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Adaptive Numerical Solution of Eigenvalue Problems arising
from Finite Element Models. AMLS vs. AFEM

C. Conrads, V. Mehrmann, and A. Międlar

Abstract. We discuss adaptive numerical methods for the solution of eigen-
value problems arising either from the finite element discretization of a partial
differential equation (PDE) or from discrete finite element modeling. When a
model is described by a partial differential equation, the adaptive finite element
method starts from a coarse finite element mesh which, based on a posteriori
error estimators, is adaptively refined to obtain eigenvalue/eigenfunction ap-
proximations of prescribed accuracy. This method is well established for classes
of elliptic PDEs, but is still in its infancy for more complicated PDE models.
For complex technical systems, the typical approach is to directly derive finite
element models that are discrete in space and are combined with macroscopic
models to describe certain phenomena like damping or friction. In this case
one typically starts with a fine uniform mesh and computes eigenvalues and
eigenfunctions using projection methods from numerical linear algebra that
are often combined with the algebraic multilevel substructuring to achieve an
adequate performance. These methods work well in practice but their con-
vergence and error analysis is rather difficult. We analyze the relationship
between these two extreme approaches. Both approaches have their pros and
cons which are discussed in detail. Our observations are demonstrated with
several numerical examples.
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1. Introduction

Eigenvalue problems associated with complex mathematical models described
by partial differential equations (PDEs) or very large finite element models arise
in a number of applications ranging from quantum mechanical models, design of
periodic structures for wave-guides, structural mechanics, stability analysis in dy-
namical systems, as well as model reduction. A typical real world example that was
recently considered in [33] is the analysis and treatment of disc brake squeal. This
phenomenon arises from self-excited vibrations caused by a flutter-type instability
originating from friction forces at the pad-rotor interface [2] of the brake. Since a
full atomistic modeling via the Langevin equation [64] is computationally infeasible,
a commonly used approach in practice is to employ macro-scale approximations via
multibody dynamics and finite element modeling (FEM) with very fine uniform
meshes, see e.g. [45, 56]. Using macroscopic models of material damping, and fric-
tion forces, one obtains as model equations for the finite element coefficients of the
position variables Q =

∑n
i=1Qi(t)ϕi(x), the dynamical system

(1) MQ̈+ CQ̇+KQ = f,

where M,C,K ∈ Rn,n are large scale mass, damping and stiffness matrices, re-
spectively, and f is an external force. For finite element (FE) models of rotating
machinery, the matrices C and K are typically nonsymmetric to incorporate gyro-
scopic and circulatory forces, and they depend on various parameters that include
model operating conditions, material conditions as well as the rotational speed of
the disc. For self-excited vibrations one also includes the excitation force via a
nonsymmetric term added to the stiffness matrix. Furthermore, the mass matrix is
often singular, often due to mass lumping, or due to the explicit algebraic equations
which constrain the dynamics of the system.

System (1) is a (space) discrete FE model and typically, since the macroscopic
approximations do not hold in the continuous limit for mesh size equal to zero,
a corresponding continuous model in the form of a PDE is not available. If the
system would be valid in the limit, then it would be a hyperbolic PDE

(2) Ü + cU̇ + k∆U = f,

in a domain Ω ∈ Rd, d = 1, 2, . . ., with given parameter dependent functions c, k,
together with boundary conditions. We discuss here Dirichlet conditions U = 0 on
the boundary ∂Ω, the case of general boundary conditions can be reduced to this
case [11].

Choosing the ansatz Q = exp (µt)q or U = exp (µt)u, respectively, then yields
eigenvalue problems. In the (space) discrete case this is the finite dimensional
quadratic eigenvalue problem:

Determine µ ∈ C and a nonzero q ∈ Cn such that

(3) L(µ)q := (µ2M + µC +K)q = 0.

A finite dimensional eigenvector q = [qi]
n
i=1 ∈ Cn associated with an eigenvalue µ

is then the coordinate vector of coefficients for the eigenfunction q =
∑n
i=1 qiψ

i(x)
in the FE basis {ψi(x)}ni=1, which has been used to generate the FE model.

In the (space) continuous case one obtains an infinite dimensional quadratic
eigenvalue problem.
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Determine µ ∈ C and a nonzero function u in an appropriate function space V
such that

(4) L(µ)u := (µ2 + cµ+ k∆)u = 0 in Ω, u = 0 on ∂Ω.

In order to solve the continuous problem (4) one discretizes the variational form
of the problem using a Galerkin approach. If an appropriate nh dimensional FE
subspace Vh ⊂ V spanned by a FE basis {ϕ(i)

h (x)}nh
i=1 is chosen, then (4) takes the

form of the finite dimensional quadratic eigenvalue problem

(5) Lh(µ)uh := (µ2
hMh + Chµh +Kh)uh = 0,

and the eigenfunction uh is represented as uh =
∑nh

i=1 uh,iϕ
(i)
h (x), with a coordinate

vector uh = [uh,i]
nh
i=1 ∈ Cn.

The two discrete finite dimensional problems (3) and (5) are very similar in
nature. If a PDE model is available, then using the same basis functions ψ(i) = ϕ

(i)
h ,

i = 1, 2, . . . , nh, on the same uniform grid without exploiting any macroscopic
model approximations, would result in strongly related or even the same matrix
coefficients.

In the continuous case, for some PDE operators, a priori and a posteriori error
estimates can be obtained that allow to assess the quality of the solution and allow
for adaptive grid refinement. In the discrete case, however, such estimates are
typically not available, and error control has to be based on algebraic techniques and
comparisons with experiments. However, in both the discrete and continuous case,
once approximations µ̃ of an eigenvalue µ and q̃(x) =

∑n
i=1 q̃iψ

(i)(x), respectively,
ũh(x) =

∑nh

i=1 ũh,iϕ
(i)
h (x) to the associated eigenfunctions have been determined,

then eigenvalue residuals can be formed

r := (µ̃2M + µ̃C +K)q̃,(6)
rh(x) := (µ̃2

hMh + Chµ̃h +Kh)ũh,(7)

respectively. Using backward error analysis [53], it follows that if the stability
constant of the associated eigenvalue/eigenfunction pair (µh, uh), respectively the
condition number of the eigenvalue/eigenvector pair (µ,q) are not too large, i.e.,
small perturbations in the model do not lead to large perturbations in computed
eigenvalue/eigenfunction approximations, then these residuals can be used to esti-
mate the associated errors. This analysis will be discussed in Section 4.

There are essentially two extreme approaches to compute a specific eigen-
value/eigenvector or eigenvalue/eigenfunction pair. In the continuous case, when a
priori and a posteriori error estimates are available, then one can apply the adaptive
finite element method (AFEM), and, at least in some special cases, prove its relia-
bility and efficiency [15]. Starting from a sufficiently fine initial mesh, AFEM uses
local error estimates to adaptively refine the mesh, so that the resulting error in
the finite element approximation is within a given tolerance. However, the analytic
background of AFEM requires the presence of an associated PDE model which, as
discussed before, is not always available. Furthermore, the method is currently re-
stricted to some very special problem classes of elliptic problems with real or purely
imaginary eigenvalues. Numerical methods that use AFEM for some more complex
problems were discussed in [16, 38, 61], but no detailed analysis is available for
problems with complex eigenvalues or eigenvalues with Jordan blocks. For multi-
ple real eigenvalues of symmetric problems recently there has been analysis in [28,
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29, 72]. In contrast to this, in (3) the only available data are matrices associated
with the fine mesh. A very common method that is frequently used in structural
engineering is the automated multilevel substructuring method (AMLS) [9, 42].
Starting from (3) or (5) associated with the fine mesh, AMLS uses an algebraic
substructuring technique (component mode synthesis [60]), local computations of
eigenvalues and eigenvectors for algebraically constructed substructures in (3), as
well as projections, to obtain a small projected eigenvalue problem which then can
be solved by standard, dense eigenvalue methods [7, 36]. This algebraic approach
is very flexible and can in principle be extended to treat damping terms as well as
complex and multiple eigenvalues. However, the theoretical analysis of the method
is rather limited [24, 37, 71], and the results may not always be satisfactory, see
Section 6.

In this work we discuss a common basis for both the AFEM and the AMLS
method. We compare these concepts and point out their advantages and disadvan-
tages. For a direct analytical comparison, we restrict ourself to consider (3) and
(5) with symmetric positive definite mass and definite stiffness matrices and dis-
card damping or other parts of the model, see Section 2. In this situation, setting
λ := −µ2, all the eigenvalues are real and there exist orthonormal sets of associated
eigenvectors/eigenfunctions. In Section 3 we introduce the automated multilevel
substructuring method (AMLS) and discuss its properties and several implementa-
tion details. Section 4 is dedicated to the adaptive finite element method (AFEM)
and a recently developed variant called AFEMLA. We compare both methods, pro-
vide some common ground and discuss some of their advantages and disadvantages
in Section 5. Section 6 illustrates our observations with several numerical examples.

2. A model problem for comparison

In order to compare and relate the AFEM and the AMLS method, we use a
simple elliptic PDE eigenvalue problem.

Determine λ ∈ R and u ∈ V := H1
0 (Ω) (the space of functions that vanish on

the boundary and have a first derivative that is Lebesgue integrable) such that

(8) Lu = λu in Ω
u = 0 on ∂Ω,

where Ω ∈ Rd, d = 1, 2, . . . is a bounded, polyhedral Lipschitz domain and ∂Ω is its
boundary.

Here
Lu(x) = −div(A(x)∇u(x)),

and A is a real symmetric positive definite matrix, so that L is self-adjoint and
elliptic. Introducing the bilinear forms

a : V × V → R, a(u, v) :=

∫

Ω

(∇u)TA(x)∇v dx,

b : V × V → R, b(u, v) :=

∫

Ω

uv dx,

then one has the variational form of problem (8):
Determine λ ∈ R and u ∈ V such that

(9) a(u, v) = λb(u, v) for all v ∈ V.
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In order to find an approximation to the exact solution of the variational prob-
lem (9), we attempt to represent the solution by an element from a given finite
dimensional subspace Vh ⊂ V . This is known as the Galerkin method (Bubnov-
Galerkin or Ritz-Galerkin method in the self-adjoint case) [18]. For a given finite
dimensional subspace Vh ⊆ V the variational form of the eigenvalue problem (9)
then is the discretized eigenvalue problem:

Determine λh ∈ R and uh ∈ Vh such that

(10) a(uh, vh) = λhb(uh, vh) for all vh ∈ Vh.

Since A is symmetric positive definite, it follows that a(·, ·) defines an inner
product on V , and b(·, ·) is also an inner product on V .

There are many possible choices for the space Vh, see e.g., [11, 18]. For
simplicity we discuss only the 2D case and let Th be a partition (triangulation) of
the domain Ω into elements (triangles) T , such that

⋃

T∈Th

= Ω,

any two distinct elements in Th share at most a common edge or a common vertex.
For each element T ∈ Th by E(T ) and N (T ) we denote the set of corresponding
edges and vertices, respectively, and Eh and Nh denotes all edges and vertices in
Th. Likewise, we define hT as the diameter (the length of the longest edge) of an
element. For each edge E we denote its length by hE and the unit normal vector
by ~nE . We set h := max

T∈Th
hT . We say that the triangulation is regular, see [18], if

there exists a positive constant ρ such that

hT
dT

< ρ,

with dT being the diameter of the largest ball that may be inscribed in element T ,
i.e., the minimal angle of all triangles in Th is bounded away from zero.

Consider a regular triangulation Th of Ω and the set of polynomials Pp of total
degree p ≥ 1 on Th, which vanish on the boundary of Ω, see, e.g., [11]. Then the
Galerkin discretization of (10) with V ph ⊂ V , dim V ph = nh, chosen as

V ph (Ω) :=
{
vh ∈ C0(Ω) : vh|T ∈ Pp for all T ∈ Th and vh = 0 on ∂Ω

}
,

is called finite element discretization. The Finite Element Method (FEM) [18] is a
Galerkin method where Vh is the subspace of piecewise polynomial functions, i.e.,
functions that are continuous in Ω and that are polynomial on each T ∈ Th. To
simplify the presentation, here we only consider P1 finite elements, i.e., p = 1, and
use Vh := V 1

h . The motivation to use piecewise polynomials is that in this case the
computational work in generating the system matrices is small and they are sparse,
since the space Vh then has a canonical basis of functions with small support. The
basis

{
ϕ

(1)
h , . . . , ϕ

(nh)
h

}
is then a Lagrange or nodal basis [18] and an eigenfunction

uh is determined by its values at the nh grid points of Th and it can be written as

uh =

nh∑

i=1

uh,iϕ
(i)
h
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and the discretized problem (10) reduces to a generalized algebraic eigenvalue prob-
lem of the form

(11) Khuh = λhMhuh,

where the matrices

Kh := [a(ϕ
(j)
h , ϕ

(i)
h )]1≤i,j≤nh

, Mh := [b(ϕ
(j)
h , ϕ

(i)
h )]1≤i,j≤nh

are called stiffness and mass matrix, respectively. The coordinate vector uh asso-
ciated with the eigenfunction uh is defined as

uh := [uh,i]1≤i≤nh
.

Since a(·, ·) and b(·, ·) are bounded and symmetric and associated with scalar prod-
ucts, the resulting matrices Kh,Mh are symmetric and positive definite. Thus, see
e.g. [57, §15.3], for the discrete eigenvalue problem (11) there is a full set of real
Mh-orthogonal eigenvectors given by the columns of a matrix Uh ∈ Rnh,nh , and all
eigenvalues λ(i)

h , i = 1, 2, . . . , nh, are real and positive, i.e., we have

UT
hKhUh = diag(λ

(1)
h , . . . , λ

(nh)
h ), UT

hMhUh = In.

Furthermore, it is well-known, e.g. [4, Equation (8.42), p. 699], [66, equation (23),
p. 223] or [19, 70], that for conforming approximations, i.e., if Vh ⊂ V , then the
Courant-Fischer min-max characterization implies that the exact eigenvalues are
approximated from above, i.e.,

λ(i) ≤ λ(i)
h , i = 1, 2, . . . , nh.

For the comparison of the pros and cons in AFEM and AMLS we restrict ourselves
to the computation of a few of the smallest eigenvalues and their corresponding
eigenvectors/eigenfunctions.

3. Automated Multilevel Substructuring

In this section we briefly review the Automated Multilevel Substructuring
method (AMLS) [9, 42], including some small improvements of its original for-
mulation. For simplicity of presentation we consider a problem of the form (11)
which either arises from discrete FE modeling or from the FE discretization of a
2D elliptic PDE problem. The AMLS method needs as an input just the two ma-
trices Kh and Mh and a user-supplied cutoff value λc > 0 and then works purely
algebraically to determine all approximate eigenvalue/eigenvector pairs (λ

(i)
h ,u(i)

h )

associated with eigenvalues 0 < λ
(i)
h ≤ λc. The AMLS method can be viewed as an

enhancement of the well-established component mode synthesis method of [60].
The first step in AMLS is to compute a nested dissection reordering [30], based

on the computation of a set of vertex separators in the unweighted graph induced
by the stiffness matrix and apply it to both stiffness and mass matrix. Formally this
reordering yields a permutation matrix P ∈ Rnh,nh , such that K := PTKhP, M :=
PTKhP are block-structured, as illustrated in Figure 1. In the FE setting one
obtains the same block structure in both matrices. Setting w = PTuh, we then
have the block-structured (sparse) generalized eigenvalue problem

(12) Kw = λhMw.

Note that in practice one does not apply a permutation matrix, but just relabels
the indices in the eigenvectors and undoes this relabeling when the eigenvectors
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K1,1

K2,2

K3,1 K3,2 K3,3 sym.

K4,4

K5,5

K6,6

K7,4 K7,5 K7,6 K7,7

K8,1 K8,2 K8,3 K8,4 K8,5 K8,6 K8,7 K8,8







Figure 1. Symmetric stiffness matrix K with two levels of nested
dissection reordering. The blocks K1,1,K2,2,K4,4,K5,5, and K6,6

are substructure blocks, the blocks K3,3,K7,7,K8,8 are coupling
blocks. The first level of substructuring consists of the blocks
K1:3,1:3, K4:7,4:7, and K8,8.

uh of the original problem are needed. The exact choice and number of partitions
in the nested dissection reordering is irrelevant for the following description of the
AMLS algorithm, but the structure is used heavily to improve the performance
of the method when it is applied to a concrete eigenvalue problem. The resulting
matrices are sparse block matrices with the diagonal blocks called substructure
blocks and coupling blocks. Coupling blocks correspond to the vertex separators
in the graph described by the stiffness matrix, whereas the substructure blocks
correspond to substructures in the graph. Since the mass and stiffness matrices
arise from the assembly of the inner products between the locally (via the mesh
structure) defined basis functions, the resulting block structure partitioning can be
viewed as a subdivision of the continuous domain [9]. However, since the method
works in a completely algebraic fashion, it can also be applied if the matrices K,M
are not associated with any finite element model if the graph partitioning software
is applied to the combined graph of both matrices.

The second step in AMLS is to compute a block Cholesky decomposition [21, 27]
K = LDLT of the reordered stiffness matrix, so that L is a block lower triangular
and D is a block diagonal matrix. Since K is positive definite, this block Cholesky
decomposition exists without employing any pivoting strategy.

Remark 3.1. The second step of AMLS may be infeasible when K or some
of the diagonal blocks are singular or close to being singular. Moreover, since this
is a direct factorization there will be a non-negligible fill-in which may necessitate
out-of-core algorithms in the implementation. It is possible to also include singular
Kj,j matrices and then using pivoting move singular blocks of K to the bottom of
the matrix. This will, however, partially destroy the sparsity and increase the size
of the final block. For the comparison of the two methods we restrict ourselves to
the case of invertible Kj,j .
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Using the block Cholesky factors, another change of basis is performed. Setting
ML := L−1ML−T , wL := LTw yields the transformed problem

(13) KLwL = λhMLwL,

with block diagonal matrix KL = diag(K1,1, . . . ,K`,`) and blocks Kj,j , j = 1, . . . , `,
of sizes n1, . . . , n`. Due to the structure of L,L−1, it follows that ML = [Mi,j ]
retains the nested dissection reordering block structure if it is partitioned analo-
gously. Furthermore, since the transformation is a congruence transformation, KL

and ML are still symmetric positive definite due to Sylvester’s law of inertia [27,
Theorem 8.1.17].

In the third step of the AMLS algorithm one solves the local eigenvalue prob-
lems

Kj,jw̃j = λ̃jMj,jw̃j , j = 1, . . . , `,

associated with the diagonal blocks of KL,ML, using any of the well-established
methods for small dense eigenvalue problems [3, 10]. Let Λ̃ = diag(Λ̃1, . . . , Λ̃`) be
the block matrix with diagonal blocks containing all the computed eigenvalues λ̃(k)

j ,
j = 1, . . . , `, k = 1, . . . , nj , of these subproblems, and let W̃ = diag(W̃1, . . . , W̃`) ∈
Rnh,nh be the corresponding block diagonal matrix of computed eigenvectors, i.e.,
W̃j = [w

(1)
j , . . . , w

(nj)
j ], j = 1, . . . , `.

The fourth step in the AMLS method is to perform a modal truncation in the
sub-blocks, i.e., with the given cutoff value λc, we select the subset of eigenval-
ues in the blocks Λ̃j that fall below the cutoff λc, and set Λ̂j , j = 1, . . . , `, as
the corresponding submatrices of Λ̃j . Moreover, we define Λ̂ = diag(Λ̂1, . . . , Λ̂`).
Analogously, we define the block diagonal matrix Ŵ = diag(Ŵ1, . . . , Ŵ`), where
each block Ŵj contains only those eigenvectors from W̃j which correspond to the
eigenvalues in Λ̂j .

Remark 3.2. Note that here we use the fact that the smallest values of λ̃(k)
j

are reasonable approximations of the smallest exact eigenvalues λh of (12), which
follows from the Cauchy interlacing theorem, [27]. For more general problems this
may not justified.

The fifth step in the AMLS method is to project the matrix pencil (KL,ML)

onto the space spanned by the columns of Ŵ . Let Ŵ † be the Moore-Penrose pseudo-
inverse of Ŵ [27, p. 290], then we consider the projected eigenvalue problem

(14) (ŴTKLŴ )Ŵ †wL = λS(ŴTMLŴ )Ŵ †wL,

and we set KS := ŴTKLŴ , MS := ŴTMLŴ , wS := Ŵ †wL. Then the projected
eigenvalue problem (14) has the form KSwS = λSMSwS . Note that the Moore-
Penrose pseudo-inverse Ŵ † does not have to be computed explicitly if we want to
determine the eigenvectors of (13), since wL = ŴwS . Note further, that we can
exchange the fourth and the fifth step in the AMLS method. Let Z be a matrix
containing a subset of the columns of the identity matrix, then we can choose it
such that

Ŵ = W̃Z and Λ̂ = ZT Λ̃Z.

Accordingly, KS = ZT W̃TKLW̃dZ and we reversed the order of steps four and five.
Moreover, notice that KS = Λ̂.
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The sixth step of the AMLS algorithm is to solve the projected eigenvalue
problem (14), again with appropriate solvers from [3, 10] and to use the obtained
m smallest eigenvalues λ̃(i)

S , i = 1, . . . ,m, as approximations to the smallest m
eigenvalues λ(i)

h , i = 1, . . . ,m, of the problem (12). The corresponding eigenvector
approximations w̃(i), i = 1, . . . ,m, of the exact eigenvectors w(i) of (12) are then
obtained from

w̃(i) = L−T Ŵ w̃
(i)
S , i = 1, . . . ,m.

If the FE matrices are of a recursive multilevel structure, then the described ap-
proach can be carried out in a multilevel fashion, i.e., if the discussed diagonal
blocks Kjj ,Mjj again have the structure of a FE matrix, which is typically the
case, then we can apply the same idea recursively for several levels.

The AMLS method contains several tuning parameters that are typically chosen
based on heuristics, e.g., in the choice of the cutoff criterion in step four, quite often,
a tolerance θ is added, see [42], to select all eigenvalues λ̃(k)

j below θλc. The default
value θ = 8.42 is experimentally determined and we can confirm it as good choice
in our experiments. One can justify this heuristic choice using the eigenvalue error
bounds of [50]. Let us, for simplicity, consider a single level of substructuring and
partition the transformed matrices KS ,MS conformably as

KS =

[
K11
S

K22
S

]
, MS =

[
M11
S M12

S

M12
S
T

M22
S

]
,

whereM11
S andM22

S are identity matrices. ThenK11
S ,M

11
S contain the substructure

blocks, and K22
S ,M

22
S the coupling blocks. Theorem 2.5 in [50, p. 651] bounds the

maximum difference between an exact eigenvalue λ(i)
h and an eigenvalue approxima-

tion λ̃(k)
j that was computed by ignoring the off-diagonal blocks. If we assume that

the modal truncation λ̃(k)
j ≤ θλc found all eigenvalue approximations corresponding

to exact eigenvalues λ(i)
h ≤ λc, then we are implicitly assuming that

∥∥M12
S

∥∥
2
≤ θ−1

θ

which for θ = 8.42 yields
∥∥M12

S

∥∥
2
≤ 0.9858. SinceMS contains identity matrices on

its block diagonal, there is only one level of substructuring, and MS is symmetric
positive definite,

∥∥M12
S

∥∥
2
< 1 holds and hence the choice of θ fits well.

It should be noted further, that making an efficient use of the extracted sub-
structures in the eigenvalue problem (12) is an important part of the practical
implementation of an AMLS method, since this will significantly reduce the fill-in
in the off-diagonal blocks of the block Cholesky factorization.

4. The Adaptive Finite Element Method (AFEM)

The standard finite element method proceeds from the selection of a mesh and
basis to the computation of a solution. However, it is well-known that the over-
all accuracy of the numerical approximation is determined by several factors: the
regularity of the solution (smoothness of the eigenfunctions), the approximation
properties of the finite element spaces, i.e., the search and test space, the accuracy
of the eigenvalue solver and its influence on the total error. The most efficient
approximations of smooth functions can be obtained using large higher-order fi-
nite elements (p-FEM), where the local singularities, arising e.g. from re-entrant
corners, interior or boundary layers, can be captured by small low-order elements
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(h-FEM) [17]. Unfortunately, in real-world applications, these phenomena are typ-
ically not known a priori. Therefore, constructing an optimal finite dimensional
space to improve the accuracy of the solution requires refining the mesh and (or)
basis and performing the computations again. A more efficient procedure tries to
decrease the mesh size (h-adaptivity) or (and) to increase the polynomial degree of
the basis (p-refinement) automatically such that the accurate approximation can be
obtained at a lower computational cost, retaining the overall efficiency. This adap-
tation is based on the local contributions of global a posteriori error estimates, the
so-called refinement indicators, extracted from the numerical approximation. This
algorithmic idea is called Adaptive Finite Element Method (AFEM) and can be
described via the following loop

SOLVE //ESTIMATE //MARK //REFINE
rr

The number of manuscripts addressing adaptive finite element methods is con-
stantly growing, and its importance cannot be underestimated. On the other hand
mostly the publications do not deal with PDE eigenvalue problems but rather treat
PDE boundary value problems. In the following sections we present a small fraction
of material presented in [1, 4, 5, 6, 11, 13, 18, 23, 25, 26, 32, 31, 34, 35, 40, 44, 46,
47, 54, 55, 58, 59, 62, 63, 65, 66, 68].

The AFEM formulation that we will employ is based on the ansatz for the
standard finite element method in Section 2. Since the AFEM will involve several
levels of discretization with different mesh sizes h, we address this issue by slight
modification of the notation introduced in Section 2. The label ` associated with
the triangulation T` indicates the refinement level of the mesh in the refinement
hierarchy obtained by the adaptive FEM. We will assume that T` ⊂ T`+1, i.e., no
coarsening is performed, and denote by N` and n` the maximal refinement level
and the number of degrees of freedom associated with T`, respectively. We will
denote the finite dimensional space over the partition T` as V` and the associated
Galerkin approximation as (λ`, u`). All other quantities are defined analogously as
in Section 2 by the index h with `.

The application of the adaptive FEM to the variationally stated eigenvalue
problem (9) yields the following scheme: first the eigenvalue problem is solved
on some initial mesh T0 to provide a finite element approximation (λ`, u`) of the
continuous eigenpair (λ, u). Afterwards, the total error in the computed solution is
estimated by some error estimator η`.

If the estimate for the global error is sufficiently small, then the adaptive algo-
rithm terminates and returns (λ`, u`) as a final approximation, otherwise, the local
contributions of the error are estimated on each element. A local error indicator
(refinement indicator) for an element T ∈ T` is usually denoted by ηT and related
to a global error estimator η` through

η` =
( ∑

T∈T`

η2
T

)1/2
.

Based on these estimators, the elements for refinement are selected and form the
setM` ⊂ T` of marked elements.

The process of selecting the elements ofM` is called the marking strategy, and
typical heuristic choices based on numerical experiments are discussed in [12, 13,
20]. It should be noted that marking an element actually means marking all its
edges. The refinement of the finite element space can be performed using various
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techniques like moving grid points (r-refinement), subdividing elements of a fixed
grid (h-refinement), applying locally higher-order basis functions (p-refinement) or
any combinations of those [17]. For the sake of exposition, we discuss only the
h-refinement of the elements, namely the longest-edge bisection [54, §4], and we do
not discuss coarsening.

As we mentioned before, applying these refinement procedures may lead to
nonconforming meshes with the so-called hanging nodes. Therefore, a closure al-
gorithm [14] is applied to overcome this drawback and get a regular triangulation.
For more details about adaptive refinement strategies see, e.g., [1, 17, 69].

In order to prove convergence of the AFEM one has to assume that the mesh
refinement is done in such a way that a saturation property holds, as it has been
proved for the Laplace eigenvalue problem in [15].

Theorem 4.1 (Saturation property [15, Theorem 4.2]). Let h` be the maxi-
mum mesh size on the `-th mesh and let ‖·‖A :=

√
a(·, ·) denote the energy norm.

Consider the adaptive FEM with sufficiently small maximal initial mesh size h0

applied to the model problem (11). Then, there exists 0 ≤ ρ < 1 such that for all
` = 0, 1, . . . , n` − 1 the following inequalities hold:

‖u− u`+1‖2A ≤ ρ ‖u− u`‖
2
A + λ3

`+1h
4
` ,

|λ− λ`+1| ≤ ρ ‖λ− λ`‖+ λ3
`+1h

4
` ,

where (λ, u) is an exact eigenpair of L, λ` is an approximation of the eigenvalue λ
on T` and u` is the corresponding approximate eigenfunction.

With the saturation property given, a convergence proof for a specific AFEM
in the computation of the smallest eigenvalues of (11) have been given in [15].

Remark 4.2. Unfortunately, even the most accurate global error estimator
itself does not guarantee the accuracy and efficiency of an adaptive algorithm. This
can only be guaranteed if the desired eigenfunction has an approximate sparse
representation in the used FE space, i.e., if they can be represented well by a small
number of ansatz functions. This may, in particular, not be the case if several
eigenfunctions are sought, which have singularities or oscillations in different regions
of the spacial domain. Often the argument used in practice is that nothing is
better than a uniform mesh and brute force linear algebra when studying eigenvalue
problems. It should also be noted that almost all error estimators use inequalities
that only hold up to an unknown constant and thus may lead to strong over-
or underestimates of the true error. Finally, if the problem is sensitive to small
perturbations (as it may be for non-self-adjoint non-normal problems), then even
a very good and efficient error estimator may lead to large errors in eigenvalues
and eigenfunctions. To include sensitivity of eigenvalues and eigenfunctions into
the AFEM is currently a very important open problem.

The ’SOLVE step’ in every step of the standard AFEM approach for eigenvalue
problems (at least for reasonably fine levels) uses an iterative algebraic eigensolver,
like an Arnoldi method [48]. Based on the computed eigenvalues/eigenvectors, then
the a posteriori error estimates are determined and used to refine the grid. This
approach, however, does not consider any influence of the errors in the algebraic
eigensolver on the algorithm and most convergence or optimality results require that
the eigenvalues and eigenvectors are computed exactly. Furthermore, since one may
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have to solve many algebraic eigenvalue problems related to finer and finer grids
and information from the previous steps of the adaptive procedure, like previously
well approximated eigenvalues, is not used on the next level, computational costs
for the algebraic eigenvalue problem often dominate the total computational cost.

A more efficient approach is an AFEM variant called AFEMLA [14, 15, 51],
which incorporates the information obtained during the iterative solving of algebraic
eigenvalue problems into the error estimation and the refinement process. Since
the accuracy of the computed eigenvalue approximation cannot be better than the
quality of the discretization, there is no need to solve the intermediate algebraic
eigenvalue problems (that are used to compute the error estimates) up to very
high precision if the discretization scheme guarantees only small precision. And
even in the final step it is enough to solve the problem within an accuracy that
fits to the discretized system. Also nested iterations, i.e., using actual eigenvector
approximation as a starting vector for the eigenvalue computation on the refined
grid, reduce the total cost significantly. AFEMLA therefore follows exactly the idea
of adaptive methods to achieve a desired accuracy with the minimal computational
effort.

An additional advantage of the AFEMLA algorithm over the standard AFEM is
that it can be applied even without any knowledge of the underlying PDE problem
and even if one is not able to construct an appropriate a posteriori error estimator.
AFEMLA allows to construct an adaptive algorithm nevertheless, since it can be
based on the algebraic residual, provided the problem is such that the residual in-
formation is sufficient to characterize the error. We are not addressing this problem
here, however, also in this case, performing the subspace adaptation requires infor-
mation about underlying meshes and matrices obtained at different discretization
levels [51, 52, 53]

Let us now consider two consecutive partitions T` ⊂ T`+1 and associated finite
element spaces V` ⊂ V`+1 with a finite element basis {ϕ(1)

` , . . . , ϕ
(n`)
` } for V` and

{ϕ(1)
`+1, . . . , ϕ

(n`+1)
`+1 } for V`+1. Let us assume for simplicity, that the mesh T`+1 is

obtained by a uniform refinement of T`.
With the Galerkin discretization followed by applying the Arnoldi process to

the generalized eigenvalue problem

(15) K`u` = λ`M`u`

we get approximations λ̃` of the exact eigenvalues λ` on V`. With the approxi-
mation ũ` to the corresponding eigenvector u`, it follows that the corresponding
approximate eigenfunction is given by

ũ` =

n∑̀

i=1

ũ`,iϕ
(i)
` ,

where ũ`,i are the coefficients of the eigenvector ũ`, i.e., ũ` := [ũ`,i]i=1,...,n`
. We can

compute the residual for this approximation and use this information for adaptation.
From a geometric point of view, it is our goal to enrich the space V` corre-

sponding to the coarse mesh T` by some further functions. Since V` is a subspace
of V`+1 corresponding to the mesh T`+1, every function from V` can be expressed
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as a linear combination of functions from V`+1. Thus,

ũ` =

n∑̀

i=1

ũ`,iϕ
(i)
` =

n`+1∑

i=1

û`+1,iϕ
(i)
`+1,

with an appropriate coefficient vector û`+1 = [û`+1,i]i=1,...,n`+1
. The relationship

between coefficient vectors û`+1 and ũ` can be described by multiplication with
an easily constructed prolongation matrix P`. Therefore, the corresponding pro-
longated coordinate vector in the fine space V`+1 associated with the computed
eigenvector ũ` is given as

û`+1 = P`ũ`

Let us denote by (λ̂`+1, û`+1) an approximate eigenpair obtained from the prolon-
gation of the eigenvector ũ` on the finite space V`+1, where λ̂`+1 is a generalized
Rayleigh quotient corresponding to û`+1.

Remark 4.3. If the algebraic eigenvalue problem could be solved exactly, then
λ̃` and λ̂`+1 would be equal. But, since eigenvalues usually cannot be computed
exactly and since we work in finite precision arithmetic, roundoff errors, although
not discussed here, have to be taken into account as well as an early termination
of the iteration and therefore it is important to distinguish these values.

Based on (λ̂`+1, û`+1) we can compute the corresponding algebraic residual associ-
ated with the Galerkin discretization of the original problem on the fine mesh T`+1,
i.e.,

(16) r̂`+1 = K`+1û`+1 − λ̂`+1M`+1û`+1.

This gives us a natural way of estimating the error in the computed eigenfunction
using the coarse grid solution combined with the fine grid information, namely we
can prolongate the already computed approximation ũ` from V` to V`+1. Then
every entry in the residual vector r̂`+1 in (16) corresponds to the appropriate basis
function from the fine space. Furthermore, we know that if the i-th entry in the
vector r̂`+1 is large, then the i-th basis function has a large influence on the solution,
namely its support should be further investigated [41]. All these basis functions
with large entries in the vector r̂`+1 together with all basis functions from the
coarse space V` form a basis for the new refined space. The decision on whether
an entry in the residual vector is small or large may again be based on different
criteria, see [20]. When we identified the basis functions that should be added to
enrich our trial space, we start the marking procedure. Since every FEM basis
function is associated with a specific node in the mesh, enriching the space by new
basis function means marking the edge corresponding to its node. In order to avoid
hanging nodes or irregular triangulations, we again mark some additional edges
using a closure algorithm, i.e., if edge is marked and is not a reference edge (the
longest edge) of the element, then we add the reference edge to the set of marked
edges. After that we can perform the actual refinement to obtain a new mesh which
will be an initial mesh for the next loop of our adaptive algorithm.

For more details on the AFEMLA algorithm and, in particular, for the error
estimates involving the algebraic error for elliptic self-adjoint eigenvalue problems,
we refer to [51, 53].
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5. Comparison of AMLS and AFEM

In this section we compare the discussed AMLS and AFEM methods. For
this we consider the case, where the mass and stiffness matrices K`,M` resulting
from the finest AFEM mesh TN`

are given as input to the AMLS method. Let
ϕ

(1)
` , ϕ

(2)
` , . . . , ϕ

(n`)
` , ` ∈ {0, 1, . . . , N`}, denote the ansatz functions after the `-th

refinement. Moreover, since we do not perform a coarsening, we let

ϕ
(i)
` = ϕ

(i)
`′ , i = 1, 2, . . . , n`, `

′ > `.

We know that all eigenfunction approximations ũ` computed by the AFEM will be
linear combinations of the ansatz functions ϕ(i)

` , i = 1, 2, . . . , n`, such that

ũ` =

n∑̀

i=1

ũ`,iϕ
(i)
` , ũ`,i ∈ R.

Since T` ⊂ T`+1, we may as well write ũ`, ` = 0, 1, . . . , N`−1, as

ũ` =

n∑̀

i=1

ũ`,iϕ
(i)
`′ , `

′ > `.

Since we have assumed linear ansatz functions, there will be one degree of freedom
in the algebraic problem for every basis function ϕ(i)

` and hence K`,M` ∈ Rn`,n` .
For simplicity, let us order the degrees of freedom such that the i-th algebraic
variable belongs to the ansatz function ϕ

(i)
` . Because there is no coarsening, we

can compute the matrices associated to the coarser grids by either removing (in the
case of a hierarchical FE method) the last rows and columns of matrices K` and
M` or (in a more general FE method) by appropriate linear combinations.

If we apply the AMLS method to compute a set of eigenpairs of the matrix
pencil (KN`

,MN`
), then as described before, this means the following steps:

(1) the computation of a nested dissection reordering,
(2) a congruence transformation using the block LDLT decomposition,
(3) the computation of the eigenpairs of the diagonal pencils (Kj,j ,Mj,j),
(4) modal truncation.

The first two steps are changes of basis in the algebraic problem, while the last
two steps are the selection of a suitable linear combination of degrees of freedom
such that the desired eigenspace is spanned. Since every degree of freedom corre-
sponds to the coefficient of one basis function in the continuous problem, we can
express aforementioned operations also in the continuous setting. Thus, the AFEM
repeatedly refines the mesh only to assure that the algebraic eigensolver can discard
certain linear combinations of ansatz functions.

To analyze the space of functions that is removed during the modal truncation
and to analyze the relationship of AMLS and AFEM, we first have to keep in mind
that the AMLS method does not have a direct access to the operator L that was
discretized and sometimes, as we discussed in the introduction, there even is no such
operator L. Nevertheless, we know that the ansatz functions ϕ(i)

` exist and if we
were to increase the number of degrees of freedom to infinity, the mass and stiffness
matrices would be the exact representation of an (unknown) differential operator
L associated with the limiting PDE, and for this operator AMLS is a method that
computes approximate eigenvalues and eigenfunctions on a given mesh.
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Within the AMLS method we repeatedly change bases in the coordinate vector
spaces. If we assume that the 0-th level ansatz functions ψ(i)

0 := ψ(i), i = 1, 2, . . . , n
are either arising from some FE or AFEM discretization with P1 ansatz functions
ψ(1), ψ(2), . . . , ψ(n) of the continuous problem associated with a PDE, then the
algebraic changes of basis can be expressed via these ansatz functions. In the
AFEM case we could start with some refinement level ` and set

ψ(i) = ϕ
(i)
` , i = 1, 2, . . . , n`.

But any other way of constructing the initial basis would be appropriate as well
and then lead to an i-th basis function ψ(i)

k in the k-th AMLS step. To see what is
happening, assume for simplicity a single level of substructuring with one coupling
block of size n2 and one substructure block of size n1, such that n = n1 + n2. Let
the corresponding index sets be denoted by I1 := {1, 2, . . . , n1} and I2 := {n1 +
1, . . . , n}, respectively. Note that the AMLS method retains the nested dissection
reordering computed in the first step. Thus, there is always one substructure block
and one coupling block on the diagonal of the transformed matrices.

In the first step of the AMLS method a nested dissection reordering π is com-
puted, such that

ψ
(i)
1 = ψ

(π(i))
0 = ψ(π(i)).

Obviously, reordering the degrees of freedom in the discrete problem corresponds
to a renumbering of the ansatz functions.

If in the second step of the AMLS method we denote the entries of the block
Cholesky matrix LT as (LT )ij , then

ψ
(i)
2 =

n∑

j=1

(LT )ijψ
(j)
1 , i = 1, 2, . . . , n,

because we perform congruence transformations L−1(K−λhM)L−TLTψ1 = 0, and
ψ2 := LTψ1. Due to the block structure, ψ(i)

2 = ψ
(i)
1 , i ∈ I2, for all ansatz functions

of the coupling block. For the basis functions corresponding to the substructure
blocks, we have

ψ
(i)
2 = ψ

(i)
1 +

∑

j∈I2

(LT )ijψ
(j)
1 , i ∈ I1,

i.e., the basis functions ψ(i)
2 corresponding to the substructure block after the

LDLT decomposition are linear combinations of the basis functions ψ(i)
1 , i ∈ I1,

corresponding to the substructure blocks and the basis functions ψ(i)
1 , i ∈ I2 corre-

sponding to the coupling blocks.
If one uses an eigenvalue projection method, then the computation of the eigen-

vectors of the blocks in the third AMLS step corresponds to a change of basis with
the new basis being the set of block diagonal eigenvectors contained in the matrix
W̃ . Since W̃ is block diagonal and partitioned conformably, we are computing
linear combinations of the ψ(i)

2 within their respective blocks:

ψ
(i)
3 ∈ span{ψ(i)

2 | i ∈ Ik, k = 1, 2}, i = 1, 2, . . . , n.



NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS AFEM VS. AMLS 17

The modal truncation within the AMLS method corresponds to the selection of
transformed functions ψ(i)

3 :

ψ
(i)
4 =

{
ψ

(i)
3 λi ≤ θλc,

0 otherwise.

Thus whatever the initial set of ansatz function was, we have the following obser-
vations:

• Except for the LDLT decomposition, the basis functions corresponding to
one block do not appear in the linear combinations of the basis functions
corresponding to the other blocks;

• the basis functions ψ(i)
` , ` ≥ 2 corresponding to the substructuring blocks

depend on basis functions ψ(i)
1 , i ∈ I1 corresponding to the coupling

blocks;
• the basis functions ψ(i)

` corresponding to the coupling blocks depend only
on the basis functions corresponding to the coupling blocks.

In any case, the AMLS method is computing linear combinations of the initial ansatz
functions that approximate the desired eigenfunctions, by projecting into subspaces
which are constructed using linear combinations spanned by global functions, which
are still represented in the original basis. Thus all original fine basis functions
participate in the representation and the final eigenfunctions are constructed using
global functions in algebraically constructed substructures.

In contrast to this, the AFEM is selecting (by a projection with unit vectors),
except for the very last step when the mesh refinement is terminated, local ba-
sis functions and a globalization is only done in the final eigenvalue/eigenvector
computation.

From this point of view, one can say that AMLS starts with a fine mesh and
uses globalization in substructures to reduce the system size, while AFEM starts
with the same fine mesh but uses selected local basis functions all the way to the
final step.

5.1. Analysis of AMLS and AFEM. Suppose that we compute and assem-
ble mass and stiffness matrices using an FE software. Depending on the software,
this is done with or without explicitly using an available PDE. Nevertheless, the
analytical theory of the finite element method holds as long as the FE software
uses conforming finite elements. Therefore, we can apply the standard convergence
results, e.g. [66, Theorem 3.7], and for the case of an infinite number of degrees of
freedom the solution uh of the discretized problem will be identical to the solution
u of the continuous problem. Moreover, the theorem of Necas [54, Theorem 2]
guarantees that uh will be the unique solution to some (unknown to us) variation-
ally stated problem. Therefore, we can always apply the finite element convergence
theory even if we do not know the underlying PDE.

But these statements are made from a purely mathematical point of view. If we
were able to discretize problems with an arbitrary fine step size, we might as well
replace all practical models in engineering, physics, and chemistry with a model
based on the interaction of elementary particles and thereby avoid the modeling
error inherent to macroscopic models.

In practice, there are some other aspects of the AFEM and the AMLS method
that are more relevant. At first an AFEM implementation requires knowledge of the
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differential operator L. It needs to be able to construct a partition of the domain Ω,
discretize a given PDE, solve the algebraic eigenvalue problems, estimate the errors,
and refine the mesh. All of these components must be integrated and cannot work
independently of each other, but then if the corresponding theory is available, the
convergence of the method can be proved. Furthermore, AFEM works with local
basis functions until the very last step and thus the matrices stay sparse. However,
many levels of refinement may be needed to achieve a desired level of accuracy.
This is particularly difficult if several eigenfunctions have to be computed.

On the other hand, the AMLS method requires only the knowledge of the ma-
trix pencil (K,M) and the cutoff parameter λc. This considerably simplifies the
implementation, since only knowledge of standard black box numerical linear alge-
bra tools is needed. Moreover, the AMLS method does not require the underlying
PDE model, which means that the AMLS method is more suitable for an arbitrary
generalized eigenvalue problems as long as the corresponding matrices have the re-
quired properties, i.e., symmetry and positive (semi-)definiteness. If this is not the
case, then the method can still be applied but becomes partially heuristic.

Both methods are fully automatic. The AFEM does not require any user
intervention to decide about a good mesh structure or the polynomial degree of the
ansatz functions in different subdomains, instead it will infer this information from
the problem when needed. The AMLS method requires a matrix pencil as input and
determines all necessary information from the input as well. The fully automatic
approach, though it may not always be fast, makes eigenvalue computations also
accessible to non-experienced users.

It remains an open question how to optimally combine the two methods to
obtain the best of both worlds. Both methods are in their current form not suited
for more complex eigenvalue problems like the second order problems with damping
discussed in the introduction. In AFEM no theory on error estimates is available
for complex multiple eigenvalues or Jordan blocks, so even if one would apply the
method it would be strongly heuristic. The only practical extension with some kind
of error control is to use a homotopy approach as introduced in [16], but even there
only very limited partial results are available. AMLS could in principle be applied
but with the cutoff value being replaced by some other selection criterion. But
there is no theory that this will work in the case of complex eigenvalues or Jordan
blocks. See also the experiments in Section 6.

6. Numerical Experiments

Since all existing AMLS implementations are closed source, in the remainder
of the paper, we consider our own Matlab implementation of the method. In
the current version we can treat symmetric generalized eigenvalue problems of the
form (12) with positive definite stiffness matrices and positive (semi-)definite mass
matrices, thus we can also deal with problems having eigenvalues at or close to
infinity. Moreover, we complement the AMLS method with a subspace iteration
method (SIM) [8, 73] to turn the subspace generated by the AMLS method into a
good approximation of the invariant subspace [73]. Our implementation does not
require any additional assumptions on the matrices beyond symmetry and positive
(semi-)definiteness, i.e., they do not need to be necessarily finite element matri-
ces. The matrix reorderings are computed with Metis [43] which computes the



NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS AFEM VS. AMLS 19

vertex separators such that there are exactly two substructures on every level of
substructuring.

In this section we will illustrate our AMLS implementation with several numer-
ical examples and present some interesting observations about the method. From
now on, we will refer to the original AMLS method described by [42] as the vanilla
AMLS method (vAMLS) and our implementation as the subspace improved AMLS
(sAMLS). We also investigate possible modifications and improvements which allow
to turn AMLS into a stand-alone eigenvalue solver.

6.1. A Quadratic Eigenvalue Problem. Consider the quadratic eigenvalue
problem (QEP)

(17) (µ2
hMh + µhCh +Kh)vh = 0.

Mh and Kh are real symmetric positive definite mass and stiffness matrices, Ch is
a real symmetric positive semidefinite structural damping matrix. For a theoretical
analysis of quadratic eigenvalue problems, see [67]. Many practitioners stress the
ability of the AMLS method to generate from the undamped problem (17), i. e.,
Ch = 0, a subspace which is close to an invariant subspace associated with certain
eigenvalues of the fully damped problem. As much as this statement is true for the
case of proportional damping (Rayleigh damping), there is no mathematical reason
why it should be true in the general case.

For this example and this example only, we will denote eigenpairs of the gener-
alized eigenvalue problem (GEP) (11) with (λh,uh) and the eigenpairs of (17) with
(µh,vh).

In the case of proportional damping, it is assumed that there exist real param-
eters α, β > 0 such that

Ch = αKh + βMh.

Then the eigenvectors uh of (11) are also eigenvectors of (17) and only the eigen-
values change, i. e., there exist eigenvalues µh ∈ C such that

(µ2
hMh + µhCh +Kh)uh = 0.

Therefore, a good approximation to any invariant subspace of the GEP will also
be a good approximation to an invariant subspace of the QEP. With general (real
symmetric) damping matrices, this is not necessarily true and we will demonstrate
this point using a real-life problem.

To assess the quality of an invariant subspace S, we compute eigenpair approx-
imations within S and the error of each eigenpair with respect to the whole space
Rnh . Then we can evaluate the quality of the space by applying statistical measures
to the set of errors, e. g., we can calculate minimum, maximum, or arithmetic mean,
etc.

Let
P (t) := t2Mh + tCh +Kh.

The relative backward normwise error for a computed eigenpair (µh,vh) can be
calculated, see e. g. [67, §4.2.1], via

ηP (µh,vh) =
‖P (µh)vh‖2

‖vh‖2 [|µh|2 ‖Mh‖2 + |µh| ‖Ch‖2 + ‖Kh‖2]
.

It should be noted that an exact eigenpair of the GEP (11) solves the QEP (µ2
hMh+

Kh)uh = 0 if µh = ±i
√
λh, where i is the imaginary unit and we will use this fact
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‖·‖2 κ2(·)

Kh 5.9803 · 107 2.8114 · 106

Mh 7.0909 · 10−5 714.20
Ch 6.8600 ∞

Table 1. Euclidean norm ‖ · ‖2 and condition number κ2(X) :=
‖X‖2‖X−1‖2 for a small brake model, nh = 4669.

to evaluate eigenpairs of (11). Since we deal with relative errors, a small backward
error has the same magnitude as the machine epsilon ε. The forward error can be
computed by multiplying the backward error with the condition number and for an
eigenvalue of (17), the condition number can be estimated via

κP (µh,vh) =
|µh|2 ‖Mh‖2 + |µh| ‖Ch‖2 + ‖Kh‖2
|µh|

∣∣vTh (2µhMh + Ch)vh
∣∣ .

If we consider an exact eigenpair (λh,uh) of (11) as an approximate eigenpair for
the QEP (17) (with damping) by setting

µ̃h := i
√
λh, ṽh := uh,

then, assuming that we can compute the required matrix 2-norms, we obtain

ηP (µ̃h, ṽh) =
‖µ̃hChṽh‖2

‖ṽh‖2 [|µ̃2
h| ‖Mh‖2 + |µ̃h| ‖Ch‖2 + ‖Kh‖2]

.

This illustrates that we can cause a large backward error if ‖Chṽh‖2 and ‖Ch‖2
are sufficiently large compared to ‖Mh‖ and ‖Kh‖, which confirms our claim that
eigenspaces of (11) and (17) may be completely different.

Among other examples we consider as set of test matrices the Harwell-Boeing
BCS structural engineering matrices which are a collection of real-world generalized
eigenvalue problems [22]. For these problems, the stiffness matrix often has a norm
that is several magnitudes larger than the norm of the mass matrix. If the damping
matrix is small in norm compared to the stiffness matrix, then it does not have
much influence on the backward error. To illustrate this, consider the FE model
of an industrial disk brake with an external load from a brake pad [33]. Here,
the matrices were obtained with the FEM software Intes Permas [39] and their
properties are listed in Table 1. The damping matrix has only 342 columns and
rows with nonzero entries and according to the Matlab rank function, the damping
matrix has numerical rank 50.

In the following we show how well different invariant subspaces calculated based
on (11) approximate invariant subspaces of (17) using the brake model matrices.
Specifically, we will compare

• the subspace Se spanned by the eigenvectors corresponding to the k = 554
smallest eigenvalues of (11),

• the subspace Ss calculated by the AMLS implementation (sAMLS, dimen-
sion 352),

• and the subspace Sv computed by vanilla AMLS (vAMLS, dimension 554).
The eigenvectors corresponding to the smallest eigenvalues of (11) were com-

puted using the Matlab function eigs. As a starting vector, opts.v0 in eigs,
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Space Minimum Maximum Mean Median

Se 1.3 · 10−17 6.4 · 10−16 1.4 · 10−16 9.8 · 10−17

Ss 1.5 · 10−15 3.1 · 10−9 1.2 · 10−10 3.3 · 10−11

Sv 6.5 · 10−7 3.2 · 10−2 1.5 · 10−3 4.8 · 10−4

Table 2. Relative normwise backward error with respect to the
GEP (11) for eigenpairs computed on different subspaces.

we used in all cases the vector of all ones in order to have reproducible results.
In both AMLS variants, we used four levels of substructuring, i. e., there are 16
substructure blocks, and the cutoff λc = 1010. sAMLS was run with the default
settings whereas for vAMLS we we set θ = 2.12 (this value is used during modal
truncation). Note that the default value for θ is 8.42 for both AMLS variants. By
changing θ for vAMLS, we wanted to reduce the excessive dimension of the vAMLS
subspace when run with the default settings (3419). All computations were per-
formed in double precision ε = 2.2 · 10−16. For every subspace, we will compare
minimum, maximum, arithmetic mean, and median of the errors of all calculated
eigenpairs within a given subspace.

Remark 6.1. The size of the subspace returned by vanilla AMLS is determined
during the modal truncation step. Here, every eigenvalue λ̃j , j = 1, . . . , `, of every
diagonal block is compared individually to the cutoff λc. Clearly, the worst possible
case is that all comparisons have the same result because then either all or no
vectors are selected. As an example, consider a matrix pencil, for which for all
j1, j2, k1, k2,

λ̃
(k1)
j1

= λ̃
(k2)
j2

,

i. e., all diagonal blocks have only one eigenvalue (with corresponding algebraic
multiplicity) and for all diagonal blocks it is the same value.

The disk brake problem is close to such a worst-case matrix pencil since 3116
out of nh = 4669 possible distinct eigenvalues of the diagonal blocks are in the
interval [1011, 1012]. Note that the largest generalized eigenvalue of (11) in this
case is λh,max ≈ 2 · 1013, and the smallest eigenvalue is λh,min ≈ 2 · 106.

In Table 2, we display the backward errors of the different spaces with respect
to the GEP (11), i. e., we measure how well each subspace approximates an invari-
ant subspace of (11). As expected, Se is a very good approximation to an invariant
subspace, the maximal relative backward error is comparable to the machine ep-
silon ε. The vAMLS subspace is a noticeably worse approximation to an invariant
subspace than Se but the subspace iterations of sAMLS make a real difference here,
and decrease the mean and median backward error compared to Sv significantly.
For completeness, we also list the relative forward errors for (11) in Table 3.

In Table 4, we display the relative normwise backward errore with respect
to (17). The presence of the damping matrix leads to large changes and increases
the backward error by several orders of magnitude for Se and Ss. For the minimum
and maximum backward error, Se contains considerably better eigenpair approxi-
mations but on average (mean, median), there is a hardly any difference between
Se and Ss with respect to our quantitative measures. Interestingly, the damping
has hardly an impact on the vAMLS space; consequently, the average backward
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Space Minimum Maximum Mean Median

Se 3.2 · 10−14 1.2 · 10−10 4.8 · 10−13 1.3 · 10−13

Ss 8.1 · 10−11 1.1 · 10−6 1.6 · 10−7 8.3 · 10−8

Sv 8.4 · 10−2 1.4 · 100 5.2 · 10−1 4.5 · 10−1

Table 3. Relative normwise forward error with respect to the
GEP (11) for eigenpairs computed on different subspaces.

Space Minimum Maximum Mean Median

Se 3.5 · 10−15 5.8 · 10−3 2.6 · 10−4 8.5 · 10−5

Ss 9.2 · 10−13 7.7 · 10−3 2.7 · 10−4 7.0 · 10−5

Sv 7.1 · 10−7 3.1 · 10−2 1.6 · 10−3 5.8 · 10−4

Table 4. Relative normwise backward error with respect to the
QEP (17) for eigenpairs computed on different subspaces.

Space Minimum Maximum Mean Median

Se 4.2 · 10−10 4.4 · 100 2.0 · 10−1 1.2 · 10−1

Ss 1.1 · 10−7 4.7 · 100 3.5 · 10−1 2.1 · 10−1

Sv 7.7 · 10−2 6.9 · 100 5.9 · 10−1 4.8 · 10−1

Table 5. Relative normwise forward error with respect to the
QEP (17) for eigenpairs computed on different subspaces.

error difference to the other spaces shrinks from several magnitudes to a factor less
than 10. Note that the backward errors of Sv are comparable for GEP and QEP.

Since we have used the invariant subspaces of (11) to find approximate invariant
subspaces for (17), apparently a small backward error is not as important as other
factors. To see whether we are least close to an exact solution, we also analyzed
the forward error for (17), the results are shown in Table 5.

We see that on average, the spaces are hardly distinguishable using our mea-
sures. Especially surprising is the fact that the backward and the forward errors of
Sv have the same order of magnitude with respect to (11) and (17).

From a mathematical point of view, there is no reason why an invariant sub-
space for equation (11) should resemble an invariant subspace for (17) and in large
scale problems it has been observed that indeed this may not be the case [33].
Nevertheless, the projection of quadratic eigenvalue problems via AMLS subspaces
is a standard procedure in engineering practice. Surprisingly, in many cases, the
quantitative differences between the three spaces vanish when computing errors
with respect to (17). In practice, AMLS seems to be able to handle larger problems
than a standard Arnoldi-eigensolver and in conjunction with our examples, one can
see why AMLS subspaces are so popular for dimensional reduction in mechanical
engineering applications.
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0

1hy

2hy

3hy

4hy

5hy

(x3, y2)

Figure 2. A grid over the rectangle (0, 2) × (0, 1) with n = 4
points on each axis. The inner nodes marked with black dots (•)
are the degrees of freedom of the discrete problem.

6.2. Isospectral Domains and AMLS. In this section we demonstrate a
difficulty of the AMLS approach when dealing with isospectral domains. As a
model problem we will use the simple Laplace eigenvalue problem (8) defined over
the rectangular domain Ω = (0, α)× (0, β). For this choice the exact eigenpairs are
known [19, Chapter VI, §4.1] and explicitly given as

(λi,j , ui,j) =

((
i2

α2
+
j2

β2

)
π2,

2√
αβ

sin
iπx

α
sin

jπy

β

)
, i, j = 1, 2, . . . .

Obviously, the problems with domains (0, α)× (0, β) and (0, β)× (0, α) possess the
same set of eigenvalues.

Let us discretize the problem with axis parallel quadrilateral elements and
piecewise linear ansatz functions over n inner nodes on each axis with the boundary
points given by (x, y) with x ∈ {0, α} or y ∈ {0, β} and step sizes hx := α(n+ 1)−1

and hy := β(n + 1)−1 in x- and y-direction, respectively. For this discretization
the eigenvectors will be pointwise exact in the grid nodes. In Figure 2 we show the
domain (0, α)× (0, β) with α = 2, β = 1 and the associated mesh.

For the following experiments we chose nh = 32, λc = 100, θ = 8.42, α = 1, β =
32, and α = 32, β = 1, respectively. The analyzed problem has nc = 91 eigenvalues
λh ≤ λc. Let us now investigate the properties of the subspace generated by the
vAMLS method. At first, we notice that the matrix substructures obtained with
Metis [43] for both domains are the same. Since, in both cases, the sparsity
pattern of the stiffness matrix is the same and Metis graph partitioner works with
the unweighted induced graph, the fact of different directional scaling is not taken
into account.

Figure 3 shows the cosines of the angles between the subspace generated by the
vAMLS method and the set of exact eigenvectors. The eigenvectors are sorted ac-
cording to their corresponding eigenvalues in ascending order. Ideally, the vAMLS
method computes the subspace spanned by the first nc = 91 eigenvectors, i.e., for
i = 1, 2, . . . , nc, the cosine of the angles is one and zero otherwise. As we can see
in Figure 3, the vAMLS method does not compute the desired eigenspace in the
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second case and moreover, it clearly does not recognize the isospectral property of
the two domains. Although the presented example can be handled through a spe-
cial discretization or directly by the AFEM, the purpose of our investigation was
different. In engineering problems the most efficient algorithms strongly benefit
from exploiting symmetries which allow to reduce significantly the overall compu-
tational complexity. Since the AMLS method is a commonly used approach in
structural mechanics, we were interested how the AMLS method deals with present
symmetries. Furthermore, independent of modeling, both algebraic problems have
the same eigenvalues and this should be visible in the results.
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Figure 3. Subspace generated by vanilla AMLS with nh = 32, λc = 100, and one level of substructuring with two
substructure blocks.
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7. Conclusion

We have discussed two of the most widely used methods for the solution of
PDE eigenvalue problems as well as their advantages and disadvantages. The adap-
tive finite element method AFEM and its variant AFEMLA are provably efficient
for standard elliptic problems. The automated multilevel substructuring method
(AMLS) is widely used in practice for problems that require only approximate so-
lutions. Since it does not compute a space with prescribed properties, its success
is partially heuristic. In principle, both methods work with approximations of fine
grid solutions. The difference is that in AFEM the approximation is an approxima-
tion on a coarse mesh that is obtained by leaving out nodes in the fine mesh and
the associated basis functions, while in AMLS the reduction is achieved by choos-
ing a basis of local eigenfunctions (which are represented by the fine mesh basis
functions). Both methods work well on elliptic problems, but no theory is available
for damped problems. AMLS is fast compared to standard eigensolvers and it is
applicable to very large scale problems, and if often gives surprisingly good results
even for damped problems. However, what is needed is a major research effort to
study AFEM or AMLS methods for practical PDE eigenvalue problems, with or
without the given PDE model.

References

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Ele-
ment Analysis, Pure and Applied Mathematics, 2000, pp. xx+240.

[2] A. Akay, Acoustics of friction, Acoustical Society of America Journal, vol. 111,
no. 4, pp. 1525–1548, 2002.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
eds., LAPACK Users’ Guide, Software, Environments and Tools, 1999.

[4] I. Babuška and J. E. Osborn, Eigenvalue Problems. Handbook of Numerical
Analysis Vol. II, 1991, pp. 641–792.

[5] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability,
Numerical Mathematics and Scientific Computation, 2001, pp. xii+802.

[6] I. Babuška, J. Whiteman, and T. Strouboulis, Finite Elements, An Introduc-
tion to the Method and Error Estimation, 2010.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for
the Solution of Algebraic Eigenvalue Problems, A Practical Guide, Software,
Environments and Tools, 2000.

[8] K.-J. Bathe, Finite Element Procedures, 1996.
[9] J. K. Bennighof and R. B. Lehoucq, An Automated Multilevel Substructuring

Method for Eigenspace Computation in Linear Elastodynamics, SIAM J. Sci.
Comput. Vol. 25, no. 6, pp. 2084–2106, 2004.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley, ScaLAPACK User’s Guide, Software, Environments and
Tools, 1997.

[11] D. Braess, Finite Elements, Third, Theory, fast solvers, and applications in
elasticity theory, Translated from the German by Larry L. Schumaker, 2007,
pp. xviii+365.



REFERENCES 27

[12] S. C. Brenner and C. Carstensen, “Finite Element Methods”, in: Encyclopedia
of Computational Mechanics, Vol. I, ed. by E. Stein, R. de Borst, and T. J. R.
Huges, 2004, pp. 73–114.

[13] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Third, vol. 15, Texts in Applied Mathematics, 2008, pp. xviii+397.

[14] C. Carstensen and J. Gedicke, An adaptive finite element eigenvalue solver of
asymptotic quasi-optimal computational complexity, SIAM J. Numer. Anal.
Vol. 50, no. 3, pp. 1029–1057, 2012.

[15] C. Carstensen, J. Gedicke, V. Mehrmann, and A. Międlar, An adaptive finite
element method with asymptotic saturation for eigenvalue problems, Numer.
Math. Vol. 128, pp. 615–634, 2014.

[16] C. Carstensen, J. Gedicke, V. Mehrmann, and A. Międlar, An adaptive homo-
topy approach for non-selfadjoint eigenvalue problems,Numer. Math.Vol. 119,
no. 3, pp. 557–583, 2011.

[17] Z. Chen, Finite Element Methods and Their Applications, Scientific Compu-
tation, 2005, pp. xiv+410.

[18] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 40, Clas-
sics in Applied Mathematics, Reprint of the 1978 original (North-Holland,
Amsterdam), 2002, pp. xxviii+530.

[19] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, 1953,
pp. xv+561.

[20] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM
J. Numer. Anal. Vol. 33, no. 3, pp. 1106–1124, 1996.

[21] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Monographs on Numerical Analysis, 1989.

[22] Iain Duff, Roger Grimes, and John Lewis, Sparse Matrix Test Problems, ACM
Transactions on Mathematics Software, vol. 15, no. 1, pp. 1–14, 1989.

[23] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative
Solvers with Applications in Incompressible Fluid Dynamics, Second, Numer-
ical Mathematics and Scientific Computation, 2014, pp. xiv+479.

[24] K. Elssel and H. Voss, An a priori bound for automated multilevel substruc-
turing, SIAM J. Matrix Anal. Appl. Vol. 28, no. 2, pp. 386–397, 2006.

[25] A. A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159,
Applied Mathematical Sciences, 2004, pp. xiv+524.

[26] L. C. Evans, Partial Differential Equations, Second, vol. 19, Graduate Studies
in Mathematics, 2010, pp. xxii+749.

[27] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Dec. 2012.
[28] D. Gallistl, Adaptive nonconforming finite element approximation of eigen-

value clusters, Comput. Methods Appl. Math. Vol. 14, no. 4, pp. 509–535,
2014.

[29] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters, Numer. Math.
2015.

[30] A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J.
Numer. Anal. Vol. 10, no. 2, pp. 345–363, 1973.

[31] M. S. Gockenbach, Partial differential equations, Second, Analytical and nu-
merical methods, 2011, pp. xx+654.

[32] M. S. Gockenbach,Understanding and Implementing the Finite Element Method,
2006, pp. xvi+363.



28 REFERENCES

[33] N. Gräbner, S. Quraishi, C. Schröder, V. Mehrmann, and U. von Wagner,
New Numerical Methods for the Complex Eigenvalue Analysis of Disk Brake
Squeal, Submitted, 2014.

[34] C. Grossmann and H.-G. Roos, Numerical treatment of partial differential
equations, Universitext, Translated and revised from the 3rd (2005) German
edition by Martin Stynes, 2007, pp. xii+591.

[35] W. Hackbusch, Elliptic Differential Equations, vol. 18, Springer Series in
Computational Mathematics, Translated from the author’s revision of the
1986 German original by Regine Fadiman and Patrick D. F. Ion, 1992, pp. xiv+311.

[36] S. Hammarling, C. J. Munro, and F. Tisseur, An Algorithm for the Complete
Solution of Quadratic Eigenvalue Problems, ACM Transactions on Mathe-
matical Software, vol. 39, no. 3, 18:1–18:19, 2013.

[37] U. L. Hetmaniuk and R. B. Lehoucq, “Multilevel methods for eigenspace
computations in structural dynamics”, in: Domain Decomposition Methods in
Science and Engineering XVI, vol. 55, Lect. Notes Comput. Sci. Eng. 2007,
pp. 103–113.

[38] V. Heuveline and R. Rannacher, A posteriori error control for finite element
approximations of elliptic eigenvalue problems, Adv. Comp. Math. Vol. 15,
no. 1–4, pp. 107–138, 2001.

[39] Ingenieurgesellschaft für technische Software mbH, PERMAS Production De-
scription Version 15, 2014.

[40] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite
Element Method, Reprint of the 1987 edition, 2009, pp. ii+279.

[41] C. Kamm, A posteriori error estimation in numerical methods for solving
self-adjoint eigenvalue problems, MA thesis, Strasse des 17. Juni 136, 10623
Berlin: Technische Universität Berlin, Institut für Mathematik, 2007.

[42] M. F. Kaplan, Implementation of Automated Multilevel Substructuring for
Frequency Response Analysis of Structures, PhD thesis, Austin, TX, USA:
University of Texas at Austin, 2001.

[43] G. Karypis and V. Kumar, A Fast and Highly Quality Multilevel Scheme for
Partitioning Irregular Graphs, SIAM J. Sci. Comput. Vol. 20, no. 1, pp. 359–
392, 1998.

[44] T. Kato, Perturbation theory for linear operators, Classics in Mathematics,
Reprint of the 1980 edition, 1995, pp. xxii+619.

[45] N. M. Kinkaid, O. M. O’Reilly, and P. Papadopoulos, Automotive disc brake
squeal, Journal of Sound and Vibration, vol. 267, no. 1, pp. 105–166, 2003.

[46] M. G. Larson and F. Bengzon, The Finite Element Method: Theory, Imple-
mentation, and Applications, vol. 10, Texts in Computational Science and
Engineering, 2013, pp. xviii+385.

[47] S. Larsson and V. Thomée, Partial Differential Equations with Numerical
Methods, vol. 45, Texts in Applied Mathematics, 2003, pp. x+259.

[48] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide, So-
lution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, Software, Environments and Tools, 1998.

[49] R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu, Erratum: Perturbation of
Partitioned Hermitian Definite Generalized Eigenvalue Problems, SIAM J.
Matrix Anal. Appl. Vol. 34, no. 1, Erratum for [50], pp. 280–281, 2013.



REFERENCES 29

[50] R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu, Perturbation of Partitioned
Hermitian Definite Generalized Eigenvalue Problems, SIAM J. Matrix Anal.
Appl. Vol. 32, no. 2, See also erratum [49], pp. 642–663, 2011.

[51] V. Mehrmann and A. Międlar, Adaptive computation of smallest eigenvalues
of self-adjoint elliptic partial differential equations, Numer. Linear Algebra
Appl. Vol. 18, no. 3, pp. 387–409, 2011.

[52] A. Międlar, Functional perturbation results and the balanced AFEM algorithm
for self-adjoint PDE eigenvalue problems, Preprint 817, Berlin: DFG Research
Center Matheon, 2011.

[53] A. Międlar, Inexact Adaptive Finite Element Methods for Elliptic PDE Eigen-
value Problems, PhD thesis, Technische Universität Berlin, Insitut für Math-
ematik, 2011.

[54] R. H. Nochetto, K. G. Siebert, and A. Veeser, “Theory of Adaptive Finite
Element Methods: An Introduction”, in: Multiscale, Nonlinear and Adaptive
Approximation, 2009, pp. 409–542.

[55] R. H. Nochetto and A. Veeser, “Primer of adaptive finite element methods”,
in: Multiscale and adaptivity: modeling, numerics and applications, vol. 2040,
Lecture Notes in Math. 2012, pp. 125–225.

[56] H. Ouyang, W. Nack, Y. Yuan, and F. Chen, Numerical analysis of automo-
tive disc brake squeal: a review, International Journal of Vehicle Noise and
Vibration, vol. 1, no. 3/4, pp. 207–231, 2005.

[57] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Applied Math-
ematics 20, 1998.

[58] A. Quarteroni, Numerical Models for Differential Problems, Second, vol. 8,
MS&A. Modeling, Simulation and Applications, Translated from the fifth
(2012) Italian edition by Silvia Quarteroni, 2014, pp. xx+656.

[59] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential
Equations, Springer Series in Computational Mathematics, 2008.

[60] Jr. R. R. Craig and M. C. C. Bampton, Coupling of Substructures for Dy-
namic Analyses, AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.

[61] R. Rannacher, A. Westenberger, and W. Wollner, Adaptive finite element so-
lution of eigenvalue problems: balancing of discretization and iteration error,
J. Numer. Math. Vol. 18, no. 4, pp. 303–327, 2010.

[62] P.-A. Raviart and J.-M. Thomas, Introduction à l’Analyse Numérique des
Équations aux Dérivées Partielles, Collection Mathématiques Appliquées pour
la Maîtrise, 1983, p. 224.

[63] S. I. Repin, A Posteriori Estimates for Partial Differential Equations, vol. 4,
Radon Series on Computational and Applied Mathematics, 2008, pp. xii+316.

[64] J. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity,
2006.

[65] P. Šolín, Partial Differential Equations and the Finite Element Method, Pure
and Applied Mathematics (New York), 2006, pp. xviii+472.

[66] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-
Hall Series in Automatic Computation, 1973, pp. xiv+306.

[67] L. Taslaman, Algorithms and Theory for Polynomial Eigenvalue problems,
PhD thesis, University of Manchester, School of Mathematics, 2014.

[68] R. Verfürth, A posteriori error estimation techniques for finite element meth-
ods, Numerical Mathematics and Scientific Computation, 2013, pp. xx+393.



30 REFERENCES

[69] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques, 1996.

[70] H. F. Weinberger, Variational methods for eigenvalue approximation, Based
on a series of lectures presented at the NSF-CBMS Regional Conference on
Approximation of Eigenvalues of Differential Operators, Vanderbilt Univer-
sity, Nashville, Tenn., June 26–30, 1972, Conference Board of the Mathe-
matical Sciences Regional Conference Series in Applied Mathematics, No. 15,
1974, pp. v+160.

[71] C. Yang, W. Gao, Z. Bai, Xiaoye Z. S. Li, L.-Q. Lee, P. Husbands, and E. Ng,
An Algebraic Substructuring Method for Large-Scale Eigenvalue Calculation,
SIAM J. Sci. Comput. Vol. 27, no. 3, pp. 873–892, 2005.

[72] Y. Yang, L. Sun, H. Bi, and H. Li, A note on the residual type a posteriori error
estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue
problems, Appl. Numer. Math. Vol. 82, pp. 51–67, 2014.

[73] J. Yin, H. Voss, and P. Chen, Improving eigenpairs of automated multilevel
substructuring with subspace iterations, Computers and Structures, vol. 119,
pp. 115–124, 2013.


