, px)δx = Lx(x, px)(δn+ δt) = f ′(x)δt

If we look at a second order approximation of L along δx we obtain

L(x+ δx, px) = L(x, px) + f ′(x)δt+
1

2
Lxx(x, px)(δx)2 + o(‖δx‖2).

Hence, px only enters in the second order approximation of L. In Section 3 below we will
construct a similar second order model for f , which avoids the well known Maratos effect.
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c = 0

δn

δt

δx δs

δx+ δs
x+ ker(c′(x))

x

Figure 1: Sketch of a composite step.

3 Composite steps and their consistency

In this section we will discuss the properties of composite steps and in particular their order
of consistency, i.e. the asymptotic behavior of the difference between quadratic models and
the actual problem. Classically, composite steps are composed from a normal step δn and a
tangential step δt. In our framework we add an additional simplified normal step δs that also
plays the role of a second order correction.

For this purpose we introduce the following notation, which refers to a single step of our
algorithm. Consider a fixed iterate x with associated Lagrange multiplier px computed as in
Theorem 2.1. We denote the (damped) normal step by δn ∈ ker c′(x)⊥ and the tangential
step by δt ∈ ker c′(x). The undamped normal step is denoted by ∆n, so that δn = ν∆n,
where ν ∈ ]0, 1] is the damping factor. A similar notation is conceivable for tangential steps,
even though the computation of their direction and length is usually performed in one step.

Finally we call the simplified normal step, to be defined below, δs ∈ ker c′(x)⊥. Then the
ordinary composite step is given by

δx := δn+ δt, (8)

but we will also consider the extended composite step defined as δx+ δs.
The above steps have to fulfill the following equations (but are, of course not fully deter-

mined by them, since in general ker c′(x) is non-trivial):

c(x) + c′(x)∆n = 0 undamped normal step (9)

c′(x)δt = 0 tangential step (10)

(c(x+ δx)− c(x)− c′(x)δx) + c′(x)δs = 0 simplified normal step. (11)

To fully determine ∆n and δs, we use the scalar product 〈·, ·〉 on the Hilbert space X and
require

∆n, δs ∈ ker c′(x)⊥.

The tangential step will be determined by approximately minimizing a quadratic model of L
on ker c′(x), which corresponds to a quadratic model of f on the feasible set c(x) = 0.
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3.1 Computation of steps via saddle point problems

In this subsection we specify the conditions that determine the normal steps ∆n, the La-
grange multiplier px, tangential steps δt, and the simplified normal step δs. All quantities are
computed as solutions of certain saddle point problems.

3.1.1 Normal step

Since ∆n and δs are both supposed to lie in ker c′(x)⊥ we start with some general discussion.
First we note that the minimal norm problem

min
w∈X

1

2
〈w,w〉 s.t. c′(x)w + g = 0, (12)

is equivalent to finding w ∈ ker c′(x)⊥ such that c′(x)w + g = 0. The optimality conditions
for (12) motivate the following Lemma:

Lemma 3.1. Suppose that w ∈ X and q ∈ P satisfy(
M c′(x)∗

c′(x) 0

)(
w
q

)
+

(
0
g

)
= 0 (13)

for some g ∈ P ∗. Then w ∈ ker c′(x)⊥.

Proof. This follows from the first row of (13) and (Mw)(ξ) = 〈w, ξ〉:

(Mw)(ξ) + q(c′(x)ξ) = 0 ∀ξ ∈ X ⇒ (Mw)(ξ) = 0 ∀ξ ∈ ker c′(x)⇔ w ∈ ker c′(x)⊥

We stress again at this point that the choice of the Hilbert space scalar product 〈·, ·〉 is
crucial and depends on the function space context of the problem. Consequently, M , the
Riesz-isomorphism of X, is usually a non-trivial linear operator. Further, we note that the
normal step does not depend on the Lagrange multiplier px.

We denote the solution of (13) as

w = −c′(x)−g. (14)

With this notation, we can define the normal step via:

∆n := −c′(x)−c(x)

as the solution of (13) with g = c(x).

3.1.2 Lagrange multiplier

We have already discussed the role of px and that it can be computed via (6) in Section 2.
However, instead of computing px via (6), we obtain it via a correction δp to the previous
multiplier p−, i.e. px = p− + δp. Recalling that Lx(x, p−) = f ′(x) + c′(x)∗p− this is achieved
by (

M c′(x)∗

c′(x) 0

)(
w
δp

)
+

(
Lx(x, p−)

0

)
= 0.



9

This formulation has the advantage that its right hand side tends to 0 when x tends to a
local minimizer, which in turn improves numerical stability with respect to rounding errors
or truncated iterations in the system solution. In exact arithmetic both alternatives yield, of
course, the same result px, which therefore only depends on x, but not on previous Lagrange
multiplier estimates.

3.1.3 Tangential step

Once we have computed the normal step ∆n, a damping factor ν, so δn = ν∆n, and an
adjoint state px, we want to compute the tangential step δt ∈ ker c′(x).

Ignoring for the moment issues of globalization, which are discussed in Section 4.3, this is
done such that δx := δn+ δt is an approximation of the minimizer of the quadratic model

q(δx) := f(x) + f ′(x)(δx) +
1

2
Lxx(x, px)(δx)2, (15)

of L on ker c′(x), provided such a minimizer exists. In this case, we call this exact minimizer
∆t. Otherwise, δt should at least be a direction of descent. Later in our globalization scheme
we will add some modifications to this functional (cf. (42) below).

Thus, the quadratic problem we have to solve is

min
δt

q(δn+ δt) subject to c′(x)δt = 0. (16)

Omitting terms that are independent of δt and adding the term pxc
′(x)δt = 0 to the functional,

this is equivalent to

min
δt

(
Lx(x, px) + Lxx(x, px)δn

)
δt+

1

2
Lxx(x, px)(δt)2 (17a)

subject to
c′(x)δt = 0. (17b)

This formulation, which only depends on the Lagrange function and its derivatives, reduces
the influence of rounding errors close to the optimal solution, since Lx(x, p)→ 0 for (x, px)→
(x∗, px∗).

The definition of the tangential step in this way is closely related to the Lagrange-Newton
step. In the vicinity of a solution satisfying the sufficient second order conditions, i.e. when
ν = 1 and Lxx is positive definite (elliptic) on ker c′(x), then the exact minimizer ∆t of
problem (17) exists, and the corresponding first order optimality conditions are(

Lxx(x, px) c′(x)∗

c′(x) 0

)(
∆t
∆p

)
+

(
Lx(x, px) + Lxx(x, px)δn

0

)
= 0. (18)

We observe that (∆x,∆p) = (∆n+ ∆t,∆p) is a full Lagrange-Newton step:(
Lxx(x, px) c′(x)∗

c′(x) 0

)(
∆x
∆p

)
+

(
Lx(x, px)
c(x)

)
= 0. (19)

In this case ∆p would be a Newton update for the Lagrange multiplier or, as a different
interpretation, the Lagrange multiplier at x with respect to the scalar product induced by
Lxx(x, px).
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3.1.4 Simplified normal step

For a given δx we can compute the simplified normal step via a saddle point problem of the
form (13), such that

δs := −c′(x)−
(
c(x+ δx)− c(x)− c′(x)δx

)
. (20)

It follows from Lemma 3.1 that δs ∈ ker c′(x)⊥, and thus

Lx(x, px)δs =
(
f ′(x) + pxc

′(x)
)
δs = 0. (21)

If δx = δn+ δt is computed as in (9) and (10) and thus satisfies c′(x)δx+ νc(x) = 0 we can
derive an alternative representation of the simplified normal step

δs := −c′(x)− (c(x+ δx)− (1− ν)c(x)) .

In the undamped case ν = 1 this relation reduces to δs = −c′(x)−c(x + δx), which is the
second step of a simplified Newton method for the equation c(x) = 0, starting at x, and
explains our naming of δs. We will see in Lemma 3.2 below that δs also plays the role of a
second order correction.

3.2 Order of consistency of composite steps

A basic principle of equality constrained SQP is to minimize a quadratic model of the func-
tional subject to a linear model of the constraints. In this section we will study the order of
consistency of these models, i.e., the order in which our local models approximate the true
problem, close to an iterate. This will be the theoretical basis for the construction of our
algorithm. Recalling that f and c are assumed to be twice Fréchet differentiable at x, the
following quadratic model is used for the functional:

q(δx) := f(x) + f ′(x)δx+
1

2
Lxx(x, px)(δx)2

= f(x) + f ′(x)δx+
1

2

(
f ′′(x) + pxc

′′(x)
)

(δx)2.

(22)

The last term, involving c′′(x) takes into account second order information of the equality
constraints, which is necessary to achieve fast local convergence of the undamped Lagrange-
Newton method. We will show that q(δx) is second order consistent with f(x+ δx+ δs), but
only first order consistent with f(x+δx). The latter is the reason for the well known Maratos
effect, while the first result yields a possible remedy. Therefore we refer to the simplified
normal step also as a second order correction.

For the results in this section, δx need not necessarily be defined as a “composite step”,
but can be an arbitrary (small) perturbation of our iterate x. However, δs is defined by (20).

Lemma 3.2. Denote by δx an arbitrary perturbation of x and by δs the corresponding sim-
plified normal step, determined through (20). Then we have the following consistency results:

‖δs‖ = o(‖δx‖), (23)

f(x+ δx) = q(δx) +O(‖δx‖2), (24)

f(x+ δx+ δs) = q(δx) + o(‖δx‖2). (25)



11

Proof. Estimate (23) follows directly from the definition (20) of δs, using differentiability of c
and continuous invertibility of c′(x) on ker c′(x)⊥. Next, (24) directly follows from comparing
the Taylor expansion for f at x with q(δx):

q(δx)− f(x+ δx) = q(δx)−
(
f(x) + f ′(x)δx+

1

2
f ′′(x)(δx)2 + o(‖δx‖2)

)
=

1

2
pxc
′′(x)(δx)2 + o(‖δx‖2) = O(‖δx‖2).

Testing the defining equation (11) for δs with px, and by Taylor expansion of c at x in
direction δx we compute

0 = px

(
[c(x+ δx)− c(x)− c′(x)δx] + c′(x)δs

)
= px

(
[c(x) + c′(x)δx+

1

2
c′′(x)(δx)2 + o(‖δx‖2)− c(x)− c′(x)δx] + c′(x)δs

)
= px

(1

2
c′′(x)(δx)2 + c′(x)δs

)
+ o(‖δx‖2).

Using this and (21) we obtain

f ′(x)δs = −pxc′(x)δs =
1

2
pxc
′′(x)(δx)2 + o(‖δx‖2)

and from (22)

q(δx) = f(x) + f ′(x)δx+
1

2
f ′′(x)(δx)2 + f ′(x)δs+ o(‖δx‖2). (26)

Subtracting (26) from the Taylor expansion for f at x in direction δx+ δs we compute

f(x+ δx+ δs)− q(δx)

= f(x) + f ′(x)(δx+ δs) +
1

2
f ′′(x)(δx+ δs)2 + o(‖δx+ δs‖2)− q(δx)

=
1

2
f ′′(x)(δs, 2δx+ δs) + o(‖δx+ δs‖2) + o(‖δx‖2).

Now (23) implies f ′′(x)(δs, 2δx+ δs) = o(‖δx‖2) and in turn the desired result (25).

In our interpretation, q is not a quadratic model of f on the linearization c′(x)δt = 0 of
the feasible set. Rather it takes into account a better, quadratic, approximation of the true
feasible set. Thus, to compare q and f , we should not evaluate f at x + δx, but at a point
that is closer to the true feasible set, e.g. at the second order corrected point x + δx + δs.
This issue, which is of course well known, manifests in the Maratos-effect and its elimination
via second order corrections.

Quantitative estimates. After these qualitative considerations we discuss conditions un-
der which the above qualitative estimates can be quantified more explicitly. Our consider-
ations are based mainly on affine covariant Lipschitz conditions on Lxx, f ′ and c′. These
estimates provide the main motivation for a couple of algorithmic choices in the following
section, and they will be the basis for finite termination and local fast convergence results for
our algorithm, provided below.

Recall that v = c′(x)−r denotes the least norm solution of the problem c′(x)v = r.
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Lemma 3.3. For any given x and δx, and corresponding simplified normal step δs the fol-
lowing identities hold:

f(x+ δx+ δs)− q(δx) = T1 + T2 where

T1 := L(x+ δx, px)− L(x, px)− Lx(x, px)δx− 1

2
Lxx(x, px)(δx, δx)

=

∫ 1

0
(Lx(x+ σδx, px)− Lx(x, px)− Lxx(x, px)σδx) δx dσ

=

∫ 1

0

∫ 1

0
(Lxx(x+ τσδx, px)− Lxx(x, px)) (σδx, δx) dτ dσ

T2 := f(x+ δx+ δs)− f(x+ δx)− f ′(x)δs

=

∫ 1

0

(
f ′(x+ δx+ σδs)− f ′(x)

)
δs dσ.

Furthermore we have

δs =

∫ 1

0
c′(x)−(c′(x+ σδx)− c′(x))δx dσ.

Proof. The identities for T1 and T2 follow from the fundamental theorem of calculus. So it
remains to show

f(x+ δx+ δs)− q(δx) = T1 + T2

Indeed, using the identities −c′(x)δs = c(x+ δx)− c(x)− c′(x)δx, and (f ′(x) +pxc
′(x))δs = 0

we compute

T1 + q(δx) = L(x+ δx, px)− L(x, px)− Lx(x, px)δx− 1

2
Lxx(x, px)(δx, δx) + q(δx)

= f(x+ δx) + (pxc(x+ δx)− pxc(x)− pxc′(x)δx) = f(x+ δx)− pxc′(x)δs

= f(x+ δx) + f ′(x)δs = f(x+ δx+ δs)− T2.

The result on δs follows similarly from the fundamental theorem of calculus.

Theorem 3.4. Assume that there are constants ωc, ωf ′, and ωL, such that

‖c′(x)−(c′(x+ v)− c′(x))v‖ ≤ ωc‖v‖2, (27)

|(Lxx(x+ v, px)− Lxx(x, px))(v, v)| ≤ ωL‖v‖3, (28)

|(f ′(x+ v)− f ′(x))w| ≤ ωf ′‖v‖‖w‖, (29)

where (x, px) are taken among the iterates, and v, w arbitrary. Then for arbitrary δx and
corresponding simplified normal steps δs we have the estimates:

‖δs‖ ≤ ωc
2
‖δx‖2, (30)

|f(x+ δx+ δs)− q(δx)| ≤ ωL
6
‖δx‖3 + ωf ′‖δs‖

(
‖δx‖+

1

2
‖δs‖

)
≤
(ωL

6
+
ωf ′ωc

2

(
1 +

ωc
4
‖δx‖

))
‖δx‖3.

(31)
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Proof. First note that (setting v = σδx) we see

‖δs‖ ≤
∫ 1

0

1

σ
‖c′(x)−(c′(x+ σδx)− c′(x))σδx‖ dσ ≤ ωc‖δx‖2

∫ 1

0
σ dσ ≤ ωc

2
‖δx‖2.

With respect to the Lipschitz constant for Lxx we get with Lemma 3.3

|f(x+ δx+ δs)− q(δx)| ≤ |T1|+ |T2|.

Then with the assumed affine covariant Lipschitz conditions (setting v = τσδx) we get

|T1| ≤
∫ 1

0

∫ 1

0

1

τ2σ
|(Lxx(x+ τσδx, px)− Lxx(x, px)) (τσδx, τσδx)| dτ dσ

≤ ωL‖δx‖3
∫ 1

0

∫ 1

0
τσ2 dτ dσ =

ωL
6
‖δx‖3

and (setting v = δx+ σδs, w = δs):

|T2| ≤
∫ 1

0

∣∣(f ′(x+ δx+ σδs)− f ′(x)
)
δs
∣∣ dσ ≤ ωf ′‖δs‖ ∫ 1

0
‖δx+ σδs‖ dσ

≤ ωf ′‖δs‖
(
‖δx‖+

∫ 1

0
σ dσ‖δs‖

)
= ωf ′‖δs‖

(
‖δx‖+

1

2
‖δs‖

)
Adding both estimates yields the first part of (31), inserting (30) the second part.

4 The globalization scheme

The globalization mechanism is a central part of any algorithm for nonlinear problems. The
particular difficulty in equality constrained optimization is the simultaneous achievement of
the potentially conflicting aims of feasibility and optimality. As the determination of the
feasible region is the prerequisite for finding an optimal solution, priority is attributed to
feasibility. However, an algorithm that stresses feasibility too much is likely to be inefficient
in finding an optimal point or may even converge to a non-stationary feasible point. Thus, the
main difficulty is to weigh both aims properly. Roughly speaking an ideal algorithm should
work as follows: far away from the feasible region, focus on getting close to it, close to the
feasible region, focus on optimality without neglecting feasibility. However, to render this
vague idea useful we first have to quantify, what close should mean.

A popular approach to do this is to say: “close to the feasible set means that ‖c(x)‖
is small”. Two popular globalization techniques arise from that statement, namely merit
functions and filter methods [18]. Both combine monotonicity requirements on f(x) and
‖c(x)‖ to achieve ‖c(x)‖ → 0 while minimizing f . However, this approach is in conflict with
our algorithmic paradigm that residual norms must not enter the algorithm.

Thus we resort to a different idea, which originates from affine covariant Newton methods
[16]. In the context of Newton’s method (or simplified Newton) for nonlinear equations one
can argue that close to the solution means safely within the region of local convergence, so
that we can find a feasible point easily within a few steps of Newton’s method. Carrying over
this idea to equality constraints in nonlinear optimization we can say that a point x ∈ X
is considered close to the feasible set, if a sequence of pure normal steps started at x would
converge quickly to a feasible point.
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To transform this idea into an algorithm, we have to quantify this region, at least by a
heuristic estimate of the relevant Lipschitz constant. Ways to construct such estimates are
among the central topics in [16]. Here we focus on equality constrained optimization problems
and refer to [16, Section 3.1] for an in depth treatment for the case of other nonlinear systems
of equations.

In broad terms, this leads to a predictor-corrector algorithm outlined in Alg. 1. Based
on the values of two algorithmic parameters [ωc] and [ωf ], which can be interpreted as a-
posteriori estimates of the corresponding Lipschitz constants ωc and ωL from Theorem 3.4,
the normal step δn, the tangential step δt, and the simplified normal step δs are computed.
If the results agree with the theoretical expectations, the step is accepted. Otherwise, [ωc]
and [ωf ] are adjusted according to the newly acquired information.

Algorithm 1 Outer and inner loop, inner loop strongly simplified

Require: initial iterate x, [ωc], [ωf ]
repeat// NLP loop

repeat// step computation loop
compute new trial correction δx, via (42)
compute simplified correction δs, via (20)
compute new Lipschitz constants [ωc], [ωf ]

until trial correction δx accepted
x← x+ δx+ δs

until converged

In the remainder of this section, we will fill out the details of the algorithm: how to
compute δx, how to update [ωc] and [ωf ], and when to accept a trial step.

4.1 Models for non-linearities

As described, our algorithm, an SQP-method, applies linear models for the equality con-
straints and quadratic models for the functional. We describe the deviation of these linear
and quadratic models from the true problem by parametrized quadratic and cubic error mod-
els, respectively. This approach is motivated qualitatively by Lemma 3.2 and quantitatively
by Theorem 3.4. Adjusting the parameters of these error models appropriately yields a glob-
alization scheme for our SQP iteration.

Newton contraction. Let us first recall the principal ideas of the affine covariant damping
strategy for nonlinear systems [16], and then describe our modification for composite step
methods. The situation is depicted in Figure 2.

Our main tool is the use of simplified Newton steps that we have encountered already in
the last section, namely δs. In fact, if ν = 1, i.e. δn = ∆n, then

c(x) + c′(x)δx = 0,

and δs satisfies the equation
c(x+ δx) + c′(x)δs = 0.

Thus, δx and δs can be interpreted as the first two steps of a simplified Newton method for
the problem: find ξ such that c(ξ) = 0, starting at x. Thus, if ‖δs‖ � ‖δx‖ holds, we expect
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Figure 2: Sketch of a composite step.

fast local convergence to a feasible point. So if we denote the contraction factor

Θ(δx) :=
‖δs‖
‖δx‖

,

then, Θ(δx) � 1 is a good indication that Newton contraction takes place, so that δx is an
acceptable correction.

In general, if ν ≤ 1, then δx and δs satisfy:

c(x) + c′(x)δx = (1− ν)c(x),

c(x+ δx) + c′(x)δs = (1− ν)c(x),

and thus, they form two steps of a simplified Newton method for the relaxed problem:

find ξν , such that c(ξν) = (1− ν)c(x). (32)

As before, ‖δs‖ � ‖δx‖ indicates fast local convergence of Newton’s method towards the
solution ξν of the relaxed problem. If ν � 1, we expect that (32) is much easier to solve
than the problem c(ξ) = 0. In fact, by the implicit function theorem the solutions ξν of these
relaxed problems locally define a path, the so called Newton path [16, Sec. 3.1.4], or – in the
context of underdetermined equations – the geodetic Gauss-Newton path [16, Sec. 4.4.2].

These considerations lead to the following concretization of our rough algorithmic idea,
described above. We compute the step δx, such that Θ(δx) < Θaim is to be expected (sec-
tion 4.3), and accept δx, if after computation of δs, Θ(δx) < Θacc is actually observed
(section 4.2), where 0 < Θaim < Θacc < 1 are user defined parameters.

Under the conditions of Theorem 3.4 we conclude the estimate

Θ(δx) ≤ ωc
2
‖δx‖,

which is the basis for our model (39), introduced below, in which the theoretical quantity ωc
is replaced by a computational estimate [ωc].
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Cubic regularization. Similarly, Theorem 3.4 yields (at least for bounded ‖δx‖) the cubic
bound (31) for the difference f(x + δx + δs) − q(δx). This motivates the introduction of a
cubic regularization of the quadratic model (15), equipped with an algorithmic quantity [ωf ]

m[ωf ](δx) = q(δx) +
[ωf ]

6
‖δx‖3

= f(x) + f ′(x)δx+
1

2
Lxx(x, p)(δx)2 +

[ωf ]

6
‖δx‖3.

(33)

The quantity [ωf ] can be interpreted as an affine covariant estimate of the prefactor on the
right hand side of (31).

4.2 Acceptance criteria

Next we describe how it is decided, whether a computed step is accepted or rejected. Our
criteria are Newton contraction (for feasibility) and functional decrease (for optimality).

Acceptable feasibility contraction. The above considerations motivate the following
choice of acceptance criterion for a trial iterate δx:

Θ(δx) :=
‖δs‖
‖δx‖

≤ Θacc < 1. (34)

It indicates, whether the above simplified Newton iteration for the relaxed feasibility problem
(32) is likely to converge. Lemma 3.2 asserts that an acceptable iterate is found for sufficiently
small ν. Practical choices for Θacc are in the range Θacc ∈ [0.25, 0.75].

Acceptable decrease. While normal steps aim at feasibility and thus a criterion measur-
ing the deviation from the constraint has been introduced, tangential steps are responsible
for decrease in the cost functional. Therefore we need a criterion similar to the case of
unconstrained optimization that ensures decrease of the cost functional.

However, constraints introduce additional difficulties. First, we have to take into account
the fact that the normal step may yield increase in the cost functional. In general, finding a
feasible point may require an increase of the objective, relative to the current infeasible iterate.
Thus, we cannot require decrease in the total step and decrease should only be measured for
the tangential step. Thus, at first sight, a decrease condition of the form

f(x+ δn+ δt) < f(x+ δn) (35)

would seem useful.
This leads us to the second difficulty, which arises most likely, if acceptable normal steps

are large, relative to the nonlinearity of the functional. Recall that tangential steps are
computed with the help of a quadratic model based at the current iterate x, but they are
added to the normal step δn after its computation. For δt getting smaller and smaller during
a globalization loop, (35) can only be guaranteed, if

f ′(x+ δn)δt < 0. (36)

However, f ′(x + δn) does not enter the computation of δt, only f ′(x), so there is no reason
for (36) to hold, if δn is large. In this case we might be forced to completely reject tangential
steps until the iterates are close enough to the constraint. For details see section 5.
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Due to these two effects the design of a decrease based acceptance criterion is a delicate
matter.

To measure the quality of tangential steps, taking the impact of the normal step into
account, we estimate the ratio between actual and predicted decrease via

η :=
f(x+ δx+ δs)−m[ωf ](δn)

m[ωf ](δx)−m[ωf ](δn)
, (37)

where m[ωf ] was defined in (33). In this way we take the possible increase due to the normal
step into account while avoiding any additional function evaluations. Moreover, the denomi-
nator is guaranteed to be negative for ‖δt‖ > 0. Then the natural criterion for acceptance of
the tangential step is

η ≥ η (38)

for a user-defined lower bound η ∈ ]0, 1[. For δn = 0 this reduces to the well-known standard
decrease condition, which is used widely in trust-region methods [13], and also adapted in [8,
31] to a cubic regularization method in unconstrained optimization.

4.3 Definition of globalized steps

The computation of δx should be done in such a way as to satisfy the acceptance criteria (34)
and (38). Motivated by (30), we introduce a parametrized model for Θ, equipped with an
algorithmic parameter [ωc] > 0:

[Θ](ξ) :=
[ωc]

2
‖ξ‖. (39)

The parameter [ωc] is an estimate from below for the affine covariant Lipschitz constant ωc,
defined in (27). The step computation is then done in such a way as to guarantee

[Θ](δx) =
[ωc]

2
‖δx‖ ≤ Θaim, (40)

where Θaim is a user provided desired contraction rate for δx.
Observe that (40) is a trust-region like constraint, which we could write alternatively as

(cf. Figure 2):

‖δx‖ ≤ rx :=
2Θaim

[ωc]
.

The algorithmic parameter Θaim is chosen in the interval Θaim ∈ ]0,Θacc[. The condition
Θacc > Θaim is a prerequisite for finite termination of the inner loop.

Damping of normal step. Recall that the full normal step ∆n is computed via (12) as the
minimal norm correction satisfying c(x)+c′(x)∆n = 0. In view of (40) a damped normal step
δn = ν∆n might then be computed as large as possible under the restrictions [Θ](δn) ≤ Θaim

and ν ≤ 1.
However, if [Θ](δn) = Θaim, which holds at least for ν < 1, the requirement [Θ](δx) ≤

Θaim = [Θ](δn) then implies δt = 0. In order to leave some “elbow-space” for δt also in the
case ν < 1, we introduce an elbow-space factor ρelbow ∈]0, 1[, and choose

ν := min

{
1,

2ρelbowΘaim

[ωc]‖∆n‖

}
. (41)
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This restriction can also be interpreted as a trust-region for δn (cf. Figure 2):

‖δn‖ ≤ rn :=
2ρelbowΘaim

[ωc]
.

Computation of the total step. After δn has been computed, we have to compute the
tangential step δt responsible for minimizing f(x + δn + δt + δs). As the latter quantity is
computationally inaccessible, we resort to minimizing its regularized model m[ωf ], defined in
(33):

min
δt∈X

m[ωf ](δn+ δt) s.t. c′(x)δt = 0

[ωc]

2
‖δn+ δt‖ ≤ Θaim

(42)

Compared to (15) we have add a cubic regularization term and a trust-region type constraint.
However the considerations in Section 3.1.3 mainly carry over to this setting.

Now, tangential steps are computed as minimizers or at least directional minimizers along
descent directions of (33). By orthogonality of the tangential and normal step, the trust
region constraint on δx in (42) is equivalent to the trust region constraint

‖δt‖ ≤

√(
2Θaim

[ωc]

)2

− ‖δn‖2 (43)

on δt.

4.4 Update of Lipschitz estimates

If δx fails to satisfy (34), a new trial correction δx+ 6= δx has to be computed such that
Θ(δx+) ≤ Θacc. As the computation of δx and δs is completely determined by the current
iterate x and the Lipschitz estimates [ωc] and [ωf ], those values have to be updated for
computing δx+.

Update of [ωc]. After a candidate correction δx and corresponding δs have been computed,
we can compute (or update) the parameter [ωc] by requiring the interpolation condition
[Θ](δx) = Θ(δx), i.e.,

[ωc] :=
2Θ(δx)

‖δx‖
=

2‖δs‖
‖δx‖2

. (44)

It follows immediately from (30) that [ωc] ≤ ωc and thus remains bounded, if ωc exists.

Update of [ωf ]. Here we use an adaption of the strategy proposed for unconstrained op-
timization in [38] to the equality constrained case. Therefore recall the definitions of the
quadratic and cubic models

q(δx) = f(x) + f ′(x)δx+
1

2
Lxx(x, px)(δx)2

and

m[ωf ](δx) := q(δx) +
[ωf ]

6
‖δx‖3.
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By Lemma 3.2 q(δx) is a second order consistent quadratic model for f(x+ δx+ δs), so that
we update [ωf ] as

[ωf ] :=
6

‖δx‖3
(f(x+ δx+ δs)− q(δx)) , (45)

taking into account the restrictions

[ωf ]new ≥ ρ0[ωf ]old and [ωf ]new ≤ ρ1[ωf ]old

for 0 < ρ0 < 1 and 1 < ρ1. The first restriction guarantees [ωf ] > 0, a necessary requirement
for being able to determine finite tangential directions in the presence of non-convexities.
The second dampens strong increases in the Lipschitz constant. This avoids the occurrence
of oscillations of [ωf ]. These restrictions can also be relaxed along the lines of [31, Sec. 3.4].

Successive updates of [ωc] and [ωf ] yield a predictor-corrector loop, sketched in Algo-
rithm 1, that terminates, if (34) is satisfied. In Section 5 we will show that this loop terminates
finitely, as long as Θaim < Θacc.

In the context of the outer NLP iteration, the inner step computation loop is started with
the estimate [ωc] (and [ωf ], see below) from the previous iteration. The whole algorithm is
started with an initial estimate for [ωc] provided by the user.

4.5 Practical details

Increase of Lipschitz estimates. In the unconstrained case, failure of (38) yields an

increase in [ωf ] at least by a factor of 1 +
1+η

2 [31]. Thus in the unconstrained case (i.e., in
the absence of normal steps), repeated failure of the acceptance test yields a quick increase
of [ωf ].

For constrained problems the expected minimal increase depends on the relative contri-
butions of damped normal, resp. tangential, step to the composite step, i.e. on the quantity

θ :=
‖δt‖
‖δx‖

,

only guaranteeing an increase of [ωf ] by a factor g(θ) ∈ [1, 1 +
1+η

2 ] (see section 5) with
limθ→0 g(θ) = 1. Thus if the iterates are not sufficiently close to the constraint stagnating
updates of the Lipschitz constant may occur. In this case we should allow our algorithm to
first improve feasibility before continuing optimization, i.e. we should discard the tangential
step and accept the step δx = δn. Therefore we monitor the increase in the Lipschitz constant
after failure of (38) and if

[ωf ]new <
(

1 + ρs
1 + η

2

)
[ωf ]old, (46)

for some algorithmic parameter 0 < ρs < 1, then we discard δt (which then is small relative
to δx anyway), and accept the step δx = δn.

Combined update mechanism. The proposed acceptance test and update rules for the
algorithmic parameters [ωc] and [ωf ] are now combined in a single inner loop. Since both
parameters may be increased or decreased in each step of this loop, depending, whether their
corresponding acceptance criterion is fulfilled or not, a cyclic behavior of the inner loop may
result if the following cases occur repeatedly:



20

i) A step is not acceptable in terms of (34), so [ωc] is increased, but [ωf ] is decreased.

ii) A step is not acceptable in terms of (38), so [ωf ] is increased, but [ωc] is decreased.

In order to guarantee that this case cannot occur we additionally have to ensure monotonicity
of the Lipschitz estimates after first failure of the corresponding acceptance test. Thus we
slightly modify our update rules, i. e. in each inner loop whenever

i) (34) has failed at least once, we do not allow decrease in [ωc] after failure of (38),

ii) (38) has failed at least once, we do not allow decrease in [ωf ] after failure of (34).

In this way, if both (34) and (38) fail, we rule out cycling by strict monotonicity of the
Lipschitz constants (see Section 5).

5 Finite termination of inner loops

Throughout this section we restrict the discussion to one inner loop. In order to show that
it terminates after a finite number of rejected steps we first consider each Lipschitz constant
and its corresponding acceptance test independently. We begin with the updates of [ωc].

Lemma 5.1. If a trial correction is rejected due to failure of the feasibility contraction
test (34), then [ωc] is increased at least by the fixed factor Θacc

Θaim
. Thus, as long as the tangential

decrease test (38) does not fail, the inner loop terminates after a finite number of iterations.

Proof. Using (44), failure of (34), and (40), the newly computed Lipschitz estimate satisfies

[ωc]
new (44)

=
2‖δs‖
‖δx‖2

(34)
>

2Θacc

‖δx‖
(40)

≥ Θacc

Θaim
[ωc]

old

if (34) fails.

Similarly, we obtain for the decrease criterion:

Lemma 5.2. If a trial correction is rejected due to failure of (38), then either [ωf ] is increased

at least by the fixed factor 1+ρs
1−η

2 > 1, or the trial correction is accepted, possibly discarding
the tangential step. Thus as long as (34) does not fail the inner loop terminates after a finite
number of iterations.

Proof. By our mechanism, either [ωf ] is increased at least by a fixed factor

min{ρ1, 1 + ρs
1− η

2
},

or the tangential step is discarded, rendering δx = δn an acceptable step. By Theorem 3.4
we can conclude that [ωf ] remains bounded within each inner loop (because δx is bounded),
and so an infinite number of increases of [ωf ] by the above fixed factor is impossible.

The lemmata 5.1 and 5.2 only considered the case that only one of the two acceptance
tests fails. If we allow both tests to fail, cycling might occur. In this case the modification
proposed in subsection 4.5 admits to transfer the above results to the general case.
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Algorithm 2 Inner loop (case where ∆t is not recomputed)

Require: Lipschitz constants [ωc], [ωf ], search directions ∆n,∆t
ContractionFailedOnce ← false
DecreaseFailedOnce ← false
DiscardTangentialStep ← false
repeat

ν ← ρelbowΘaim

[ωc]‖∆n‖
τ ← minτ≥0 m[ωf ](τ∆t)
if DiscardTangentialStep then

δx← ν∆n
else

δx← ν∆n+ τ∆t

δs← via (20)
compute new Lipschitz constants [ωc]

new, [ωf ]new via (44) and (45)
if ContractionFailedOnce then

[ωc]← max([ωc], [ωc]
new)

else
[ωc]← [ωc]

new

if DecreaseFailedOnce then
[ωf ]← max([ωf ], [ωf ]new)

else
[ωf ]← [ωf ]new

Accepted ← true
if (34) fails then

Accepted ← false
ContractionFailedOnce ← true

else
if (38) fails then

Accepted ← false
DecreaseFailedOnce ← true
if (46) fails then

DiscardTangentialStep ← true

until Accepted
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Theorem 5.3. Assume that the affine covariant Lipschitz conditions (27)-(29) hold. Then
the inner loop, as described in Alg. 2, terminates after a finite number of iterations.

Proof. We assume that the inner loop does not terminate finitely and show that this implies
either [ωc]→∞ or [ωf ]→∞. which is not consistent with Thm. 3.4.

If only one of the acceptance criteria (34) and (38) fails we get this behavior from
Lemma 5.1 and Lemma 5.2, respectively.

Thus we only have to consider the case that both criteria fail. Let k be the first iteration
where both criteria have failed before. Due to the modification introduced in subsection 4.5
none of the estimates for the Lipschitz constants is allowed to decrease during the following
iterations in this inner loop. Then if the inner loop does not terminate finitely, at least
one of the two acceptance criteria is violated infinitely often after the k-th iteration and
either [ωc]→∞ or [ωf ]→∞ holds.

Discarding tangential steps. Let us discuss the case, where the tangential step is dis-

carded, i.e., where [ωf ] < (1 + ρs
1−η

2 )[ωf ]old. Our aim is to justify that this algorithmic
measure is necessary and useful. In particular, we show that the tangential step is only
discarded, if ‖δt‖ � ‖δx‖, (as long as ρs � 1 is chosen).

Before starting, we prove a basic property of the minimizers of the cubic model m[ωf ].

Lemma 5.4. Any directional minimizer δt of m[ωf ] satisfies

m[ωf ](δx)−m[ωf ](δn) ≤
[ωf ]

12

(
2‖δx‖3 − 2‖δn‖3 − 3‖δx‖‖δt‖2

)
. (47)

Proof. From the symmetry of 1
2Lxx(x, p)(δt)2 +

[ωf ]
6 ‖δn + δt‖3 in δt and the orthogonality

〈δn, δt〉 = 0 it follows that

0 ≥ m[ωf ](δt)−m[ωf ](−δt) = 2(f ′(x) + Lxx(x, p)δn)δt.

Inserting this into the first order necessary optimality condition yields

0 = m′[ωf ](δx)δt =
(
f ′(x) + Lxx(x, p)δn

)
δt+ Lxx(x, p)(δt)2 +

[ωf ]

2
‖δx‖〈δx, δt〉 (48)

≤ Lxx(x, p)(δt)2 +
[ωf ]

2
‖δx‖‖δt‖2 (49)

Applying first (48) and then (49) to (33) we obtain

m[ωf ](δx)−m[ωf ](δn) = (f ′(x) + Lxx(x, p)δn)δt+
1

2
Lxx(x, p)(δt)2 +

[ωf ]

6
(‖δx‖3 − ‖δn‖3)

= −1

2
Lxx(x, p)(δt)2 −

[ωf ]

2
‖δx‖‖δt‖2 +

[ωf ]

6
(‖δx‖3 − ‖δn‖3)

≤
[ωf ]

12

(
2‖δx‖3 − 3‖δx‖‖δt‖2 − 2‖δn‖3

)
and hence the claim.

Since [ωf ] is defined by (45) we can compute for the update:
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[ωf ] =
6

‖δx‖3
(
f(x+ δx+ δs)− q(δx)

)
=

6

‖δx‖3
(
(f(x+ δx+ δs)−m[ωf ]old(δn)) +m[ωf ]old(δn)− q(δx)

)
=

6

‖δx‖3
(
η(m[ωf ]old(δn)−m[ωf ]old(δn)) +m[ωf ]old(δn)−m[ωf ]old(δx) +

[ωf ]old

6
‖δx‖3

)
=

6

‖δx‖3
(η − 1)(m[ωf ]old(δx)−m[ωf ]old(δn)) + [ωf ]old.

Since the step has been rejected, i.e., η < η we can continue, setting θ := ‖δt‖/‖δx‖:

[ωf ] >
6

‖δx‖3
(1− η)(m[ωf ]old(δn)−m[ωf ]old(δx)) + [ωf ]old

(47)

≥ 6

‖δx‖3
(1− η)

[ωf ]old

12
(3‖δx‖‖δt‖2 + 2‖δn‖3 − 2‖δx‖3

)
+ [ωf ]old

= (1− η)
[ωf ]old

2
(3θ2 + 2

‖δn‖3

‖δx‖3
− 2
)

+ [ωf ]old

= [ωf ]old

(
1 +

1− η
2

(
3θ2 + 2

√
1− θ2

3
− 2

))
Thus, we obtain,

[ωf ]

[ωf ]old
≥ g(θ) := 1 +

1− η
2

(3θ2 + 2(1− θ2)3/2 − 2), θ ∈ [0, 1].

The function g is monotonically increasing on [0, 1] and bounded by its local extrema

1 = g(0) ≤ g(θ) ≤ g(1) = 1 +
1− η

2
,

where the case θ = 1 corresponds to the case of unconstrained optimization, i.e. δn = 0 (cf.
[31]). The other extreme θ = 0 describes the case of a vanishing tangential step. Thus, if ρs
is chosen small and

g(θ) ≤ 1 + ρs
1− η

2
.

we conclude that θ = ‖δt‖/‖δx‖ is small as well, and thus tangential steps are only discarded,
if their contribution to the total step is small anyway.

6 Transition to fast local convergence

In this section we discuss the transition of our method to fast local convergence. Of particular
interest is to show that the Maratos effect does not occur. As usual for local convergence
results, we will assume sufficient smoothness and second order sufficient optimality conditions
(SSC) at the local minimizer.

To keep the discussion concise we do not aim for the most general results, but remain in a
rather simple setting. In particular, we only consider the case that normal and tangential steps
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can be computed exactly along Newton directions. This is in contrast to practical solvers,
where at least the tangential steps are computed only inexactly up to a certain accuracy. To
retain fast local convergence in that setting an appropriate accuracy matching strategy has
to be developed and analyzed. This is subject to current work.

In the following we consider full Lagrange-Newton steps at an iterate (x, p):

(∆x,∆p) := L′′(x, p)−1L′(x, p), (50)

which, in more detail satisfy the equation:(
Lxx(x, p) c′(x)∗

c′(x) 0

)(
∆x
∆p

)
+

(
Lx(x, p)
c(x)

)
= 0.

As it is well known, at an SSC point x∗ the Newton-Matrix L′′(x∗, px∗) is continuously invert-
ible, and a standard perturbation argument yields that the same holds true in a neighborhood
of (x∗, px∗).

Consider first the classical, undamped Lagrange-Newton method:

(xk+1, pk+1) = (xk, pk)− L′′(xk, pk)−1L′(xk, pk). (51)

Close to an SSC point that the undamped Lagrange-Newton method with iterates (xk, pk) is
well defined, and converges locally superlinearly towards (x∗, px∗), if, e.g., Lipschitz conditions
on L′′ hold.

We will prove local superlinear convergence follows for the variant with the adjoint px
defined by (6) (where w is a dummy dual variable which is discarded):

(xk+1, w) = (xk, pxk)− L′′(xk, pxk)−1L′(xk, pxk) (52)

that we are using (note the difference between (51) and (52): pk 6= pxk). To this end, we will
first show that this undamped iteration converges locally superlinearly, then we show that
the globalized variant shows the same behavior.

As a preparatory step we show that small perturbations in p yield perturbations in the
steps that are small relative to the step length.

Lemma 6.1. Assume that Lxx(x, px∗) is positive definite and c′′(x) : X×X → P ∗ is bounded.
Let p be a sufficiently small perturbation of px∗ Denote by ∆x∗ the primal component of of
(50) with argument (x, p) = (x, px∗) and by ∆x the primal component of (50) with (x, p).
Then eventually,

‖∆x−∆x∗‖
‖∆x‖

≤ c‖p− px∗‖.

Proof. By assumption Lxx(x, px∗) is positive definite on ker c′(x), i.e., there is α > 0, such
that

α‖v‖2 ≤ Lxx(x, px∗)(v, v).

Hence, for a close-by Lagrange multiplier p we know that Lxx(x, p) is still positive definite on
ker c′(x). Let ∆x∗ be the solution of (50) with (x, px∗), and ∆x be the solution of (50) with
px∗ replaced by p. This implies that (using f ′(x) = Lx(x, p) on ker c′(x)):

0 = f ′(x)v + Lxx(x, px∗)(∆x∗, v) ∀v ∈ ker c′(x)

0 = f ′(x)v + (Lxx(x, px∗) + (p− px∗)c′′(x))(∆x, v) ∀v ∈ ker c′(x)
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Subtracting both equations yields:

0 = Lxx(x, px∗)(∆x−∆x∗, v) + (p− px∗)c′′(x))(∆x, v).

Inserting v = ∆x −∆x∗ ∈ ker c′(x) (the normal components of the two steps do not differ)
and using positive definiteness, we get:

α‖∆x−∆x∗‖2 ≤ Lxx(x, px∗)(∆x−∆x∗,∆x−∆x∗) = −(p− px∗)c′′(x)(∆x,∆x−∆x∗).

Taking norms, we obtain:

α‖∆x−∆x∗‖2 ≤ ‖p− px∗‖‖c′′(x)‖‖∆x‖‖∆x−∆x∗‖

and thus the result:
‖∆x−∆x∗‖
‖∆x‖

≤ c‖p− px∗‖. (53)

Proposition 6.2. Under the smoothness and SSC assumptions, described above, the iteration
(52) converges locally superlinearly.

Proof. For a pair z = (x, p) let us introduce the notation x := zx = (x, p)x. For given
(x, p), denote the next Newton iterate by (x+, p+). Since our update for p is not p+, but
px+ , computed via (6), we would like to estimate ‖x+ − x∗‖ in terms of ‖x − x∗‖, namely
‖x+ − x∗‖ = o(‖x− x∗‖). Using the Newton step, we compute

x+ − x∗ = (x+ − x) + (x− x∗) = ∆x− (x− x∗)
= −(L′′(x, p)−1L′(x, p))x + (x− x∗, 0)x (54)

= −[(L′′(x, p)−1L′(x, p))x − (L′′(x, p∗)
−1L′(x, p∗))x] (55)

− (L′′(x, p∗)
−1(L′(x, p∗)− L′(x∗, p∗) + L′′(x, p∗)(x− x∗, 0)))x (56)

By Lemma 6.1 we can estimate (55), while (56) can be estimated via the fundamental theorem
of calculus and a continuity assumption on L′′ with respect to x. This yields:

‖x+ − x∗‖ ≤ c‖∆x‖‖p− p∗‖+ ω(‖x− x∗‖)‖x− x∗‖

Here ω(t) denote a generic function that tends to zero, if its argument tends to 0. Moreover,
by Lemma 2.4 we infer ‖p − p∗‖ = ω(‖x − x∗‖). Next, we split ‖∆x‖ = ‖x+ − x‖ ≤
‖x+ − x∗‖+ ‖x− x∗‖ and compute:

‖x+ − x∗‖ ≤ ω(‖x− x∗‖)(‖x+ − x∗‖+ ‖x− x∗‖).

If ω(‖x− x∗‖) ≤ ε < 1 this yields

‖x+ − x∗‖(1− ε) = ω(‖x− x∗‖)‖x− x∗‖,

hence ‖x+ − x∗‖ = o(‖x− x∗‖), i.e. local superlinear convergence.
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Let us now study the influence of our globalization scheme, close to an SSC point. For
simplicity we assume that close to the minimizer, where Lxx is positive definite on ker c′(x)
tangential steps are computed in direction of the minimizer ∆t of (17), i.e. we have δt =
τ∆t, where τ ∈]0, 1] is a damping factor, computed via solving (33) in the affine subspace
δn + span {∆t}. Thus, we have the following relation for our optimization step δx and the
full Lagrange-Newton step ∆x:

δx = δn+ δt = ν∆n+ τ∆t, ∆x = ∆n+ ∆t.

By orthogonality of ∆n and ∆t, as well as ν, τ ∈]0, 1], this implies ‖δx‖ ≤ ‖∆x‖.

Theorem 6.3. Assume that xk converges to the SSC point x∗ in the setting described above.
Assume further that the Lipschitz conditions (27),(28), and (29) hold in a neighborhood of
x∗. Then its convergence is superlinear.

Proof. First, we show that as xk → x∗ the corresponding damping factors νk and τk tend to
1.

By our assumptions, the algorithmic parameters [ωc] and [ωf ] remain bounded along xk,
while δxk → 0 and ∆xk → 0. Thus, it follows from (41) that νk = 1 eventually.

Next, we show that τk → 1. Using the minimizing property of δxk along the direction
∆tk and inserting this direction (in place of δtk) into (48) we obtain:

0 = m′[ωf ](δxk)∆tk

= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(δtk,∆tk) +
[ωf ]

2
‖δxk‖〈δxk,∆tk〉

= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + τk(Lxx(xk, pk)(∆tk,∆tk) +
[ωf ]

2
‖δxk‖〈∆tk,∆tk〉).

A similar equation holds for the full tangential step ∆tk, which minimizes m[ωf ] for [ωf ] = 0
(i.e. vanishing regularization term):

0 = m′0(δxk)∆tk = (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(δtk,∆tk)

= (f ′(xk) + Lxx(xk, pk)δnk)∆tk + Lxx(xk, pk)(∆tk,∆tk).

Subtracting these two equations and solving for τk yields:

τk =
Lxx(xk, pk)(∆tk,∆tk)

Lxx(xk, pk)(∆tk,∆tk) +
[ωf ]

2 ‖δxk‖〈∆tk,∆tk〉
.

Since Lxx is positive definite, uniformly around x∗ and [ωf ]‖δxk‖ → 0 (by boundedness of
[ωf ]), this expression tends to 1, as xk → x∗.

It follows that
‖∆xk − δxk‖
‖∆xk‖

→ 0.

Moreover, the corresponding simplified normal steps δsk satisfy as well:

‖δsk‖
‖∆xk‖

≤ ‖δsk‖
‖δxk‖

→ 0,

which implies that ‖∆xk−(xk+1−xk)‖ = ‖∆xk−(δxk+δsk)‖ = o(‖∆xk‖), i.e. our computed
steps approach the full Lagrange-Newton steps asymptotically and thus our iteration inherits
local superlinear convergence from the Lagrange-Newton method.
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7 Computation of steps in the case of optimal control

Up to now we described our composite step method from the perspective of nonlinear opti-
mization. Now we turn to some issues which arise in the context of optimal control problems,
namely the practical computation of steps.

In this section we assume that by some Galerkin-type discretization our infinite dimen-
sional problem has been reduced to a finite dimensional one. Then, after choosing bases for
the now finite dimensional spaces X and P , which induces dual bases for X∗ and P ∗, the
linear operators are represented by typically sparse matrices and their adjoints by transpose
matrices. Moreover, the application of a linear functional l ∈ X∗ to an element x ∈ X can be
written in terms of their coefficient vectors as lTx.

To capture the structure of optimal control problems we split the primal variable into
state and control, x = (y, u)T , and consider a problem of the form

min
x=(y,u)

f(x) s.t. A(y)−Bu = c(y, u) = 0.

For brevity, we denote in the following A′(y) = A and c′(x) = C = (A −B), and we assume
that A is continuously invertible.

In the context of optimal control, the saddle point matrices appearing in the computation
of normal and tangential step via (13) and (18), respectively, read

Hn =

(
M CT

C

)
=

(
My AT

Mu −BT

A −B

)
, Ht =

(
Lxx CT

C

)
=

(
Lyy Lyu AT

Luy Luu −BT

A −B

)
(57)

In the following, we only consider right hand sides of the form (ry, ru, 0)T . This holds for
the tangential step, but not for normal steps and simplified normal steps z = (zy, zu, zp)

T

satisfying, for some right hand side r = (0, 0, rp)
T , the system

Hnz = r.

In that case we can compute z = z0 + z̃, with z0 = (A−1rp, 0, 0)T and z̃ determined by

Hnz̃ = r −Hnz0 =

−MyA
−1rp

0
0

 .

Restricting the discussion to homogeneous constraints c′(x) = 0 we can exploit the fact
that the restriction of the search space to ker c′(x) yields a convex unconstrained optimization
problem for problems involving Hn. In conjugate gradient methods this restriction of the
search space can be realized implicitly via constraint preconditioners. We discuss different
strategies for the computation of the normal step, adjoint state and second order correction.
We will restrict the discussion to the computation of z̃, as the same strategy will be applied
for the computation of the adjoint state and second order correction, the latter in a similar
affine space as in the computation of the normal step.

Regarding the tangential steps we also will incorporate the restriction to ker c′(x) with the
help of constraint preconditioners, given either by a constraint preconditioner or a linear solver
for the normal step. However, Lxx is in general not positive definite on ker c′(x). Therefore,
before turning to the computation of tangential directions in Section 7.3, we discuss conjugate
gradient methods for non-convex problems in Section 7.2.
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7.1 Computing (simplified) normal steps and adjoint updates

In the following, we will consider the solution of the linear system

Hnz = r. (58)

As M is positive definite and C has full rank, Hn is invertible. Next to the computation of
the normal step ∆n this system has to be solved in the computation of the adjoint state px,
and the simplified normal step δs.

Depending on the size and structure of the problem, different solution methods are ap-
propriate.

Problems of moderate size. If the problem size is moderate, the solution of (58) can
be computed using a direct factorization of the saddle point matrix. The possibly high
computational costs for the computation of the factorization are at least partially amortized
by the multiple possibilities for its reuse.

This works fine for moderately sized, stationary optimal control problems, usually in
two spatial dimensions. However, for larger problems, i.e., time dependent optimal control or
three dimensional problems, sparse direct factorizations become prohibitively expensive, both
in time and memory consumption. In our numerical experiments we use UMFPACK [15] to
compute a LU -factorization of (58). An alternative that exploits symmetry of Hn is a sparse
indefinite factorization Hn = LTBL [30].

Low dimensional control space. Let us consider the case that the space of controls is
of low dimension (say, a couple of tens) and that A can be factorized by a sparse direct
solver. In this case it is possible to use a Schur-complement approach in order to solve (58)
by factorization of A and a couple of back-solves. This can be interpreted as a direct solution
of the system (58) with a special pivoting strategy, often not recognized by standard sparse
solvers.

Block Gauss elimination via A and AT as pivots yields the dense but small Schur comple-
ment system

(Mu + STMyS)zu = ru + ST ry − STSyA−1rp,

where S = A−1B is a discretization of the linearized control-to-state mapping, well known in
optimal control. If U is of dimension nu, B has nu columns, so nu solves with A are required
for computing the columns of S (which can be done in parallel), and a few solves with A and
AT are needed for computing right hand sides and performing back-substitution.

This approach is applicable and efficient, as long as sparse direct solvers applied to A are
efficient. With the excellent solvers available today this strategy can be applied to fairly well
resolved scalar elliptic problems in two and to some extent even three spatial dimensions.
For a successful application of this strategy, we refer to [17], where an optimization problem
from hyperthermia treatment was solved. The control consisted of 23 input parameters for
the microwave antennas built into the hyperthermia applicator.

It is also possible to treat time dependent problems (with low-dimensional and time-
independent control) in this setting. Then the solution of the system Ay = b (and the
corresponding adjoint equation) can be done by a time-stepping scheme.
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High dimensional control space. If neither direct factorization nor the Schur comple-
ment reduction are applicable, iterative solvers have to be used. For a survey of saddle point
solvers we refer to [2] and the references summarized in [32]. As the reduced problem on kerC
is positive definite, we focus on conjugate gradient methods.

A popular method is the projected preconditioned conjugate gradient method (PPCG)
that restricts the primal iterates x to the nullspace kerC by applying a projection in every
iteration. The projection can be realized by constraint preconditioners of the form

Psc =

(
M̃ CT

C 0

)
, (59)

where M̃ is a symmetric positive definite preconditioner for M . One problem with this
purely primal iteration is, that the residual vector does not approach zero in the course of the
iteration, since a component in (kerC)⊥ remains. Rounding errors lead to a growing pollution
of the reduced residual component in kerC, which should converge to zero, and impede the
convergence. To reduce this effect, both iterative refinement and a residual update strategy
have been proposed in [21], which employs a least squares multiplier update to eliminate the
residual part in (kerC)⊥.

An essentially equivalent, but computationally and conceptually simpler variant is to apply
the PCG method to the full system (58) using the constraint preconditioner (59). This is
justified by P−1

sc Hn being symmetric positive definite with 2 dimY eigenvalues 1 and dimU
eigenvalues λ defined by the generalized eigenvalue problem STMSxz = λST M̃Sxz, where
S = A−1B again the linearized, discretized control-to-state mapping.

The choice of M̃ in Psc affects both the convergence rate and the computational effort for
applying the preconditioner. A reasonable choice turns out to be the block triangular system

Psc =

0 0 AT

0 Mu −BT

A −B

 i.e. M̃ =

(
0 0
0 Mu

)
. (60)

Note that here M̃ is spectrally equivalent to M on kerC, as long as S = A−1B is continuous:

〈u, u〉U ≤ 〈x, x〉Y×U = 〈y, y〉Y + 〈u, u〉U = 〈Su, Su〉Y + 〈u, u〉U ≤ (1 + ‖S‖2U→Y )〈u, u〉U .

Often, Mu is a scaled mass matrix and A an elliptic operator. Then we get an efficient
but inexact constraint preconditioner by replacing A−1 by a fixed number of multigrid cycles.
Since the constraint preconditioner has to project onto ker c′(x), and in the absence of further
analysis, it is necessary to solve the arising systems Ay = b to high accuracy. Relaxing this
condition on Psc is subject of current work. In contrast, M−1

u can be replaced a fixed number
of Chebyshev semi-iterations [19, 22, 37], which is straightforward and need not be overly
accurate.

7.2 Computing tangential steps

The standard PPCG method admits the solution of saddle point problems of the form (58)
since M is positive definite on kerC. Now we discuss the solution of

Htz = r,
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where Lxx is in general not positive definite on kerC. This requires additional strategies re-
garding the application of conjugate gradient methods. We will continue using the previously
introduced notation, but mention that this section applies not only to constrained problems,
but also to unconstrained ones.

Truncated conjugate gradient method. The most popular approach in this context is
the truncated conjugate gradient method (TCG), which terminates as soon as a direction of
non-positive curvature is found, see Alg. 3. The used search directions span a subspace on
which H is positive definite and no further modification of standard CG implementations are
required. Working as long as possible on the original problem, this approach seems to be
quite effective in finding its way out of nonconvexities, see table 1. But we also observe that
occasionally the TCG method does not lead us back into regions where the problem is convex,
at least not in a reasonable number of iterations, see Tab. 1 for the parameters c = 104 and
d = 10−2 for our academic test problem (Section 8). Here the problem is that the algorithm
runs into a nonconvexity which leads to termination of the TCG method after only 3–4 inner
iterations. Thus, only a very small subspace of kerC is covered and the computed direction
may be rather useless.

Algorithm 3 Truncated conjugate gradient method

Require: x, r = Hx− b, Pg = r, σ = rT g, d = −g.
while convergence test failed do

if dTHd ≤ 0 then
terminate

α = σ
dTHd

x← x+ αd
r ← r + αHd
g ← P−1r

β ← rT g
σ

σ = rT g
d← −g + d

Regularized conjugate gradient method. An alternative strategy is to modify H by
adding multiples of the preconditioner P . For some regularization parameter θ ≥ 0, the
operator H + θP is treated by a CG-method. We call this a regularized conjugate gradient
method (RCG), see Alg. 4.

Remark 7.1. This seems to be of particular interest if H + θP can be related to a physical
model similar to H. As an example we mention problems from nonlinear elasticity where a
simplified material model can be used for preconditioning. Then we may interpret H + θP
as the linearization of a model that corresponds to a more rigid material than the original
one. Solutions of this problem enjoy more regularity properties than the result of a truncated
CG method. Even if such an interpretation is not admissible the RCG method seems, in the
presence of reasonable preconditioners, be more robust than the TCG method.

Since a preconditioner is rarely given explicitly, but as an algorithm for the application of
P−1 to a vector, it is usually not possible to directly compute the application of P to a vector.
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Still it is possible to implement the application of the operator H+θP to the search direction
d and thus construct a CG method for H + θP . The idea is to introduce an additional vector
q, for which q = Pd holds. Then, (H + θP )d can be evaluated as Hd+ θq.

The vector q is defined as follows. Starting with

q := −r = −Pg = Pd

we can update this vector in each CG iteration via

q ← −r + βq.

The following lemma shows that the claimed property q = Pd indeed holds:

Lemma 7.2. Consider the sequence qk, computed as above, and the sequence dk of search
directions of the CG-method. Then

qk = Pdk

Proof. For the initial iterate we have by definition q0 = −r0 = Pd0. Let us assume for
induction that qk = Pdk. Then by our update rules we have:

dk+1 = −gk+1 + βdk

and
qk+1 = −rk+1 + βqk = −Pgk+1 + βPdk = P (−gk+1 + βdk) = Pdk+1,

which shows the desired result.

Our regularization only requires few additional arithmetic operations. Moreover, the
additional quantity q = Pd is required anyway for termination criteria based on the P -norm
[25, 34]. We will not employ such a norm here, but, when considering the inexact solution of
normal steps, this norm is favorable in the computation of the tangential step as it allows a
proper matching of inaccuracies.

The regularization parameter θ, which, as usual, should be as small as possible and as
big as necessary, is chosen by a simple heuristic. Starting the computation with θ = 0 we
discard the computed iterates as soon as we encounter a direction d of non-positive curvature
dTHd < 0 and update for some constant cd > 0 the regularization parameter θ according to

θnew = min{max{θ + δθ, cθθ}, c̄θθ} with δθ =
cd + |dT (H + θP )d|

dTPd

with 1 < cθ < c̄θ such that the generated sequence of regularization parameters is strictly
increasing each time a direction of non-positive curvature is encountered. The restriction
θnew ≤ c̄θθ prevents the update from becoming too large, too quickly. Note, that for very
large parameters θ the computed search direction approaches the steepest descent direction
for the scalar product 〈·, ·〉P induced by the preconditioner, and the condition number of
H + θP approaches 1.

After the update of θ we have to restart the CG iteration. Thus, it is to be expected
that one application of RCG is more expensive than one application of TCG, but for difficult
problems this additional cost is outweighed by a reduced number of outer iterations.

We refer to Tab. 1 for a comparison of outer iteration numbers in Example 8.1 below for
different model parameters c and d. We observe that the RCG method behaves more robustly.
However, each outer iteration tends to require more cg-steps, compared to TCG, because in
case of non-convexity TCG terminates, while RCG restarts with a larger parameter.
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Remark 7.3. Note the analogy of this to the well known Hessian modification methods. We
stress, however, that we do not add multiplies of the identity matrix to the Hessian, but rather
add implicitly multiples of the preconditioner. Thus we capture more problem structure in
our modification.

Remark 7.4. There is a simple way to couple the choice of θ with our algorithmic parameter
[ωf ]. After the first step of the cg-method d0 (the gradient step) has been computed, we can
choose θ, such that the minimizer of q+θ/2〈·, ·〉P along d0 is also the directional minimizer of
m[ωf ]. This will lead to gradient like steps for large values on [ωf ] and to Newton like steps,
if [ωf ] is small.

Algorithm 4 Regularized conjugate gradient method

Require: x, θ ≥ 0, r = Hx− b, Pg = r, σ = rT g, d = −g, q = Pd = −r.
while convergence test failed do

z = dTHd+ θdT q
if z ≤ 0 then

increase θ and restart
α = σ/z
x← x+ αp
r ← r + α(Hd+ θq)
g ← P−1r
β = rT g/σ
σ = rT g
d← −g + βd
q ← −r + βq

Hybrid conjugate gradient method. In order to benefit from both the small number
of iterations which are often observed for the TCG method with the increased robustness of
the RCG method we use a hybrid of both methods (Alg. 5). Motivated by the observation
that the TCG method performs quite well except in the cases that it runs into nonconvexities
early, we try to regularize only in these cases. The simplest approach would be to regularize
only in case a nonconvexity is encountered in the first few CG iterations. Here we use another
approach which implicitly contains a restriction on the minimum number of CG iterations.
We choose to truncate the iteration in the case that a prescribed minimal decrease in the
quantity underlying the termination criterion has been achieved. As termination criteria for
the energy norm or the norm induced by preconditioner require some look-ahead parameter
n, see [25, 34], we can not estimate the error before the (n + 1)st iteration. Thus, in this
case we will always regularize our problem as we can not decide if truncation makes sense.
For Tab. 1 we used a termination criterion based on an estimate for the relative energy error
from [34], see (61), which is admissible as we only work on the subspaces where H + θP is
positive definite.

Termination criterion. It is well known that the widely used termination criteria for the
dual norm of the preconditioned residual only yields a useful termination criterion in the case
that κ(P−1H) ≈ 1, which we can not expect here. Based on the observation that for strictly
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Algorithm 5 Hybrid conjugate gradient method

Require: x, θ ≥ 0, r = Hx− b, Pg = r, σ = rT g, d = −g, q = Pd = −r.
while convergence test failed do

z = dTHd+ θdT q
if z < 0 then

if minimal decrease achieved then
terminate

else
increase θ and restart

α = σ/z
x← x+ αd
r ← r + α(Hd+ θq)
g ← P−1r
β = rT g/σ
σ = rT g
d← −g + βd
q ← −r + βq

TCG RCG HCG

d

c
102 103 104 102 103 104 102 103 104

10−5 † 27 34 177 24 17 12 35 16

10−4 24 34 29 21 36 17 24 22 14

10−3 28 17 14 19 17 15 12 25 14

10−2 10 19 16 18 14 18 13 18 17

10−1 8 17 19 8 24 21 8 20 18

1 7 11 14 8 12 20 8 12 17

Table 1: Number of outer iterations on Example 8.1 for different model parameters c and d
on a fixed uniform grid with hmax = 2−7, α = 10−6 (†: not convergent after 500 iterations).

convex problems the conjugate gradient method guarantees strict decrease in the energy norm,
the representation formulae given in the original paper of Hestenes and Stiefel [25] have been
used in [1, 34] to construct estimators for the absolute energy error ‖x−xk‖H and the relative

energy error ‖x−xk‖H‖x‖H . As all of the above presented conjugate gradient methods only work on
subspaces where the, possibly regularized, problem is convex we can use the same termination
criteria for nonconvex problems. Thus we employ the estimate for the relative energy error
proposed in [34]. Exploiting only local H-orthogonality, the proposed estimate

ρj,n =
ρ̃j,n
ξj+n

(61)
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with ξj+n = ρ̃0,j+n + bTx+ rT0 x and

ρ̃j,n =

j+n−1∑
i=j

αir
T
i gi

is numerically stable. All quantities are available during computation, the only drawback
lying in the fact that we need to perform j + d iterations, for some look-ahead parameter
d, in order to estimate the relative energy error in the j-th step. As the conjugate gradient
method guarantees descent in the energy norm in each iteration,

‖x− xj+d‖H < ‖x− xj‖H ,

we accept the last iterate xj+d if the estimate for
‖x−xj‖H
‖x‖H is accepted.

Far from the solution it does not make much sense to spend significant effort in the
computation of highly accurate tangential directions. Therefore, following [16, Ch. 2.3.3], we
choose a minimal accuracy of δ0 = 0.25. This guarantees that at least the leading two binary
digits of the computed direction are correct. When getting close to the solution we should
increase the prescribed accuracy in order to profit from the fast local convergence of the
Newton-Lagrange scheme. For constrained optimization problems this is not at all a trivial
issue and under current investigation. Here we only employ a heuristic argument. Therefore
we decide being close to the solution if in the last, say (k − 1)st, step

i) no damping occurred,

ii) no direction of non-positive curvature was encountered in the computation of the tan-
gential direction,

iii) and the estimate of the Kantorovich quantity satisfies [ωc]‖δxk−1‖ < 1.

In this case we adjust the desired accuracy to

δk = min{δ0, [ωf ]‖δxk−1‖},

cf. [38]. As desired relative accuracy for the solution we use δ∞ = 10−6.
Note that the above choice δ0 = 0.25 implies that our algorithm will often overlook the

presence of directions of negative curvature. Therefore, to illustrate the differences between
the different conjugate gradient methods in dealing with nonconvexities, we employed δ0 =
10−3 in the computations for Tab. 1. As maximal attainable accuracy we heuristically chose
εmax = 10−11 in all our computations.

7.3 Application within composite step method

Let us finally summarize the step computations within the different settings. For the com-
putations of δn, px, and δs we can always assume positive definiteness of M on kerC, and
thus unique solvability of the corresponding system. For moderately sized problems, or a low
dimensional control space the solution can be found by direct elimination methods. Other-
wise, a PPCG method can be used with a constraint preconditioner, as described above, and
by positive definiteness of M we can expect that PPCG can compute solutions up to any
accuracy.
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The situation is different for tangential steps δt. As Lxx is in general indefinite we use one
of the modifications from Section 7.2 of PPCG for nonconvex problems to compute descent
directions for the cost functional. Again, the restriction of the tangential directions to ker c′(x)
is incorporated with the help of a constraint preconditioner. For problems of moderate size
or low dimensional control space we can reuse the direct factorization computed for the
determination of the normal step as preconditioner. If this approach is not admissible we will
use the same preconditioner as in the PPCG method for the computation of the normal step,
given in (60).

There are many ways conceivable to introduce an influence of [ωC ] and [ωf ] into the
computation of δt. For example, the value of m[ωf ] at the cg-iterates could be monitored,
or it could be monitored, if the cg-iterates leave the feasible region, used in (42). In our
implementation we simply use the result of the cg-iteration, as described above, and compute
δt as rescaling, such that δx = δn + δt is a feasible directional minimizer of (42), i.e., δx
minimizes m[ωf ] on δn+ span (δt).

8 Numerical examples

We provide two examples to illustrate the performance of the proposed composite step method
on optimal control problems. First an academic two-dimensional example is presented. There
we can easily control the nonlinearity by one of the model parameters. Secondly we give a
somewhat more realistic problem arising in implant shape design, both on a simplified and
a real patient geometry. In all examples we will use the Tikhonov-regularized tracking type
cost functional

J(y, u) =
1

2
‖y − yref‖2L2(Dy) +

α

2
‖u‖2L2(Du), (62)

where α > 0 is the Tikhonov regularization parameter and yref the prescribed solution. The
sets Dy ⊆ Ω and Du ⊆ Ω characterize the observation region as well as the region where
the control acts. All examples were implemented with the finite element library Kaskade7
[20] using linear Lagrange elements. For the computation of tangential directions the HCG
method was employed.

8.1 An academic example

In our first example we consider an optimal control problem in two dimensions with distributed
control and observation. The constraints are given by a simple nonlinear model of heat
transfer, which we consider in its weak formulation

c(y, u) = 0, (63)

where, for some test function v,

c(y, u)v :=

∫
Ω
∇vTκ(y)∇y dx− 〈u, v〉L2(Ω) (64)

with isotropic heat conduction tensor κ(y)(x) = (c|y(x)|2 + d)I and Ω = ]0, 1[2 is the unit
square. With the parameters c, d > 0 we can modify the influence of the nonlinear part and
the distance to a singular problem. The optimal control of such a problem was analyzed in
[10], where it was shown in particular that y ∈ C(Ω) for all u ∈ L2(Ω) implying boundedness
of κ(y).
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As desired displacement we set, see Fig. 3a,

yref(x1, x2) = 12(1− x2)x2(1− x1)x1.

In order to not severely underestimate the length of the normal steps, which might degrade
the convergence speed of the composite step method, we use local scalar products at each
iterate yk of the form

〈(y, u), (z, v)〉 = 〈y, z〉My(yk) + 〈u, v〉Mu

with

〈y, z〉My(yk) =

∫
Ω
∇yTκ(y)∇z dx + 〈y, z〉L2(Ω)

and
〈u, v〉Mu = α〈u, v〉L2(Ω).

Then, as Luu(y, u, p)(u, v) = 〈u, v〉Mu , the preconditioner renders the PPCG-method inde-
pendent of the Tikhonov regularization parameter.

(a) Reference (transparent) and com-
puted solution.

(b) Corresponding control.

Figure 3: Computed solution and control for c = 10, d = 0.1, α = 10−6.

Computed control and solution are exemplarily given for c = 10, d = 0.1 and α = 10−6

in Fig. 3. In Tab. 2, iteration numbers for various choices of the model parameters are given
for a fixed choice of the regularization parameter α = 10−6. Note that the iteration numbers
slightly deviate from the ones reported in Tab. 1. This is due to differences in the required
accuracy far from the solution. In practice we typically choose δ0 = 0.25. In contrast in
Tab. 1 we required δ0 = 10−3, which leads to a larger number of iterations where we have to
deal with search directions for which the problem exhibits non-positive curvature.

8.2 Pressure-type control for rubbery hyperelastic materials

Now we consider a simplified example from implant shape design with control and observation
on disjoint parts of the boundary [27]. Thus we work with the same function spaces for Y
and P and replace the control space by U = L2(Γc), where Γc denotes the control boundary.
In the following the state variable y describes the deformation of an elastic material and the
control u can be interpreted as pressure on the control boundary. We consider a material
that can be described by a compressible Mooney-Rivlin material law

W (y) = c0ι1(C) + c1ι2(C) + Γ(det(∇y)),
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d

c
1 101 102 103 104 105

10−5 5 6 17 20 14 16

10−4 5 6 13 28 22 12

10−3 4 6 17 23 17 16

10−2 4 6 13 15 17 19

10−1 4 6 10 19 21 19

1 5 6 9 14 23 18

Table 2: Number of outer iterations for Example 8.1 with different model parameters c and
d on a fixed uniform grid with hmax = 2−7, α = 10−6

with strain tensor C = ∇y∗∇y, first and second invariant

ι1(C) = tr(C) and ι2(C) =
1

2

(
tr(C)2 − tr(C2)

)
,

and volumetric penalty
Γ(s) = c3s

2 − c4 log(s).

In the following two examples the material parameters are chosen according to [11] such
that near the reference configuration the constitutive relation fades into the descriptions of
linearized elasticity for material parameters E = 1 and ν = 0.45. The Poisson ratio ν describes
the compressibility of the material, which here is assumed to be only slightly compressible.
Young’s modulus E describes the rigidity of the material. Appearing as a spatially constant
factor in the material parameters and indirectly, via the variational equality, in u we can set
E = 1 w.l.o.g. For E 6= 1, the corresponding magnitude of pressure then is 1

Eu. Thus, in our
computations we employ the corresponding material constants

c1 = c2 ≈ 0.086206, c3 ≈ 0.689655, c4 ≈ −1.896552.

The corresponding stress tensor is

σ(∇y(x)) =
∂W (y(x))

∂y(x)
.

On the control boundary Γc = {x ∈ Ω : x2 = 0} we impose boundary conditions of the form

σ(∇y(x))n = g(x)cof(∇y(x))n,

where n is the surface normal, u the magnitude of pressure and cof the cofactor matrix. This
boundary condition corresponds to a pressure type boundary condition

σ̂(x̂)n̂ = u(x̂)n̂, x̂ ∈ y(Γc)

on the deformed domain and results from the fact that static equilibria for elastic materials
must be formulated on the deformed domain and then transformed back to the undeformed
reference configuration. The observation boundary is denoted by Γo. On the remaining part
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of the boundary Γd = ∂Ω \ {Γc ∪Γo} we impose homogeneous Dirichlet boundary conditions.
The equation that describes the corresponding equilibrium of forces then is given through

0 = c(y, u)v :=

∫
Ω
σ(∇y) :∇v dµ−

∫
Γc

ucof(∇y)nv ds.

For My we use the symmetric part of the corresponding description of the constitutively
linearized theory, the St.Venant-Kirchhoff law. Then we have

Myh1h2 = λtr(C ′∇h1)tr(C ′∇h2) + 2µ〈C ′∇h1, C
′∇h2〉,

with Lamé constants

λ =
νE

(1 + ν)(1− 2ν)
≈ 3.10 and µ =

E

2(1 + ν)
≈ 0.34.

The discretization of Luu is a mass matrix, rescaled with α and we choose the same matrix
for the control part of the scalar product Mu = Luu.

We consider two examples which arise as simplifications of problems of implant shape
design. First we consider a simple geometry and an analytic reference shape. Then we turn
to a real patient geometry and an estimated desired shape. In this case reasonable implants
are relatively flat and induce only moderate deformations of the soft tissue.

Constraints from nonlinear elasticity do not fully fit into our chosen setting. The density
of the set

Y∞ = {y ∈W 1,p(Ω) :

∫
Ω
W (y) dµ =∞}

in W 1,p(Ω) may yield difficulties. In particular in the evaluation of the right hand side, for
the computation of the simplified normal step, it may happen that yk+δyk ∈ Y∞. In this case
we repeatedly adjust the normal and tangential step damping factors according to νnew = 1

2ν,
resp. τnew = 1

2τ , until yk + δyk 6∈ Y∞, or equivalently det(∇(yk + δyk)) > 0.

(a) Reference (transparent) and computed so-
lution.

(b) Corresponding adjoint state on the control
boundary.

Figure 4: A rubber model with pressure-type boundary conditions on a simple geometry
(α = 0.1).

An example on a simple geometry We consider the domain Ω = ]0, 1[× ]0, 1[× ]0, 0.2[
with discretization as illustrated in 4a. As desired deformation on the observation boundary
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Γo = {x ∈ Ω : x2 = 0.2} we set

yref(x) =

 0
0

zref(x)

 with zref(x) = 8x0x1(1− x0)(1− x1),

see Fig. 4a. The regularization parameter is chosen as α = 0.1. Computed solution, desired
surface shape and the adjoint state on the control boundary are given in Fig. 4.

An example from implant shape design. We consider a more realistic example from
implant shape design. Given a desired shape yref of the superficial skin the task is to compute
a corresponding implant. Thus the skin determines the observation boundary, whereas the
control boundary is given by the contact surface between soft tissues and bones. As illustrated
in Fig. 5 we cut out the relevant part of the soft tissue. For simplicity we impose homogeneous
Dirichlet boundary conditions on the artificial soft tissue boundary.

Figure 5: Patient geometry and computational domain.

In this example there is only a thin layer of soft tissue between the implant and the
skin. For this reason, this problem is not too hard to solve. The reference surface was
computed from the insertion of a reference implant. Given a relative tolerance of δ0 = 10−3

and regularization parameter α = 0.05, the implant was computed within 7 iterations without
requiring globalization. The extraction of the implant shape and the generation of the graphics
in this paragraph were done with the visualization tool Zibamira [33]. Comparing both
implant shapes in Fig. 6 shows that differences in both position and shape of implant are not
visible.

9 Conclusion

The composite step method considered in this work combines algorithmic features of cubic
regularization algorithms and affine covariant Newton methods. Affine covariance leads to a
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(a) Reference implant. (b) Computed implant. (c) Comparison of implants.

Figure 6: Computed and reference implant.

non-standard globalization scheme that does not rely on a monotonicity property, but rather
on an estimate of the local Newton contraction. Finite termination of inner loops and fast
local convergence of the method have been shown. A key ingredient was the double role
of the simplified normal step as an indicator for Newton contraction and as a second order
correction. Iterative solution techniques for the arising linear systems were discussed in the
context of optimal control, and some numerical results were presented, including one arising
in a medical application.

Up to now, inexactness of the step computation, in particular termination criteria for
the iterative solvers, have not been discussed in detail. Different issues arise: in particular
the conditions δt ∈ ker c′(x) and δs, δn ∈ ker c′(x)⊥ should be relaxed to allow for early
termination of the CG-method and the use of inexact solves of the involved PDEs. Affine
covariance will have a major impact also in this respect. In a similar fashion we can incorporate
adaptive grid refinement into our algorithm.

From the theoretical side, a proof of global convergence is missing up to now. This will
require some modifications of the algorithm. Certainly, a fraction of Cauchy decrease condi-
tion will be needed for the tangential step, but also globalization with respect to feasibility
is still an open issue, even for affine covariant Newton methods for nonlinear equations.
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[22] M. H. Gutknecht and S. Röllin. The Chebyshev iteration revisited. Par. Comp., 28:263–
283, 2002.

[23] M. Heinkenschloss and D. Ridzal. A matrix-free trust-region SQP method for equality
constrained optimization. SIAM J. Optim., 24(3):1507–1541, 2014.

[24] M. Heinkenschloss and L.N. Vicente. Analysis of inexact trust-region SQP algorithms.
SIAM J. Optim., 12(2):283–302, 2001/02.

[25] M. R. Hestenes and E. Stiefel. Methods of conjugate of gradients for solving linear
systems. J. Res. Nat. Bur. Standards, 49:409–436, 1952.

[26] A.D. Ioffe and Tihomirov V.M. Theory of extremal problems. North-Holland Publishing
Company, 1979.

[27] L. Lubkoll, A. Schiela, and M. Weiser. An optimal control problem in polyconvex hy-
perelasticity. SIAM J. Cont. Opt., 52(3):1403–1422, 2014.

[28] E. O. Omojokun. Trust Region Algorithms for Optimization with Nonlinear Equality and
Inequality Constraints. PhD thesis, Boulder, CO, USA, 1989. UMI Order No: GAX89-
23520.

[29] D. Ridzal. Trust-region SQP methods with inexact linear system solves for large-scale
optimization. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Rice University.
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