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dates, there is, for example, the stochastic mesh method of Broadie & Glasserman(1997,2000), a cross-sectional regression approach by Longsta� & Schwartz (2001),and for Bermudan swaptions a method by Andersen (1999). In general, the price ofan American option can be represented as a supremum over a set of stopping times.As a remarkable result Rogers (2001) (and independently Haugh & Kogan (2001)for Bermudan style instruments) showed that this supremum representation can beconverted into a 'dual' in�mum representation, where the in�mum is taken over a setof (super-)martingales. In Andersen & Broadie (2001) this dual approach is carriedout and tested with respect to Andersen's (1999) method for Bermudan swaptions.Further Joshi & Theis (2002) use the dual approach for �nding Bermudan swaptionprices via a minimization procedure. For a more detailed overview on Monte Carlomethods for American options we refer to Glasserman (2003) and the referencestherein.In the papers of Anderson & Broadie (2001) and Haugh & Kogan (2001) upperbounds of Bermudan options are constructed by applying the duality approach tothe (Doob-Meyer) martingale part of an approximative process. For instance, inAndersen & Broadie (2001) these upper bounds are constructed to investigate thequality of an approximative lower bound process obtained by suboptimal stopping,without particular focus on the eÆciency of the upper bound computation however.The central theme in this paper is the construction of a Monte Carlo estimator foran upper bound for a Bermudan derivative which is computationally more eÆcient.Our upper bound construction will be based on duality via the martingale part ofan approximative processes as well. But, as main contribution, we will enclose the'theoretical' upper bound by approximating from above and below by using a newlower estimator for the theoretical upper bound. Then, by taking a convex combina-tion of the lower and upper estimator we obtain a family of combined estimators forthe target upper bound with usually higher computational eÆciency. This eÆciencygain will be demonstrated by upper bound computation of Bermudan swaptions.The paper is organised as follows. In Section 2 we give a concise recap of theBermudan pricing problem and in Section 3 we outline the duality approach. Then,in Section 4 we present new Monte Carlo estimators for constructing a target upperbound and in Section 5 we propose two canonical approximative processes to whichour method could be applied. Finally, in Section 6 we apply our method to com-putation of upper bounds of Bermudan swaptions in a LIBOR market model. Thisapplication is based on the maximum of still alive swaptions, one of the canonicalcandidates in Section 5 in fact, and we give a numerical comparison with the resultsobtained by Andersen (1999) and Andersen & Broadie (2001).2



2 The Bermudan Pricing ProblemWe consider general Bermudan style derivatives with respect to an underlying pro-cess L(t); over some �nite time interval [0; T ] with time horizon T <1: The processL is assumed to be Markovian with state space RD. For example, L can be a systemof asset prices, but also a not explicitly tradable object such as the term struc-ture of interest rates, or a system of LIBOR rates. Consider a set of future datesT := fT1;T2; : : : ;Tkg with 0 < T1 < T2 < � � � < Tk � T: The dates are denoted withcalligraphic letters to distinguish in the case where L is a LIBOR rate process, ifnecessary, from a particular LIBOR tenor structure usually denoted by Tj's.An option issued at time t = 0; to exercise a cash
ow CT� := C(T� ; L(� )) at afuture time T� 2 T is called a Bermudan style derivative. Without restriction weassume for technical reasons that the option cannot be exercised at t = 0: Withrespect to a pricing measure P connected with some pricing numeraire B; the valueof the Bermudan derivative at time t = 0 is given byV0 = B(0) sup�2f1;:::;kgEF0 CT�B(T�) : (1)The fact that (1) can be considered as the fair price for the Bermudan derivativeis due to general no-arbitrage principles, e.g. see DuÆe (2001). For example, ifL is a LIBOR process, P in (1) could be the spot LIBOR measure P � inducedby the spot measure numeraire B� or a bond measure P (m) induced by some zerobond Bm maturing at tenor Tm; where Tk < Tm: The supremum in (1) is takenover all integer valued F-stopping times � with values in the set f1; :::; kg; whereF := fFt; 0 � t � Tg denotes the usual �ltration generated by the process L: At afuture time point t, when the option is not exercised before t; the Bermudan optionvalue is given by Vt = B(t) sup�2f�(t);:::;kgEFt CT�B(T�)with �(t) := minfm : Tm � tg: Note that Vt can also be seen as the price of aBermudan option newly issued at time t; with exercise opportunities T�(t); : : : ;Tk:The process Yt := VtB(t);called the Snell envelope process, is a supermartingale. This can be seen as follows.Let s < t and � �t be an optimal stopping index at time t (which exists by generalarguments), then it holdsEFsYt = EFsEFt CT��tB(T��t ) = EFs CT��tB(T��t ) � sup�2f�(s);:::;kgEFs CT�B(T �) = Ys:3



3 Upper bounds by a Duality approachWe introduce the discrete �ltration �F (j)�j=0;:::;k with F (j) := FTj ; 1 � j � k; F (0) :=F0; and consider with respect to this �ltration a discrete martingale (Mj)j=0;:::;k withM0 = 0: Following Rogers (2001) we observe thatY0 = sup�2f1;:::;kgEF0 CT�B(T�) = sup�2f1;;:::;kgEF0 � CT�B(T�) �M��� EF0 max1�j�k � CTjB(Tj) �Mj� : (2)Hence the right-hand-side of (2) provides an upper bound for the Bermudan priceY0: Moreover, due to the next theorem of Rogers (2001) and independently Haugh& Kogan (2001), there exists a particular martingale MY ; such that (2) holds withequality.Theorem 3.1 Let us consider the Snell envelope process Y at the discrete time setf0;T1; :::;Tkg; and de�ne Y (j) := Y (Tj); 1 � j � k; Y (0) := Y0: Let further MYbe the (unique) Doob-Meyer martingale part of �Y (j)�0�j�k ; i.e. MY is an �F (j)�-martingale which satis�esY (j) = Y0 +MYj � F Yj ; j = 0; :::; k;with MY0 := F Y0 := 0 and F Y being such that F Yj is F (j�1) measurable for j = 1; :::; k:Then we have Y0 = EF0 max1�j�k � CTjB(Tj) �MYj � :Proof. Note that always Yj � CTj=B(Tj) and that F Yj is nondecreasing since(Y (j)) is an �F (j)�-supermartingale. So, (2) applied to MY yieldsY0 � EF0 sup1�j�k � CTjB(Tj) �MYj � = EF0 �Y0 + sup1�j�k � CTjB(Tj) � Y (j) � F Yj ��� EF0 �Y0 + sup1�j�k ��F Yj �� = Y0 � F Y1 = Y0;where F Y1 = 0 because of Y0 = EF0Y (1) = Y0 � F Y1 :4 EÆcient Monte Carlo construction of upper boundsConsider some approximative process eVt for the price of a Bermudan style optionissued at time t. As an example, for any exercise strategy, i.e. a family of integervalued stopping times f�t 2 f�(t); :::; kg : t � 0g; the processeVt := B(t)EFt CT�tB(T�t) ; (3)4



is a lower approximation, eVt � Vt: The discounted process eY := eV =B is the with eVassociated approximation of the Snell envelope process. Similar as in Section 3 weintroduce the discrete processes eY (j) and eV (j); adapted to F (j) for j = 0; : : : ; k: LetfM be the martingale part of the Doob-Meyer decomposition of (eY (j)): HenceeY (j) = eY0 + fMj � eFj; j = 0; : : : ; k; (4)with fM0 = eF0 = 0 and eFj being F (j�1) measurable for j = 1; : : : ; k: By taking theconditional expectation with respect to F (j�1) at both sides of (4), it follows thatfMj = fMj�1 + eY (j) � EF(j�1) eY (j)= jXi=1 eY (i) � jXi=1 EF(i�1) eY (i); 1 � j � k:So, by Theorem 3.1 we obtain an upper bound for the Bermudan option viaY0 = V0B(0) � E sup1�j�k[ CTjB(Tj) � jXi=1 eY (i) + jXi=1 EF(i�1) eY (i)]= eY0 + E sup1�j�k " CTjB(Tj) � eY (j) + jXi=1 EF(i�1) [eY (i) � eY (i�1)]#= : eY0 +� =: V up0B(0) :Let us assume that (eV (j)) satis�es eV (j) � CTj ; hence, the approximative price processis never below the cash 
ow by exercising. This is no restriction in fact, sinceotherwise we might take eeV (j) := max(eV (j); CTj) instead. We then have the followingestimate, � � E sup1�j�k jXi=1 [EF(i�1) eY (i) � eY (i�1)]� E sup1�j�k jXi=1 max(EF(i�1) eY (i) � eY (i�1); 0)� E kXi=1 max(EF(i�1) eY (i) � eY (i�1); 0): (5)When eY coincides with the Snell envelope process Y we have � = 0 by Theorem 3.1and then, due to the supermartingale property of the Snell envelope, EF(i�1)Y (i) �Y (i�1); so the right-hand-side estimate vanishes as well. The estimation (5) indicatesthat the distance � between Y and eY is due to those exercise dates Ti; whereEF(i�1) eY (i) � eY (i�1), hence where eY doesn't meet the supermartingale property.Because the process L is assumed to be Markovian in the state space RD; aconditional probability given F (j) for j = 0; : : : ; k; can be seen as a function of5



L(j) := L(Tj); with L(0) := L(0), and by general arguments (see for instance Ikeda &Watanabe (1981)) there exist a regular conditional probability measure P (L(j); �),such that for any FT -measurable random variable Z;[EF(j)Z](!) =: Z P (L(j); de!)Z(e!) a:s:; j = 0; : : : ; k:We now consider for each j; j = 1; :::; k; a sequence of random variables ��(j)i �i2N;where for i 2 N; �(j)i are i.i.d. copies of eY (j) under the conditional measureP (L(j�1); �);independent of the sigma-algebra �fL(i) : i = j; : : : ; kg: Hence,EF(j�1) eY (j) = Z P (L(j�1); de!)eY (j)(e!) = Z P (L(j�1); de!)�(j)i (e!); i 2 N:For a �xed but arbitrary K 2 N we consider a discrete process fM (K) de�ned byfM (K)0 = 0 and then, recursively,fM (K)j := fM (K)j�1 + eY (j) � 1K KXi=1 �(j)i= jXq=1 eY (q) � jXq=1 1K KXi=1 �(q)i ; j = 1; : : : ; k:The process fM (K) is thus de�ned on an extended probability space 
 � Q withQ := Qkj=1RK: So a generic sample element in this space is (!; (�(j))1�j�k); with! 2 
 being a realisation of the process L and �(j) := (�(j)i )i=1;:::;K 2 RK; forj = 1; : : : ; k:Clearly, fM (K) is a martingale w.r.t. the �ltration ( eF (j))j=0;:::;k; de�ned by eF (0) :=F0 and eF (j) := ��F � H : 
 � F 2 F (j); Q � H 2 �f�(1); : : : ; �(j)g	; for j =1; : : : ; k; and we observe thatE sup1�j�k[ CTjB(Tj) � fM (K)j ] = EEF(k) sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i ]� E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 EF(k)�(q)i ]= E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 EF(q�1)�(q)i ]= E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 EF(q�1) eY (q)]= V up0B(0) � V0B(0) ;6



where EF(k)�(q)i = EF(q�1)�(q)i holds because �(q)i is independent of L(q); : : : ; L(k): Viathe martingale fM (K) we have thus obtained a new upper boundV upup;K0 := B(0)E sup1�j�k[ CTjB(Tj) � fM (K)j ]; (6)which is larger than our target upper bound V up0 : It is natural to expect, however,that V upup ;K0 will be already close to V up0 for numbers K which are much smallerthan the number of Monte Carlo trajectories needed for low variance estimation ofthe mathematical expectation in (6).We now proceed with a second approach, which gives a lower bound for ourtarget upper bound V up0 . Consider an (F (k))-measurable random index jmax whichsatis�essup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 EF(q�1) eY (q)] = CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q):Then, for any integer K > 0;V up0B(0) = E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q)�= E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 EF(q�1)�(q)i �= E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)i �;where we have used again the fact that EF(k)�(q)i = EF(q�1)�(q)i = EF(q�1) eY (q): Thisbrings us to the idea of localizing jmax for each particular simulation of the processL: To this aim, we carry out the following procedure. We consider on the extendedprobability space 
�Q the random index bjmax which satis�es,CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i = sup1�j�k � CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i �:Next, we extend the probability space once again to 
 �Q�Q and simulate in-dependent copies b�(j) := (b�(j)i )i=1;:::;K 2 RK; of �(j) 2 RK; for j = 1; : : : ; k: We thenconsider on 
�Q�Q the random variable,CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 b�(q)i7



with expectationV uplow ;K0B(0) := E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 b�(q)i �= E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 E eF(k)b�(q)i � (7)= E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 EF(q�1) eY (q)�� E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q)� = V up0B(0) ;where, most importantly, (7) holds while the b�q are re-sampled independent ofthe determination of bjmax and then we have E eF(k)b�(q)i = EF(k)b�(q)i = EF(q�1) b�(q)i =EF(q�1) eY (q):So we come up with two di�erent Monte Carlo estimators for the target upperbound V up0 :Lower estimate for V up0 :bV uplow;K;M0 := B(0)M MXm=1 � CTbj(m)maxB(Tbj(m)max) � bj(m)maxXq=1 eY (q;m) + bj(m)maxXq=1 1K KXi=1 b�(q;m)i � (8)Upper estimate for V up0 :bV upup ;K;M0 := B(0)M MXm=1 sup1�j�k � CTjB(Tj) � jXq=1 eY (q;m) + jXq=1 1K KXi=1 �(q;m)i � (9)In (8), (9), bj(m)max and eY (q;m) denote the m-th independent sample of bjmax and eY (q),respectively.It is not diÆcult to show thatV upup;K0 # V up0 and V uplow;K0 " V up0 for K !1; (10)for a proof see the Appendix.As a third alternative, in view of (10), the estimators (8) and (9) can be combinedinto a convex family of new estimators,bV �;Ku;Kl;M0 := �bV upup ;Ku;M0 + (1 � �)bV uplow;Kl;M0 ; (11)for 0 � � � 1; and suitably chosen simulation numbers Ku;Kl;M . In Section 6we will demonstrate in practical examples that the combined estimator may have amuch higher eÆciency than either bV upup;K;M0 or bV uplow;K;M0 :We here note that, essentially, the estimator (9) can also be found in Andersen& Broadie (2001) and Haugh & Kogan (2001).8



Heuristic motivation of the combined estimatorIn view of the Appendix we suppose that for some �u; �l > 0 the following expansionshold, V upup ;K0 = V up0 + cuK�u + o( 1K�u ); cu > 0 andV uplow ;K0 = V up0 � clK�l + o( 1K�l ); cl > 0: (12)Let �; 0 < � < 1; be such that �cu � (1� �)cl = 0 and let �u, �l > 0 be such, that�u�u = �l�l. Consider for some integer K;bV �;[K�u ];[K�l]0 := �V upup ;[K�u ]0 + (1� �)V uplow;[K�l ]0 = V up0 + o( 1K�u�u ); (13)with brackets denoting the Entier function. We then consider the complexity of thetwo estimators U := bV upup ;K;M0 and A := bV �;[K�u ];[K�l ];M0 : As usual, the accuracy "of an estimator bs for a target value p is de�ned via"2 := E(bs� p)2 = V ar(bs) + (Ebs� p)2and so we may write by (12),(13),"2U : = 1MV ar(bV upup;K;10 ) + c2uK2�u + o( 1K2�u );"2A : = �2MV ar(bV upup;[K�u ];10 ) + (1� �)2M V ar(bV uplow;[K�l ];10 ) + o( 1K2�u�u );where the simulation of the up-up and up-low estimator is assumed to be doneindependently.Remark 4.1 In practice it is more eÆcient to localize bjmax using the samples forV upup;K0 . Then, the up-up and up-low estimator are dependent in general, so"2A : = 1MV ar ��bV upup ;[K�u ];10 + (1� �)bV uplow ;[K�l ];10 �+ o( 1K2�u�u ):Since V ar(bV upup ;K;10 ) and V ar ��bV upup ;[K�u ];10 + (1 � �)bV uplow ;[K�l ];10 � are uniformlybounded in K; we can deduce in the spirit of Schoenmakers & Heemink (1997 ) andDu�y & Glynn (1995) an asymptotically optimal tradeo� between bias and statis-tical error of the estimators U and A. In fact, their bias and statistical error shouldbe of comparable magnitude. For the up-up estimator U we thus take K /M1=(2�u)yielding "2U /M�1, with / denoting asymptotic equivalence, and so for the requiredcomputational costs to achieve an accuracy " we haveCostU (") /MK /M1+ 12�u / 1"2+1=�u :For a suitable choice of Ku;Kl for the combined estimator A we need to knowa bit more about the bias term o(K��u�u) in (13). Suppose we can identify a9




 > 1, preferably as large as possible, such that this bias term may be representedas O(K�
�u�u): Then, by choosing K / M1=(2�u�u
) we obtain in a similar way"2A = O(M�1) andCostA(") /MKmax(�u;�l) /M1+max(�u;�l)2�u�u
 / 1"2+max(1=�u;1=�l)=
 :So, under the assumptions above,CostU (")CostA(") �!1 as " # 0; if �u�l < 
: (14)Remark 4.2 We see, that the complexity of the combined estimator A does onlydepend on the ratio �l=�u = �u=�l and thus may take �u = min(1; �l=�u) and�l = min(1; �u=�l), such that O(K) is always the order of the number of innersimulations.The above analysis, which is build on some additional assumptions however, in-dicates why the combined estimator may be superior in several applications, seeSection 6.5 Two canonical approximative processesIn this section we consider two approximative processes for the general Bermudanstyle derivative which arise from two canonical exercise strategies.Maximum of still alive European optionsSuppose the option holder has arrived at a certain exercise date Tj; 1 � j � k; andlooks which remaining underlying European instrument has the largest value. Moreprecisely, he considers the index de�ned bye� (j) := inf�m � j �� EF(j) � CTmB(Tm)� = maxj�i�k EF(j) � CTiB(Ti)�� : (15)This index is clearly F (j)-measurable and the option holder has the right to pindown his exercise policy at Tj for whatever reason, by deciding at Tj to exercise atTe� (j): In fact, this is the same as selling the Bermudan at Tj as a European optionwith exercise date Te� (j); thus receiving a cash amount of eY (j)B(Tj); witheY (j) := maxj�i�k EF(j) � CTiB(Ti)� = EF(j) � CTe�(j)B(Te� (j))� � Y (j): (16)The process eY in (16) is a lower estimation of the Snell envelope Y since the policy(15) is suboptimal. For instance, because the optimal policy is not F (j)-measurable.10



Exercise when cash 
ow equals maximum of still alive Euro-pean optionsIt is clear that exercising a Bermudan at a time where the cash 
ow is below themaximumprice of the remaining underlying European options is never optimal. Thissuggests an alternative exercise strategy de�ned by the following stopping time,b� (j) := inf�m � j �� CTmB(Tm) = maxm�i�kEF(m) � CTiB(Ti)�� ;yielding a lower approximation of the Snell envelope,bY (j) := EF(j) � CTb�(j)B(Tb� (j))� � Y (j): (17)In fact, for the Bermudan swaption (see Section 6) the process bY coincides with thelower estimation of Andersen (1999) obtained by Andersen's Strategy 2 with H = 0.The exercise policy b� is better than e�; due to the following proposition.Proposition 5.1 For each j = 0; : : : ; k it holds,eY (j) � bY (j) � Y (j):Proof. We only need to show the �rst inequality, which we will proof by induction.When j = k � 1, we clearly have the equalityeY (k�1) = bY (k�1):Suppose the inequality holds for some j. Then, it follows thatbY (j�1) = EF(j�1) � CTb�(j�1)B(Tb� (j�1))�= EF(j�1) � CTj�1B(Tj�1) � 1b� (j�1)=Tj�1 + CTb�(j)B(Tb� (j)) � 1b� (j�1)>Tj�1�= CTj�1B(Tj�1) � 1b� (j�1)=Tj�1 + EF(j�1)EF(j) � CTb�(j)B(Tb� (j))� � 1b� (j�1)>Tj�1� maxj�1�i�k EF(j�1) � CTiB(Ti)� � 1b� (j�1)=Tj�1+EF(j�1) maxj�i�k EF(j) � CTiB(Ti)� � 1b� (j�1)>Tj�1� maxj�1�i�k EF(j�1) � CTiB(Ti)� � 1b� (j�1)=Tj�1+ maxj�1�i�k EF(j�1) � CTiB(Ti)� � 1b� (j�1)>Tj�1= eY (j�1): 11



Remark 5.2 In the above derivation we have used a crucial property of b� ; namely,it holds b� (j�1) 6= Tj�1 =) b� (j�1) = b� (j): Without proof we note that this propertydoes not hold for e� :6 Application: Bermudan swaptions in the LI-BOR market modelWe consider the LIBOR Market Model with respect to a tenor structure 0 < T1 <T2 < : : : < Tn in the spot LIBOR measure P �; induced by the numeraireB�(t) := Bm(t)(t)B1(0) m(t)�1Yi=0 (1 + ÆiLi(Ti))with m(t) := minfm : Tm � tg denoting the next reset date at time t: The dynamicsof the forward LIBOR Li(t), de�ned in the interval [0; Ti] for 1 � i < n; is governedby the following system of SDE's (Jamshidian 1997),dLi = iXj=m(t) ÆjLiLj 
i � 
j1 + ÆjLj dt+ Li 
i � dW �: (18)Here Æi = Ti+1 � Ti are day count fractions, andt! 
i(t) = (
i;1(t); : : : ; 
i;d(t))are deterministic volatility vector functions de�ned in [0; Ti]; called factor loadings.In (18), (W �(t) j 0 � t � Tn�1) is a standard d-dimensional Wiener process underthe measure P � with d; 1 � d < n; being the number of driving factors.For our experiments we take the following volatility structure:
i(t) = cg(Ti � t)ei; where g(s) = g1 + (1� g1 + as)e�bsis a parametric volatility function proposed by Rebonato (1999), and ei are d-dimensional unit vectors, decomposing some input correlation matrix of rank d.For generating LIBOR models with di�erent numbers of factors d, we take as abasis a correlation structure of the form�ij = exp(�'ji� jj); i; j = 1; : : : ; n� 1 (19)which has full-rank for ' > 0; and then for a particular choice of d we deduce from� a rank-d correlation matrix �d with decomposition �dij = ei � ej; 1 � i; j < n;by principal component analysis. We note that instead of (19) it is possible to usemore general and economically more realistic correlation structures. For instancethe parametric structures of Schoenmakers & Co�ey (2003).12



We will take a 
at 10% initial LIBOR curve over a 40 period quarterly tenorstructure and choose values of the parameters c, a, b, g1; '; such that the involvedcorrelation structure and scalar volatilities can be regarded as typical for a Euro orGBP market. We taken = 41; Æi = 0:25; c = 0:2; a = 1:5; b = 3:5; g1 = 0:5; ' = 0:0413: (20)For a \practically exact" numerical integration of the SDE (18), we used the log-Euler scheme with �t = Æ=5 (e.g., see also Kurbanmuradov, Sabelfeld and Schoen-makers 2002).Let us now brie
y recall the de�nition of a (payer) swaption over a period [Ti; Tn],1 � i � k: A swaption contract with maturity Ti and strike � with principal $1 givesthe right to contract at Ti for paying a �xed coupon � and receiving 
oating LIBORat the settlement dates Ti+1,: : : ,Tn. So by this de�nition, its cash
ow at maturity isSi;n(Ti) :=  n�1Xj=i Bj+1(Ti)Æj (Lj(Ti)� �)!+ :In this section we consider Bermudan swaptions for which we assume for simplicitythat the exercise dates coincide with the LIBOR tenor structure. I.e. k = n andTi = Ti; for 1 � i � n.A Bermudan swaption, issued at t = 0, gives the right to exercise a cash
owCT� := S�;n(T�)at an exercise date T� 2 fT1; : : : ; Tng to be decided by the option holder (see alsoSection 2). The value of the Bermudan swaption, issued at t = 0, is given by (1).We now investigate the bias of the upper bound estimators (8) and (9) for dif-ferent Bermudan swaptions in the LIBOR market model (18) with 
at 10% initialyield curve and model parameters given by (20). As lower approximation of theSnell envelope process we take the maximum of still alive swaption process eYmax.Hence, we have (16), where the European option is now a European swaption,eY (j)max = maxj�i�k Si;n(Tj)B�(Tj) with Si;n(Tj) = B�(Tj)EF(j) �Si;n(Ti)B�(Ti) � : (21)We further assume that expansion (12) holds true, hence,V upup ;K0 � V up0 = cuK�u + o( 1K�u );V up0 � V uplow;K0 = clK�l + o( 1K�l ); �u; �l; cu; cl > 0; (22)and aim to identify the parameters �u, �l, cu, cl in particular cases.We compute V uplow;K0 and V upup ;K0 by estimators (8) and (9), respectively, withK = 22; 23; : : : ; 27) and M = 30000, for the examples in Table 1. ForM = 30000 the13



standard deviations of both estimators are less than 1:5% relative, for all consideredK. For K = 128, the relative distance between bV uplow;K;300000 and bV upup ;K;300000 turnsout to be within 1:5%; hence the relative standard deviation of both estimators.So we conclude that within a relative accuracy of 1:5% in this sense, both estima-tors bV uplow ;128;300000 and bV upup;128;300000 give a good approximation of the target upperbound V up0 . Therefore, we take their average bV 1=2;128;128;300000 as an approximationof V up0 .With regard to (22) we next determine the coeÆcients �u; �l; cu; cl by linearregression, hence the following minimizations,RMSrelu = (23)vuut 6Xi=2  log(bV upup;2i;300000 � bV 1=2;128;128;300000 )� (log cu � �u log 2i)log(bV upup ;2i;300000 � bV 1=2;128;128;300000 ) !2 �! min�u;cuandRMSrell = (24)vuut 6Xi=2  log(bV 1=2;128;128;300000 � bV uplow ;2i;300000 )� (log cl � �l log 2i)log(bV 1=2;128;128;300000 � bV uplow ;2i;300000 ) !2 �! min�l;cl ;by straightforward di�erentiating. We note that in the linear regressions (23) and(24) we exclude the terms due to i = 7, since for i = 7 the denominators in(23)and (24) are basically zero within the considered accuracy. The values of �u, cu, �l,cl, obtained for di�erent types of swaptions and di�erent number of factors d, aregiven in Table 1. We also show in Table 1 the \optimal" � = cl=(cu + cl) and ratios�l=�u = �u=�l.Conclusion 6.1 (Table 1) According to Table 1, the function log(V upup;K0 � V up0 )and log(V uplow;K0 � V up0 ) can be approximated rather close by log cu � �u logK andlog cl��l logK, respectively, within errors which do not exceed 3.0%. Hence plottinglogK ! log(V upup ;K0 � V up0 ) and logK ! log(V uplow;K0 � V up0 ) gives approximatelystraight lines. See Figs. 1{2 for d = 40 (full factor model) and out-of-the-moneyswaptions with strike � = 12%. The values of �u turn out to be roughly equal to onewhereas over all �l seem to be signi�cantly smaller than one. It would be interestingto see an explanation for this. Then, it is remarkable that the optimal value of � fordi�erent strikes and number of factors does not vary too much. The same applies for�u and �l and we so propose for all examples the combined upper bound estimatorbV 0:4;[K0:87];K;M0 = 0:4bV upup ;[K0:87 ];M0 + 0:6bV uplow ;K;M0 ; (25)where � = 0:4 is roughly the average value in Table 1, and �u = 0:87 and �l = 1are based on the average of �l=�u and taking into account Remark 4.2. In Fig. 314



we show for a particular example, strike � = 0:12 (OTM) and d = 40, a plot of theestimator (25) together with bV upup ;[K0:87 ];300000 and bV uplow ;K;300000 for di�erent valuesof K. Note that even for any K the bias of the combined estimator is negligiblewithin the given accuracy in this example. Later (in Table 2) we will see that thebias of the estimator (25) for the particular choices of �; �u; �l, is negligible also forall other examples in Table 1, when K � 4.We now compare the combined estimator (25) with the up-up estimator (9)for di�erent strikes and di�erent number of factors d. We consider bV 0:4;4;5;900000and bV upup;100;300000 , where the respective choices of K and M are determined byexperiment, such that both the estimations and the (absolute) standard deviationsof the estimators are close for di�erent strikes and di�erent number of factors. Theresults are given in Table 2, columns 5,6. It is easily seen that the combined estimatorbV 0:4;4;5;900000 is almost 4 times faster than the up-up estimator bV upup;100;300000 .Remark 6.2 In general, depending on the quality of the Snell-envelope approxi-mation, higher accuracies for dual upper bound estimations may be required andthen the eÆciency gain of the combined up-low estimator (25) with respect to up-upestimator (9) can become tremendous in view of (14).Now we are going to compare the up-up estimations V upup;K0 , based on the max-imum of still alive swaption process (21), with up-up estimations considered byAndersen & Broadie (2001), denoted by V upup;K0;AB : The latter estimations are due toan approximative lower bound process eYA, obtained via a particular exercise bound-ary which is constructed by strategy 1 of the Andersen method. The process eYA hasthe following form,eY (j)A := EF(j) "S� (j)A ;n(T� (j)A )B�(T� (j)A ) # ; with � (j)A := inf�m � j j Sm;n(Tm)B�(Tm) > Hm� :The sequence of constants Hm is pre-computed by the method of Andersen usingstrategy 1, see Andersen (1999). We compute bV upup ;100;100000;AB for di�erent strikes andnumber of factors, and the results are given in Table 2, column 4. As we can see,the values of bV upup ;100;100000;AB and bV upup ;100;300000 are rather close. In fact, except forthe ATM strikes in the 1 and 2 factor model, the di�erences do not exceed 1%relative. For a full factor model and a particular OTM strike we also compare theestimators bV upup;K;100000;AB and bV upup;K;300000 for di�erent numbers of inner simulations,K = 1; : : : ; 100; and conclude that both estimators coincide within the consideredaccuracy, see Fig. 2.In Table 2, column 3, we give lower bounds of Bermudan prices B�(0)eY (0)A , dueto the stopping time � (0)A : We see that in case of a 1-factor model the distancebetween the lower and upper bound of the Bermudan swaption price is rather close15



for OTM, ATM as well as for ITM strikes. This observation is consistent withthe results reported in Andersen & Broadie (2001). For more than one factor thisdistance appears to increase.In Table 3 we list the required computational time of the up-up upper boundestimators due to Andersen & Broadie and the process given by the maximum ofstill alive swaptions. For practical relevance, we required an accuracy of 1% andused the Euler scheme with time steps �t = Æ. We do not take into account thecost of the pre-computation of the exercise strategy, which is small compared withthe cost of the upper estimators. For further details we refer to Andersen (1999).We conclude that for ATM and OTM strikes eYmax gives rise to a faster method thana method due to eYA (the lower bound process of Andersen). This is caused by thefact that for simulating eYA one needs to construct a LIBOR trajectory starting atTj until the exercise condition is ful�lled (for the description of the algorithm seeAndersen & Broadie, (2001)).Regarding the rather high computation times in Table 3, it is clear that aneÆciency gain of about a factor 4 (or maybe more), due to application of the inthis paper presented combined upper bound estimator, is very desirable in practice.Moreover, for a particular Bermudan product we recommend the following proce-dure. Carry out a pre-computation of the optimal �u; �l and � for the given structure,based on up-up and up-low estimations with lower accuracy. Next, take the numberK of inner simulations as small as possible and then choose the number M of outersimulations according to the accuracy required. For example see Fig. 3, where theinvolved parameters �u; �l and � are optimal for the example under considerationand where K can be taken equal to one in fact.We end with two �nal remarks.Remark 6.3 Naturally, the numerical analysis based on the (discounted) maximumof still alive swaption process in this section could also be done for the process(17) in Section 5. This process is in fact consistent with strategy 2, H = 0 inAndersen (1999). So, on the one hand, this process is dominated from above by alower bound process due to strategy 2 with an optimized H. On the other hand,however, as Andersen reports and we found out also, strategy 2 with optimized Hperforms not substantially better than strategy 1 with optimized H: Therefore, itis to expect that the dual upper bound due to process (17) will be more or lesscomparable with the upper bound due to eY (0)A in this section, which in turn iscomparable with the upper bound due to (16) for a more than one factor model.Moreover, it is easily seen that the computation of the dual upper bound by theprocess (17) will be more costly.Remark 6.4 Recently, Jamshidian (2003) has constructed a new dual method forAmerican/Bermudan upper bounds, which is based on a multiplicative version of theDoob-Meyer decomposition of some approximative process. The computational as-16



pects of Jamshidian's method will be part of our further study. Also the applicationof our presented method to so called Israeli options, Bermudans which are cancelablefrom the issuers side, would be interesting (see K�uhn & Kyprianou (2003)).
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Table 1. Estimated parameters of (12) for di�erent swaptions and numbers offactors.� d �u cu RMSrelu �l cl RMSrell �l=�u �1 1.021 0.038 0.016 0.850 0.023 0.026 0.83 0.3810.08 2 0.991 0.032 0.016 0.862 0.022 0.019 0.87 0.404(ITM) 10 0.940 0.026 0.003 0.893 0.020 0.023 0.95 0.4361 0.970 0.025 0.021 0.746 0.013 0.015 0.77 0.3350:10 2 0.872 0.020 0.009 0.840 0.014 0.029 0.96 0.417(ATM) 10 0.968 0.021 0.016 0.717 0.010 0.020 0.74 0.3171 0.988 0.099 0.015 0.801 0.006 0.017 0.81 0.3630:12 2 0.946 0.008 0.007 0.872 0.006 0.016 0.93 0.442(OTM) 10 0.930 0.007 0.009 0.896 0.006 0.013 0.96 0.46040 1.035 0.008 0.029 0.900 0.005 0.019 0.87 0.405
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Table 2. (all values to be multiplied by 10�4)� d B�(0)eY (0)A bV upup;100;100000;AB bV upup;100;300000 bV 0:4;4;5;900000(SD) (SD) (SD) (SD)1 1116.2(1.6) 1121.4(0.1) 1128.8(0.3) 1124.8(0.4)0.08 2 1103.2(1.4) 1117.6(0.4) 1121.1(0.3) 1117.6(0.3)(ITM) 10 1097.1(1.3) 1111.0(0.4) 1113.7(0.3) 1109.5(0.3)40 1093.2(1.3) 1106.9(0.4) 1110.1(0.3) 1106.9(0.3)1 403.3(1.2) 408.3(0.1) 416.5(0.5) 416.1(0.5)0.10 2 372.6(1.1) 394.0(0.4) 397.3(0.5) 397.7(0.4)(ATM) 10 347.4(1.0) 373.6(0.5) 375.8(0.4) 375.3(0.4)40 341.6(1.0) 367.5(0.5) 368.5(0.4) 369.8(0.4)1 133.5(0.7) 135.4(0.1) 136.3(0.4) 135.5(0.3)0.12 2 119.7(0.7) 127.4(0.3) 127.5(0.3) 126.5(0.3)(OTM) 10 102.8(0.6) 113.6(0.3) 114.5(0.3) 113.2(0.3)40 98.8(0.5) 110.3(0.3) 109.6(0.3) 108.6(0.3)Table 3. Computation time1 (in sec.) of the upper estimators in Table 2.� d bV upup;100;10000;AB bV upup ;100;300001 59 1150.08 2 69 134(ITM) 10 183 24140 468 6031 166 1130.10 2 213 134(ATM) 10 510 23940 1467 5981 229 1150.12 2 299 145(OTM) 10 718 26340 2076 6251The simulations are run on a 1 GHz processor20



Appendix: Proof of the convergence propertyV upup ;K0B(0) = E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i ]= E[ CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i ]= E (1 � 1[jmax 6=bjmax])[ CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)i ]+ E 1[jmax 6=bjmax][ CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i ]= V up0B(0) +O((P (jmax 6= bjmax))1�1=p1)for any integer p1, by H�older's inequality and the fact that for any p1 the p1-thmoment of both CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)iand (26)CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)iexist and are uniformly bounded inK (we omit the proof). Then, since limK!1 P (jmax 6=bjmax) = 0; the convergence for K !1 of V upup;K0 ! V up0 follows.Similarly, we can show thatV uplow ;K0 = V up0B(0) +O((P (jmax 6= bjmax))1�1=q1);for any integer q1; hence V uplow ;K0 ! V up0 :References[1] Andersen L. (1999): A simple approach to the pricing of Bermudan swaptionsin the multi-factor LIBOR market model. Journal of Computational Finance,3, No. 2, 5{32.[2] Andersen L., Broadie M. (2001): A primal-dual simulation algorithm for pricingmultidimensional American options. Working paper.21
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