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Abstract. The numerical simulation of the band structure of three-dimensional dispersive
metallic photonic crystals with face-centered cubic lattices leads to large-scale nonlinear eigenvalue
problems, which are very challenging due to a high dimensional subspace associated with the eigen-
value zero and the fact that the desired eigenvalues (with smallest real part) cluster near the zero
eigenvalues. For the solution of the eigenvalue problem, a Newton-type iterative method is proposed
and the nullspace-free method is applied to exclude the zero eigenvalues from the associated gen-
eralized eigenvalue problem. To find the successive eigenvalue/eigenvector pairs, we propose a new
non-equivalence deflation method to transform converged eigenvalues to infinity, while all other eigen-
values remain unchanged. The deflated problem is then solved by the same Newton-type method,
which uses a hybrid method that combines the Jacobi-Davidson, the shift-invert residual Arnoldi
and nonlinear Arnoldi methods to compute the clustered eigenvalues. Numerical results illustrate
that the method is robust even for the case of computing many eigenvalues in very large problems.
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1. Introduction. The electromagnetic wave propagation through dispersive me-
tallic photonic crystals (PCs) has been extensively studied over the past few decades
[8, 9, 10, 34, 38, 46]. A standard model to study the electromagnetic effects in periodic
structures and dispersive isotropic materials is the three-dimensional (3D) Maxwell
equation

∇×∇× E(r) = ω2ε(r, ω)E(r), (1.1)

where E(r) denotes the electric field at position r ∈ R3 and ε(r, ω) denotes the
permittivity, which is dependent on the position r and the frequency ω.

In the Drude model of a dispersive material [34, 38, 51, 52], the permittivity
ε(r, ω) is modeled as

ε(r, ω) = 1−
ω2
p

ω2 + ıΓpω
, (1.2)

for r in the material domain, and ε(r, ω) = εn (constant) otherwise, where ı =
√
−1,

ωp is a plasma frequency, and Γp is the corresponding damping frequency. The more
involved Drude-Lorentz model [10, 11, 34, 46] uses the permittivity model

ε(r, ω) = ε∞ −
ω2
p

ω2 + ıΓpω
+

2∑
j=1

ΩjAj

(
eıφj

Ωj − ω − ıΓj
+

e−ıφj

Ωj + ω + ıΓj

)
, (1.3)
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for r in the material domain and ε(r, ω) = εn (constant) otherwise, where ε∞ is a
high-frequency limit dielectric constant, φj , Ωj , Aj and Γj are the parameters for the
two pairs of poles in the Lorentz model. The first and second term in (1.3) correspond
to the contributions of a Drude model with ε∞ = 1. The third term arises from the
interband transitions.

There are many approaches for the numerical simulation of wave propagation in
photonic crystals. Very often, time-domain simulation methods, see e.g. [12], are
used to calculate the band structures of 3D metallic PCs, but in order to obtain
reasonable results extremely long simulation times are required. As an alternative,
often Fourier transform and the discretization of the time-invariant system (1.1) is
considered, which leads to a nonlinear eigenvalue problem (NLEVP) [8, 9, 34], which
is rational in the frequency ω. To solve large scale NLEVPs, however, is also a non-
trivial task [37, 45], and is particularly challenging for 3D metallic PCs. In [8, 9, 34],
the rational eigenvalue problem is reformulated as a polynomial eigenvalue problems
(PEPs) by multiplying with the common denominator. The PEP is then reformulated
(linearized) [13, 35] as a generalized eigenvalue problem to which standard eigenvalue
methods [2, 32, 39] can be applied. However, in this approach the order of the problem
is highly enlarged and the sensitivity of the eigenvalues and eigenvectors may increase
considerably, since the set of admissible perturbations for the linearized eigenvalue
problem is larger than that of the PEP [44] and, even more of the rational problem.

A completely different eigenvalue method is to work directly with the NLEVP.
One can use the polynomial Jacobi-Davidson method [21, 24, 41, 42, 49] for the
PEPs or the rational Krylov method [26, 40], nonlinear Arnoldi method [47], contour
integrals [1, 4], and other methods in [7, 25, 29, 33, 41, 48] to solve the general
NLEVP. In [5, 7] a very promising new method for PEPs is suggested that computes
full invariant pairs but in Jacobi-Davidson or Newton type methods, often only one
eigenvalue/eigenvector pair is determined at a time, e.g. when the algorithms in
[21, 24, 26, 33, 40, 42, 47, 47, 48, 49] are applied to solve the NLEVP. One way then to
compute several successive eigenpairs is to deflate converged eigenvalue/eigenvectors
from the NLEVP. In [15], an explicit non-equivalence low-rank deflation method is
proposed for computing the smallest real eigenvalues of a special quadratic eigenvalue
problem. Once the smallest positive eigenvalue is obtained, it is then transformed to
zero by the deflation scheme, while all other eigenvalues remain unchanged. The next
successive eigenvalue thus becomes the smallest positive eigenvalue of the transformed
problem, which is then again solved by the proposed method. The concept of non-
equivalence deflation is also applied to solve special quadratic problems in [20, 23],
and cubic polynomial eigenvalue problems [22, 49]. One of the differences of the
non-equivalence deflation scheme in [15] and [20, 22, 23, 49] is that the convergent
eigenvalue is transformed to infinity rather than 0.

Almost all currently available eigenvalue methods have large difficulties when
multiple eigenvalues occur, because then the convergence of Newton-type methods
deteriorates and in this case also the condition number of the problem typically is
extremely large, so that small perturbations lead to large errors. In this case it is
necessary to consider either block oriented methods [3, 5, 7, 36] which currently are
designed for quadratic and polynomial problems, or in the more general nonlinear
case, one needs to employ specially designed deflation techniques as the one we will
discuss in this paper.

We consider large, sparse NLEVPs of the form

Ax = ω2B(ω)x, (1.4)
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arising from a 3D dispersive metallic PC with a face-centered cubic lattice, where A,
B(ω) are large, sparse matrices. This problem has a large number of zero eigenvalues
and most of the desired eigenvalues are clustered near the zero eigenvalues so that it
becomes an extremely challenging problem. To deal with this challenge, we propose
a Newton-type iterative method with a special non-equivalence deflation scheme to
solve (1.4).

Starting from a sample frequency ωk, we solve the generalized eigenvalue problem
(GEP)

βAx = (ωkB(ωk)) x.

We apply the nullspace-free method of [17, 19], and transform the GEP to a stan-
dard eigenvalue problem (SEP). Both, the SEP and the GEP have the same nonzero
finite eigenvalues. Using a computed eigenvalue/eigenvector pair of the SEP, a novel
Newton-type scheme is presented to update the starting frequency ωk. The quadratic
convergence of the method is illustrated via numerical examples. We also propose a
novel non-equivalence low-rank deflation scheme to transform a convergent eigenvalue
to infinity, while the other eigenvalues remain unchanged. The deflated NLEVP is
then again solved by the same method. To make this method practical, we discuss
some strategies for determining ω0, initial vectors and stopping tolerances for the
solution of the SEP, which reduce the computational cost and accelerate the conver-
gence. Furthermore, a hybrid eigenvalue method is proposed to compute the desired
eigenvalue clusters.

This paper is organized as follows. In Section 2, we briefly derive the NLEVP
and the new non-equivalence low-rank deflation method. In Section 3, we introduce
the Newton-type method. The Jacobi-Davidson, the shift-invert residual Arnoldi
and the nonlinear Arnoldi methods to solve the SEP and NLEVP, respectively, are
reviewed in Section 4. Some practical implementations to reduce the computational
cost are proposed in Section 5. Numerical experiments to validate the robustness
of the proposed schemes are demonstrated in Section 6. We conclude the paper in
Section 7.

2. Nonlinear eigenvalue problems. In this section, we first introduce the
resulting NLEVP by using the Yee scheme [50] for the discretization of the Maxwell
equation (1.1). Then we propose a non-equivalence deflation scheme which allows
to transform the resulting NLEVP with eigenvalue/eigenvector pair (µ,x) to a new
NLEVP with the same eigenvalues except that µ is replaced by infinity. Both the
original and the new NLEVP have the form

Ax = ωB̂(ω)x (2.1)

In the next section, we will then develop a Newton-type method to solve (2.1) so that
we can intertwine this method and the non-equivalence deflation scheme to compute
the desired eigenvalue/eigenvector pairs.

Based on the Bloch Theorem [28], we aim to find the Bloch eigenfunctions E(r)
for (1.1) satisfying the following quasi-periodicity condition

E(r + a`) = eı2πk·a`E(r),

for ` = 1, 2, 3. Here, 2πk is the Bloch wave vector in the first Brillouin zone [27] and
the vectors a` are the lattice translation vectors that span the primitive cell, which
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are extended periodically to form the dispersive metallic photonic crystal. In this
paper, we focus on the face-centered cubic lattice (FCC) vectors, i.e.,

a1 =
a√
2

[1, 0, 0]T , a2 =
a√
2

[
1

2
,

√
3

2
, 0

]T
, a3 =

a√
2

[
1

2
,

1

2
√

3
,

√
2

3

]T
with lattice constant a.

Let n1, n2, and n3 with n = n1n2n3 be the number of grid points in x, y, and z
direction, respectively, and let δx, δy, and δz denote the associated grid lengths in x,
y, and z axial direction, respectively.

The resulting matrix A arising from the discretized double-curl operator using
the Yee scheme [50] on a primitive cell is then of the form [16, 17, 18]

A = C∗C ∈ C3n×3n, (2.2)

where

C =

 0 −C3 C2

C3 0 −C1

−C2 C1 0

 ∈ C3n×3n,

with

C1 = In2n3 ⊗K1 ∈ Cn×n, C2 = In3 ⊗K2 ∈ Cn×n, C3 = K3 ∈ Cn×n (2.3)

where ⊗ denotes the Kronecker product, see [17] for the detailed definition of the
pseudo periodical matrices K1, K2, and K3. The resulting NLEVP then has the form

F (ω)x ≡
(
A− ω2B(ω)

)
x = 0, (2.4)

where A is defined in (2.2) and B(ω) is a diagonal matrix associated with the permit-
tivity that can be split into the sum of two diagonal matrices

B(ω) = Bn + ε(r, ω)Bd, (2.5)

where the subscripts n and d indicate the non-dispersive and the dispersive materials,
respectively [34], and ε(r, ω) is the related permittivity of the dispersive material
given in (1.2) and (1.3). The goal of the eigenvalue computation is to compute the
eigenvalues of smallest real part and associated eigenvectors.

To conduct the analysis of the NLEVP (2.4) we have the following lemma.
Lemma 2.1. Let ε(r, ω) be defined as in (1.2) or (1.3). Then ε(r, ω) = ε(r,−ω̄).
Proof. From (1.2) and (1.3), we directly have

ε(r, ω) = 1−
ω2
p

ω̄2 − ıΓpω̄
= 1−

ω2
p

(−ω̄)2 + ıΓp(−ω̄)
= ε(r,−ω̄)

and

ε(r, ω) = ε∞ −
ω2
p

(ω̄)2 − ıΓpω̄
+

2∑
j=1

ΩjAj

(
e−ıφj

Ωj − ω̄ + ıΓj
+

eıφj

Ωj + ω̄ − ıΓj

)
= ε(r,−ω̄),

respectively.
With the help of Lemma 2.1 we have the following Theorem.
Theorem 2.2. The NLEVP (2.4) has the following properties.
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1. F (ω) has n zero eigenvalues.
2. F ∗(ω) = F (−ω̄), i.e., ω and −ω̄ are eigenvalues of F (ω).
3. If y is a left eigenvector of F (ω) associated with the eigenvalue ω, then y is

a right eigenvector associated with the eigenvalue −ω̄.

Proof. Rewrite (2.4) as

Ax = ωB1(ω)x with B1(ω) = ωB(ω). (2.6)

Then from (2.5) and the definition of ε(r, ω) in (1.2) or (1.3), it follows that B1(0) =

− ω2
p

ıΓp
Bd. This implies that the eigenvectors of A associated to the eigenvalue 0 are also

the eigenvectors of F (ω) associated to the eigenvalue 0. Therefore, by Theorem 3.7
in [17], F (ω) has an n-fold eigenvalue 0.

By the definition of B(ω) in (2.5) and Lemma 2.1, it follows that

F ∗(ω) = A∗ − (ω̄)2
(
Bn + ε(r, ω)Bd

)
= A− (−ω̄)2 (Bn + ε(r,−ω̄)Bd)

= F (−ω̄).

This means that if y is a left eigenvector of F (ω) associated to ω, then

0 = F ∗(ω)y = F (−ω̄)y,

and, therefore, y is a right eigenvector associated with −ω̄.

Let us assume that each of the pairwise different eigenvalues µi has equal algebraic
and geometric multiplicity mi, i = 1, . . . , `, and let Xi be a basis of the corresponding
nullspace of F (µi). The following non-equivalence deflation allows us to transform
the original problem (2.4) to a new NLEVP with the same eigenvalues, except that
µi is replaced by infinity with multiplicity mi for i = 1, . . . , `. With

F̃ (ω)x̃ :=

F (ω)
∏̀
j=1

(
I − ω

ω − µj
XjX

∗
j

) x̃, (2.7)

then we have the following theorem.

Theorem 2.3. Let F (ω) and F̃ (ω) be defined as in (2.4) and (2.7), respectively.
Then, {

ω| F̃ (ω)x̃ = 0, x̃ 6= 0
}

= {ω| F (ω)x = 0,x 6= 0} \ {µ1, · · · , µ1, · · · , µ`, · · · , µ`} ∪ {∞} .

Furthermore, if (µ, x̃) is an eigenvalue/eigenvector pair of F̃ (ω), then (µ,x) is an
eigenvalue/eigenvector pair of F (ω) with

x =
∏̀
j=1

(
I − µ

µ− µj
XjX

∗
j

)
x̃. (2.8)
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Proof. Using the determinant identity det(In + RS) = det(Im + SR), where R
and S∗ are n×m matrices, we get

det
(
F̃ (ω)

)
= det (F (ω))

∏̀
j=1

det

(
I − ω

ω − µj
XjX

∗
j

)

= det (F (ω))
∏̀
j=1

(
1− ω

ω − µj

)mj

= det (F (ω))
∏̀
j=1

(
−µj
ω − µj

)mj

.

Hence, the nonlinear eigenvalue problem (2.7) has the same eigenvalues as (2.4) except
that mj copies of the eigenvalue µj are replaced by the eigenvalue infinity.

For the convenience of computation in our proposed method, we assume that the
columns of X1, X2, . . . , X` are forming an orthonormal basis for the corresponding
space span{X1, X2, . . . , X`}, which can always be assumed using re-orthogonalization.
In the following, we use X1, X2, . . . , X` to denote this orthonormal basis. With

X =
[
X1 X2 · · · X`

]
,

it holds that X∗X = Im with m = m1 + · · ·+m`. Then, we have

∏̀
j=1

(
I − ω

ω − µj
XjX

∗
j

)
= I −

∑̀
j=1

ω

ω − µj
XjX

∗
j = I − ωXD(ω)X∗, (2.9)

where

D(ω) = diag

(
1

ω − µ1
Im1

,
1

ω − µ2
Im2

, · · · , 1

ω − µ`
Im`

)
.

Plugging F (ω) in (2.4) and (2.9) into (2.7), F̃ (ω) can be reformulated in the following
simple form

F̃ (ω) = (A− ωB1(ω)) (I − ωXD(ω)X∗)

= A− ω [B1(ω) + (A− ωB1(ω))XD(ω)X∗]

≡ A− ωB̃(ω), (2.10)

where B1(ω) = ωB(ω) is as in (2.6). It follows that the NLEVPs (2.4) and (2.7) can
both be represented in the form

Ax = ωB̂(ω)x, (2.11)

where B̂(ω) is either equal to ωB(ω) (for (2.4)) or B̃(ω) (for (2.10)).
In the next subsection, we will develop a Newton-type method for the computation

of the desired eigenvalue/eigenvector pairs for general NLEVPs of the form (2.11).

3. Newton-type methods. Based on the Newton-type method suggested in
[15], in this section we propose a Newton-type method for computing eigenvalues of
NLEVPs of the form (2.11). We rewrite (2.11) as

1

ω
Ax = B̂(ω)x,
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and then, for a given ω, we consider the GEP

βAx = B̂(ω)x, (3.1)

where the eigenvalues β depend on the chosen value of ω. To determine an eigenvalue
of (2.11), it is sufficient to find a value ω∗ such that the eigenvalue β(ω∗) of (3.1)
satisfies the condition β(ω∗) = ω−1

∗ , which is equivalent to determine a root of the
nonlinear equation

β(ω) = ω−1. (3.2)

The simplest method to solve this equation is to use a fix-point iteration ωk+1 =
β(ωk)−1, so that when it has converged to a value ω∗, then an eigenvalue β(ωk)
of (3.1) with ω = ω∗ has been computed. But, since the convergence of fix-point
iterations is typically linear if it converges, we apply the Newton method

ωk+1 = ωk −
(
β′(ωk) + ω−2

k

)−1 (
β(ωk)− ω−1

k

)
(3.3)

to (3.2) to accelerate the convergence.
Before discussing the computation of the derivative β′(ω), we first reduce the GEP

(3.1) to a SEP. Suppose that B̂(ω) in (3.1) is invertible. In Theorem 3.7 of [17] it has
been shown that with n = n1n2n3 in the discretization (2.2), the GEP (3.1) has n
eigenvalues at infinity. Since we are interested in finding the eigenvalues of (2.11) with
smallest positive real part, it means that the eigenvalues β of (3.1) with largest positive
real part are of interest. In this respect, the large dimension of the invariant space
associated with the eigenvalue infinity in (3.1) leads to several numerical difficulties,
see [17]. To address this problem, we apply the nullspace-free method of [17] to solve
(3.1). For this we make use of the following theorems.

Theorem 3.1 ([17]). Let C` (` = 1, 2, 3) be as in (2.3). Then, C∗i Cj = CjC
∗
i ,

CiCj = CjCi, for i, j = 1, 2, 3 and all three matrices C` can be diagonalized by the
same unitary matrix T , i.e.,

C1T = TΛx, C2T = TΛy, and C3T = TΛz, (3.4)

where Λx, Λy, and Λz are diagonal matrices.
Theorem 3.2 ([17]). Let A and (Λx,Λy,Λz, T ) be defined as in (2.2) and (3.4),

respectively. Then there exists a unitary matrix

[
Q0 Q

]
:= (I3 ⊗ T )

[
Λ0 Λ

]
≡ (I3 ⊗ T )


. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

 ,
where Λ0 is a 3×1 block diagonal matrix, and Λ is a 3×2 block diagonal matrix such
that [

Q0 Q
]∗
A
[
Q0 Q

]
= diag (0,Λq,Λq) , (3.5)

where Λq = Λ∗xΛx + Λ∗yΛy + Λ∗zΛz.
Theorem 3.3 ([19]). Let A be as in (2.2), let (Q,Λ) be as in Theorem 3.2, and

let ω be such that B̂(ω) in (3.1) is nonsingular. Then (denoting by span of a matrix
the span of its columns),

spanB̂(ω)−1QΛ1/2 = span
{

x|Ax = λB̂(ω)x, λ 6= 0
}
,
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and furthermore,{
λ 6= 0 |Ax = λB̂(ω)x

}
=
{
λ |Λ1/2Q∗B̂(ω)−1QΛ1/2u = λu

}
.

Using Theorem 3.3, we can transform the GEP (3.1) to the SEP

K(ω)−1u = βu, (3.6)

where

K(ω) = Λ1/2Q∗B̂(ω)−1QΛ1/2,

and the GEP (3.1) and the SEP (3.6) have the same nonzero eigenvalues.
To evaluate the derivative β′(ω) in (3.3) we can use the following method. Let

u(ω) and v(ω) with v∗(ω)u(ω) = 1 be the right and the left eigenvectors of K(ω)−1,
respectively, corresponding to the eigenvalue β(ω), i.e., K(ω)−1u(ω) = β(ω)u(ω) and
v∗(ω)K(ω)−1 = β(ω)v∗(ω). Then

β(ω) = v∗(ω)K(ω)−1u(ω) (3.7)

and

v∗(ω)′u(ω) + v∗(ω)u(ω)′ = 0. (3.8)

Using (3.7) and (3.8), and the fact that (K(ω)−1)′ = −K(ω)−1K(ω)′K(ω)−1, we
obtain the following method to compute β′(ω),

β′(ω) = v∗(ω)
(
K(ω)−1

)′
u(ω) + v∗(ω)′K(ω)−1u(ω) + v∗(ω)K(ω)−1u(ω)′

= v∗(ω)
(
K(ω)−1

)′
u(ω) + β(ω)v∗(ω)′u(ω) + β(ω)v∗(ω)u(ω)′

= v∗(ω)
(
K(ω)−1

)′
u(ω)

= −v∗(ω)K(ω)−1K(ω)′K(ω)−1u(ω)

= −β(ω)2v∗(ω)K(ω)′u(ω)

= −β(ω)2v∗(ω)Λ1/2Q∗
[
B̂(ω)−1

]′
QΛ1/2u(ω)

= β(ω)2v∗(ω)Λ1/2Q∗B̂(ω)−1B̂(ω)′B̂(ω)−1QΛ1/2u(ω). (3.9)

We summarize the Newton-type method in Algorithm 1. In the calculation of β′(ωk)
in (3.9), the schemes proposed in [17] that are based on the fast Fourier transform
allow to compute products Q∗p and Qq efficiently.

In Algorithm 1 for the solution of (2.11), it is necessary to compute B̂(ωk)−1d

for a given vector d. If B̂(ωk) is as in (2.10), then B̂(ωk) can be represented as

B̂(ωk) = B1(ωk) + Y (ωk)X∗,

where

Y (ωk) = (A− ωkB1(ωk))XD(ωk).

Using the Sherman-Morrison-Woodbury formula [14] we get

B̂(ωk)−1 = B1(ωk)−1
{
I − Y (ωk)

(
I +X∗B1(ωk)−1Y (ωk)

)−1
X∗B1(ωk)−1

}
,

(3.11)
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Algorithm 1 Newton-type method for computing eigenvalues of Ax = ωB̂(ω)x.

Input: Coefficient matrices A (Hermitian), B̂(ω), an initial value ω0 and a stopping
tolerance tol.

Output: An eigenvalue/eigenvector pair (µ,x).
1: Set k = 0.
2: repeat
3: Compute the target eigenvalue/eigenvector pair (βk,uk) of

K(ωk)−1u ≡
(

Λ1/2Q∗B̂(ωk)−1QΛ1/2
)−1

u = βu, (3.10)

by algorithm JD or SIRA (see Section 4 for details);
4: Use inverse iteration to compute the left eigenvector vk of (3.10) associated

with βk;
5: Compute β′(ωk) by

β′(ωk) = β2
kv
∗
kΛ1/2Q∗B̂(ωk)−1B̂(ωk)′B̂(ωk)−1QΛ1/2uk;

6: Compute ωk+1 by

ωk+1 = ωk −
(
β′(ωk) + ω−2

k

)−1 (
βk − ω−1

k

)
;

7: Set k = k + 1;
8: until |ωk − ωk−1| < tol.
9: Set µ = ωk;

10: Compute the eigenvector x = B̂(ωk)−1QΛ1/2uk.

which means that B̂(ωk)−1d can be computed within a reasonable cost.
The desired eigenvalue/eigenvector pairs of F (ω), i.e. the ones with smallest

real part, can be found by repeatedly applying Algorithm 1 to Ax = ωB̂(ω)x and
using (2.8) in Theorem 2.3 to recover the eigenvector of F (ω). We summarize the
computational process in Algorithm 2.

After proposing the Newton-type method it remains to describe the used eigen-
value methods used in Algorithm 1. This is done in the next section.

4. Eigenvalue Solvers. In this section, we recall different eigenvalue methods
for the solution of the NLEVP (2.4) and the SEP (3.10) in Algorithm 1.

4.1. Nonlinear Arnoldi Method for the NLEVP (2.4). The NLEVP (2.4)
can be solved by the nonlinear Arnoldi method (NAr) [47] directly. For a given search
subspace V , let (ω̃, z̃) be an eigenvalue/eigenvector pair of the projected problem
V ∗(A − ω2B(ω))V z = 0 and let x̃ = V z̃ be a corresponding Ritz vector, i.e. the
eigenvector lifted to the large space. The new search direction in the NAr method is
chosen as

v =
(
A− σ2B(σ)

)−1
r (4.1)

where r = (A− ω̃2B(ω̃))x̃ is the residual vector for (ω̃, x̃) and σ is a given shift value.
After re-orthogonalizing v against V , the vector is appended to V and one repeats
this process until (ω̃, x̃) has converged to the desired eigenvalue/eigenvector pair.
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Algorithm 2 Deflated iterative method for solving Ax = ω2B(ω)x.

Input: Coefficient matrices A (Hermitian) and B1(ω) ≡ ωB(ω).
Output: The desired eigenvalue/eigenvector pair (µi,xi) for i = 1, . . . , `.

1: Set X = [ ] and B̂(ω) = B1(ω).
2: for i = 1, . . . , ` do
3: Apply Algorithm 1 to compute the desired eigenvalue/eigenvector pair (µi,xi)

of Ax = ωB̂(ω)x;
4: for j = 1, . . . , i− 1 do

5: Compute xi =
(
I − µi

µi−µj
x̃jx̃

∗
j

)
xi;

6: end for
7: Set x̃i = xi; Orthogonalize x̃i against X and normalize x̃i;
8: Expand X = [X, x̃i];

9: Set B̂(ω) = B1(ω) + (A − ωB1(ω))XD(ω)X∗, where D(ω) =
diag

(
(ω − µ1)−1, · · · , (ω − µi)−1

)
;

10: end for

The major computational cost in the NAr method arises in the solution of (4.1).
This cost can be significantly reduced by using a technique suggested in [19]. Since
B(σ) in (2.4) is diagonal, we employ a preconditioner

M = A− σ2ασI

for the solution of (4.1), where ασ is the average of the diagonal elements of B(σ).
Furthermore, we can rewrite (4.1) as[

I + σ2M−1 (ασI −B(σ))
]
v = M−1r,

which only requires to compute d + σ2M−1 (ασI −B(σ)) d in each iteration of an
iterative solver for the computation of a vector d. There is no need to compute a
matrix-vector multiplication with A. The associated preconditioned linear system
with coefficient matrix M can be efficiently solved by applying the spectral decompo-
sitions of the matrices C`, ` = 1, 2, 3, see [19].

4.2. Jacobi-Davidson Method for the SEP (3.10). The Jacobi-Davidson
method (JD) [43] is an inexact eigenvalue solver for solving the SEP. In each iteration
of JD, the correction equation

(I − uu∗) (K(ωk)− θI) (I − uu∗) t = −r, t⊥u (4.2)

is solved approximately by an iterative solver, where K(ωk) is defined as in (3.10),
(θ,u) is the Ritz pair of K(ωk) and r = (K(ωk) − θI)u. Here t⊥u means that t is
orhogonal to u. In each iteration of (4.2), we need to solve a linear system of the form

Mpz = d, z⊥u, (4.3)

where d is a given vector and

Mp ≡ (I − uu∗)MJ (I − uu∗) ,

with MJ being the preconditioner of K(ωk)− θI.
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For the deflated NLEVP (2.7), i.e., B̂(ω) = B̃(ω) as in (3.11), one has that

K(ωk)− θI =
(

Λ1/2Q∗B1(ωk)−1QΛ1/2 − θI
)
− U(ωk)Ψ(ωk)−1V (ωk)∗,

where

U(ωk) = Λ1/2Q∗B1(ωk)−1(A− ωkB1(ωk))XD(ωk),

V (ωk) =
[
X∗B1(ωk)−1QΛ1/2

]∗
,

Ψ(ωk) = I +X∗B1(ωk)−1(A− ωkB1(ωk))XD(ωk).

Therefore, we take as preconditioner

MJ =
(

Λ1/2Q∗αa,kIQΛ1/2 − θI
)
− U(ωk)Ψ(ωk)−1V (ωk)∗

= (αa,kΛ− θI)− U(ωk)Ψ(ωk)−1V (ωk)∗ (4.4)

:= Ωk − U(ωk)Ψ(ωk)−1V (ωk)∗, (4.5)

where αa,k is the average of the diagonal elements of B1(ωk)−1. By the Sherman-
Morrison-Woodbury formula, we get

M−1
J

= Ω−1
k

{
I + U(ωk)

(
I −Ψ(ωk)−1V (ωk)∗Ω−1

k U(ωk)
)−1

Ψ(ωk)−1V (ωk)∗Ω−1
k

}
= Ω−1

k

{
I + U(ωk)

(
Ψ(ωk)− V (ωk)∗Ω−1

k U(ωk)
)−1

V (ωk)∗Ω−1
k

}
(4.6)

and the linear system (4.3) can be easily solved via

z = M−1
J d + ηM−1

J u with η = −
u∗M−1

J d

u∗M−1
J u

.

4.3. Shift-Invert Residual Arnoldi Method for the SEP (3.10). The shift-
and-invert residual Arnoldi method (SIRA), see [19, 30, 31] is another inexact eigen-
value solver. In each iteration of SIRA, the linear residual system

(K(ωk)− σI) t = r (4.7)

is solved approximately by an iterative solver, where r = K(ωk)u− θu is the residual
vector and σ is a fixed shift value. We express (4.7) in the form(

Q∗B̂(ωk)−1Q− σΛ−1
)(

Λ1/2t
)

= Λ−1/2r. (4.8)

Using the construction of the preconditioner MJ in (4.5), we take

MS =
(
αa,kI − σΛ−1

)
− Λ−1/2U(ωk)Ψ(ωk)−1V (ωk)∗Λ−1/2

as a preconditioner and rewrite the linear system (4.8) as

AM

(
Λ1/2t

)
= M−1

S Λ−1/2r, (4.9)

where

AM = M−1
S

[
Q∗B̂(ωk)−1Q− σΛ−1

]
= I +M−1

S Q∗
[
B1(ωk)−1 − αa,kI

]
Q.

Each of the three methods has its advantages and disadvantages, see [37]. We discuss
a hybrid method using all three techniques in the next section.
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5. Practical implementation. In this section we discuss some practical imple-
mentation issues and a new hybrid technique.

5.1. Initial value ω0 and initial vector for Algorithm 1. In Algorithm 1,
JD or SIRA is applied to solve (3.10). In the j-th iteration of JD or SIRA, usually
more than one Ritz pair is computed. Suppose that (β1,j ,u1,j), . . ., (βm,j ,um,j) with
|β−1

1,j − σ| ≤ · · · ≤ |β
−1
m,j − σ| have been computed. When {β1,j} is converging to the

desired eigenvalue, then the subspace span{u2,j , . . . ,um,j} is used as initial subspace
in JD or SIRA for the solution of the new nullspace-free eigenvalue problem (3.10).

In Algorithm 2, Algorithm 1 is applied to compute the i-th eigenvalue/eigenvector
pair of (2.4). The m Ritz pairs (β1,j ,u1,j), . . ., (βm,j ,um,j) of (3.10) are computed
in Algorithm 1. Therefore, when Algorithm 1 converges, we can use ω0 ≡ β−1

2,j and
the subspace generated from {u2,j , . . . ,um,j} as initial value and initial subspace,
respectively, in computing the (i+ 1)-th eigenvalue/eigenvector pair of (2.4).

Let (µk,xk) for k = 1, . . . , i be the converged eigenvalue/eigenvectors pairs of
(2.4) and let {x̃1, . . . , x̃i} be an orthonormal basis of span{x1, . . . ,xi}. The initial
subspace generated from {u2,j , . . . ,um,j} is then constructed as follows. For conve-
nience, we use u2,j as an example. From Theorems 2.3 and 3.3, we set

x0 :=

i−1∏
k=1

(
I − µi

µi − µk
x̃kx̃

∗
k

)
B̃(µi)

−1QΛ1/2u2,j .

Then, the pair (ω0,x0) can be used as an approximate eigenvalue/eigenvector pair of
NLEVP (2.4) and the associated residual vector r2 is equal to

r2 = Ax0 − ω2
0B(ω0)x0 = F (ω0)x0 = F̃ (ω0)

i∏
j=1

(
I − ω0

ω0 − µj
x̃jx̃

∗
j

)−1

x0

:= F̃ (ω0)x̃0, (5.1)

where

x̃0 =

i∏
j=1

(
I − ω0

ω0 − µj
x̃jx̃

∗
j

)−1

x0 =

i∏
j=1

(
I − ω0

µj
x̃jx̃

∗
j

)
x0

= x0 −
i∑

j=1

ω0

µj

(
x̃∗jx0

)
x̃j .

This shows that (ω0, x̃0) can be used as an approximate eigenvalue/eigenvector pair
of the deflated NLEVP. Therefore, using Theorem 3.3, we may take

u0 = Λ−1/2Q∗B̃(ω0)x̃0

as initial vector for the solution of (3.10) in the first iteration of Algorithm 1.

5.2. Stopping tolerance τk in JD or SIRA. In Algorithm 1, the sequence
{ωk} is constructed by a sequence of eigenvalues of the SEPs (3.10). This allows us
to adaptively control the accuracy of the eigenvalue/eigenvector pairs to reduce the
computational costs. Here, we propose a heuristic strategy for the construction of the
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stopping tolerance τk, k > 0, in (3.10) as

τk = max

max

5 · 10−12,
104eps

2
√
δ−2
x + δ−2

y + δ−2
z

 ,

min
{

5 · 10−4, 0.1 · |ωk − ωk−1|2
}}

. (5.2)

The stopping tolerance τ0 for ω0 is set to

τ0 =

{
10−3, for the first eigenvalue/eigenvector pair of (2.4);
min(10−3, 0.1 · ‖r2‖2), otherwise,

(5.3)

where r2 is the residual vector in (5.1).

Algorithm 3 [λ,x, rk,Vk] = NFEP(K,V1, σ, τ , maxit)

Input: Hermitian matrix K, an initial matrix V1, shift σ, tolerance τ and maximal
number of iterations maxit.

Output: The desired eigenvalue/eigenvector pair (λ,x).
1: Set k = 1, r0 = e1 and ‘solver’ = ‘JD’.
2: Compute Wk = KVk and Mk = V∗kWk.
3: while ( k ≤ maxit and ‖rk−1‖2 ≥ τ ) do
4: Compute the eigenvalue/eigenvector pairs (θi, si) of Mks = θs with ‖si‖2 = 1

and σ < θ1 ≤ θ2 ≤ · · · .
5: Compute uk = Vks1 and rk = (K − θ1I)uk.
6: if (‖rk‖2 ≥ ε) then
7: if (‘solver’ = ‘SIRA’) then
8: Compute (approximate) solution tk for

(K − σI)tk = rk.

9: else if (‘solver’ = ‘JD’) then
10: Compute (approximate) solution tk⊥uk for

(I − uku
∗
k) (K − θ1I) (I − uku

∗
k) tk = −rk.

11: if (the approximate solution tk is difficult to compute) then
12: Set ‘solver’ = ‘SIRA’;
13: end if
14: end if
15: Orthogonalize tk against Vk; set vk+1 = tk/‖tk‖.

16: Compute wk+1 = Kvk+1, Mk+1 =

[
Mk V∗kwk+1

v∗k+1Wk v∗k+1wk+1

]
.

17: Expand Vk+1 = [Vk,vk+1] and Wk+1 = [Wk,wk+1]. Set k := k + 1.
18: end if
19: end while
20: Set λ = θ1, x = uk and V1 = Vk[s1, · · · , sp].

5.3. A Hybrid eigensolver with non-equivalence deflation. We use the
heuristic strategies in [16] to determine the maximal iteration number for solving the
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Fig. 5.1. (a) A schematic view of a dispersive metallic photonic crystal structure with a FCC
lattice within a single primitive cell. (b) The computed band structure diagram of the Drude model
with matrix dimension 3 ·483 = 331, 776. There are 16 eigenvalues in the diagram. The six smallest
real part nonzero eigenvalues µ1, . . ., µ6 are denoted by (red) ×.

correction equation (4.2) in JD. As the results in [19] suggest, we set the stopping
tolerance 5×10−4 for (4.7) in SIRA. The numerical results presented in Subsection 6.1
show that JD outperforms SIRA for most benchmark problems. However, sometimes
the iterative solver for solving the correction equation cannot get a better approximate
solution. Therefore, a hybrid of JD and SIRA in Algorithm 3 is used.

The Newton-type method in Algorithm 1 needs a good initial value ω0 of ω to
guarantee convergence. If the NLEVP (2.4) has clustered eigenvalues, then we need
to provide a method to compute ω0. For this we use NAr and the stopping tolerance
for NAr is taken as

τa = max
{

min
{
‖rh‖, 10−3

}
, 5× 10−8

}
, (5.4)

where rh is the residual vector of the approximate eigenvalue/eigenvector produced
by Algorithm 3. The stopping tolerance for solving the linear system (4.1) in NAr
is set to be max(10−12, τ2

a ). A heuristic hybrid method with JD, SIRA and NAr for
computing one eigenvalue/eigenvector pair of (2.11) is summarized in Algorithm 4.

We replace Algorithm 1 with this heuristic hybrid method to solve Ax = ωB̂(ω)x in
Algorithm 2.

6. Numerical Results. To study the numerical performance of the described
method for the solution of the nonlinear eigenvalue problem (2.4) arising in the 3D
dispersive metallic PCs, we consider the setup described in [6, 17, 18]. The lattice
in Figure 5.1(a) consists of spheres with a connecting spheroid. The radius r of the
spheres is r = 0.08a and the connecting spheroid has a minor axis length s = 0.06a
with a = 2π. The perimeter of the irreducible Brillouin zone for the lattice is formed

by the corners X = 2π
a Ω[0, 1, 0]>, U = 2π

a Ω
[

1
4 , 1,

1
4

]>
, L = 2π

a Ω
[

1
2 ,

1
2 ,

1
2

]>
, G =

[0, 0, 0]>, W = 2π
a Ω

[
1
2 , 1, 0

]>
, and K = 2π

a Ω
[

3
4 ,

3
4 , 0
]>

, where

Ω =
1√
2

 1 1 0
− 1√

3
1√
3

2√
3

2√
6
− 2√

6
2√
6

 .
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Algorithm 4 Hybrid eigensolver for computing smallest real part nonzero eigenvalues
of Ax = ωB̂(ω)x.

Input: Coefficient matrices A (Hermitian), B̂(ω), initial value ω0, initial vector V1,
maximal iteration number m, the stopping tolerance tol, converged eigenvalues
{µ1, . . . , µ`} and orthonormal basis x̃1, . . . , x̃` of the associated eigenspace.

Output: The target eigenvalue/eigenvector pairs (µ,x).
1: Set k = 0 and τ0 as in (5.3).
2: repeat
3: while ( ‖rh‖ ≥ τk ) do
4: Use

[β−1
k ,uk, rh,V1] = NFEP(K(ωk),V1, σ, τk, m)

in Algorithm 3 to compute the target eigenvalue/eigenvector pair (βk,uk) of
(3.10);

5: if (‖rh‖ ≥ εk) then
6: Compute

x0 =
∏̀
j=1

(
I − ωk

ωk − µj
x̃jx̃

∗
j

)
B̂(ωk)−1QΛ1/2uk.

7: Use NAr with initial vector x0 and stopping tolerance τa in (5.4) to compute
the approximate eigenvalue/eigenvector pair (ωa,xa) of the NLEVP (2.4),
where ωa is the closest eigenvalue to σ.

8: Set ωk = ωa and compute the initial vector V1 for (3.10) as

V1 = Λ−1/2Q∗B̂(ωk)

xa −
∑̀
j=1

ωk
µj

(
x̃∗jxa

)
x̃j

 .

9: end if
10: end while
11: Use one step of inverse iteration to compute the left eigenvector vk of (3.10)

associated with βk;
12: Compute β′(ωk) via

β′(ωk) = β2
kv
∗
kΛ1/2Q∗B̂(ωk)−1B̂(ωk)′B̂(ωk)−1QΛ1/2uk;

13: Compute ωk+1 by

ωk+1 = ωk −
(
β′(ωk) + ω−2

k

)−1 (
βk − ω−1

k

)
;

14: Set k = k + 1 and εk as in (5.2);
15: until |ωk − ωk−1| < tol.
16: Set µ = ωk;
17: Compute the eigenvector x = B̂(ωk)−1QΛ1/2uk.
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Fig. 6.1. CPU times for computing the six smallest real part nonzero eigenvalues (and associ-
ated eigenvectors) denoted by (red) × in Figure 5.1(b). The matrix dimension is 2, 654, 208.

The permittivity εn of the non-dispersive material is set to be 1. Parameters in the
Drude and Drude-Lorentz models are ωp = 10π

a , Γp = 2π
14500 , Ω1 = 2π

470 , Ω2 = 2π
325 ,

Γ1 = 2π
1900 , Γ2 = 2π

1060 , ε∞ = 1.54, A1 = 1.27, A2 = 1.1, φ1 = −π4 and φ2 = −π4 [34].
The associated band structure for the Drude model is shown in Figure 5.1(b). The
band structure for the Drude-Lorentz model is similar to Figure 5.1(b).

All computations in this section are carried out in MATLAB 2013b, and some
implementation details are addressed as follows. The MATLAB functions bicg and
bicgstab are used to solve the linear systems in Algorithm 3 and NAr, respectively.
On the other hand, the MATLAB functions fft and ifft are applied to compute the
products Q∗p and Qq, respectively.

For the hardware configuration, we use a HP workstation that is equipped with
two Intel Quad-Core Xeon E5-2643 3.33GHz CPUs, 96 GB of main memory, and the
RedHat Linux operating system.

6.1. Comparison between Newton-type method and nonlinear Arnoldi
method. We demonstrate the efficiency of the new Newton-type method (Algo-
rithm 1 and Algorithm 2) and NAr in computing the six smallest real part eigenvalues
µ1, . . ., µ6 of the Drude model (1.2). The real parts of these eigenvalues are denoted
by red × in Figure 5.1(b). As shown in the figure, µ1, . . ., µ6 are well separated so
that they can be computed by Algorithm 2 without using NAr to get initial data.
The CPU times for computing these six eigenvalue/eigenvector pairs by

• JD: Algorithm 2 + Algorithm 1 with solving (3.10) by JD

• SIRA: Algorithm 2 + Algorithm 1 with solving (3.10) by SIRA

• NAr: nonlinear Arnoldi method for solving (2.4)

are depicted in Figure 6.1, which shows that JD and SIRA obviously outperform NAr.
Furthermore, in the Newton-type method, JD outperforms SIRA for most benchmark
problems.

6.2. Convergence of the Newton-type method. In this subsection, we il-
lustrate the convergence of the Newton-type method in Algorithm 1 for computing
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(a) Number of iterations k of Newton-type
method for computing each eigenvalue at
wave vectors X, U , L, W and K.
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(b) Average number of iterations of Newton-
type method for computing six eigenvalues.

Fig. 6.2. Number of iterations of Newton-type method with JD eigensolver to compute the six
smallest real part nonzero eigenvalues denoted by (red) × in Figure 5.1(b). The matrix dimension
is 2, 654, 208.

Drude model Drude-Lorentz model
µ7 1.352760915− 2.15717754× 10−4ı 1.326911260− 2.11350594× 10−3ı
µ8 1.352771023− 2.15790978× 10−4ı 1.326915939− 2.11375183× 10−3ı
µ9 1.352771589− 2.15790991× 10−4ı 1.326916471− 2.11375357× 10−3ı
µ10 1.352774278− 2.15790186× 10−4ı 1.326919090− 2.11375510× 10−3ı
µ11 1.354710739− 2.15785421× 10−4ı 1.328746727− 2.11897302× 10−3ı
µ12 1.354711852− 2.15790561× 10−4ı 1.328747433− 2.11899196× 10−3ı
µ13 1.354711871− 2.15790691× 10−4ı 1.328747439− 2.11899260× 10−3ı
µ14 1.354711899− 2.15790684× 10−4ı 1.328747467− 2.11899263× 10−3ı

Table 6.1
Eigenvalues µ7, . . ., µ14 of (2.4) with wave vector 3

7
X and matrix dimension 2, 654, 208.

µ1, . . ., µ6 for the problem discussed in the previous subsection. Using JD to solve
the eigenvalue problem (3.10), the number of iterations k for computing each µi at
wave vectors X, U , L, W and K in the FCC lattice is depicted in Figure 6.2(a). Since
random initial data are used to compute the first eigenvalue µ1, typically about k = 8
iterations are needed for most benchmark wave vectors. For other eigenvalues, using
the initial data proposed in Subsection 5.1, 3 to 6 iterations are needed. Figure 6.2(b)
shows the average number of iterations for computing µ1, . . ., µ6 with various wave
vectors k. The numerical experience indicates that the average ranges from 4.5 to 5.2
for all the benchmark problems with the same matrix dimension 3×963 = 2, 654, 208.
This convergence behaviour coincides with that of Newton’s method for solving gen-
eral nonlinear equations.

6.3. Clustered eigenvalues. From the band structure diagram in Figure 5.1(b)
we see that the eigenvalues are clustered near 1.35 (1.32) for the Drude (Drude-
Lorentz) model. Table 6.1 shows the values of the clustered eigenvalues µ7, . . .,
µ14 of (2.4) (with the wave vector 3

7X) for the Drude and Drude-Lorentz model.
These clustered eigenvalues not only significantly increase the number of iterations
for the NAr as shown in Figure 6.3, but also lead to a challenge for the Newton-type
method: how to detect the clustered eigenvalues. In Figure 6.4, we depict the number
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for computing µ7 (at the wave vector 3
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(b) k = 1
7
X

Fig. 6.4. Number of iterations of JD for computing eigenvalue βk of (3.10) in Algorithm 1 at
the wave vector k. The matrix dimension is 2, 654, 208.

of iterations for JD in computing eigenvalue/eigenvector pairs (βk,uk) of (3.10) in
computing µ1, . . ., µ7 for the Drude model. For one specific wave vector, where µ1, . . .,
µ7 are well separated, Figure 6.4(a) shows that in each case all the iteration numbers
of the JD method are less than 10. However, µ7 is close to the clustered eigenvalues for
wave vector 1

7X. The results in Figure 6.4(b) indicate that the number of iterations
for computing β1 and β2 are obviously larger than that for other eigenvalues. This
means that the number of iterations of the JD method are an important indicator
for detecting clustered eigenvalues. In this example, we set the maximal number of
iterations to m = 35 in Algorithm 4 and if JD is not converged in this many steps,
then we regard the eigenvalues to be clustered and use NAr to provide good initial
data.
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(a) Number of iterations of Newton-type
method.
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(b) Number of iterations of NAr.
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Fig. 6.5. Number of iterations of Newton-type method for computing eigenvalues µ1, . . .,
µ16, and number of steps of the NAr method for computing the initial value and vector for each
eigenvalue/eigenvector pair at wave vectors 4
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The matrix dimension is 3 × 963 = 2, 654, 208. (a) and (b) are the results for the Drude model, (c)
and (d) are the results for the Drude-Lorentz model.

6.4. Efficiency of Algorithm 2 with Algorithm 4. Combining Algorithm 2
with the hybrid eigensolver in Algorithm 4 with m = 35, the band structure diagram
can be produced as in Figure 5.1(b). We consider six different wave vectors 4

7X+ 3
7U ,

4
7U + 3

7L, 4
7L, 3

7X, 4
7X + 3

7W , and 4
7W + 3

7K, and take n1 = n2 = n3 = 96, i.e., the
matrix dimension is 2, 654, 208. For each wave vector, 16 eigenvalues µ1, . . ., µ16 are
considered. For each eigenvalue µi, we depict the associated number of iterations ki of
the Newton-type method and the number pi of the NAr to get initial data. The values
of (ki, pi) for the Drude and the Drude-Lorentz models are shown in Figures (6.5(a),
6.5(b)) and (6.5(c), 6.5(d)), respectively. In our proposed method, we not only use
NAr to provide an initial value and vector for the eigenvalue/eigenvector pair, but
also use the strategies in Subsection 5.1 to confirm convergence. Therefore, even if the
eigenvalues are strongly clustered as shown in Table 6.1, we can compute the desired
eigenvalue/eigenvector pair within a reasonable (ki, pi) as shown in Figure 6.5.

Except for our proposed method, NAr can also be applied to compute the desired
eigenvalue/eigenvector pairs directly. For this reason, we also compared the CPU
times for computing the desired 16 eigenvalue/eigenvectors by our proposed method
(TH) and NAr (TA). The numerical results for the Drude model show that the ratio
TA/TH is 2.425, 2.534, 2.002, 2.019, 2.712, and 4.071, for wave vectors 4

7X + 3
7U ,
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4
7U + 3

7L, 4
7L, 3

7X, 4
7X + 3

7W , and 4
7W + 3

7K, respectively. All the results which
demonstrates that the proposed method is robust and outperforms NAr.

7. Conclusions. Solving the nonlinear eigenvalue problem (NLEVP) arising
from Yee’s discretization of a three-dimensional dispersive metallic photonic crystal is
a computational challenge. We have proposed a Newton-type method to compute one
desired eigenvalue/eigenvector pair of the NLEVP at a time. Once the desired eigen-
value is converged, it is then transformed to infinity by the proposed non-equivalence
deflation scheme, while all other eigenvalues remain unchanged. The next successive
eigenvalue thus becomes the smallest nonzero real part eigenvalue of the transformed
NLEVP. which is then again solved by the Newton-type method. Furthermore, some
heuristic strategies for the determination of initial data and stopping tolerances of the
iterative eigenvalue methods are introduced to accelerate the convergence. In order
to compute the clustered eigenvalues of the NLEVP, we propose a hybrid method
which uses the Jacobi-Davidson or shift-invert residual Arnoldi method to solve the
standard eigenvalue problems in the Newton-type method and the nonlinear Arnoldi
method to compute the initial vectors. The numerical results demonstrate that our
proposed method is robust and outperforms the nonlinear Arnoldi methods for the
direct solution of the NLEVP.
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