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Abstract

In large-area Organic Light-Emitting Diodes (OLEDs) spatially inhomogeneous lumi-
nance at high power due to inhomogeneous current flow and electrothermal feedback
can be observed. To describe these self-heating e↵ects in organic semiconductors we
present a stationary thermistor model based on the heat equation for the tempera-
ture coupled to a p-Laplace-type equation for the electrostatic potential with mixed
boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior
of the organic material. Moreover, an Arrhenius-like temperature dependency of the
electrical conductivity is considered.

We introduce a finite-volume scheme for the system and discuss its relation to
recent network models for OLEDs. In two spatial dimensions we derive a priori esti-
mates for the temperature and the electrostatic potential and prove the existence of
a weak solution by Schauder’s fixed point theorem.

Keywords: p-Laplace, stationary thermistor model, nonlinear coupled system,
finite-volume approximation, existence and boundedness, self-heating, Arrhenius-like
conductivity law, organic light-emitting diode
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1 Introduction

Light-emitting diodes are one of the main application areas of organic semiconductors.
Organic Light-Emitting Diodes (OLEDs) are not only used in displays of smartphones
or flat screens, but also occur in intelligent lighting applications. However, there still
exist many technical issues in the development of flat OLED lighting panels, e.g. avoiding
a spatially non-uniform light emission at high brightness. Therefore, accurate methods
for modeling the specific electronic properties of the OLED layer and for the thermal
management of the whole large-area lighting panel are needed to achieve a temperature-
stable operation, see [1, 29].

⇤
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For carbon-based, organic semiconductor materials the well-known Arrhenius law ap-
plies [13]: The electrical conductivity increases with rising temperature. At constant
voltage, the electric current as well as the power dissipation increases, causing a positive
feedback loop which continuously heats up the structure. Often experiments of this kind
lead to the destruction of the device by thermal breakdown if the heat cannot be dispersed
into the environment, see [12]. Devices strongly sensible to temperature and thus resulting
in such self-amplification e↵ects are called thermistors ([24, Ch. 8]) and can be used as
sensors or in power electronics.

A thermistor-like behavior of organic semiconductors induced by self-heating has been
demonstrated for the organic semiconductor C60 in [13] and for organic materials used as
active layers in OLEDs in [11]. Moreover, in large-area OLEDs self-heating leads to spa-
tially inhomogeneous current and temperature distributions resulting in inhomogeneities
in the luminance for higher light intensities. Especially, in lighting panels the area becomes
spotty, see [21, 1].

The approaches for electrothermal modeling of OLED devices in the literature mainly go
in two directions. One possibility is the description of current and heat flow by a coupled
system of partial di↵erential equations, where the influence of the organic layer is reduced
to empirical characteristics (see [25, 26]). For example, the SUNRED algorithm ([22, 18])
combines finite di↵erence models for thermal and electrical properties of the electrode and
substrate material layers with the nonlinear characteristics of the organic substructure.
The other way to describe the electrothermal behavior of OLED devices are electrothermal
equivalent circuits (as in [11]), where the organic substructure is represented by a finite
array of thermistors. The Joule heat produced by the electrical network is balanced by a
related thermal network.

In this paper we present a full PDE model for the electrothermal description of organic
semiconductor devices including their stack, which contains additionally the contacting by
the metal and Indium Tin Oxide (ITO) layers as well as the substrate material, see Fig. 2.
The model complexity includes an Arrhenius-like temperature dependent conductivity law
for materials with non-Ohmic behavior, which is characteristic for organic semiconductors.
This PDEmodeling approach gives much more flexibility concerning variations in geometry
and material composition than network models. Moreover, our model contains also a
PDE-type description of the active organic zone whereas in the other above mentioned
PDE simulation approach the organic layer is reduced to the information from empirical
characteristics.

In Subsection 2.1 we summarize the self-heating theory in the spatially homogeneous situ-
ation which leads to S-shaped current-voltage curves with regions of Negative Di↵erential
Resistance (NDR). Subsection 2.2 motivates the appearance of special inhomogeneities
in large-area OLEDs induced by the sheet resistance of ITO top contacts. To illustrate
the influence of such inhomogeneities, the behavior of a chain of thermistors coupled to a
thermal network is studied, revealing interesting switching e↵ects due to NDR.

In Section 3 a spatially resolved model for real devices based on coupled partial di↵erential
equations for heat and current flow is presented. It is of thermistor model type and
contains a p-Laplacian operator, where p > 2 applies for organic materials. In contrast
to multi-physics circuit models, describing coupled electrical and thermal networks (see
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[11]), our PDE-based thermistor model with non-Ohmic current-voltage laws is expected
to be better suited for a realistic description of the geometry of the whole device. A
finite-volume discretization for the thermistor system is introduced in Subsection 3.2. In
particular, we show in Subsection 3.3 that the circuit model can be recovered from this
scheme by using special grids.

Section 4 is devoted to the analytical investigation of the stationary p-Laplace thermistor
model, p > 2, in space dimension two. We give a weak formulation of the problem,
show a priori bounds for possible solutions (Theorem 4.1) and verify the existence of at
least one weak solution of the problem by means of Schauder’s fixed point theorem (see
Theorem 4.2). In particular, a crucial point in the proof is that higher regularity of the
electrostatic potential has to be shown. The paper closes with conclusions, generalizations,
remarks, and open problems collected in Section 5.

2 From homogeneous self-heating theory to spatially resolved e↵ects in
organic thin film devices

2.1 Special electrothermal e↵ects in organic semiconductors

In this subsection we briefly summarize the self-heating theory in the spatially homo-
geneous situation as presented in [13]. The charge transport in organic semiconductors
occurs by hopping of electrons between discrete energy levels of molecular sites nearby.
These energy states are Gaussian distributed with variance �. The dependence of the
mobility on the temperature T resulting from the disorder � can be approximated by an
Arrhenius law with an activation energy Eact = 2C�2/(kBT ) (kB Boltzmann’s constant,
C ⇡ 0.4), see [27]. The strong increase of the carrier mobility with the temperature leads
to self-amplification of the current and to strong self-heating e↵ects at large currents.

For the study of self-heating by a thermally activated conductivity in a spatially homoge-
nous situation, an isothermal current-voltage relation of the device given by a power law

Iiso(V, T ) = Iref

⇣ V

Vref

⌘↵
F (T ), ↵ > 0, (2.1)

and a conductivity factor F (T ) resulting from an Arrhenius law

F (T ) = exp
h

� Eact

kB

⇣ 1

T
� 1

Ta

⌘i

(2.2)

has been considered in [13]. Here, Vref and Iref denote reference values for voltage and
current, respectively, and Ta is the ambient temperature. In the homogeneous steady
states of the device the dissipated Joule power V Iiso is equal to the heat loss 1

⇥
th

(T � Ta)
to the surrounding described by the thermal resistance ⇥th,

1

⇥th
(T � Ta) = VrefIref

⇣ V

Vref

⌘↵+1
F (T ). (2.3)

From (2.1) and (2.3) the self-consistent current-voltage curve (V (T ), I(T )) including self-
heating parameterized by T � Ta is obtained, see [13].
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Figure 1: Self-consistent current-voltage characteristics for di↵erent activation energies
(red). For Eact > 4kBTa they show S-shaped NDR (red dashed). Blue: Isothermal
current-voltage curve with ↵ = 3.
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Figure 2: Left: Schematic diagram of current paths and potential drop along the anode
contact (ITO) for an OLED with crossbar contacts. Right: Equivalent circuit for SPICE
simulation of a 3-thermistor chain.

The red curves in Fig. 1 show calculated self-consistent current-voltage curves for an
isothermal current-voltage characteristic (↵ = 3) and di↵erent activation energies. For
Eact > 4kBTa, a region of negative di↵erential resistance (NDR), dV

dI < 0 appears, see [24].
Usual values of the disorder parameter � in organic semiconductor materials of 2 to 6 kBTa

give activation energies su�ciently high for the occurrence of NDR regions.

Along the S-shaped current-voltage characteristics, two stable branches exist: an ’ON’
state with high conductivity and an ’OFF’ state with low conductivity, whereas the inter-
mediate region of NDR is unstable (dashed red lines in Fig. 1). This behavior has been
experimentally demonstrated for a C60 device with small active area in [13].

For real devices, an additional constant series resistance RS resulting from the electrode
resistance and the measurement setup has to be added in series to the S-NDR element. If
RS is su�ciently large, thermal switching of the whole circuit is suppressed [13].
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2.2 Switching e↵ects in large-area thin film devices

For OLEDs, the optically transparent top contact is often realized using ITO which has
a considerably high electrical resistance compared to metals. In particular, for large-area
devices this results in a voltage drop along current paths through the ITO contact, see
Fig. 2 left. For the typical crossbar contact geometry used for OLEDs this voltage drop
leads to a spatial variation of the e↵ective applied voltage across the active OLED layer
between ITO and metal contacts, see the left panel in Fig. 2. Note that Fig. 2 (left and
right) and Fig. 4 have the same color coding for the di↵erent materials (ITO, organic
material, metal, and glass substrate).

Therefore, the application of spatially homogeneous models is no longer justified. OLED
lighting panels nowadays have a width in the range of 10 to 20 cm and show an inhomo-
geneous spatial distribution of current and light intensity at higher power.

As a guiding example for the e↵ects present in the spatially resolved situation we briefly
discuss the ideas in [11] and introduce an equivalent circuit consisting of three electrically
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Figure 3: SPICE simulation of a 3-thermistor chain: Current (upper panels) and voltage
(lower panels) of each single thermistor over the externally applied voltage Vext. The left
panels represent the situation without and the right panels with thermal coupling by a
thermal resistance Rcoup in Fig. 2 right.
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coupled thermistors which are coupled to a thermal network as given in Fig. 2 right.
Such problems can be solved with network simulators, e.g. SPICE, which fully reproduce
thermistor-like behavior as shown in [17]. We discuss the two di↵erent cases (a) without
and (b) with thermal coupling by thermal resistances Rcoup resulting in the diagrams in
the first and second row, respectively, in Fig. 3. Note that the characteristics in black, red,
and green correspond to the black, red, and green thermistors in Fig. 2 right. Denoting
by Vi, Ii the voltage and current of the ith thermistor and by Vext the externally applied
voltage the ith di↵erential resistance is obtained by

dVi

dIi
=

dVi

dVext

⇣ dIi
dVext

⌘�1
.

The following operation modes can be observed:

dVi
dV

ext

> 0, dIi
dV

ext

> 0 dVi
dV

ext

< 0, dIi
dV

ext

> 0 dVi
dV

ext

< 0, dIi
dV

ext

< 0

I: normal mode II: S-NDR III: switched back

Fig. 3 gives the following results: In the cases (a) and (b) all thermistors are in normal
mode for small applied voltages Vext.

In case (a) without any thermal coupling between the thermistors, the thermistor T1

(black) closest to the contact starts to show S-NDR upon the transition of a critical
voltage. The di↵erential resistance of the other two thermistors remains positive at this
critical voltage, though both dVi

dV
ext

and dIi
dV

ext

are negative, meaning that these thermistors
are “switched o↵” by the first thermistor T1.

In the thermally coupled case (b), for rising Vext at first thermistor T3 (green) shows
S-NDR, then thermistor T2 (red) follows for a slightly higher Vext. If Vext is increased
further, T3 (green) is switched back by T2 (red) – goes to operation mode III. Finally,
thermistor T1 (black) switches to S-NDR. In other words, in the space resolved setting for
rising Vext the local NDR region moves from the right to the left in the device (see Fig. 2
left), and eventually the region furthest from the contact is switched back.

SPICE simulations for coupled electrical and thermal networks of an array of 10 times
10 thermistors have been successfully used in [11] to describe the behavior of OLEDs by
evaluating currents and temperatures of each of the thermistors and by determining the
di↵erent operation modes I, II and III in dependence of the applied voltage. Neverthe-
less, this network approach is geometrically inflexible and becomes ine�cient for larger
structures, and an adaptation of the mesh is problematic.

3 PDE model for large-area OLEDs

To obtain more freedom in the description of real geometrical device structures and to
improve stability and speed of simulations, we propose a full PDE model for the elec-
trothermal behavior of organic semiconductor structures. One of the main advantages of



3 PDE model for large-area OLEDs 7

such a PDE system compared to the network model constructed in [11] is its flexibility
with respect to variations of the device geometry and material composition. This prop-
erty is crucial in simulation-based optimization of the device to reduce heat and current
flow variations and to find device structures with lower sensitivity with respect to elec-
trothermal feedback with the aim to reduce brightness inhomogeneities. In particular, the
network model requires a careful construction of the network connections, which already
in the uniform case becomes a challenging task. Moreover, parameters such as electric and
thermal resistances depend on the network topology and have to be recalculated for new
geometries. The algorithms used, e.g. in SPICE, to solve network models are not devel-
oped for large-scale problems with high aspect ratios and thus perform rather poorly. On
the other hand, finite-element or finite-volume methods as well as mathematical tools in
general for PDEs are well-established. There exists a variety of e�cient numerical libraries
and mesh generators, which allow for easy restructuring and simulation of the device. Ad-
ditionally, a modeling based on PDEs can be used to systematically study stability and
e↵ects of symmetry breaking on pattern formation due to electrothermal feedback [23].

The derivation of the PDE system is guided by the electrothermal circuit model for OLED
structures introduced in [11]. It is given by Kirchho↵’s node and mesh rules and can be
interpreted as a balancing of electrical and heat currents in a finite-volume discretized
setting of a nonlinear PDE system with uniform cells, see Subsection 3.3.

The space resolved modeling we are proposing leads to a thermistor system consisting of
a Laplace equation for the electrostatic potential ' coupled to the heat flow equation for
the temperature distribution T . In particular, the electrical conductivity in the Laplace
equation includes an Arrhenius-like temperature law and the non-Ohmic electric behavior
of the organic material. The heat flow equation contains the Joule heating as source
term taking this special form of the electrical conductivity into account. This model also
includes the contact resistance, an accurate spatially resolved translation of the Arrhenius-
type current-voltage relation (2.1) for the active organic layer, and a local heat balance
instead of the global one in (2.3). Note that in contrast to [25, 26], also the organic layer
will be described by PDEs in our approach.

3.1 The PDE thermistor model

We start our modeling with the stationary situation by balancing the electric current
density ~j and the density ~q of the heat flow,

r ·~j = 0, (3.1a)

r · ~q = �(1� ⌘)~j ·r'. (3.1b)

The modeling domain ⌦ consists of the organic device itself, the electrodes partly realized
by the optically transparent but electrically not perfectly conducting ITO layer. In simu-
lations it can be necessary to extend the domain in order to include the substrate glass or
even the entire encapsulation for the heat balance equation.

With the additional introduction of the external power e�ciency ⌘ for the generation of
light in front of the Joule heating term in (3.1b), we take into account that a proportion of
the electrical power is used for light out-coupling and does not produce heat (⌘ ⇡ 20% in
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the active layer of an OLED, ⌘ = 0 in pure electronic devices). Dependencies of ⌘ on the
temperature T and the flux ~j can also be included in the model. The constitutive relations
between the flux densities and the gradients of the electric potential and the temperature,
respectively, are given by

~j = ��(x, T, |r'|)r', (3.2a)

~q = ��(x)rT. (3.2b)

Here, � and � denote the electrical and thermal conductivity. For organic devices we
have the non-Ohmic isothermal current-voltage relation (2.1) with ↵ 6= 1, which applies
to OLEDs and other organic devices (comp. [13]). The electrical conductivity � can in
this case be expressed by

�org(T, |r'|) = �ref

h |r'|
Vref/d

i↵�1
F (T ), �ref =

Iref
Vref

d

A
,

where for normalization d and A denote the thickness and the area of the organic layer,
respectively, and the function F is the Arrhenius-like conductivity factor given in (2.2).
Therefore, the resulting current flow equation (3.1a) is of p-Laplacian type in the organic
material, with p = ↵+ 1. For ↵ > 1 equation (3.1a) is of degenerated elliptic type in this
subdomain. Subdomains without temperature-dependent conductivity, e.g. electrodes, are
included by setting the activation energy Eact = 0 and introducing a spatially dependent
function F . Moreover, to involve also Ohmic (p = 2) and non-Ohmic (p > 2) material
subdomains, we let p depend on the spatial position and formulate the following general
expression for the electrical conductivity

�(x, T, |r'|) = �0(x) exp
h

� Eact(x)

kB

⇣ 1

T
� 1

Ta

⌘i

|r'|p(x)�2. (3.3)

According to the left panel of Fig. 2, the boundary conditions can be formulated as

' = '+ on �V+, ' = '� on �V�, ~j · ⌫ = 0 on �N , (3.4a)

~q · ⌫ = (x)(T � Ta) on � := @⌦. (3.4b)

The first two conditions in (3.4a) describe the current injection by prescribing the contact
potentials '+ and '� at V+ and V�, respectively. On the part �N , which does not belong
to �V+ or �V�, insulating boundary conditions are formulated. The Robin boundary con-
ditions in (3.4b) for the heat flow equation express the heat transfer to the environment.
The spatially dependent transfer coe�cient  takes care of the di↵erent surrounding ma-
terials. If one part of the boundary of the structure is cooled to ambient temperature (e.g.
by a cooper block in experiments), the Dirichlet condition T = Ta = const for the heat
flow equation can be formulated on this part of the boundary.

The current-voltage relation for the entire device is obtained by

I(Vext) =

Z

�V +

�ITOr' · ⌫ d�. (3.5)

Finally, let us mention that device structures with pure Ohmic behavior (p = 2) are
included in our model. Such classical thermistor models have been investigated in the
literature, e.g. [28] and Cimatti [4, 5] studied such models with di↵erent mixed boundary
conditions using the Kohlrausch-Diesselhorst transformation.
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3.2 A discretization scheme for the thermistor system

In this subsection we introduce a discretization scheme for (3.1)–(3.4), which is based on
finite-volume methods, see e.g. [9]. In these methods the computational domain ⌦ is sub-
divided into a finite number of so-called Voronoi volumes K and the fluxes between two
adjacent volumes are balanced. More precisely, the Voronoi decomposition of ⌦ consists
of a family of nodes xi 2 ⌦ and an associated family of control volumes Ki, which are
constructed as follows: the set Ki is given as the set of all points in ⌦ whose Euclidean
distance to xi is not greater than their distance to all other sites xj . The Voronoi volumes
are convex, polygonal sets whose boundary faces are perpendicular to the line connecting
two adjacent nodes of the mesh xi and xj , respectively. In particular, we can define a
dual grid, consisting of triangles or tetrahedra in the two- or three-dimensional case, by
connecting all pairwise adjacent nodes xi. We assume that each triangle or tetrahedron
of the dual grid belongs to only one material region (e.g. ITO or organic layer).

We aim to find a discrete analog of (3.1)–(3.2) for the quantities Ti ⇡ T (xi) and 'i ⇡ '(xi).
In the following we will use the notation ' = {'i} and T = {Ti} to denote the families of
nodal values.

For each Voronoi control volume Ki we integrate the current and heat flow equation over
Ki and apply the Gauss theorem to the integral of the flux divergence to obtain

0 =

Z

Ki

r ·~j dx =
X

S2EKi

Z

S

~j · ⌫ d�, (3.6)

�
Z

Ki

(1�⌘)~j ·r' dx =

Z

Ki

r · ~q dx =
X

S2EKi

Z

S
~q · ⌫ d�, (3.7)

where EKi denotes the set of all boundary faces of Ki and ⌫ denotes the unit normal
vector to @Ki outward to Ki. In particular, if Ki shares parts of its boundary with @⌦
the surface integrals can be replaced using the respective boundary condition: If on one
of the faces S of Ki Dirichlet conditions are prescribed, i.e. ' = '±, we also fix 'i = '±,
while for homogeneous Neumann boundary conditions the respective surface integrals in
(3.6) vanish. In the case of the Robin boundary conditions for the heat flux in (3.4) we
have for S ⇢ @Ki and S ⇢ @⌦

Z

S
~q · ⌫ d� =

Z

S
(x)(T � Ta) d� ⇡ SmS(Ti � Ta), (3.8)

where mS denotes the measure of S and S represents an approximation of  on S.

To establish a discrete version of the current and heat flow equation in (3.1) we need to
define suitable flux functions g'i,S(T ,') and gTi,S(T ), that approximate the current and
heat fluxes from Ki into an adjacent volume Kj over the face S. Moreover, we have to
find an approximation Qi(T ,') of the Joule heating term in the left-hand side of (3.7),
integrated over Ki. With these notations, a finite-volume approximation may then be
written in the form

X

S2EKi

mSg
'
i,S(T ,') = 0, and

X

S2EKi

mSg
T
i,S(T ) = Qi(T ,'). (3.9)
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In [3] a discretization scheme for the purely Ohmic case p = 2 was discussed. We follow
the ideas and define for general p the flux functions for the current and heat flow by

g'i,S(',T ) =

(

�0 F (Tij)A
p�2
S

'i�'j

|xi�xj | in organic layer,

�0
'i�'j

|xi�xj | otherwise,

gTi,S(T ) = �
Ti�Tj

|xi�xj |
.

(3.10)

Here, Tij = (Ti+Tj)/2 is the arithmetic mean on S, and for faces S belonging to di↵erent
material regions � and �0 denote suitable averages of the conductivities. The crucial point
is the quantity AS , which is an approximation of the full norm of r' and not only of the
normal components. Our approach is the following: We denote by TS the family of all
triangles or tetrahedra ! ⇢ ⌦ in the dual grid that share the edge xixj ? S. On each !
the piecewise a�ne interpolant b' with respect to the nodal values 'i can be constructed,
i.e. b' is linear on each ! 2 TS and b'(xi) = 'i. Now, AS is defined to be the average of
the norms of the respective gradients, namely

AS =
X

!2TS

↵!

�

�rb'|!
�

� with ↵! =
m!

P

e!2TS me!
, (3.11)

where m! denotes the measure of the set !.

The approximation of the Joule term in the heat equation is not so straightforward since
there is no natural discrete gradient defined on the control volumes – the approximate
finite-volume solution is piecewise constant. Here, we basically follow the same lines as in
[3], however, we include our extension for the non-Ohmic case and use the definition of
AS in (3.11). With d being the dimension of the computational domain we define

Qi(T ,') = (1�⌘)d
X

S2EKi

mDi,S�0 F (Tij)A
p�2
S

⇣ 'i�'j

|xi�xj |

⌘2
, (3.12)

where for the control volume Ki and S 2 EKi we define the half-diamond Di,S as the
convex hull of xi and S, i.e.

Di,S =
�

✓xi + (1�✓)x : (✓, x) 2 (0, 1)⇥ S
 

such that Ki =
[

S2EKi

Di,S .

Note that a face S of a control volume can in general belong to di↵erent materials. In this
case one can split the flux over the edge additively and replace the factor mS in (3.9) by
the length (or area) of the face in the respective material (see discussion in Section 3.3.2).
The same applies for the Joule heating term in (3.12). In practice, this is easily done since
the assembly of the discrete system is done triangle- or tetrahedron-wise.

Remark 3.1 Using a finite-volume based formulation of the thermistor model the appear-
ance of local negative di↵erential resistance can be investigated as follows: On the grid
between neighboring cells Ki and Kj the di↵erential resistance is given by

dVij

dIij
=

@('j � 'i)

@Vext

⇣ @Iij
@Vext

⌘�1
, (3.13)
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where Iij is the inter-volume current and Vext represents the total applied voltage. There-
fore the position of these regions in dependence on the total current or total applied voltage
can be detected. Thus the presented scheme allows us to study the appearance of spatially
local NDR regions and the propagation of NDR fronts through the OLED device in depen-
dence on the total current by self-consistent electrothermal simulations.

3.3 The relation between PDE and network model

In this subsection we establish the connection between the system of partial di↵erential
equations in (3.1) and the thermistor network discussed in [11]. More precisely, we show
that the Kirchho↵ circuit laws for the electric network can be interpreted as a finite-volume
discretization with additional assumptions on the device geometry.

For notational simplicity we restrict ourselves to the two-dimensional case depicted in
Fig. 2 left. In particular, we assume that the cross-section of the relevant regions of the
OLED, comprising of the ITO and the organic layer, can be described by rectangular
subdomains. More precisely, the two layers are given by ⌦ITO = (0, L) ⇥ (0, h1) and
⌦org = (0, L) ⇥ (h1, h2). Note that we have flipped the device structure upside down
compared to Fig. 2 left. Typically, the thickness of each layer is about 100 nm, hence we
set h1 = h, h2 = 2h. The length L is in the milli- to centimeter range such that h/L ⌧ 1
is satisfied.

The device is contacted on the metal layer. However, due to the high conductivity of this
layer we can assume that the potential in the metal layer is constant. In particular, we
neglect the metal layer entirely by prescribing Dirichlet boundary conditions on the top of
the organic layer, i.e. ' = '� on (0, L)⇥{2h}. The second contact is applied at right end
of the ITO layer and we set ' = '+ on {L}⇥ (0, h). On the remaining boundary no-flux
boundary conditions are assumed.

Finally, the temperature distribution is computed on an extended domain that includes the
glass substrate (or possibly the entire encapsulation of the device). Boundary conditions
of third type model the heat conduction into the environment (e.g. air or a copper block).

3.3.1 The thermistor network model

We briefly describe the network model established in [11]. As in Fig. 2 the network is
comprised of two sub-networks: an electrical and a thermal network. The latter accounts
for the heat flow with the electrical power dissipation in the electrical part acting as heat
source. In the thermal network, a resistor corresponds to a thermal resistance, a voltage
represents a temperature di↵erence, and a current represents a heat flow.

The organic layer is represented by an array of thermistor devices such that the current
flowing in each thermistor (given by relation (2.1)) equals the vertical current flow through
a certain volume part of the organic layer. Lateral electric conductance of the organic
layer is neglected due to much larger conductivity of the ITO. Moreover, each thermistor
is coupled to a thermal network by the dissipation of power. Thus, following [17] each
thermistor is modeled as a three terminal device. The ITO layer (anode) is modeled by
connecting all lower electrical contacts of the thermistor array via a network of resistors.
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organic
layer

ITO

metal

Figure 4: Control volumes used for passage to discrete network model (structure is turned
upside down compared to Fig. 2 left).

Hence, each thermistor is connected to its nearest neighbors by a resistor representing
the sheet resistance. For simplicity, it is assumed that the metal layer (cathode) has a
much lower resistivity than the ITO layer such that its influence can be neglected. Thus,
all upper cathode contacts of the thermistor array are directly connected to each other.
Finally, the electric grid is connected to the power supply with the voltage V+ via resistors.

For simplicity, the thermal network only models the heat flow in the glass substrate and the
heat transport into the environment, i.e. horizontal heat flow in the thin electrical active
regions is neglected. Besides heat generated by the thermistor devices, Ohmic losses along
the ITO are also fed into the thermal network.

3.3.2 From the PDE to the network model via finite-volume discretization

The passage from the PDE model (3.1)–(3.4) to the discrete network model described in
the previous section is realized by introducing a family of suitable control volumes K.
Here, we use the same geometry as in Fig. 2 left and we assume additionally that the
length of the active region is a multiple of the thickness of the organic layer, i.e. L = Nh
with N 2 N. Due to its high conductivity we can replace the metal layer by setting
Dirichlet conditions on the top of the organic layer.

We define control volumes by introducing the families of upper and lower nodes xupi =
(ih, 2h) and xloi = (ih, h) for i = 0, . . . , N . With this, the control volumes Kup

i ,K lo
i ⇢ ⌦

are given as the Voronoi boxes associated with the nodes xupi and xloi . In particular, the
edge shared by Kup

i and K lo
i lies in the center of the organic layer while the edge between

K
up/lo
i and K

up/lo
i+1 is located in the fiber {(i+1/2)h}⇥ R. For i = 1, . . . , N�1 the length

of each volume K
up/lo
i is given by h, while K

up/lo
0 and K

up/lo
N are only h/2 long.

We denote by S
up/lo
i,1 , Sup/lo

i,2 , Sup/lo
i,3 , and S

up/lo
i,4 the top, left, bottom, and right face of a

Voronoi volume K
up/lo
i , respectively (see Fig. 4).

We can now apply the discretization scheme developed in Section 3.2. In particular, since
we have prescribed Dirichlet conditions on the top of the organic layer and on the right
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side of the ITO we set 'up
i = '� for i = 0, . . . , N and 'lo

N = '+, respectively. Moreover,
due to the homogeneous Neumann boundary conditions on the remaining boundary there

are no fluxes through Slo
i,3 for i = 0, . . . , N�1, Sup/lo

0,2 , and Sup
N,4.

First, we consider only the flux through the upper face Slo
i,1, for i = 0, . . . , N�1, i.e. in

the organic layer. With the definition of the flux function in (3.10) the total flux through
Si,1 is given by �orgF (Tmi

i )Ap�2
Si,1

('��'lo
i ), where T

mi
i = (T up

i +T lo
i )/2 denotes the average

temperature. Assuming that the lateral di↵erences 'lo
i+1�'lo

i are small compared to the
vertical di↵erences '��'lo

i we can replace ASi,1 by |'��'lo
i |. Hence, by defining the local

voltage drop across Slo
i,1 by Ui = 'lo

i �'� we have found that the vertical current into the

node xloi is given by
jvert,i = �orgF (Tmi

i )|Ui|p�2Ui.

Next, we look at the current flow through the left or right face. The above assumption
yields that lateral currents in the organic layers can be neglected (comp. [25, 26]). Hence,
the current flow through Slo

i,2 and Slo
i,4 into the node xloi is given by jlat,i� = �ITO('lo

i�1�'lo
i )

and jlat,i+ = �ITO('lo
i+1�'lo

i ), respectively.

Thus, the finite-volume discretization reproduces Kirchho↵’s nodal law for the thermistor
network of [11]

0 = jvert,i + jlat,i+ + jlat,i�.

The computation of the Joule sources via (3.12) is straight-forward. In particular, the
power dissipated in the entire column Kup

i [K lo
i is given by

Qi = (1�⌘)�orgF (Tmid
i )Up

i +
�ITO

2

�

('lo
i �'lo

i�1)
2 + ('lo

i+1�'lo
i )

2
�

.

The derivation of the thermal network is analogously. Note however that [11] makes
simplifying assumptions on the temperature distribution. Namely, heat flow in the electric
active region can be neglected and the Joule heating acts as line source on the top of the
glass substrate.

It is easy to see that the above procedure can be extended to the three dimensional case,

where the rectangular control volumes K
up/lo
i are replaced by cuboids with length and

depth h, respectively.

4 Mathematical analysis for the p-Laplace thermistor model

In this section we consider the special case of the equations (3.1) – (3.4) with spatially
constant exponent p > 2. Then our problem reads as

�r ·
�

�0(x)F (x, T )|r'|p�2r'
�

= 0 on ⌦, (4.1a)

�r · (�(x)rT ) = (1�⌘)�0(x)F (x, T )|r'|p on ⌦ (4.1b)

together with the mixed boundary conditions

' = 'D on �D, ��0(x)F (x, T )|r'|p�2r' · ⌫ = 0 on �N , (4.2a)

� �(x)rT · ⌫ = (x)(T � Ta) on �, (4.2b)
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where 'D is a function representing the Dirichlet values at all electrical contacts.

We are going to prove the existence of weak solutions to the problem (4.1)–(4.2) using
Schauder’s fixed-point theorem for the temperature distribution T , see Theorem 4.2. First
for a given temperature distribution eT we obtain a unique solution '( eT ) of the current
flow equation (4.1a) and prove L1-bounds and regularity results for '( eT ) (Lemma 4.1 and
Lemma 4.2). Next, exploiting these regularity results we give a weak formulation for the
coupled problem and establish a priori estimates for the solution (Theorem 4.1). Finally,
we show that this solution can be obtained via a fixed-point map T = Q( eT ), where T
solves the heat equation (4.1b) for the Joule heat given by the electrostatic potential '( eT )
and F ( eT ).

4.1 Assumptions and preliminaries

For the analytical investigations we make the following assumptions on the domain, bound-
ary data, and coe�cients introduced in Subsection 3.1:

(A) ⌦ ⇢ R2 bounded Lipschitzian domain, �D, �N are disjoint open subsets of

� := @⌦, mes�D > 0, � = �D [ �N [ (�D \ �N ), �D \ �N consists of finitely

many points (⌦ [ �N is regular in the sense of Gröger [15]),

p > 2, 'D 2 W 1,1(⌦), � : ⌦⇥ R+ ⇥ R+ ! R, �(x, T, z) = �0(x)F (T )zp�2,

�0, � 2 L1(⌦), 0 < �0  �0  �0, � � c > 0 a.e. on ⌦,

F (x, T ) = exp
h

� �(x)
⇣

1
T � 1

Ta

⌘i

, � 2 L1
+ (⌦),

Ta 2 R, Ta > 0, ⌘ = ⌘(x, T, j), ⌘ : ⌦⇥ R⇥ R2 ! R Caratheodory function,

⌘ 2 [0, 1] a.e. in ⌦, 8(T, j) 2 R⇥ R2,  2 L1
+ (�), kkL1(�) > 0.

For p 2 (1,1) we work with the Sobolev spaces

W 1,p(⌦) = {u 2 Lp(⌦) : D↵u 2 Lp(⌦) for |↵|  1}

equipped with the norm

kukp
W 1,p =

X

|↵|1

kD↵ukpLp

and

W 1,p
0 (⌦ [ �N ) = {u 2 W 1,p(⌦) : u|�D = 0}.

For p = 2 we also write H1(⌦) instead of W 1,2(⌦). Moreover, the dual space of a Banach
space X is denoted by X⇤.

For the treatment of the p-Laplace expressions we make use of the following inequalities:
Due to convexity of the function y 7! |y|p for p � 1, the inequality

�

�

�

y + z

2

�

�

�

p
 |y|p + |z|p

2
for y, z 2 Rn (4.3)
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is fulfilled. Exploiting the subdi↵erential estimate we have the inequality

|y|p � |z|p + p|z|p�2z · (y � z) if p � 1, y, z 2 Rn. (4.4)

Additionally, we apply the inequality

h|y|p�2y � |z|p�2z, y � zi � 2�1(|y|p�2 + |z|p�2)|y � z|2

� 22�p|y � z|p if p � 2, y, z 2 Rn,
(4.5)

which can be found in [19, Chapter 10].

4.2 Properties of the current flow equation

We introduce the set of relevant temperature distributions T via

T = {T 2 H1(⌦) \ L1(⌦) : T � Ta a.e. on ⌦}. (4.6)

According to (A) for T 2 T we find

�0F (·, T ) 2 L1(⌦) and �0F (·, T ) 2 [�0,�0 e
k�kL1/Ta) =: [�1,�2). (4.7)

For a fixed function T 2 T we define the nonlinear operator AT : 'D +W 1,p
0 (⌦ [ �N ) !

(W 1,p
0 (⌦ [ �N ))⇤ by

hAT ('), vi :=
Z

⌦
�(x, T, |r'|)r' ·rv dx, v 2 W 1,p

0 (⌦ [ �N ),

and consider the following problem: Find an electrostatic potential ' 2 'D+W 1,p
0 (⌦[�N )

such that
hAT ('), vi = 0 for all v 2 W 1,p

0 (⌦ [ �N ), (4.8)

which corresponds to a weak solution ' 2 'D + W 1,p
0 (⌦ [ �N ) of the p-Laplace-type

equation (4.1a) with boundary conditions (4.2a) for the given temperature distribution T .

Lemma 4.1 We assume (A). Let T 2 T be a fixed given function. Then equation (4.8)
has exactly one solution '. Moreover, there are constants c' > 0 and c1 > 0 independent
of the chosen T , depending only on the data (⌦, 'D, �0, �0, Ta, and �) such that

k'kW 1,p  c', max
x2⌦

|'(x)|  c1.

Proof. Let h+ = max(h, 0), h� = max(�h, 0) denote the positive and negative part of a
function h, respectively.

1. First, we show the bounds of solutions to (4.8). Let 'D := k'DkL1 and 'D :=

ess infx2⌦'D. Then the test of (4.8) by ('� 'D)+ 2 W 1,p
0 (⌦ [ �N ) gives

0 =

Z

⌦
�(·, T, |r'|)|r('� 'D)+|2 dx �

Z

⌦
�1|r('� 'D)+|p dx
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leading to '  'D a.e. in ⌦. On the other hand, the test of (4.8) by �('� 'D)� ensures

0 =

Z

⌦
�(·, T, |r'|)|r('� 'D)�|2 dx �

Z

⌦
�1|r('� 'D)�|p dx

and therefore ' � 'D a.e. in ⌦.

To obtain the W 1,p-estimate, we use the test function '� 'D for (4.8)
Z

⌦
�1|r'|p dx 

Z

⌦
�2|r'|p�1|r'D| dx 

Z

⌦

n�2
2
|r'|p + c|r'D|p

o

dx

which together with the L1-bounds of ' leads to k'kW 1,p  c. Since p > 2, the solution
' is continuous and the upper and lower bounds hold true for all x 2 ⌦.

2. The operator AT is monotone and continuous. By (4.5) we obtain

hAT','� 'Di �
Z

⌦

n

�0F (·, T )22�p|r('� 'D)|p � �2|r'D|p�1|r('� 'D)|
o

dx

� ckr('� 'D)kpLp � c1kr('� 'D)kLpkr'Dkp�1
Lp .

Since |�D| > 0, the norm kr·kLp is an equivalent norm in W 1,p
0 (⌦[�N ), and the previous

inequality ensures together with 'D 2 W 1,1(⌦) the coercivity of the operator AT . There-
fore the main theorem of monotone operators (see [14, 30]) guarantees the existence of a
solution to (4.8). Equation (4.8) is the weak Euler-Lagrange equation associated with the
minimization problem

min
'2'D+W 1,p

0

(⌦[�N )

Z

⌦
G(x,r') dx, G(x,r') :=

�0(x)F (x, T (x))

p
|r'|p. (4.9)

To see this, we show first ’(4.9) ) (4.8)’: If ' is a minimizer, we consider ' + ✏v, where
v 2 W 1,p

0 (⌦[�N ) and ✏ is a real parameter. Since J(✏) :=
R

⌦G(x,r('+ ✏v)) dx takes its
minimum at ✏ = 0 and ✏ 7! J(✏) is di↵erentiable we have J 0(0) = 0 which corresponds to
(4.8). Next we show ’(4.8) ) (4.9)’. Due to convexity we have for p � 2 the inequality
(4.4), which ensures for all v 2 W 1,p

0 (⌦ [ �N ) that
Z

⌦

�0F (·, T )
p

|r('+ v)|p dx �
Z

⌦

�0F (·, T )
p

|r'|p dx

+

Z

⌦
�0F (·, T )|r'|p�2r' ·rv dx.

If (4.8) is fulfilled then the last integral vanishes and we obtain (4.9).

Next, we suppose there would be two di↵erent solutions '1 and '2 to the minimum problem
(4.9). If r'1 6= r'2 on a set of positive measure, the inequality (4.3) is strict on this set
which leads to

Z

⌦

�0F (·, T )
p

|r'1|p dx 
Z

⌦

�0F (·, T )
p

�

�

�

r
⇣'1 + '2

2

⌘

�

�

�

p
dx

<
1

2

Z

⌦

�0F (·, T )
p

n

|r'1|p + |r'2|p
o

dx

=

Z

⌦

�0F (·, T )
p

|r'1|p dx
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which gives a contradiction. Therefore, r'1 = r'2 holds a.e. in ⌦. Since '1 � '2 2
W 1,p

0 (⌦ [ �N ) this proves the uniqueness of the solution to (4.9) as well as (4.8). ⇤
The next aim is to show higher regularity of this weak solution, namely ' 2 W 1,ps⇤(⌦),
with a uniform s⇤ > 1 for all arbitrarily given T 2 T .

Lemma 4.2 We assume (A). Then there exist constants p⇤ = ps⇤ > p and cp⇤ > 0
depending only on the data (⌦, 'D, �0, �0, Ta, and �) such that the solution ' to (4.8)
belongs to W 1,p⇤(⌦) with k'kW 1,p⇤  cp⇤ uniformly for all given functions T 2 T .

Proof. We intend to apply Theorem 3.1 in [10] and have to verify the needed assumptions
(A1), (A2) and (A3) for this theorem. Our spatial setting fits to (A1). The function
H : ⌦⇥ R2 ! R defined by

H(x, ⇠) :=
�0(x)F (x, T (x))

p
|⇠ +r'D|p

is a Caratheodory function. Using (4.7) and exploiting that 'D 2 W 1,1(⌦) we can
estimate

|H(x, ⇠)|  �2
p
(|⇠|+ #(x))p f.a.a. x 2 ⌦, 8⇠ 2 R2

with #(x)p := r |r'D|p 2 L1(⌦), where r := max{1, �1

p }, #p � 0, which yields (A2).

Defining the function eH : R2 ! R by eH(⇠) = 21�p �
1

p |⇠|p we have eH(0) = 0 and for all

'0 2 W 1,p
0 (⌦ [ �N ) there holds

Z

⌦

eH(r'0) dx � 21�p�1
p
kr'0kpLp .

Additionally, for a.a. x 2 ⌦ and all ⇠ 2 R2 the lower estimate

H(x, ⇠) � �1
p
|⇠ +r'D|p � �1

p

h

2
�

�

�

⇠

2

�

�

�

p
� |r'D|p

i

= 21�p�1
p
|⇠|p � �1

p
|r'D|p � eH(⇠)� #(x)p

is valid. Here we used inequality (4.3) with z = ⇠ +r'D and y = r'D. Thus, also (A3)
is verified. To conclude, the assumptions (A1), (A2) and (A3) needed in Theorem 3.1 in
[10] are fulfilled. Thus, this theorem guarantees the existence of s⇤ > 1 such that for p > 2

Z

⌦
|r('� 'D)|ps⇤ dx  c

n⇣

Z

⌦
|r('� 'D)|p dx

⌘s⇤

+

Z

⌦
(✓(x)p + 1)s

⇤
dx
o

, (4.10)

see (3.4) in [10]. Note that the right hand side in (4.10) is bounded by constants depending
only on the data. Due to the L1-bounds of ', 'D, and |r'D| we find that k'kW 1,p⇤  cp⇤

uniformly for all given functions T 2 T . ⇤

Corollary 4.1 We assume (A). Then for the exponent s⇤ > 1 from Lemma 4.2 there
exists a constant cs⇤ > 0 depending only on the data (⌦, 'D, �0, �0, Ta, and �) such that
for all given functions T 2 T the solution ' to (4.8) fulfills the estimate

k(1� ⌘)�0F (·, T )|r'|pkLs⇤  cs⇤ .
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Proof. According to Lemma 4.2 we know that k'kW 1,ps⇤  cp⇤ which together with As-
sumption (A) and (4.7) ensures that the expression (1 � ⌘)�(x, T,r')|r'|2 belongs to
Ls⇤(⌦) and the norm can be estimated by

k(1� ⌘)�0F (·, T )|r'|pkLs⇤  �2k|r'|pkLs⇤  �2k|r'|kp
Lp⇤  cs⇤ . ⇤

4.3 The coupled thermistor problem

To tackle the full problem, we introduce the nonlinear operator A : ('D+W 1,p⇤

0 (⌦[�N ))⇥
(H1(⌦) \ L1(⌦)) ! (W 1,p

0 (⌦ [ �N ))⇤ ⇥H1(⌦)⇤ by

hA(', T ), (', T )i :=
Z

⌦
�(x, T, |r'|)r' ·r'+ �(x)rT ·rT dx

�
Z

⌦
(1� ⌘(j, T ))�(x, T, |r'|)|r'|2T dx

+

Z

�
(T � Ta)T d� 8' 2 W 1,p

0 (⌦ [ �N ), 8T 2 H1(⌦)

(4.11)

and look for solutions to Problem (P)

A(', T ) = 0, ' 2 'D +W 1,p⇤

0 (⌦ [ �N ), T 2 H1(⌦) \ L1(⌦) (P)

which correspond to the weak solutions to the system (4.1a) – (4.2b).

Theorem 4.1 (Bounds) We assume (A). Then there exist constants cp⇤ , cq⇤ , c1 > 0
and an exponent q⇤ > 2 such that any weak solution (', T ) to Problem (P) fulfills

k'kW 1,p⇤  cp⇤ , max
x2⌦

|'(x)|  c1,

kTkW 1,q⇤  cq⇤ , Ta  T (x)  c1 for all x 2 ⌦.

Proof. 1. For the lower bound of the temperature distribution we test Problem (P) by
�(0, (T � Ta)�) and obtain

Z

⌦
�|r(T � Ta)

�|2 dx+

Z

�
((T � Ta)

�)2 d�  0

which ensures that T � Ta a.e. in ⌦.

2. If (', T ) is a solution to (P) then ' solves (4.8) for this T and the estimates for the
component ' of the solution result from Lemma 4.1 and Lemma 4.2.

3. By Corollary 4.1 we know that the Joule heating term in the right hand side of the heat
equation, (1� ⌘)�(x, T,r')|r'|2, belongs to Ls⇤(⌦) and its Ls⇤-norm can be estimated
by cs⇤ . We use regularity results for second order elliptic equations with nonsmooth data
in the two-dimensional case (see [15]). According to [15, Theorem 1] there is a eq > 2 such
that the strongly monotone Lipschitz continuous operator eB : H1(⌦) ! H1(⌦)⇤,

h eBT,wi :=
Z

⌦
(�rT ·rw + Tw) dx, w 2 H1(⌦),
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maps W 1,q(⌦) into and onto W�1,q(⌦) for all q 2 [2, eq]. Here W�1,q(⌦) means W 1,q0(⌦)⇤,
where 1

q +
1
q0 = 1. Next we define q⇤ 2 (2, eq] by

q⇤ :=

8

>

>

<

>

>

:

eq if
s⇤

s⇤ � 1
2
h

1,
2eq

eq � 2

i

2s⇤

2� s⇤
if

s⇤

s⇤ � 1
>

2eq

eq � 2

,
1

q⇤
+

1

(q⇤)0
= 1.

This definition guarantees that Ls⇤(⌦) ,! W�1,q⇤(⌦) = W 1,(q⇤)0(⌦)⇤. Remark 13 in [15]
then ensures W 1,q⇤ estimates for solutions to problems eBT = R(T ), where R is any
mapping from W 1,2(⌦) into W�1,q⇤(⌦). For our problem under consideration we use

hR(T ), wi :=
Z

⌦

⇣

(1�⌘)�(x, T, |r'|)|r'|2+T
⌘

w dx+

Z

�
(Ta�T )w d�, w 2 W 1,(q⇤)0(⌦).

Therefore we find a cq⇤ > 0 such that T 2 W 1,q⇤(⌦) and kTkW 1,q⇤  cq⇤ .

4. The continuous embedding of W 1,q⇤(⌦) into C(⌦) supplies the point-wise lower and
upper bound of the temperature distribution T which sharpens the result of Step 1. ⇤
Let us mention that according to the proof of Lemma 4.1, the upper and lower bounds of
the electrostatic potential ' of any solution to (P) are given by the upper and lower bound
of the Dirichlet function 'D, respectively. The continuous embedding W 1,r(⌦) ,! C0,↵(⌦)
for r > 2 in two spatial dimensions ensures the following regularity for solutions to (P).

Corollary 4.2 We assume (A). Then any solution (', T ) to (P) is Hölder continuous.

Theorem 4.2 (Existence of solutions) We assume (A) and ⌘ 2 L1(⌦), ⌘(x) 2 [0, 1]
for a.a. x 2 ⌦. Then there exists at least one solution to Problem (P).

Proof. 1. We intend to use Schauder’s fixed point theorem. We fix q� with 2 < q� < q⇤

and denote by cq� = cq⇤,q�cq⇤ > 0 the product of the imbedding constant cq⇤,q� > 0 of the
continuous imbedding W 1,q⇤(⌦) ,! W 1,q�(⌦) and of the constant cq⇤ from Theorem 4.1.
We work with the bounded, closed, convex, nonempty set

M :=
�

T 2 W 1,q�(⌦) : kTkW 1,q�  cq� , T � Ta

 

.

On M we consider the mapping Q : M ! M, which is defined as follows: For a given
eT 2 M we solve problem (4.8), see Lemma 4.1, and get a unique solution ' which pos-
sesses the higher regularity ' 2 W 1,p⇤(⌦), see Lemma 4.2. Corollary 4.1 ensures that
(1�⌘)�(x, eT , |r'|)|r'|2 2 Ls⇤(⌦). Now we find the unique solution T of the heat flow
equation with the right hand side (1�⌘)�(x, eT , |r'|)|r'|2 2 Ls⇤(⌦) ⇢ H1(⌦)⇤, where
s⇤ > 1. This is possible since the corresponding operator B : H1(⌦) ! H1(⌦)⇤,

hBT,wi =
Z

⌦
�rT ·rw dx+

Z

�
Tw d�, w 2 H1(⌦),

is Lipschitz continuous and strongly monotone from H1(⌦) to H1(⌦)⇤ (compare Assump-
tion (A)), which proves the solvability. The higher regularity of the solution is guaranteed



20 M. Liero et al.

by the regularity result of Gröger for second order elliptic equations with nonsmooth
data in the two-dimensional case (see [15]). Note that the Joule heating term belongs
to Ls⇤(⌦) ⇢ W 1,(q⇤)0(⌦)⇤. Arguing as in Step 3 of the proof of Theorem 4.1 we find
that kTkW 1,q⇤  cq⇤ . By the continuous imbedding W 1,q⇤(⌦) ,! W 1,q�(⌦) this results
in kTkW 1,q�  cq⇤,q�kTkW 1,q⇤  cq� . Moreover, T � Ta is verified similar to the proof

of Theorem 4.1. By this procedure the mapping Q is defined by T := Q( eT ). To apply
Schauder’s fixed point theorem, we show that Q : M ! M is continuous as well as
compact.

2. We start with the continuity: Let eTn ! eT in W 1,q�(⌦) and 'n, ' 2 W 1,p(⌦) the
corresponding solutions to (4.8). The test of (4.8) by 'n � ' 2 W 1,p

0 (⌦ [ �N ) gives
Z

⌦
�0F (·, eTn)

⇣

|r'n|p�2r'n � |r'|p�2r'
⌘

·r('n � ') dx

=

Z

⌦
�0
�

F (·, eT )� F (·, eTn)
�

|r'|p�2r' ·r('n � ') dx.

We use (4.5), �0F ( eTn) � �1, the Lipschitz continuity of F for arguments T � Ta and
Hölder’s inequality to obtain

�1

Z

⌦
|r('n � ')|p dx  c

Z

⌦
| eTn � eT ||r'|p�1|r('n � ')| dx

 c k eTn � eTkL1kr'kp�1
Lp kr('n � ')kLp .

The continuous imbedding W 1,q�(⌦) ,! L1(⌦) and Lemma 4.1 thus ensure

kr('n � ')kp�1
Lp  c k eTn � eTkL1 ! 0. (4.12)

Since 'n � ' 2 W 1,p
0 (⌦ [ �N ) this means that k'n � 'kW 1,p ! 0. Let be bp 2 (p, p⇤) with

1
bp = ✓

p + 1�✓
p⇤ . By interpolation we get

k'n � 'kLbp  k'n � 'k✓Lpk'n � 'k1�✓
Lp⇤ ,

kr('n � ')kLbp  kr('n � ')k✓Lpkr('n � ')k1�✓
Lp⇤ .

And since k'nkW 1,p⇤ , k'kW 1,p⇤  cp⇤ we thus obtain 'n ! ' in W 1,bp(⌦) for all bp < p⇤.

Let Tn and T denote the solutions to the heat flow equation with the arguments ( eTn,'n)
and ( eT ,') in the Joule heating term, respectively. We test these equations by Tn � T .
Taking into account Assumption (A), we find

kTn � Tk2H1

 c

Z

⌦

⇣

F (·, eTn)|r'n|p � F (·, eT )|r'|p
⌘

|Tn � T | dx

 c

Z

⌦

⇣

F (·, eTn)
�

�|r'n|p � |r'|p
�

�+ |r'|p|F (·, eTn)� F (·, eT )|
⌘

|Tn � T | dx.

(4.13)

By the vector inequality (see [20, p. 379] or [2, Chap. 4, p. 257])
�

�|y|p�2y � |z|p�2z
�

�  3(p� 1)|y � z|(|y|+ |z|)p�2 for p � 2, y, z 2 Rn
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we derive
�

�|y|p � |z|p
�

� 
�

�|y|p�2y · y � |z|p�2z · z
�

�

 |y|
�

�|y|p�2y � |z|p�2z
�

�+
�

�|z|p�2z
�

�|y � z|
 c(p)|y � z|(|y|+ |z|)p�1.

Applying this inequality and using the boundedness and the Lipschitz continuity of F for
second arguments greater or equal to Ta we continue the estimate (4.13) by

kTn � Tk2H1

 c

Z

⌦

⇣

c(p)|r'n �r'|(|r'n|+ |r'|)p�1 + |r'|p| eTn � eT |
⌘

|Tn � T | dx

 ec(p)kr('n � ')kLbp

⇣

k'nkp�1

W 1,p⇤ + k'kp�1

W 1,p⇤

⌘

kTn � TkLq

+ ec(p)k'kp
W 1,p⇤k eTn � eTkL1kTn � TkLeq ,

where p⇤ is defined in Lemma 4.2 and

bp 2 (p, p⇤),
1

bp
+

p� 1

p⇤
+

1

q
= 1,

1

eq
+

p

p⇤
= 1.

Note that k'nkW 1,p⇤ , k'kW 1,p⇤  cp⇤ and kTn � TkLq  c(q)kTn � TkH1 , kTn � TkLeq 
c(eq)kTn � TkH1 as well as k eTn � eTkL1 , kr('n � ')kLbp ! 0. Thus, in summary we obtain

kTn � TkH1 ! 0.

Since kTnkW 1,q⇤ , kTkW 1,q⇤  cq⇤ this convergence implies by interpolation arguments the
convergence Tn ! T in W 1,q�(⌦) since 2 < q� < q⇤.

3. To show that Q is compact we start with any sequence ( eTn), eTn 2 M. Since M is
bounded inW 1,q�(⌦) andW 1,q�(⌦) is compactly embedded in L1(⌦) we find a eT 2 L1(⌦)
and a subsequence (also denoted by ( eTn)) such that eTn ! eT in L1(⌦). Therefore, we can
argue as in Step 2 of the proof to verify that Q eTn ! Q eT in W 1,q�(⌦). Thus Schauder’s
fixed point theorem proves the theorem. ⇤

5 Conclusions, remarks, generalizations, and open problems

5.1 Electrothermal description of organic thin film devices

In all organic devices with su�ciently large activation energies, self-heating can lead to
S-shaped current-voltage characteristics with NDR regions and can promote spatial in-
homogeneities. To address this issue, we introduced a PDE thermistor model for the
study of the appearance and the evolution of spatially local NDR regions in large-area
thin film devices in dependence on the applied voltage. The model equations (3.1) – (3.4)
include the positive temperature feedback by an Arrhenius law for the conductivity and
the non-Ohmic setting.

We presented a finite-volume scheme for the PDE system (3.1) – (3.4) which is able to
reveal regions of NDR and “switched back” regions in the device. Moreover, we verified
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that the network model used in [11] can be interpreted as a finite-volume discretization of
(3.1) – (3.4) under additional assumptions on the device geometry.

NDR phenomena in OLEDs are already present at moderate temperature rises and are the
reason for an accelerated increase in brightness inhomogeneities. Our studies can help to
elucidate spatial inhomogeneities of current density and luminance in large-area lighting
panels at high power.

5.2 Analysis for the thermistor model with p-Laplace and Arrhenius-like
temperature law in the conductivity

We studied the model (4.1a) – (4.2b) in two spatial dimensions for the organic material,
where p > 2 has to be assumed. The heat transfer through the glass substrate and the
contacts is substituted by a boundary condition of third kind. The voltage drop in the
ITO contact is described by a decreasing Dirichlet value for the electrostatic potential '
depending on the distance to the additional metal contact at the side (see Fig. 2 left).

In two spatial dimensions we gave a weak formulation of the problem, derived a priori
bounds for the solutions and their derivatives and finally proved the existence of a weak
solution for this non-standard thermistor problem. Here, the theory of monotone operators
and the higher regularity results of [10] for the p-Laplace were important ingredients.

Open questions remain concerning the extension of the analytical treatment of the prob-
lem in the following directions: (i) Results in three spatial dimensions require further
regularity results for the p-Laplace expressions. (ii) The model complexity could include
a dependence of the external power e�ciency ⌘ on the temperature T and the current
~j. This relation can be obtained from fitting data resulting from measurements. (iii) In-
stead of the stationary thermistor problem (4.1a) – (4.2b) one can consider the evolution
problem consisting of the parabolic heat flow equation together with the self-consistently
calculated electrostatic potential to describe the self-heating e↵ects during the time being.

5.3 Including ITO layer and glass substrate in the analytical treatment

The ITO layer has an Ohmic current-voltage relation and no temperature activated con-
ductivity law. If this part of the structure should be included in the simulation domain, a
heterostructure with varying exponent p has to be considered. A varying p arises also, if
various layers of di↵erent organic material have to be described. An overview concerning
the analytical treatment of problems including the p(x)-Laplacian (varying p over the con-
sidered domain) is given in [16]. For suited function spaces see [6, 7]. Regularity issues for
problems with p(x) growth (needed in the analytical treatment of the Joule heating term
comp. Lemma 4.2) are addressed in [8] assuming a certain modulus of continuity. A series
of analytic tools is available for log-Hölder continuous exponents p(x), see [6]. However,
in our situation the exponents p are large (p ⇡ 10) in the organic OLED materials and
jump to p = 2 in the Ohmic ITO subdomain. Here, the large variation of p is a particular
challenge in the mathematical treatment of the model system.

To include also the heat transfer through the glass substrate (see the Fig. 2 left) which
is expressed in our model equations (3.1) – (3.4) only by a boundary condition of third
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kind, one has to enlarge the domain of simulation. The electrical equation has to be
fulfilled on the same domain as before, but the heat flow equation lives on a domain which
additionally contains the area of the glass substrate and boundary conditions have to be
formulated for the heat transfer to the air at the new boundary.
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[18] Z. Kohári and L. Pohl, How thermal environment a↵ects OLEDs’ operational char-
acteristics, 28 th IEEE SEMI-THERM Symposium, 2012, p. 331.

[19] P. Lindqvist, Notes on the p-Laplace equation, Report. University of Jyväskylä De-
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