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Abstract

Based on a duality approach for Monte Carlo construction of upper bounds
for American/Bermudan derivatives (Rogers, Haugh & Kogan), we present a
new algorithm for computing dual upper bounds in a more efficient way. The
method is applied to Bermudan swaptions in the context of a LIBOR market
model, where the dual upper bound is constructed from the maximum of
still alive swaptions. We give a numerical comparison with Andersen’s lower

bound method and its dual considered by Andersen & Broadie.
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1 Introduction

Evaluation of American style derivatives on a high dimensional system of underlyings
is considered a perennial problem for the last decades. On the one hand such high
dimensional options are difficult, if not impossible, to compute by PDE methods
for free boundary value problems. On the other hand Monte Carlo simulation,
which is for high dimensional European options an almost canonical alternative to
PDE solving, is for American options highly non-trivial since the (optimal) exercise
boundary is usually unknown. In the past literature, many approaches for Monte
Carlo simulation of American options are developed. With respect to Bermudan

derivatives, which are in fact American options with a finite number of exercise
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dates, there is, for example, the stochastic mesh method of Broadie & Glasserman
(1997,2000), a cross-sectional regression approach by Longstaff & Schwartz (2001),
and for Bermudan swaptions a method by Andersen (1999). In general, the price of
an American option can be represented as a supremum over a set of stopping times.
As a remarkable result Rogers (2001) (and independently Haugh & Kogan (2001)
for Bermudan style instruments) showed that this supremum representation can be
converted into a ’dual’ infimum representation, where the infimum is taken over a set
of (super-)martingales. In Andersen & Broadie (2001) this dual approach is carried
out and tested with respect to Andersen’s (1999) method for Bermudan swaptions.
Further Joshi & Theis (2002) use the dual approach for finding Bermudan swaption
prices via a minimization procedure. For a more detailed overview on Monte Carlo
methods for American options we refer to Glasserman (2003) and the references
therein.

In the papers of Anderson & Broadie (2001) and Haugh & Kogan (2001) upper
bounds of Bermudan options are constructed by applying the duality approach to
the (Doob-Meyer) martingale part of an approximative process. For instance, in
Andersen & Broadie (2001) these upper bounds are constructed to investigate the
quality of an approximative lower bound process obtained by suboptimal stopping,
without particular focus on the efficiency of the upper bound computation however.
The central theme in this paper is the construction of a Monte Carlo estimator for
an upper bound for a Bermudan derivative which is computationally more efficient.
Our upper bound construction will be based on duality via the martingale part of
an approximative processes as well. But, as main contribution, we will enclose the
‘theoretical’ upper bound by approximating from above and below by using a new
lower estimator for the theoretical upper bound. Then, by taking a convex combina-
tion of the lower and upper estimator we obtain a family of combined estimators for
the target upper bound with usually higher computational efficiency. This efficiency
gain will be demonstrated by upper bound computation of Bermudan swaptions.

The paper is organised as follows. In Section 2 we give a concise recap of the
Bermudan pricing problem and in Section 3 we outline the duality approach. Then,
in Section 4 we present new Monte Carlo estimators for constructing a target upper
bound and in Section 5 we propose two canonical approximative processes to which
our method could be applied. Finally, in Section 6 we apply our method to com-
putation of upper bounds of Bermudan swaptions in a LIBOR market model. This
application is based on the maximum of still alive swaptions, one of the canonical

candidates in Section 5 in fact, and we give a numerical comparison with the results

obtained by Andersen (1999) and Andersen & Broadie (2001).



2 The Bermudan Pricing Problem

We consider general Bermudan style derivatives with respect to an underlying pro-
cess L(t), over some finite time interval [0, T'] with time horizon T' < co. The process
L is assumed to be Markovian with state space R?. For example, L can be a system
of asset prices, but also a not explicitly tradable object such as the term struc-
ture of interest rates, or a system of LIBOR rates. Consider a set of future dates
T:={T1,72,--.,Te} with 0 < Ty < Ty <--- < T <T. The dates are denoted with
calligraphic letters to distinguish in the case where L is a LIBOR rate process, if
necessary, from a particular LIBOR tenor structure usually denoted by T}’s.

An option issued at time ¢t = 0, to exercise a cashflow Cr. := C(7;, L(7)) at a
future time 7, € T is called a Bermudan style derivative. Without restriction we
assume for technical reasons that the option cannot be exercised at ¢t = 0. With
respect to a pricing measure P connected with some pricing numeraire B, the value

of the Bermudan derivative at time ¢ = 0 is given by
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The fact that (1) can be considered as the fair price for the Bermudan derivative
is due to general no-arbitrage principles, e.g. see Duffie (2001). For example, if
L is a LIBOR process, P in (1) could be the spot LIBOR measure P* induced
by the spot measure numeraire B* or a bond measure P{™ induced by some zero
bond B, maturing at tenor T,,, where T < T,,. The supremum in (1) is taken
over all integer valued F-stopping times 7 with values in the set {1,...,k}, where
F:={F, 0 <t < T} denotes the usual filtration generated by the process L. At a
future time point ¢, when the option is not exercised before ¢, the Bermudan option

value is given by

Cr,
Vi=B(t) sup E"—=
refn(®),.ky  B(Tr)

with k(¢) := min{m : T, > t}. Note that V; can also be seen as the price of a

Bermudan option newly issued at time ¢, with exercise opportunities Ty, . .., Tk
The process
Vi
Y=,
B(t)

called the Snell envelope process, is a supermartingale. This can be seen as follows.
Let s < t and 7;° be an optimal stopping index at time ¢ (which exists by general

arguments), then it holds
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3 Upper bounds by a Duality approach

We introduce the discrete filtration (f(j))jzo _, with FU) .= F1;,1 <3<k, FO) .=
Fo, and consider with respect to this filtration a discrete martingale (Mj)j:

M, = 0. Following Rogers (2001) we observe that

Yo = sup E% Or.__ sup E”° [L—Mf]
re{1,..k} B(T:)  ref1,..k} B(T:)

(
< E7° max 07;'
- 1<i<k | B(T;

) — Mj] : (2)
Hence the right-hand-side of (2) provides an upper bound for the Bermudan price
Y,. Moreover, due to the next theorem of Rogers (2001) and independently Haugh
& Kogan (2001), there exists a particular martingale MY | such that (2) holds with
equality.

Theorem 3.1 Let us consider the Snell envelope process Y at the discrete time set
{0,71,...,Ta}, and define YU) := Y(T;), 1 < j < k, YO := Y,. Let further MY
be the (unique) Doob-Meyer martingale part of (Y(j)) i.e. MY is an (f(j))—

martingale which satisfies

0<j<k

YO = Yo+ MY —FY, j=0,.,k

with MY = FY := 0 and F¥ being such that F¥ is FU~1) measurable for5 =1, ... k.
0 0 9 7 J PR

Then we have

Cs;
— %o i _ agY
o= BT [B(Tj) M ] |

Proof. Note that always Y; > Cr;/B(T}) and that FJ-Y is nondecreasing since
(Y()) is an (f(j))—supermartingale. So, (2) applied to MY yields

Cr. Cr. .
Yo < E’° su { ! —MY] — g7 [Y—l— su { ] —Y(J)—F-YH
° - ‘e [B(T;) °T e | B(T) ’
< ETo |:YE)_|_ sup [_FJY]:| =Y, — F1Y = Yb,
1<5<k
where F1Y — 0 because of Yo = EFoY () = Y, — F1Y [ ]

4 Efficient Monte Carlo construction of upper bounds

Consider some approximative process V, for the price of a Bermudan style option
issued at time t. As an example, for any exercise strategy, i.e. a family of integer

valued stopping times {7 € {k(¢),...,k}: t > 0}, the process

(3)

=
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is a lower approximation, V, < V;. The discounted process Y = ‘7/3 is the with V
associated approximation of the Snell envelope process. Similar as in Section 3 we
introduce the discrete processes Y@ and V(j), adapted to FU) for j =0,..., k. Let
M be the martingale part of the Doob-Meyer decomposition of (?(j)). Hence

YO =Y, + M; — Fj, j=0,...,k (4)

with My = Fo = 0 and Fj being F~1) measurable for j = 1,...,k. By taking the
conditional expectation with respect to FU~=1) at both sides of (4), it follows that

—

M; =

JTL-_
_ Z ZET(”) ), 1<j<k.

So, by Theorem 3.1 we obtain an upper bound for the Bermudan option via

L+ T — BRI

Vo Cr; d i ! (i—-1) 2
Y, = < E i N y® EF Ty
: < P ; > |

= %—I—E’ sup 07;
<<k | B(T;)

Vo?

B(0)

. oy _I_ Z ET(‘L 1) Y(z—l)]
= }7’0 + A =

Let us assume that (V(j)) satisfies V() > C7;, hence, the approximative price process

is never below the cash flow by exercising. This is no restriction in fact, since
=(9) ~

otherwise we might take V' := max(V ), C'7;) instead. We then have the following

estimate,

A < E sup Z E'T(l Yo Y -]

1<]<k
j ; 1 o~ . o~ .
< E sup ZmaX(ET(l_ 'ye _ye 0)

1<5<k =1

< E Z maX(ET(i_l)?(i) — yt-n, 0). (5)

When Y coincides with the Snell envelope process Y we have A = 0 by Theorem 3.1
and then, due to the supermartingale property of the Snell envelope, EFEY 6 <
Y (=1 50 the right-hand-side estimate vanishes as well. The estimation (5) indicates
that the distance A between Y and Y is due to those exercise dates T;, where
EFy @ > }7’("_1), hence where Y doesn’t meet the supermartingale property.

Because the process L is assumed to be Markovian in the state space R, a

conditional probability given FU) for 5 = 0,...,k, can be seen as a function of
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LW .= L(T;), with L®) := L(0), and by general arguments (see for instance Tkeda &
Watanabe (1981)) there exist a regular conditional probability measure P(L(¥) e),

such that for any Fr-measurable random variable Z,

[E7 Z](w) ::/P(L(j),d&)Z(&) as., j=0,...,k

We now consider for each 7, 7 = 1,..., k, a sequence of random variables (51(1)) ,
1EN

where forz € N, fz(j) arei.i.d. copies of Y@ under the conditional measure P(LU-Y) ),

independent of the sigma-algebra o{L® : 1 = j,...,k}. Hence,

EFIT6) _ /p(L(j—l),d&)?(j)(&) _ /p(ﬂfl))d&)&(ﬂ@), i€ N.

For a fixed but arbitrary K € N we consider a discrete process MX) defined by
MéK) = 0 and then, recursively,

K
~(K ~EK) o) L ;
Mj):_MJ+YW—§§}P
=1
vy Ly
_ q _
- Y — ?Z& ’ J = 17 7k
g=1 g=1 1=1

The process M) is thus defined on an extended probability space  x [] with
II = H?Zl RX. So a generic sample element in this space is (w, (€))1¢;<k), with
w € () being a realisation of the process L and f(j) = (fz(j))izl,___,K € RX, for
j=1,...,k.

Clearly, ME) is 3 martingale w.r.t. the filtration (ﬁ(j))jzo,___,k, defined by FO) .
Fo and FO) := U{F xH:QD>FeFU J[DHE U{f(l),...,f(j)}}, for 7 =
1

,...,k, and we observe that

Cr —~

E sup [- 2 — M) = EE™ sup [ — S T@ 4+ 3¢9
15j£k[3(7j) - 151'21«[3(7]') ; ;K;Q |
Cr; d o (q) & F(&) (q)

> FE su _ Y\ 4 — E Zq

PAV I TP IR SV

1<5<k B(,E) g=1 g=1 K 1=1
i<i<e B(T3) 45 =
_ W, W :
B(0) — B(0)



where E'T(k)f(q) = E'T(q_l)fz(q) holds because fz(q) is independent of L@ ... L*) Via

1

the martingale M) we have thus obtained a new upper bound

uUp CT ——
Ve K .~ B(0)E su Y SI 6
0 ( ) 1532k[3(7;) 7 ] ( )

which is larger than our target upper bound V;*. It is natural to expect, however,
that V3% K will be already close to Vo® for numbers K which are much smaller
than the number of Monte Carlo trajectories needed for low variance estimation of

the mathematical expectation in (6).

We now proceed with a second approach, which gives a lower bound for our

target upper bound V;*. Consider an (f(k))—measurable random index Jmax Which

satisfies
sup [ 07; _ zj: }7’(‘1) + zj: E’T(q_l)?(‘I)] “Timax Jmi Y _I_ Jmi E}‘(q 1)
<<k B(Ty) - 4 p Timax)
Then, for any integer K > 0,
Vup Jmax Jmax Jmax -
s ~ Plagy LYY
— MTimax Jmi Y _I_ Jmi Z E}'(q 1)
Tjmer) P
Jmax Jmax
R NI O WY
Tjmer) P

where we have used again the fact that EF® 51( ) = gF l)f( 9 — gFVY @), This
brings us to the idea of localizing jmax for each particular simulation of the process
L. To this aim, we carry out the following procedure. We consider on the extended

probability space  x [] the random index ;max which satisfies,

Jma,x Jma,x C _7 K
T;

J 1 q
Y Timex ZY —I—Z Zf —1s<u£>k B(T) Z -I-ZKZQ(

Jma,x g=1

Next, we extend the probability space once again to  x [[ x [] and simulate in-
dependent copies E\(j) = (51))1-:1,___,1{ € RX, of f(j) € RX for j =1,...,k. We then
consider on © x [[ X [] the random variable,

Jma,x Jma,x

Jmax Z Y _I_ Z Z E(q

Jmax



with expectation

Vuplow K Jma,x Jma,x

R Jma,x /\(
By T Plagy LY Z ng
— B[ Z i Z Z B70gY] (7)
Jmax 1=
07:_ Fmax Jmax
- FE Tmax Y E}'(q 1)
[B<T;max> 2 V042,
i Jmex Jmex - VP
= Timex) ZY " ZET( 7] = B(()O)’

where, most importantly, (7) holds while the 2‘1 are re-sampled independent of
~(k)g(q) _ E}‘(k)g(q) _ E}‘(q—l)g(q) _

the determination of 3\max and then we have EZ

EFeIy()
So we come up with two different Monte Carlo estimators for the target upper
bound V5.
Lower estimate for V,*:
M C 73 %) K
B(0) Tom 1
P uptow, KM . _ 32 (gsm) = ¢lam)
o M Z B(T+m) qu —I_Z[(th ] (8)
=1 Jmax q 1 q:l =1
Upper estimate for V :
M 7 7 K
AL ,K,M _ i Y(q,m) - (q,m) 9
A Rl RT R w

In (8), (9), ;I(Hﬁl and Y@™) denote the m-th independent sample of ;max and }7’(‘1),
respectively.
It is not difficult to show that

A N I R A i N (10)

for a proof see the Appendix.
As a third alternative, in view of (10), the estimators (8) and (9) can be combined

into a convex family of new estimators,
Sa,Ku, K, M Sup® Ky, M > KM
‘/E)a, u,fr, = a%up R, _I_ (1 _ a)%uploun 3] , (11)

for 0 < a < 1, and suitably chosen simulation numbers K,, K;, M. In Section 6
we will demonstrate in practical examples that the combined estimator may have a
much higher efliciency than either ‘//\E)uPup’K’M or ‘//\E)u”“’”’K’M.

We here note that, essentially, the estimator (9) can also be found in Andersen

& Broadie (2001) and Haugh & Kogan (2001).
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Heuristic motivation of the combined estimator

In view of the Appendix we suppose that for some 3, 8; > 0 the following expansions

hold,

Cu

%upuP,K _ %up T e + 0( K,E}u)’ cy >0 and
U, U < 1
‘/E) plounK — ‘/E) P __ Klﬂl —I— O(ﬁ)7 cl > 0 (12)

Let @, 0 < a < 1, be such that ac, — (1 — a)g = 0 and let k,, k1 > 0 be such, that

Kufu = k1. Consider for some integer K,

/\a Ky K u U, Ry U ot U, 1
VE) K 5u] [K5) — a%p P [Kru] + (1 . a)VE) Plow[K ] = VE)p + O(Knuﬂu)’ (13)

with brackets denoting the Entier function. We then consider the complexity of the
two estimators U := VE,“pup’K’M and A = %a’[Knu]’[Knl]’M. As usual, the accuracy €

of an estimator s for a target value p is defined via
g2 := E(5—p)? = Var(s) + (Es — p)°

and so we may write by (12),(13),

]_ Supt? K C,i ]_
52{ . = MV&T(% P ,1) -I_ Kzﬂu -I_ 0( Kzlgu)7
2 2
(0 Fup®P [KFu],1 (1 _a) T uprow,[K*],1 1
8?4 - MV&T(VB p*P,[ ] ) T m Va’r(VE) Plow[K "] ) + O(7K2nu,5u)’

where the simulation of the up-up and up-low estimator is assumed to be done

independently.

Remark 4.1 In practice it is more efficient to localize ;max using the samples for

VE,“pup’K. Then, the up-up and up-low estimator are dependent in general, so
1 up¥P [KHu], 1 TFUDow [ K ¥1],1 1
5?4 L= MV&T (Cl%p [ ] —|—(1 —Cl)%pl [ ] ) —I_O(W)

Since Var(‘//\z)u”up’K’l) and Var (a‘//\E)UPuP’[KM]’l +(1-— a)‘//\z)um"”’[Knl]’l are uniformly
bounded in K, we can deduce in the spirit of Schoenmakers & Heemink (1997 ) and
Duffy & Glynn (1995) an asymptotically optimal tradeoff between bias and statis-
tical error of the estimators &/ and .A. In fact, their bias and statistical error should
be of comparable magnitude. For the up-up estimator &/ we thus take K oc M/ (25)
yielding €2, o« M !, with o< denoting asymptotic equivalence, and so for the required

computational costs to achieve an accuracy € we have

1

14 L
Costy(e) x MK ox M tom o TSy

For a suitable choice of K,, K; for the combined estimator A we need to know

a bit more about the bias term o( K~"f+) in (13). Suppose we can identify a

9



v > 1, preferably as large as possible, such that this bias term may be represented
as O(K~"Ax) Then, by choosing K o« M/(%«fu7) we obtain in a similar way
e% =O0(M™1) and

max(ky ,K,l) 1

max(Ky,K;) Nt —reBar
Cost4(e) x MK o« M7 2B o c2+max(1/Bu,1/B)/7"

So, under the assumptions above,

Costy(e)
Cost 4(¢)

Ba
6i

Remark 4.2 We see, that the complexity of the combined estimator .A does only
depend on the ratio x;/k, = B./0; and thus may take x, = min(1,5;/8,) and
ki = min(1l,B,/6:), such that O(K) is always the order of the number of inner

simulations.

as €0, if <. (14)

The above analysis, which is build on some additional assumptions however, in-
dicates why the combined estimator may be superior in several applications, see

Section 6.

5 Two canonical approximative processes

In this section we consider two approximative processes for the general Bermudan

style derivative which arise from two canonical exercise strategies.

Maximum of still alive European options

Suppose the option holder has arrived at a certain exercise date 7;, 1 < 7 <k, and
looks which remaining underlying European instrument has the largest value. More

precisely, he considers the index defined by

~G) - e | O | 70 | Or
Y -_mf{ij ‘ E {B(Tm)} —nglzgzccE [3(7:)}} (15)

This index is clearly F\)-measurable and the option holder has the right to pin

down his exercise policy at 7; for whatever reason, by deciding at 7; to exercise at
T~ In fact, this is the same as selling the Bermudan at 7, as a European option

with exercise date Tx(;), thus receiving a cash amount of ?(j)B(ﬂ), with

=

. . ) [ Cry, _
4 .= max E*7 { O ] - 77 {74” ] <YW, 16
Jrglzaé}’(c (/z) ( 7-(J')) B ( )

The process Y in (16) is a lower estimation of the Snell envelope Y since the policy

(15) is suboptimal. For instance, because the optimal policy is not F()-measurable.

10



Exercise when cash flow equals maximum of still alive Euro-

pean options

It is clear that exercising a Bermudan at a time where the cash flow is below the
maximum price of the remaining underlying European options is never optimal. This

suggests an alternative exercise strategy defined by the following stopping time,

. C C .
=) . ; S ) Z
7 -_mf{mZJ ‘ B(Tm) _"Ergl??kE [3(7;)}}7

yielding a lower approximation of the Snell envelope,

. - Cr.. .
y@) . gF9 | TR0 | () 17
B(T=»)] — (17)

In fact, for the Bermudan swaption (see Section 6) the process Y coincides with the
lower estimation of Andersen (1999) obtained by Andersen’s Strategy 2 with H = 0.

The exercise policy 7 is better than 7, due to the following proposition.
Proposition 5.1 For each 7 =0,...,k 1t holds,
YU < Y0 <y,

Proof. We only need to show the first inequality, which we will proof by induction.
When 7 = k& — 1, we clearly have the equality

ylk=1) _ y(k-1)
Suppose the inequality holds for some 7. Then, it follows that

yu-1) = Ef(i—l)[ Cﬁ(j—l) ]

B(Tz6-1)
= B {B(g%_—ll) e Bcg%:;)) '1?(1._1)”"_1}
2 mex, o [BCE%)] Ta-n=T;,
4T }2%}]{6 gF@ [BC("%)] S P
Z [ max, e {BCE%)} a7y
o B {B(f%} e
_ §6-n
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Remark 5.2 In the above derivation we have used a crucial property of 7, namely,
it holds 701 £ T,_; = 7U~1) = 7). Without proof we note that this property
does not hold for 7.

6 Application: Bermudan swaptions in the LI-
BOR market model

We consider the LIBOR Market Model with respect to a tenor structure 0 < 7T} <
Ty < ...< T, in the spot LIBOR measure P*, induced by the numeraire

m(t) 1

B*(t) == (1+ &Li(T))

=0

with m(t) := min{m : T,, > t} denoting the next reset date at time ¢. The dynamics
of the forward LIBOR L;(¢), defined in the interval [0, T;] for 1 <7 < n, is governed
by the following system of SDE’s (Jamshidian 1997),

: §;LiL; v -
dL; = kit MLRRE AP P L;~, - dW* 1
2. 15,0, oL dWn (18)

j=m(t)

Here é; = T;.1 — T; are day count fractions, and

t—=7i(t) = (1), .-, vialt))

are deterministic volatility vector functions defined in [0, T;], called factor loadings.
In (18), (W*(t) | 0 < ¢t < T,_1) is a standard d-dimensional Wiener process under
the measure P* with d, 1 < d < n, being the number of driving factors.

For our experiments we take the following volatility structure:
%i(t) = cg(T; — t)ei, where g(s) = goo + (1 — goo +as)e™

is a parametric volatility function proposed by Rebonato (1999), and e; are d-
dimensional unit vectors, decomposing some input correlation matrix of rank d.
For generating LIBOR models with different numbers of factors d, we take as a

basis a correlation structure of the form

pi; = exp(—eplt — 7|); vy =1...,n-1 (19)

which has full-rank for ¢ > 0, and then for a particular choice of d we deduce from
p a rank-d correlation matrix p? with decomposition pfj =e€-¢e,1 <1,7 <n,
by principal component analysis. We note that instead of (19) it is possible to use
more general and economically more realistic correlation structures. For instance

the parametric structures of Schoenmakers & Coffey (2003).
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We will take a flat 10% initial LIBOR. curve over a 40 period quarterly tenor
structure and choose values of the parameters ¢, a, b, 9o, ¥, such that the involved
correlation structure and scalar volatilities can be regarded as typical for a Euro or

GBP market. We take
n=41, § =0.25, ¢=0.2, a =1.5, b=3.5, goo = 0.5, » = 0.0413. (20)

For a “practically exact” numerical integration of the SDE (18), we used the log-
Euler scheme with At = §/5 (e.g., see also Kurbanmuradov, Sabelfeld and Schoen-
makers 2002).

Let us now briefly recall the definition of a (payer) swaption over a period [T}, T,],
1 <12 < k. A swaption contract with maturity T; and strike § with principal $1 gives
the right to contract at 7; for paying a fixed coupon 8 and receiving floating LIBOR
at the settlement dates T;11,...,T,. So by this definition, its cashflow at maturity is

Sin(T3) = (i Bi1(T3)6; (L;(Th) — 9)) :

In this section we consider Bermudan swaptions for which we assume for simplicity
that the exercise dates coincide with the LIBOR tenor structure. I.e. K = n and
T, =T;, for 1 <i<mn.

A Bermudan swaption, issued at ¢t = 0, gives the right to exercise a cashflow
Cr, = S,a(T)

at an exercise date T, € {T1,...,T,} to be decided by the option holder (see also
Section 2). The value of the Bermudan swaption, issued at ¢ = 0, is given by (1).
We now investigate the bias of the upper bound estimators (8) and (9) for dif-
ferent Bermudan swaptions in the LIBOR market model (18) with flat 10% initial
yield curve and model parameters given by (20). As lower approximation of the
Snell envelope process we take the maximum of still alive swaption process Vonax-

Hence, we have (16), where the European option is now a European swaption,

~(; Sin(T3) ) @ | Sin(T5)
(9 — Sl . N — BT \RF :
Y. max B+(T;) with  S;.(T;) = B*(T;)E B(T}) | (21)
We further assume that expansion (12) holds true, hence,
VRS v e SRR (R
0 Y
u WPtow, C 1
%p_%pz K — W‘FO(W); Buaﬁlacuacl >0, (22)

and aim to identify the parameters 3,, G, c., ¢ in particular cases.
We compute VPlew® and V2K by estimators (8) and (9), respectively, with
K =2%2%...,2") and M = 30000, for the examples in Table 1. For M = 30000 the
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standard deviations of both estimators are less than 1.5% relative, for all considered
K. For K = 128, the relative distance between Vw3000 g {rup™®K,30000 ¢\
out to be within 1.5%, hence the relative standard deviation of both estimators.

So we conclude that within a relative accuracy of 1.5% in this sense, both estima-

5 128,30000 SSupUP,128,30000 - . .
tors Vg Prew =% and V7% give a good approximation of the target upper

£51/2,128,128,30000
Vo

bound V;*. Therefore, we take their average as an approximation

of Vj®.
With regard to (22) we next determine the coefficients B, 5, cu, ¢ by linear

regression, hence the following minimizations,

RMS ZEI = 23)
6 1og(f/\6ump,2i,3oooo . ‘761/2,128,128,30000) _ (log cu — B log 2") |
; ( 1Og(f}6uzmp,2i,3oooo _ "%1/2,128,128,30000) ) —> ming, ¢,
and
RMS ;EI = 24
6 1Og(‘//\61/2,128,128,30000 . "/\E)upzomzi,e,oooo) _ (log &1 — Bilog 29) |
ZZ:; ( 1Og(‘761/2,128,128,30000 . ‘//\E)uplow,zi,:goooo) ) — MINg, ¢,

by straightforward differentiating. We note that in the linear regressions (23) and
(24) we exclude the terms due to 7 = 7, since for 1 = 7 the denominators in(23)
and (24) are basically zero within the considered accuracy. The values of B, ¢y, B,
¢;, obtained for different types of swaptions and different number of factors d, are

given in Table 1. We also show in Table 1 the “optimal” a = ¢;/(c, + ¢;) and ratios
Bl/ﬁu = KU/HI'

Conclusion 6.1 (Table 1) According to Table 1, the function log(V3®™ % — VP
and log(%um"”’K — V5®) can be approximated rather close by log ¢, — B, log K and
log ¢;— B log K, respectively, within errors which do not exceed 3.0%. Hence plotting
log K — log(V2®" ¥ — V) and log K — log(%u”low’K — V5®) gives approximately
straight lines. See Figs. 1-2 for d = 40 (full factor model) and out-of-the-money
swaptions with strike § = 12%. The values of 3, turn out to be roughly equal to one
whereas over all §; seem to be significantly smaller than one. It would be interesting
to see an explanation for this. Then, it is remarkable that the optimal value of a for
different strikes and number of factors does not vary too much. The same applies for
B, and B; and we so propose for all examples the combined upper bound estimator

"%0.4,[K°-87],K,M _ 0‘4‘//\6up"1",[K0'87],M n O‘G%Uplow,K,M7 (25)
where a = 0.4 is roughly the average value in Table 1, and k, = 0.87 and x; = 1

are based on the average of §;/0, and taking into account Remark 4.2. In Fig. 3
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we show for a particular example, strike § = 0.12 (OTM) and d = 40, a plot of the
estimator (25) together with ‘//\E)uPup’[KOM]’SOOOO and VuPiew K300 fo1 different values
of K. Note that even for any K the bias of the combined estimator is negligible
within the given accuracy in this example. Later (in Table 2) we will see that the

bias of the estimator (25) for the particular choices of o, k,, ki, is negligible also for
all other examples in Table 1, when K > 4.

We now compare the combined estimator (25) with the up-up estimator (9)

for different strikes and different number of factors d. We consider ‘//\60'4’4’5’90000

and ‘”/\E)upup,loo,e,oooo, where the respective choices of K and M are determined by
experiment, such that both the estimations and the (absolute) standard deviations
of the estimators are close for different strikes and different number of factors. The
results are given in Table 2, columns 5,6. It is easily seen that the combined estimator
‘//\60'4’4’5’90000 1s almost 4 times faster than the up-up estimator ‘”/\E)upup,loo,e,oooo‘

Remark 6.2 In general, depending on the quality of the Snell-envelope approxi-
mation, higher accuracies for dual upper bound estimations may be required and
then the efficiency gain of the combined up-low estimator (25) with respect to up-up

estimator (9) can become tremendous in view of (14).

Now we are going to compare the up-up estimations ‘/E)u”up’K, based on the max-
imum of still alive swaption process (21), with up-up estimations considered by
Andersen & Broadie (2001), denoted by %?Z?K. The latter estimations are due to
an approximative lower bound process ?A, obtained via a particular exercise bound-
ary which is constructed by strategy 1 of the Andersen method. The process Y4 has

the following form,

S, (T )

y) . gFd
A B*(Trf))

, with Téj)::inf{m2j|‘ggf(7g?)>ﬂm}.
The sequence of constants H,, is pre-computed by the method of Andersen using
strategy 1, see Andersen (1999). We compute "/\Efi*g,loo,loooo for different strikes and
number of factors, and the results are given in Table 2, column 4. As we can see,
the values of "/\Efi*g,loo,loooo and ‘//\E)u” *,100,30000 o re rather close. In fact, except for
the ATM strikes in the 1 and 2 factor model, the differences do not exceed 1%
relative. For a full factor model and a particular OTM strike we also compare the
estimators %fﬁg’K’loooo and ‘//\E)u” *#,K,30000 £ different numbers of inner simulations,
K =1,...,100, and conclude that both estimators coincide within the considered
accuracy, see Fig. 2.

In Table 2, column 3, we give lower bounds of Bermudan prices B*(O)?ﬁo), due
to the stopping time 7'510). We see that in case of a 1-factor model the distance

between the lower and upper bound of the Bermudan swaption price is rather close
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for OTM, ATM as well as for ITM strikes. This observation is consistent with
the results reported in Andersen & Broadie (2001). For more than one factor this
distance appears to increase.

In Table 3 we list the required computational time of the up-up upper bound
estimators due to Andersen & Broadie and the process given by the maximum of
still alive swaptions. For practical relevance, we required an accuracy of 1% and
used the Euler scheme with time steps At = §. We do not take into account the
cost of the pre-computation of the exercise strategy, which is small compared with
the cost of the upper estimators. For further details we refer to Andersen (1999).
We conclude that for ATM and OTM strikes ?max gives rise to a faster method than
a method due to Yy (the lower bound process of Andersen). This is caused by the
fact that for simulating Y, one needs to construct a LIBOR trajectory starting at
T; until the exercise condition is fulfilled (for the description of the algorithm see
Andersen & Broadie, (2001)).

Regarding the rather high computation times in Table 3, it is clear that an
efficiency gain of about a factor 4 (or maybe more), due to application of the in
this paper presented combined upper bound estimator, is very desirable in practice.
Moreover, for a particular Bermudan product we recommend the following proce-
dure. Carry out a pre-computation of the optimal 3, B; and o for the given structure,
based on up-up and up-low estimations with lower accuracy. Next, take the number
K of inner simulations as small as possible and then choose the number M of outer
stmulations according to the accuracy required. For example see Fig. 3, where the
involved parameters 3,,0; and a are optimal for the example under consideration
and where K can be taken equal to one in fact.

We end with two final remarks.

Remark 6.3 Naturally, the numerical analysis based on the (discounted) maximum
of still alive swaption process in this section could also be done for the process
(17) in Section 5. This process is in fact consistent with strategy 2, H = 0 in
Andersen (1999). So, on the one hand, this process is dominated from above by a
lower bound process due to strategy 2 with an optimized H. On the other hand,
however, as Andersen reports and we found out also, strategy 2 with optimized H
performs not substantially better than strategy 1 with optimized H. Therefore, it
is to expect that the dual upper bound due to process (17) will be more or less
comparable with the upper bound due to }7;50) in this section, which in turn is
comparable with the upper bound due to (16) for a more than one factor model.
Moreover, it is easily seen that the computation of the dual upper bound by the

process (17) will be more costly.

Remark 6.4 Recently, Jamshidian (2003) has constructed a new dual method for
American/Bermudan upper bounds, which is based on a multiplicative version of the

Doob-Meyer decomposition of some approximative process. The computational as-
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pects of Jamshidian’s method will be part of our further study. Also the application
of our presented method to so called Israeli options, Bermudans which are cancelable

from the issuers side, would be interesting (see Kithn & Kyprianou (2003)).
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Table 1. Estimated parameters of (12) for different swaptions and numbers of

factors.

| 6 |d| B | e [RMST] B | o |RMS[T| A/bu| o |
1 ]| 1.021 | 0.038 | 0.016 0.850 | 0.023 | 0.026 0.83 | 0.381
0.08 2 | 0.991 | 0.032 | 0.016 0.862 | 0.022 | 0.019 0.87 | 0.404
(ITM) | 10 || 0.940 | 0.026 | 0.003 0.893 | 0.020 | 0.023 0.95 | 0.436
0.970 | 0.025 | 0.021 0.746 | 0.013 | 0.015 0.77 | 0.335
0.10 2 | 0.872 | 0.020 | 0.009 0.840 | 0.014 | 0.029 0.96 | 0.417
(ATM) | 10 || 0.968 | 0.021 | 0.016 0.717 | 0.010 | 0.020 0.74 | 0.317
0.988 | 0.099 | 0.015 0.801 | 0.006 | 0.017 0.81 | 0.363
0.12 2 | 0.946 | 0.008 | 0.007 0.872 | 0.006 | 0.016 0.93 | 0.442
(OTM) | 10 || 0.930 | 0.007 | 0.009 0.896 | 0.006 | 0.013 0.96 | 0.460
40 || 1.035 | 0.008 | 0.029 0.900 | 0.005 | 0.019 0.87 | 0.405

9=0.12 (OTM)
d=40

log 0.005-0.9 log K—- solid line

N
Iog(V;p\ow'Kﬁoooo— vgp) —— dots

L L L L L L
1 15 2 2.5 3 3.5 4 4.5

log K

Fig. 1. log(‘//\z)u”"”’K’?’oooo—%uP) and log ¢;— G log K for §; and ¢ minimizing (24).

0=0.12 (OTM)
d=40

log 0.008-1.035 log K —- solid line

A, UP
log(V” K,30000_ VgP) —— dots

L L L L L L
1 15 2 2.5 3 3.5 4 4.5

log K
Fig. 2. 1Og("/\6up"1’,K,3oooo — V3*) and log ¢, — By log K for B, and ¢, minimizing
(23).
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0.018

6=0.12 (OTM
. ngup,[Ko'm],SOOOO d=20 ( ) |
SD< 1%
0.014 | —
0.012 b
0.01 =
0.008 N 0.87.
VOA4IKTTLKS0000 (a5hed line)
Oup ,K,30000 S
o ' V.’ (solid line)
0.006 0 : 1 : 2 3
10 10 10° 10

K

Fig. 3. Different estimators for V;* due to the approximative process Vonax-

‘
A up
solid line: V‘(J)P ,K,30000

viaY
max

N Ay ~
0.016 P
- up™ K,10000 |

\\dashed line: VL(;’AB via Y,

0.014

0.012

0.01

0=0.12 (OTM)
0.008 |- d=40 R

SD=< 1%

0.006 5 L L
10 10 10 10

K

Fig. 4. Up-up estimators due to different approximative processes.
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Table

2. (all values to be multiplied by 10~

Y)

0 d B* (0)}’}1‘(10) ‘70?%;’,100,10000 "}Oup"p,loo,BOOOO "}00.4,4,5,90000
(SD) (SD) (SD) (SD)
1 || 1116.2(1.6) | 1121.4(0.1) | 1128.8(0.3) | 1124.8(0.4)
0.08 | 2 |/ 1103.2(1.4) | 1117.6(0.4) | 1121.1(0.3) | 1117.6(0.3)
(ITM) |10 || 1097.1(1.3) || 1111.0(0.4) | 1113.7(0.3) | 1109.5(0.3)
40 | 1093.2(1.3) || 1106.9(0.4) | 1110.1(0.3) | 1106.9(0.3)
1 || 403.3(1.2) || 408.3(0.1) 416.5(0.5) | 416.1(0.5)
0.10 | 2 || 372.6(1.1) | 394.0(0.4) 397.3(0.5) | 397.7(0.4)
(ATM) | 10 || 347.4(1.0) || 373.6(0.5) 375.8(0.4) | 375.3(0.4)
40 | 341.6(1.0) || 367.5(0.5) 368.5(0.4) | 369.8(0.4)
1 || 133.5(0.7) | 135.4(0.1) 136.3(0.4) | 135.5(0.3)
0.12 | 2 | 119.7(0.7) || 127.4(0.3) 127.5(0.3) | 126.5(0.3)
(OTM) | 10 | 102.8(0.6) || 113.6(0.3) 114.5(0.3) | 113.2(0.3)
40 | 98.8(0.5) 110.3(0.3) 109.6(0.3) | 108.6(0.3)

Table 3. Computation time' (in sec.) of the upper estimators in Table 2.

‘ 9 ‘ d H Vouig .100,1000 Voup"P,loo,sooo
1 59 115
0.08 | 2 69 134
(ITM) | 10 183 241
40 468 603
166 113
0.10 | 2 213 134
(ATM) | 10 510 239
40 1467 598
229 115
012 | 2 299 145
(OTM) | 10 718 263
40 2076 625

1The simulations are run on a 1 GHz processor
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Appendix: Proof of the convergence property

up
%up K C’T

BO) Eli‘ii’k[Bm%) Z *Z Zf
Jmax Jmax
=m0 S S
Jmax 1=
Jmax Jmax
SRR A WS L
Jmax Jmax
B - 370 3 LS
- Wm+0«mj £ Gae) %)
B(O) maXx maXx

for any integer p;, by Holder’s inequality and the fact that for any p; the p;-th

moment of both

Tmax Tmax
e SIS R
Jmax 1=
and (26)
Jmax Jmax
e 70, 5L
Timos) -

exist and are uniformly bounded in K (we omit the proof). Then, since limg 00 P(Jmax 7
;max) = 0, the convergence for K — oo of V;* K Vo® follows.

Similarly, we can show that

up
W%

Vuplo'u/ 7K —
’ B(0)

+ O((P(jimax # Jmax))' M%),

for any integer g;, hence VE)UP“””’K — V5.
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