
OPTIMAL CONTROL OF LOW-FREQUENCY ELECTROMAGNETIC
FIELDS IN MULTIPLY CONNECTED CONDUCTORS ∗
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Abstract. Several classes of optimal control of electromagnetic fields are considered. Special
emphasis is laid on a non-standard H-based formulation of the equations of electromagnetism in
multiply connected conductors. By this technique, the Maxwell equations can be solved with reduced
computational complexity. While the magnetic field H in the conductor is obtained from an elliptic
equation with the curlσ−1 curl operator, an elliptic equation with the divµ∇ operator is set up for
a potential ψ in the isolator. Both equations are coupled by appropriate interface conditions. In
all problems, the electrical current is controlled in the conducting domain. Several types of control
functions are discussed. In particular, the problem of sparse optimal control is investigated in a
package of electrical wires. For all problems, the associated sensitivity analysis is performed.
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1. Introduction. Our paper is a contribution to the fast developing numeri-
cal analysis of optimal control of electromagnetic fields. In associated mathematical
models, often a vector potential ansatz is used for the magnetic induction B, namely
B = curlA. In this case, the associated Maxwell equations have to be solved for a 3D
vector formulation in the whole computational domain. This domain should be taken
sufficiently large, so that the choice of standard boundary conditions will guarantee a
sufficiently precise solution.

The potential ansatz has the advantage of a certain simplicity but suffers in some
sense from a quite large computational complexity. Instead, a complicated geometry
of the conducting domain does not lead to essential difficulties.

Another way of modeling is the H-based eddy current formulation, where a stan-
dard scalar elliptic equation is given in the insulator and a vector formulation is only
needed in the conductor. This approach is theoretically slightly more complicated,
since several additional conditions must be required, if the conductor is not simply
connected. On the other hand, the computational savings can be considerable, if the
domain Ω that contains the whole setting has to be chosen large. Think of a torus of
moderate thickness with very big radius. The numerical analysis of underlying models
in E- or H-formulation is discussed extensively in [2].

The main aim of our paper is to study such an H-based formulation in the control
of electric and magnetic fields. In this way, our problems will be close to the setting
in [24], [25], but the associated mathematical analysis is essentially different.

Optimal control of electromagnetic fields is a quite active subject, important for
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various applications. We mention the control of induction heating as in [16], [17], [30],
heat sources such as in [29], the optimal control of MHD processes as in [4], [10], [12],
[13], [15], [18], [19], [26], optimal control problems for time-harmonic eddy current
problems as in [21], [22], inverse problems for electromagnetic fields as in [3], or the
control of magnetic fields in flow measurement as in [24], [25].

2. Models of electromagnetism.

2.1. Time-harmonic Maxwell and eddy current equations. For establish-
ing our eddy current formulation, we follow [2] and begin with the standard Maxwell
system

∂D

∂t
+ J = curlH (2.1)

∂B

∂t
+ curlE = 0 (2.2)

divD = ρ (2.3)

divB = 0, (2.4)

where B, H, D, and E denote the magnetic induction, the magnetic field, the electric
induction, and the electric field, respectively.

These fields are related through some constitutive equations. A linear dependence
of the form D = εE, B = µH is usually assumed, where the symmetric and (uni-
formly) positive definite matrices ε and µ are called electric permittivity and magnetic
permeability, respectively. We assume that the entries of ε and µ are bounded and
measurable real functions on Ω.

The (total) current J is the sum of the generated current and an impressed current
Je. By the generalized Ohm’s law, we have

J = σE + Je, (2.5)

where σ is the electrical conductivity, that is assumed to be a symmetric and (uni-
formly) positive definite matrix in the conducting region and to vanish in the insulat-
ing region. Again, we assume that the entries of σ are bounded and measurable real
functions on ΩC .

In time-harmonic models, it is assumed that Je is an alternating current of the
form

Je(x, t) = J(x) cos(ωt+ φ),

where J is a real vector function that accounts for direction and strength of the cur-
rent, ω is the angular frequency and φ is the phase angle. Expressing these quantities
in a complex setting, we have

Je(x, t) = Re [J(x)ei ωt+i φ] = Re [Je(x)ei ωt].

The complex vector function Je will be our control; we assume that it is supported
in the conducting region, namely, it is vanishing inside the non-conducting region.

This time-periodic impressed current Je generates associated time-periodic solu-
tions in the form

E(x, t) = Re [E(x)ei ωt], H(x, t) = Re [H(x)ei ωt].
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Inserting these quantities in the Maxwell equations, and using D = εE and B = µH,
we finally arrive in a standard way at the equations of the time-harmonic Maxwell
system

curl H− (iωε+ σ)E = Je

curl E + iωµH = 0.

We shall assume that the term iωεE can be neglected (this is often the case for low-
frequency problems). Thus we end up with the time-harmonic eddy current system

curl H− σE = Je

curl E + iωµH = 0
(2.6)

that holds in the whole space R3.

2.2. Eddy current formulation in weak and strong form.

Assumption 2.1 (Geometry). In the paper, Ω ⊂ R3 is a bounded and simply con-
nected Lipschitz domain with connected boundary Γ; Ω is the “holdall” computational
domain containing all conductors. The subdomain ΩC ⊂ Ω that denotes the conductor
is a bounded Lipschitz set. We require that ΩC is the union of finitely many disjoint
open and connected sets (ΩC)l, l ∈ {1, . . . , k}, the so-called (connected) components
of ΩC . Assume further that cl ΩC ∩ ∂Ω = ∅. The set ΩI := Ω \ cl ΩC stands for the
non-conducting domain. For simplicity, it is assumed to be connected.

Definition 2.2. Let g ∈ N∪{0} be the number of all “handles” of ΩI (precisely,
the rank of the first homology group of cl ΩI , or, equivalently, the first Betti number
of ΩI). Due to our assumption on Ω, it is also the number of “handles” of ΩC . If all
the components (ΩC)l are simply connected, we have g = 0.

This assumption allows fairly general forms of conductors (see Figure 2.1). For
instance, the conducting domain can include finitely many tori which might form
together more complicated geometrical figures like the Borromean rings. Also any
knot (for example, a trefoil knot) is allowed as a conducting domain. We mention these
geometrical examples, since their shape requires additional mathematical conditions
for the well-posedness of our equations.

The function spaces used in our paper are defined over the field of complex num-
bers. For instance, Lp(D), 1 ≤ p < ∞, is defined as the space of all complex valued
functions v : D → C such that |v|p is integrable on D ⊂ R3. To distinguish this space
from the one with real-valued functions, we introduce

LpR(D) = {v : D → R, |v|p is integrable}.

The spaces L∞(D) (complex) and L∞R (D) (real) are defined accordingly.

Definition 2.3. We denote by ρj, j ∈ {1, . . . , g}, a basis of the space of µ-
harmonic fields

HµI = {v : ΩI → R3 : curl v = 0 in ΩI ,div(µv) = 0 in ΩI , µv ·n = 0 on ∂ΩI}, (2.7)

where n is the unit outward normal vector on ∂ΩI . Classical result of algebraic topol-
ogy assure that the dimension of HµI is indeed equal to the first Betti number of ΩI
(for a more detailed presentation of this aspect, see [2]).
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Fig. 2.1. Geometrical configurations (courtesy of Ana Alonso Rodŕıguez). Top: three internal
conductors of different topological shape are drawn, while the red domain is not a part of Ω (the
first Betti number of ΩI is g = 3). Bottom: the conductor ΩC is a trefoil knot (left; the first Betti
number of ΩI is g = 1) or the union of the three Borromean rings (right; the first Betti number of
ΩI is g = 3).

The functions ρj are determined as follows. First, one constructs a basis T0
j ,

j ∈ {1, . . . , g}, of the first de Rham cohomology group as done in [1]. Then one
projects them on the subspace µ-orthogonal to the gradients, namely, one considers
ρj = T0

j − grad ηj , where ηj is the solution to

ηj ∈ H1(ΩI)/C :

∫
ΩI

µ grad ηj · grad ξ =

∫
ΩI

µT0
j · grad ξ ∀ ξ ∈ H1(ΩI)/C .

It is easily checked that ρj ∈ H
µ
I ; moreover, recalling that the loop fields T0

j satisfy∮
σn

T0
j · ds = knj ,

where the cycles {σn}, n ∈ {1, . . . , g}, are a basis of the first homology group of
cl ΩI and K = (knj) is a non-singular matrix, it is easy to see that the fields ρj thus
defined are linearly independent (just compute the line integral of a linear combination
of them on each cycle σn).

Remark 2.4. The functions ρj can be computed once “offline” before the numer-
ical solution of the optimal control problem is started. They are only needed when
at least one of the conducting subdomains (ΩC)l is not simply connected (such as
a torus). Instead, when all the components of ΩC are simply connected (e.g., balls,
cubes, balls with holes) these functions ρj are not necessary (in fact, they are vanish-



Control of Electromagnetic Fields 5

ing). However, we recall that ΩI is assumed to be connected and this excludes that
the components of ΩC are tori with interior holes or balls with interior holes.

From the Ampére equation (2.6)1 we see that the magnetic field satisfies curl H =
0 in ΩI (remember that σ and Je are vanishing in ΩI). Therefore, H|ΩI can be written
as ∇ψ +

∑g
j=1 αjρj (see, e.g., [2, Appen. A.3]). We are thus led to write the weak

formulation of our eddy current system in the state space

V0 = {(H, ψ,α) ∈ V that satisfy the interface conditions (2.8) below} ,

where

V = H(curl; ΩC)×H1(ΩI)/C× Cg

and

H× n−∇ψ × n−
g∑
j=1

αjρj × n = 0 on Γ. (2.8)

Both spaces V and V0 are equipped with the norm

‖(H,Ψ,α)‖V =
(
‖H‖2H(curl;ΩC) + ‖ψ‖2H1(ΩI)/C + |α|2

)1/2

,

where

‖H‖H(curl;ΩC) =

(∫
ΩC

(curl H · curl H + H ·H)

)1/2

and

‖ψ‖H1(ΩI)/C =

(∫
ΩI

∇ψ · ∇ψ
)1/2

.

In H1(ΩI)/C, this H1-seminorm is equivalent to the standard norm of H1(ΩI) (see,
e.g., [9, Chap. IV, Sect. 7.2]). The space V0 defined above is a (complex) Hilbert
space, because it is closed in V. Notice that the trace mappings H 7→ H × n
and ψ 7→ ∇ψ × n are continuous from H(curl; ΩC) to H−1/2(divτ ; Γ) and from
H1(ΩI) to H−1/2(divτ ; Γ), respectively, where, for a smooth surface Γ, the trace
space H−1/2(divτ ; Γ) is defined as

H−1/2(divτ ; Γ) := {λ ∈ H−1/2(Γ)3 : λ · n = 0 on Γ,divτ λ ∈ H−1/2(Γ)}

(see, e.g., [2, Appen. A.1], where also a more general characterization is discussed,
when Γ is a Lipschitz closed surface).

We also define the norms

‖Q‖ΩC :=

(∫
ΩC

|Q(x)|2
) 1

2

, ‖Q‖µ,ΩC :=

(∫
ΩC

µ(x)Q(x) ·Q(x)

) 1
2

,

and, analogously, the norms ‖Q‖σ,ΩC and ‖Q‖µ,ΩI .
Let us introduce now the symmetric and positive definite matrix M by setting

Mnj =

∫
ΩI

µρn · ρj ;
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we will also use the vector norm |q|M = (Mq · q)
1
2 , where q ∈ Cg.

Finally, we define an antilinear form a : V ×V→ C by

a[u,v] =

∫
ΩC

σ−1 curl H · curl W +

∫
ΩC

iωµH ·W +

∫
ΩI

iωµ∇ψ · ∇η + iωMα · β.

The form a[·, ·] is obviously continuous on V×V and it is also coercive (see, e.g., [2,
p. 37]).

Definition 2.5. A triplet u = (H, ψ,α) ∈ V0 is said to be a weak solution of
the eddy current model (2.11) below associated with Je ∈ L2(ΩC)3, if

a[u,v] =

∫
ΩC

σ−1Je · curl W ∀v := (W, η,β) ∈ V0. (2.9)

We shall prove below that (2.9) is indeed the weak formulation of the system (2.11).

Lemma 2.6 (Well posedness). For all Je ∈ L2(ΩC)3, the equation (2.11) has a
unique weak solution (H, ψ,α). There is a constant c > 0 not depending on Je such
that

‖(H, ψ,α)‖V ≤ c ‖Je‖ΩC . (2.10)

Proof. The mapping Θ : H(curl; ΩC)→ C defined by

Θ(W, η,β) :=

∫
ΩC

σ−1Je · curl W

(i.e., the coniugate complex value of the right hand side of (2.9)) is continuous and
linear on V, hence it belongs in particular to (V0)′. Moreover, the antilinear form a
is coercive on V0, hence the Lemma of Lax and Milgram ensures the existence of a
unique solution of the variational equation (2.9) and of a constant c0 > 0 such that

‖(H, ψ,α)‖V ≤ c0 ‖Θ‖(V0)′ ≤ c ‖Je‖ΩC

holds.

Let us denote by nΩ the unit outward normal vector on ∂Ω. For the sake of
completeness, now we prove that the variational equation is the weak formulation of
the following strong form of the eddy current problem (a similar procedure has been
applied in [2, p. 42–43]):

Theorem 2.7 (Strong eddy current problem). If the solution (H, ψ,α) ∈ V0 to
the variational problem (2.9) is sufficiently smooth, then it satisfies the strong eddy
current equations

curl(σ−1 curl H) + iωµH = curl(σ−1Je) in ΩC

H× n = ∇ψ × n +
∑g
j=1 αjρj × n on Γ

µH · n = µ∇ψ · n on Γ

−div (µ∇ψ) = 0 in ΩI

µ∇ψ · nΩ = 0 on ∂Ω

(2.11)
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and the geometrical conditions

(Mα)j = (iω)−1

∫
Γ

σ−1(curl H− Je) · (n× ρj) ∀ j ∈ {1, . . . , g}. (2.12)

Proof. (i) First, we assume that in (2.9) η = 0 and β = 0 holds. By the interface
conditions (2.8), which are to be understood as equations in H−1/2(divτ ; Γ), we have
then W × n = 0 on Γ and also W × n = 0 on Γ, since n is real. Integrating by
parts in the weak formulation (2.9), we obtain (remember that n is the unit outward
normal vector to ΩI)∫

Γ

σ−1(W × n) · curl H +

∫
ΩC

curl(σ−1 curl H) ·W +

∫
ΩC

iωµH ·W

=

∫
Γ

σ−1(W × n) · Je +

∫
ΩC

curl(σ−1Je) ·W
(2.13)

for all W ∈ H(curl; ΩC). Here, and in all what follows, the integrals on the interface
Γ are defined in the duality sense on H−1/2(divτ ; Γ). Since both integrals on Γ vanish
by W × n = 0, this implies that the first equation of (2.11) holds in the sense of
distributions, because W can be chosen arbitrarily out of C∞0 (ΩC).

(ii) Next, we allow η to vary while still β = 0 is required. Then, by the condition
(2.8) that holds in V0, in particular we have

W × n = ∇η × n. (2.14)

Note also that (2.9) holds not only for each η ∈ H1(ΩI)/C but also for each η ∈
H1(ΩI). We return to (2.9) but we can now use the first equation in (2.11), i.e., in
(2.13) the integrals on ΩC can be skipped. Adding the terms related to η and ψ,
performing an integration by parts and using (2.14), we find for the remaining terms∫

Γ

σ−1(∇η × n) · curl H−
∫

Γ

σ−1(∇η × n) · Je

+

∫
∂Ω

iω η µ∇ψ · nΩ +

∫
Γ

iω η µ∇ψ · n−
∫

ΩI

iω η div(µ∇ψ) = 0.

(2.15)

Selecting arbitrary η ∈ C∞0 (ΩI), we deduce −div(µ∇ψ) = 0 in the sense of distribu-
tions. This yields the fourth equation of (2.11) so that the integral on ΩI in (2.15)
vanishes. Next, we vary η freely on ∂Ω subject to η = 0 in a neighborhood of Γ. Then
we also find µ∇ψ · nΩ = 0 on ∂Ω, i.e., the last equation of (2.11).

(iii) In the next step, still assuming that β = 0, we verify the two interface
conditions on Γ in (2.11). The first one is included in the definition of the space V0

that underlies the definition of a weak solution. For the second one, let us start from
equation (2.15), that, from what we have proved in (ii) and taking into account (2.14),
can be re-written as∫

Γ

σ−1(W × n) · curl H−
∫

Γ

σ−1(W × n) · Je +

∫
Γ

iω η µ∇ψ · n = 0 , (2.16)
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for each η ∈ H1(ΩI) . We transform the first two terms of this equation as follows:∫
Γ

σ−1(W × n) · (curl H− Je) =

∫
Γ

σ−1(∇η × n) · (curl H− Je)

= −
∫

Γ

∇η · [σ−1(curl H− Je)× n] =

∫
Γ

divτ [σ−1(curl H− Je)× n] η

=

∫
Γ

curl[σ−1(curl H− Je)] · n η = −
∫

Γ

iω µH · n η,

(2.17)

where we have used in the third equation the surface divergence divτ that in particular
satisfies for each a ∈ H(curl; ΩC)

−
∫

Γ

∇η · (a× n) =

∫
Γ

divτ (a× n) η

(see [23, p. 49]). Moreover, in the fourth equation above we have used the identity

divτ (a× n) = curl a · n

(see, e.g., [2, Appen. A.1])), while in the fifth equation we invoked the first equation
of (2.11) that we had already obtained before.

Now, we insert (2.17) in (2.16) and arrive at

−
∫

Γ

iω µH · n η +

∫
Γ

iω η µ∇ψ · n = 0

for each η ∈ H1(ΩI), hence for each η|Γ ∈ H1/2(Γ). Dividing by iω yields the second

interface condition of (2.11), that holds in H−1/2(Γ).

(iv) To verify the geometrical condition, we finally let also β vary in Cg. Then,
in view of (2.8), W, η, β obey

W × n = ∇η × n +

g∑
j=1

βjρj × n on Γ. (2.18)

Moreover, we have to take into account the term iωMα ·β in the variational equation.
We return to (2.16), add iωMα · β, and insert (2.18) for W × n. This yields

0 =

∫
Γ

(W × n) · σ−1(curl H− Je) +

∫
Γ

iω η µ∇ψ · n + iωMα · β

=

∫
Γ

(∇η × n +

g∑
j=1

βjρj × n) · σ−1(curl H− Je) +

∫
Γ

iω η µ∇ψ · n

+ iωMα · β

=

∫
Γ

(∇η × n) · σ−1(curl H− Je) +

∫
Γ

iω η µ∇ψ · n

−
∫

Γ

(

g∑
j=1

βj n× ρj) · σ−1(curl H− Je) + iωMα · β

= −
∫

Γ

(

g∑
j=1

βj n× ρj) · σ−1(curl H− Je) + iωMα · β ,

(2.19)
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in view of (2.17) and the second interface condition in (2.11). Since this must hold
for arbitrary β ∈ Cg, the last equation amounts to

iω(Mα)j =

∫
Γ

σ−1(curl H− Je) · (n× ρj) ∀ j ∈ {1, . . . , g},

i.e., (2.12) is verified.

3. The optimal control problem.

3.1. The optimal current problem and its well-posedness. In our paper,
we will consider several optimal control problems. Here, we discuss the following
steady state optimal control problem of elliptic type, where the impressed current Je
is the control function.

As fixed data, vector functions Hd ∈ L2(Ω), Ed ∈ L2(ΩC)3 and constants νC ≥
0, νA ≥ 0, νB ≥ 0, νE ≥ 0, ν ≥ 0 with νC + νA + νB + νE + ν > 0 are given. In
ΩI the reference magnetic field Hd is split as ∇ψd +

∑g
j=1 αd,jρj . Moreover, a set of

admissible controls Jad ⊂ L2(ΩC)3 is given and is assumed to be nonempty, bounded,
convex and closed. We will specify later possible choices for Jad.

Thanks to Lemma 2.6, for each control Je ∈ Jad there exists a unique weak
solution of (2.11). To indicate the correspondence of this solution to the given control
Je, we denote this solution by (HJe , ψJe ,αJe). In what follows, we will skip the
subscript e from the controls and denote them just by J. Notice that J stands now
for the impressed current Je and is not equal to the total current that was formerly
denoted by J = σE + Je.

As optimization criterion, we use the following (reduced) objective functional F ,

F (J) :=
νC
2
‖HJ −Hd‖2µ,ΩC +

νA
2
‖∇ψJ −∇ψd‖2µ,ΩI +

νB
2
|αJ −αd|2M

+
νE
2
‖EJ −Ed‖2σ,ΩC +

ν

2
‖J‖2ΩC ,

(3.1)

where EJ denotes the electric field associated with J. In the terms of F , the magnetic
energy and the electric energy (per unit time) of H and E, respectively, appear. These
weighted norms are more natural than the standard L2-norms and will later lead to
some simplifications in the adjoint equation. For the L2-norm, the theory is similar
and can be covered by setting µ and σ to one in all the terms that are associated with
the objective functional.

The electric field E is equal to E = σ−1(curl H− J), hence

F (J) =
νC
2
‖HJ −Hd‖2µ,ΩC +

νA
2
‖∇ψJ −∇ψd‖2µ,ΩI +

νB
2
|αJ −αd|2M

+
νE
2
‖σ−1(curl HJ − J)−Ed‖2σ,ΩC +

ν

2
‖J‖2ΩC .

(3.2)

This objective functional F aims at minimizing the weighted distance to desired (or
measured) magnetic and electric fields, while the norm of the control function J is
included as a Tikhonov regularization term weighted by ν.

The optimal control problem, written in short form, is

min
J∈Jad

F (J). (3.3)
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Definition 3.1 (Optimality). A control J∗ ∈ Jad is said to be optimal, if

F (J∗) ≤ F (J) ∀J ∈ Jad.

Theorem 3.2. The optimal control problem (3.3) admits at least one optimal
control denoted by J∗. The optimal control is unique, if ν > 0.

Proof. Thanks to Lemma 2.6, the mappings J 7→ HJ , J 7→ ψJ and J 7→ αJ is
well defined, linear and continuous from L2(ΩC)3 to H(curl; ΩC), H1(ΩI)/C and Cg,
respectively. Therefore, the reduced objective functional F is continuous and convex,
hence also weakly lower semicontinuous. Moreover, the set Jad of admissible controls
is weakly sequentially compact in L2(ΩC)3 so that the existence of an optimal control
J ∈ Jad with

F (J∗) = inf
J∈Jad

F (J)

is an immediate consequence. Notice that F is bounded from below by zero so that
the existence of a non-negative infimum is guaranteed. For ν > 0, the functional F is
strictly convex and that implies the uniqueness of the optimal control.

3.2. Necessary optimality conditions. The next step of our analysis is the
derivation of first-order necessary optimality conditions for an optimal control J∗. By
convexity of F and Jad, they are also sufficient for optimality.

Prior to this, let us mention the following simple calculation concerning the direc-
tional derivative of the complex but real valued function g : z 7→ |z|2. For any fixed
z ∈ C and varying h ∈ C, we have

|z + h|2 = |z|2 + z h+ z h+ |h|2 = |z|2 + 2 Re [z h] + |h|2 .

Therefore, the complex function g has the directional derivative

g′(z)h := lim
t→0

|z + t h|2 − |z|2

t
= 2 Re [z h] = 2 Re [z h]

(here, t ∈ R). Notice that the mapping h 7→ 2 Re [z h] is not complex linear. However,
it is real linear, because Re [z αh] = αRe [z h] for all real α. The function g is not
holomorphic, i.e., not differentiable in the sense of complex analysis.

The directional derivative of the objective functional F can be determined anal-
ogously. The derivative in the direction J at an arbitrary fixed (not necessarily opti-

mal or admissible) control Ĵ with associated magnetic field Ĥ := HĴ , ψ̂ := ψĴ and
α̂ := αĴ is given by

F ′(Ĵ) J = νC

∫
ΩC

Re [µ(Ĥ−Hd) ·HJ ]

+ νA

∫
ΩI

Re [µ(∇ψ̂ −∇ψd) · ∇ψJ ] + νB Re [M(α̂−αd) ·αJ ]

+ νE

∫
ΩC

Re [
(
σ−1(curl Ĥ− Ĵ)−Ed

)
· (curl HJ − J)]

+ ν

∫
ΩC

Re [Ĵ · J].
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Notice that σ−1(curl Ĥ− Ĵ) = Ê := EĴ. Re-arranging the terms , we see

F ′(Ĵ) J = Re

{∫
ΩC

νC µ(Ĥ−Hd) ·HJ

+

∫
ΩI

νA µ(∇ψ̂ −∇ψd) · ∇ψJ + νBM(α̂−αd) ·αJ

+

∫
ΩC

νE
(
Ê−Ed

)
· curl HJ

−
∫

ΩC

νE
(
Ê−Ed

)
· J + ν

∫
ΩC

Ĵ · J
}
.

(3.4)

Note that taking the real part of a complex number is an additive operation. In
(3.4), the variable direction J is appearing explicitly in the last two integrals, while
it occurs implicitly in the first four terms through the mappings J 7→ HJ , J 7→ ψJ
and J 7→ αJ . By introducing an adjoint state, this implicit dependence on J can be
transformed in a standard way to an explicit dependence.

Definition 3.3 (Adjoint equation). Let Ĵ ∈ L2(ΩC)3 be a given control with

associated states Ĥ := HĴ, Ê := EĴ, ψ̂ := ψĴ, α̂ := αĴ , and let Hd ∈ L2(ΩC)3, ψd ∈
H1(ΩI)/C, αd ∈ Cg, Ed ∈ L2(ΩC)3 be given as above. The equation for (W, η,β),∫

ΩC

σ−1 curl W · curl H− iω
∫

ΩC

µW ·H− iω
∫

ΩI

µ∇η · ∇ψ − iωMβ ·α

=

∫
ΩC

νC µ(Ĥ−Hd) ·H

+

∫
ΩI

νA µ(∇ψ̂ −∇ψd) · ∇ψ + νBM(α̂−αd) ·α

+

∫
ΩC

νE(Ê−Ed) · curl H ∀ (H, ψ,α) ∈ V0

(3.5)

is said to be the adjoint equation of equation (2.9). The solution (WĴ , ηĴ ,βĴ) ∈ V0

is called the adjoint state associated with Ĵ.

Corollary 3.4. For all given Hd ∈ L2(ΩC)3, ψd ∈ H1(ΩI)/C, αd ∈ Cg,

Ed ∈ L2(ΩC)3, Ĵ ∈ L2(ΩC)3, the adjoint equation (3.5) has a unique solution
(WĴ , ηĴ ,βĴ).

This result follows as Lemma 2.6 by the Lemma of Lax and Milgram. Notice that
the mapping

(H, ψ,α) 7→
∫

ΩC

νC µ(Ĥ−Hd) ·H

+

∫
ΩI

νA µ(∇ψ̂ −∇ψd) · ∇ψ + νBM(α̂−αd) ·α

+

∫
ΩC

νE(Ê−Ed) · curl H

(i.e., the conjugate complex value of the right hand side of (3.5)) is linear and con-
tinuous from V0 to C, hence it belongs to (V0)′.

To see that the adjoint state transforms the implicit appearance of the control J
in (3.4) to an explicit one, we prove the following auxiliary result:
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Lemma 3.5. We have that

Re

[
νC

∫
ΩC

µ(Ĥ−Hd) ·HJ + νA

∫
ΩI

µ(∇ψ̂ −∇ψd) · ∇ψJ

+νBM(α̂−αd) ·αJ + νE

∫
ΩC

(Ê−Ed) · curl HJ

]
= Re

∫
ΩC

σ−1 curl WĴ · J,

(3.6)

where the function WĴ is the first component of the adjoint state (WĴ , ηĴ ,βĴ) asso-

ciated with Ĵ.

Proof. We write down the variational equation defining the weak solution HJ , ψJ
and αJ , and insert the solution (WĴ , ηĴ ,βĴ) of the adjoint equation as test function;
we obtain ∫

ΩC

σ−1 curl HJ · curl WĴ + iω

∫
ΩC

µHJ ·WĴ

+ iω

∫
ΩI

µ∇ψJ · ∇ηĴ + iωMαJ · βĴ

=

∫
ΩC

σ−1J · curl WĴ .

(3.7)

On the other hand, inserting (HJ , ψJ ,αJ) as test function in the adjoint equation
(3.5), we find∫

ΩC

σ−1 curl HJ · curl WĴ − iω
∫

ΩC

µHJ ·WĴ

− iω
∫

ΩI

µ∇ψJ · ∇ηĴ − iωMαJ · βĴ

= νC

∫
ΩC

µ(Ĥ−Hd) ·HJ

+ νA

∫
ΩI

µ(∇ψ̂ −∇ψd) · ∇ψJ ] + νBM(α̂−αd) ·αJ

+ νE

∫
ΩC

(Ê−Ed) · curl HJ .

(3.8)

We see that the left hand side of (3.7) is the complex conjugate of the left-hand side
of (3.8). Therefore, the conjugate complex value of the right-hand side of (3.7) is
equal to the right-hand side of (3.8), i.e.,∫

ΩC

σ−1 curl WĴ · J = νC

∫
ΩC

µ(Ĥ−Hd) ·HJ

+ νA

∫
ΩI

µ(∇ψ̂ −∇ψd) · ∇ψJ ] + νBM(α̂−αd) ·αJ

+ νE

∫
ΩC

(Ê−Ed) · curl HJ .

The claim of the theorem follows by taking the real part of each side above.
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Theorem 3.6 (Necessary optimality conditions). Let J∗ be an optimal control
of problem 3.3 and let HJ∗ and EJ∗ be the associated optimal magnetic and electric
fields, respectively. Then there exists a unique solution (WJ∗ , ηJ∗ ,βJ∗) of the adjoint
equation (3.5) such that the variational inequality

Re

∫
ΩC

(
σ−1 curl WJ∗ − νE (EJ∗ −Ed) + ν J∗

)
· (J− J∗) ≥ 0 ∀J ∈ Jad (3.9)

is satisfied.

Proof. The optimal control J∗ must obey the standard variational inequality

F ′(J∗)(J− J∗) ≥ 0 ∀J ∈ Jad. (3.10)

We show that this is equivalent to the variational inequality (3.9). We first consider

the expression (3.4) for F ′(Ĵ) for the particular choice Ĵ := J∗ and have

F ′(J∗) (J− J∗)

= Re

[
νC

∫
ΩC

µ(HJ∗ −Hd) ·HJ−J∗

+ νA

∫
ΩI

µ(∇ψJ∗ −∇ψd) · ∇ψJ−J∗ + νBM(αJ∗ −αd) ·αJ−J∗

+ νE

∫
ΩC

(EJ∗ −Ed) · curl HJ−J∗ − νE
∫

ΩC

(EJ∗ −Ed) · (J− J∗)

+ ν

∫
ΩC

J∗ · (J− J∗)

]
.

Thanks to Lemma 3.5, we obtain

F ′(J∗) (J− J∗)

= Re

[∫
ΩC

σ−1 curl WJ∗ · (J− J∗)

−
∫

ΩC

νE (EJ∗ −Ed) · (J− J∗) +

∫
ΩC

ν J∗ · (J− J∗)

]
= Re

∫
ΩC

(
σ−1 curl WJ∗ − νE (EJ∗ −Ed) + ν J∗

)
· (J− J∗) ,

(3.11)

where WJ∗ is the first component of the adjoint state associated with J∗.

Definition 3.7. For convenience, we define

DJ∗ := σ−1 curl WJ∗ − νE (EJ∗ −Ed). (3.12)

By this definition, the variational inequality (3.9) simplifies to

Re

∫
ΩC

(
DJ∗ + ν J∗

)
· (J− J∗) ≥ 0 ∀J ∈ Jad. (3.13)

This is our main necessary condition that will be later used to handle various particular
cases for Jad.

The next result is important for the choice of the descent direction in gradient
type methods for the numerical solution of our optimal control problem.
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Corollary 3.8. At an arbitrarily given control Ĵ ∈ L2(ΩC)3, the maximum

max
‖J‖ΩC=1

F ′(Ĵ) J,

i.e., the direction of steepest ascent, is attained by

J =
DĴ + ν Ĵ

‖DĴ + ν Ĵ‖ΩC
.

Proof. The integral in (3.11) can be written in terms of the inner product (· , ·)ΩC

of the space L2(ΩC)3 by

F ′(Ĵ) J = Re
(
DĴ + ν Ĵ , J

)
ΩC

.

Invoking the Cauchy-Schwarz inequality, we estimate

F ′(Ĵ) J ≤
∣∣∣∣Re

(
DĴ + ν Ĵ , J

)
ΩC

∣∣∣∣
≤
∥∥∥DĴ + ν Ĵ

∥∥∥
ΩC

if ‖J‖ΩC = 1. This maximal value at the end of this inequality is attained by the
function J defined in the Corollary.

Definition 3.9. The direction of steepest ascent of a differentiable function is
given (after normalization) by its gradient. Though our objective functional F is only
directionally differentiable and does not have a gradient, let us denote the direction of
steepest ascent of F ′(Ĵ) as its reduced gradient:

∇F (Ĵ) := DĴ + ν Ĵ. (3.14)

This notion is introduced to shorten the arguments below.

3.3. The strong form of the adjoint equation. For completeness, and to
compare the adjoint equation with the state equation, we also present its strong
formulation. We obtain the following representation theorem, where, as before, we
write Ê = σ−1(curl Ĥ− Ĵ).

Theorem 3.10 (Strong adjoint equation). If the adjoint state (W, η,α) is suf-
ficiently smooth, then it satisfies the system

curl(σ−1 curl W)− iωµW = νCµ (Ĥ−Hd)

+ νE curl
(
Ê−Ed

)
in ΩC

W × n = ∇η × n +
∑g
j=1 βjρj × n on Γ

µW · n− µ∇η · n = −(iω)−1νCµ (Ĥ−Hd) · n

+ (iω)−1νAµ(∇ψ̂ −∇ψd) · n on Γ

−div (µ∇η) = (iω)−1νA div
(
µ(∇ψ̂ −∇ψd)

)
in ΩI

µ∇η · nΩ = −(iω)−1νAµ(∇ψ̂ −∇ψd) · nΩ on ∂Ω ,

(3.15)
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with the geometrical conditions

(Mβ)j = −(iω)−1
∫

Γ

(
σ−1 curl W − νE(Ê−Ed)

)
· (n× ρj)

−(iω)−1νB [M(α̂−αd)j ] ∀ j ∈ {1, . . . , g}.
(3.16)

The result can be shown analogously to Theorem 2.7; therefore, we do not detail the
proof.

At first view, the adjoint system (3.15) exhibits a different structure than the
state equation. In particular, the vector field µ∇η is not divergence free. However,
we can cover both equations by the following unified form:

curl(σ−1 curl Q)± iωµQ = fC + curl FC in ΩC

Q× n−∇χ× n−
∑g
j=1 ζjρj × n = 0 on Γ

µQ · n− µ∇χ · n = ±(iω)−1fC · n−GI · n on Γ

−div (µ∇χ) = −div GI in ΩI

µ∇χ · nΩ = GI · nΩ on ∂Ω∫
Γ
σ−1 curl Q · (n× ρj)∓ iω(Mζ)j = rj +

∫
Γ

FC · (n× ρj)

∀ j ∈ {1, . . . , g}.

(3.17)

having sign + in the first and third equations and sign − in the last equation for the
state problem, and the other way around for the adjoint problem.

Precisely, for the state equation we have

fC = 0 , FC = σ−1Je , GI = 0 , rj = 0 ,

whereas for the adjoint equation we have

fC = νCµ(Ĥ−Hd) , FC = νE(Ê−Ed) ,

GI = −(iω)−1νAµ(∇ψ̂ −∇ψd) , rj = −νB [M(α̂−αd)]j .

In particular, this says that, for the solution of the adjoint equation, the quantity
µW · n− µ∇η · n has a jump on Γ; hence the overall field

KΩ =
{ µW in ΩC
µ∇η +

∑g
j=1 βjµρj in ΩI

has not a square-summable divergence, even if the desired fields µHd and µ∇ψd were
divergence free in ΩC and ΩI , respectively (this property is true for the state variables,

that satisfy div(µĤ) = 0 in ΩC and div(µ∇ψ̂) = 0 in ΩI). In contrast to this, the
solution of the state equation is the magnetic field

HΩ =
{ H in ΩC
∇ψ +

∑g
j=1 αjρj in ΩI ,

whose associated magnetic induction BΩ = µHΩ is divergence free, as the magnetic
Gauss law requires.

Example 3.11. Let us consider the particular choice νA = νC and assume in
addition that the desired fields Hd and ψd are compatible on the interface, i.e.,

µHd · n = µ∇ψd · n on Γ. (3.18)



16 F. TRÖLTZSCH AND A. VALLI

Since also µĤ · n = µ∇ψ̂ · n holds on Γ, the second interface condition of the adjoint
system then simplifies to

µW · n = µ∇η · n on Γ.

Therefore, the jump between µW · n and µ∇η · n disappears and the field KΩ defined
here above is divergence free in Ω, provided that the desired field Hd and ∇ψd satisfy
div(µHd) = 0 in ΩC and div(µ∇ψd) = 0 in ΩI .

Remark 3.12. For the sake of completeness, let us also point out that the weak
form of (3.17) reads∫

ΩC

σ−1 curl Q · curl p± iω
∫

ΩC

µQ · p± iω
∫

ΩI

µ∇χ · ∇ϑ± iωMζ · π

=

∫
ΩC

fC · p +

∫
ΩC

FC · curl p± iω
∫

ΩI

GI · ∇ϑ− r · π ,
(3.19)

for each (p, ϑ,π) ∈ V0, with sign + for the state problem and sign − for the adjoint
problem. The antilinear form at the left hand side is continuous and coercive in
V × V , for both choices of the sign. The right hand side is an antilinear functional
on V , provided that fC ∈ L2(ΩC)3, FC ∈ L2(ΩC)3, GI ∈ L2(ΩI)

3 and r ∈ Cg.

3.4. Discussion of the optimality conditions for different cases of Jad.
Let us discuss the conclusions of the necessary optimality conditions for several par-
ticular cases of Jad.

3.4.1. Unbounded complex control vectors. If ν > 0, the unbounded con-
trol set

Jad = L2(ΩC)3 (3.20)

can be used. Notice that the choice ν = 0 is not appropriate in this case, because we
cannot prove the existence of an optimal control unless the desired fields Hd and Ed

are in the range of the control-to-state mapping.

For unbounded controls, i.e., for Jad = L2(ΩC)3, the equation DJ∗ + ν J∗ = 0
is necessary and sufficient for the optimality of J∗, i.e.

J∗ = −1

ν
DJ∗ .

These conditions follow immediately from the variational inequality (3.9).

3.4.2. Complex control vectors bounded by box constraints. For all ν ≥
0, the set

Jad = {J ∈ L2(ΩC)3 : |Re J`(x)| ≤ Remax, | Im J`(x)| ≤ Immax

for ` = 1, 2, 3, and for almost all x ∈ ΩC}
(3.21)

might be taken, if positive bounds Remax and Immax must be imposed on the possible
currents.

If Jad is defined by box constraints as in (3.21), then we perform the following
standard discussion: Using the representation (3.14), the variational inequality (3.9)
can be re-written as

Re

∫
ΩC

∇F (J∗) · J∗ ≤ Re

∫
ΩC

∇F (J∗) · J ∀J ∈ Jad.
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Expanding the terms under the integral, we find∫
ΩC

Re (∇F (J∗)) · Re J∗ +

∫
ΩC

Im (∇F (J∗)) · Im J∗

≤
∫

ΩC

Re (∇F (J∗)) · Re J +

∫
ΩC

Im (∇F (J∗)) · Im J ∀J ∈ Jad.

This inequality can now be evaluated by a sequence of standard steps. First of
all, we observe that Re J and Im J can be chosen completely independent. Therefore,
the inequality above is equivalent to the following two inequalities:∫

ΩC

Re (∇F (J∗)) · Re J∗ ≤
∫

ΩC

Re (∇F (J∗)) · Re J ∀J : |Re J(·)| ≤ Remax,∫
ΩC

Im (∇F (J∗)) · Im J∗ ≤
∫

ΩC

Im (∇F (J∗)) · Im J ∀J : | Im J(·)| ≤ Immax.

Here, the inequalities |Re J(·)| ≤ Remax and | Im J(·)| ≤ Immax have to be understood
in pointwise and componentwise sense. For instance, this means

|Re J`(x)| ≤ Remax for a.a. x ∈ ΩC and all ` ∈ {1, 2, 3}.

These inequalities with control functions appearing under the integral can be discussed
further in a pointwise way (for this type of argument, see, e.g., [28, Sect. 2.8]). For
instance, the first inequality is equivalent to the condition that

Re ∇F (J∗)(x) · Re J∗(x) ≤ Re ∇F (J∗)(x) · v ∀v ∈ R3 : |v`| ≤ Remax, ` ∈ {1, 2, 3}

holds for almost all x ∈ ΩC . All components of the vector v ∈ R3 can be selected
independently. Then the inequality above means for the `th component that

min
v∈R:|v|≤Remax

Re (∇F (J∗))`(x) v = Re (∇F (J∗))`(x) Re J∗` (x),

i.e., that, for a.a. x ∈ ΩC , the minimum at the left-hand side is attained by Re J∗` (x).

Inserting the concrete expression for the reduced gradient ∇F (see (3.14)), we
find

Re J∗` (x) =

{
−Remax, if Re (DJ∗ + ν J∗)`(x) > 0

Remax, if Re (DJ∗ + ν J∗)`(x) < 0
(3.22)

for almost all x ∈ ΩC and all ` ∈ {1, 2, 3}. The formula for the imaginary part is the
same with Im substituted for Re .

If the Tikhonov regularization parameter is positive, then this is equivalent to the
projection formula

Re J∗` (x) = P[−Remax,Remax]

{
−1

ν
Re (DJ∗)`(x)

}
(3.23)

for almost all x ∈ ΩC and all ` ∈ {1, 2, 3}. Here, the projection function P[a,b] : R→
[a, b] is defined by

P[a,b](s) := max(a,min(b, s)).



18 F. TRÖLTZSCH AND A. VALLI

This projection formula (3.23) is a standard result of optimal control theory, but
it is not completely trivial. It can be explained by the fact that the minimizer v∗ of
the real function v 7→ ν

2v
2 + d v in the interval [a, b] is

v∗ = arg min
v∈[a,b]

{ν
2
v2 + d v

}
= P[a,b]{−

1

ν
d}.

We refer to [28, Theor. 2.28].

Example 3.13 (Optimal control as inverse problem).

In electro-encephalography (EEG) or magneto-encephalography (MEG), magnetic
or electric fields associated to the electrical activity of the human brain are measured.
Then one looks for the electrical currents, located in certain regions of the brain, that
generated these fields. Under certain assumptions, this problem can be cast into the
form of our optimal control problem, where the desired fields Hd and Ed stand for the
measurements. Normally, these measurements can be taken only at the boundary Γ
of the conductor, say at the surface of the human head ΩC (which can be assumed to
be simply connected). Moreover, they are only given at certain points. Let us assume
that these measurements can be interpolated to get a measurement of µHd · n on the
interface Γ. In view of the interface conditions on Γ, we have then also µ∇ψd ·n on Γ.
Together with the homogeneous boundary conditions on ∂Ω, we then can determine the
harmonic scalar potential ψd and hence also ∇ψd in ΩI that can serve as measurement
in ΩI .

In the case of an inverse problem, one cannot prescribe any particular form or
direction of the unknown electrical current Je. Here the general class Jad of arbitrary
bounded L2-controls is meaningful indeed, and the optimal control problem of minimiz-
ing the objective functional F is nothing more than the inverse problem to determine
unknown electrical currents by given measurements. Here, we have νC = 0, νE = 0,
νB is not considered (since we have g = 0), and finally ν is a Tikhonov regularization
parameter that is standard for (ill posed) inverse problems.

Meaningful selections of Jad are the definitions (3.20) and (3.21).

3.4.3. Electrical current in an induction coil. Another typical application
is the case where the electrical current is prescribed in an induction coil (see, e.g.,
[25]). A standard induction coil is composed by one wire that is twisted in many
windings around the core. Here, the direction of the electrical current in one point is
very precisely given by the direction of the wire in that point. The strength j of the
current is the only unknown that is to be determined.

In that case, the control Je has the form

Je(x) =
N?
Qcoil

e(x) j

where j is a complex number, the unit vector function e is the direction of the wire
in the point x of the coil, N? is the number of windings and Qcoil is the area of the
cross section of the coil that is perpendicular to the direction of the windings.

Let us assume for convenience that N?/Qcoil = 1 to simplify our notation. This
does not cause any restriction, because this constant can be included by the choice of
the constants Remax and Immax in (3.25) below.
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Example 3.14. In [25] the following geometry was chosen for the induction coil,
which is topologically equivalent to a torus:

Ωcoil = {x ∈ R3 : 0 < r1 < x2
1 + x2

2 < r2, c1 < x3 < c2},

where r2 > r1 > 0 and c1 < c2 are given real numbers. Here the function e is defined
by

e(x1, x2, x3) =


1√

x2
1+x2

2

 −x2

x1

0

 in Ωcoil

0 in ΩC \ cl Ωcoil.

(3.24)

In Ωcoil, e is a unit vector.

Notice that in this case the control is just one complex number. Here, the analogue
of (3.21) is

Jad = {e(·) j : |Re j| ≤ Remax and | Im j| ≤ Immax}. (3.25)

Next, we derive the necessary optimality conditions for this case. Let j∗ be
optimal and set J∗ = ej∗. We begin with the general variational inequality (3.13)
and obtain

0 ≤Re

∫
ΩC

(DJ∗ + νJ∗) · (J − J∗) = Re

∫
ΩC

(DJ∗ + νej∗) · e (j − j∗)

=

∫
ΩC

Re (DJ∗ + νej∗) · e Re (j − j∗) +

∫
ΩC

Im (DJ∗ + νej∗) · e Im (j − j∗)

= Re (j − j∗)
∫

ΩC

Re (DJ∗ · e + νj∗) + Im (j − j∗)
∫

ΩC

Im (DJ∗ · e + νj∗) ∀j ∈ jad .

This inequality can be discussed as in Section (3.4.2). We deduce for ν ≥ 0

Re j∗ =

{
−Remax, if

∫
ΩC

Re (DJ∗ · e + νj∗) > 0

Remax, if
∫

ΩC
Re (DJ∗ · e + νj∗) < 0 .

(3.26)

If ν > 0, we have the projection formula

Re j∗ = P[−Remax,Remax]

{
−1

ν

∫
ΩC

Re DJ∗ · e
}
. (3.27)

Analogous conditions are satisfied by Im j∗ with Im substituted for Re .

3.4.4. Electrical currents in a package of wires. The following situation is
somehow intermediate between the two cases mentioned above. Here, the induction
coil is composed of a package of single wires. The electrical currents in each wire
can be controlled separately. It is assumed that each one of these currents can be
controlled independently from the others. The cross section of this package of wires
can be viewed as a discrete approximation of a function j : Ωcoil → C that stands for
the strength of the current while the direction is still given by a function such as e
above.
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Let us consider the geometry of Example 3.14. Here, the strength j of the current
depends only on the radius r and the coordinate x3, while the direction of the current
is given again by e. In terms of cylindrical coordinates, this reads

Je = e(r, ϕ, z) j(r, z),

where r1 ≤ r ≤ r2, 0 ≤ ϕ < 2π, c1 ≤ z ≤ c2.

In this situation, a useful set of admissible control functions might be

Jad = e jad (3.28)

where we take controls out of the complex space L2((r1, r2)× (c1, c2)),

jad = {j ∈ L2((r1, r2)× (c1, c2)) : |Re j| ≤ Remax and | Im j| ≤ Immax}

and the actual control function would be j ∈ L2((r1, r2)× (c1, c2)).

Given a partition of the square [r1, r2]× [c1, c2] by finitely many small rectangles,
an associated finite-dimensional approximation of j by a step function would define the
finitely many single currents in the rectangles. These rectangles can be interpreted
as the cross sections of the wires of the package of wires. This view is certainly
academic but it gives an interpretation on how a controlled distributed current might
be generated.

The necessary optimality conditions are analogous to (3.22) and (3.23), but
(r1, r2) × (c1, c2) must be substituted for ΩC . For instance, the optimal solution
obeys the projection formula

Re j∗(r, z) = P[−Remax,Remax]

{
−1

ν

∫ 2π

0

Re DJ∗(r, z) · e(r, ϕ, z) dϕ

}
(3.29)

for almost all (r, z) ∈ [r1, r2]× [c1, c2].

3.4.5. Real current vectors. A smaller but perhaps more realistic class of
controls J has the particular form

J(x) = eiφJ(x) , (3.30)

where J is a real vector function and φ is fixed. Here, J varies in the admissible set

Jad = {J ∈ L2
R(ΩC)3 : −jmax ≤ J`(x) ≤ jmax

for a.a. x ∈ ΩC , all ` ∈ {1, 2, 3}}
(3.31)

with a given bound jmax > 0. To cover this ansatz by the optimal control problem
(3.3), we define the functional

f(J) := F (eiφJ)

and consider the problem

min
J∈Jad

f(J). (3.32)

This is nothing more than a particular case of the optimal control problem (3.3)
subject to the particular control set defined by (3.30) and (3.31).
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The associated optimal control J∗ = eiφJ∗ has to obey the necessary optimality
conditions of Theorem 3.6, in particular the variational inequality (3.9), or, using the
notation (3.12),

Re

∫
ΩC

(DJ∗ + νJ∗) · (J− J∗) ≥ 0 ∀J ∈ Jad .

In view of the particular ansatz (3.30), this variational inequality can be simplified:
inserting the particular form of J, we find

Re

∫
ΩC

(DJ∗ + νeiφJ∗) · e−iφ(J − J∗) ≥ 0 ∀J ∈ Jad ,

or ∫
ΩC

(DJ∗ + νJ∗) · (J − J∗) dx ≥ 0 ∀J ∈ Jad , (3.33)

with

DJ∗ := Re (e−iφDJ∗). (3.34)

The further pointwise discussion of (3.33) is analogous to (3.22) and (3.23), where
“Re ” can be omitted, since all quantities in (3.33) are real.

4. Sparse optimal controls.

4.1. Introduction to sparse controls. In the problem of controlling the cur-
rent in a package of independent wires, the whole cross section of the induction coil is
densely filled with wires. However, it might happen as the result of numerical calcu-
lations that only some part of the wires is really important while the optimal current
in some others is negligible. In such cases, one might be interested to find out those
wires that are most important for achieving the desired goal of optimization. The
result would be a better geometry of the coil. This is an issue, where the method of
sparse controls might be useful.

Sparsity techniques originated from the field of image processing, where L1 dis-
tance functionals are used for some purpose. In the context of optimal control of
partial differential equations, a first reference is [27], where this technique is applied
to problems with linear elliptic equations. This opened an active research in this
field. We refer to the contributions [5], [6], [7], [8], [14] to the application of sparsity
methods for different types of elliptic or parabolic PDEs.

To our best knowledge, the method of sparse control was not yet applied in the
control of electromagnetic fields. Though the underlying analysis does not essentially
differ from that in the papers mentioned above, we think it is worth presenting it for
our particular setting. Our analysis follows the steps outlined in [8]. However, since
our electromagnetic fields might be unbounded, we obtain a slightly weaker result.

To start the discussion of sparse control, we recall the problem (3.32) that has a
quadratic, hence smooth objective functional F . For sparse controls, we add to this
functional a multiple of the L1-norm of J and consider the functional

J 7→ f(J) + κ

3∑
`=1

∫
ΩC

|J`(x)|, (4.1)
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where κ is the so-called sparse parameter. For convenience, we define

γ(j) :=
∫

ΩC
|j(x)|

g(J) :=
∑3
`=1 γ(J`) =

∑3
`=1

∫
ΩC
|J`(x)|.

This motivates the following optimal control problem with sparse parameter κ:

min
J∈Jad

{f(J) + κ g(J)}. (4.2)

Again, the existence of an optimal control J∗ ∈ Jad follows by standard arguments. If
ν > 0, then the objective functional of (4.2) is strictly convex and hence the optimal
control is unique.

We shall sketch below that the sparse parameter influences the size of the support
of the optimal control of the problem (4.2). The larger κ is, the smaller is the support
of the optimal control.

To understand this effect that is meanwhile well studied (see, for instance, [5],
[6], [7], [8], [14], [27]), we first have to set up the associated system of necessary
optimality conditions. To this aim, we need the subdifferential ∂γ(j) of the convex but
non-differentiable functional γ : L1

R(ΩC)→ R at an arbitrary but fixed j ∈ L1
R(ΩC).

This subdifferential is the set of all elements λ ∈ L∞R (ΩC) such that

γ(v) ≥ γ(j) +

∫
ΩC

λ(x) (v(x)− j(x)) ∀v ∈ L1
R(ΩC). (4.3)

It is hence defined by

∂γ(j) := {λ ∈ L∞R (ΩC) : (4.3) is satisfied}.

The following representation is known for ∂γ(j) (see, e.g., [20, Sect. 4.5.1]):

∂γ(j) :=
{
λ ∈ L∞R (ΩC) : λ satisfies (4.5) below

}
, (4.4)

λ(x) =

 1, if j(x) > 0
[−1, 1], if j(x) = 0
−1, if j(x) < 0 .

(4.5)

After some easy computation, the subdifferential of g is obtained as

∂g(J) = {Λ = (λ1, λ2, λ3) ∈ L∞R (ΩC)3 : λ` ∈ ∂γ(J`), ` = 1, 2, 3}; (4.6)

notice that g(J) =
∑3
`=1 γ(J`).

4.2. Necessary optimality conditions. For the case κ = 0, where the func-
tional (4.2) is differentiable, we derived the variational inequality (3.33) as necessary
condition. In the case κ > 0, the variational inequality (3.33) has to be complemented
by the subdifferential of g. The following result is obtained:

Theorem 4.1 (Necessary conditions for sparse optimal controls). Let J∗ be
the optimal control for the problem (4.2) and let J∗ := eiφJ∗. Then there exists a
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unique adjoint state (WJ∗ , ηJ∗ ,αJ∗) solving the adjoint equation (3.5) and a function
Λ∗ ∈ ∂g(J∗) ⊂ L∞R (ΩC)3 such that the variational inequality∫

ΩC

(DJ∗ + νJ∗ + κΛ∗) · (J − J∗) ≥ 0 ∀J ∈ Jad (4.7)

is satisfied. Here, we have DJ∗ = Re (e−iφDJ∗), where

DJ∗ = σ−1 curl WJ∗ − νE (EJ∗ −Ed)

is defined according to (3.12).

Proof. The main line of proof is more or less standard in convex optimization.
However, it is not completely obvious how the associated ideas should be merged to
derive our result in the case of optimal control. We therefore detail the proof for
convenience of the reader.

Due to our notation, J∗ minimizes the functional

Φ := f + κg

in the set Jad. In a first step, we derive an auxiliary variational inequality by differ-
entiating only the smooth part f of Φ. For all 0 ≤ s ≤ 1 and arbitrary fixed J ∈ Jad,
we have

0 ≤ Φ(J∗ + s(J − J∗))− Φ(J∗)

s

≤ f(J∗ + s(J − J∗))− f(J∗)

s
+ κ (g(J)− g(J∗))

because g is convex. Passing to the limit s ↓ 0, it follows

0 ≤ f ′(J∗)(J − J∗) + κ g(J)− κ g(J∗) ∀J ∈ Jad.

This variational inequality is a standard result for minimizing the sum of a convex
and of a differentiable functional (see [11, Chap. II, Prop. 2.2]). It can be re-written
as

f ′(J∗) J∗ + κ g(J∗) ≤ f ′(J∗) J + κ g(J) ∀J ∈ Jad.

In other words, we have

J∗ ∈ arg min
J∈Jad

{f ′(J∗) J + κ g(J)}. (4.8)

Next, we include the constraint J ∈ Jad in the objective functional. To this aim, we
introduce the indicator function

ΨJad(J) =

{
0, J ∈ Jad
∞, else.

We also define the linear part of the functional above by

ϕ : J 7→ f ′(J∗) J =

∫
ΩC

(DJ∗ + νJ∗) · J.
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Thanks to (4.8), J∗ is the minimizer of the convex optimization problem

J∗ = arg min{ϕ(J) + κg(J) + ΨJad(J)},

and hence J∗ must satisfy the associated necessary optimality condition

0 ∈ ∂(ϕ+ κg + ΨJad)(J∗). (4.9)

The subdifferential of ∂ΨJad is equal to the normal cone NJad at J∗, where

NJad(J∗) =
{
z ∈ L∞R (ΩC)3 :

∫
ΩC

z · (J − J∗) dx ≤ 0 ∀J ∈ Jad
}
,

if J∗ ∈ Jad. For J∗ /∈ Jad, we have NJad(J∗) = ∅. Applying the theorem of Moreau–
Rockafellar (see [20, Sect. 4.2.2]), we find

∂(ϕ+ κg + ΨJad)(J∗) = ∂ϕ(J∗) + κ ∂g(J∗) + ∂ΨJad(J∗)

= (DJ∗ + νJ∗) + κ ∂g(J∗) +NJad(J∗);

notice that the assumptions of the Moreau–Rockafellar theorem are satisfied, because
the functional ϕ+ κg is continuous on the whole space L2

R(ΩC). By (4.9), we have

−(DJ∗ + νJ∗) ∈ κ ∂g(J∗) +NJad(J∗),

i.e., there exist Λ∗ ∈ ∂g(J∗) ⊂ L∞R (ΩC)3 (notice that g : L1
R(ΩC)3 → R, hence

the properties of ∂g remain true, if the argument J even belongs to L2
R(ΩC)3) and

Z∗ ∈ NJad(J∗) such that

−(DJ∗ + νJ∗ + κΛ∗) = Z∗ ∈ NJad(J∗).

By definition of NJad(J∗) this means

−
∫

ΩC

(DJ∗ + νJ∗ + κΛ∗) · (J − J∗) ≤ 0 ∀J ∈ Jad,

the inequality being equivalent to (4.7).

Let us describe a few consequences of this theorem. The main one is the sparsity
of the optimal control J∗.

Corollary 4.2 (Sparsity). Assume ν > 0 and κ > 0 and let J∗ be optimal for
the problem (4.2). Then, for ` = 1, 2, 3,

J∗` (x) = 0 if and only if κ ≥ |(DJ∗)`(x)| (4.10)

holds for a.a. x ∈ ΩC . For almost all x ∈ ΩC , the element Λ∗ = (λ∗1, λ
∗
2, λ
∗
3) ∈ ∂g(J∗)

is given by the projection formula

λ∗` (x) = P[−1,1]{−
1

κ
(DJ∗)`(x)}, ` ∈ {1, 2, 3}. (4.11)

Proof. Let us fix ` ∈ {1, 2, 3}. To avoid an extensive use of subscripts, let us
write for short D∗ := DJ∗ . First, we show the implication κ ≥ |D∗` (x)| ⇒ J∗` (x) = 0.
Assume the contrary, i.e., J∗` (x) 6= 0. It follows from (4.7) that

J∗` (x) > 0 ⇒ (D∗` + νJ∗` + κλ∗` )(x) ≤ 0
J∗` (x) < 0 ⇒ (D∗` + νJ∗` + κλ∗` )(x) ≥ 0.
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If J∗` (x) > 0, then we have λ∗` (x) = 1 and the first case above implies

D∗` (x) + νJ∗` (x) + κ ≤ 0,

hence

0 < νJ∗` (x) ≤ −D∗` (x)− κ

must hold; this yields

κ < −D∗` (x) , (4.12)

a contradiction. Analogously, if J∗` (x) < 0, then λ∗` (x) = −1 and D∗` (x)+νJ∗` (x)−κ ≥
0 must hold. This leads to

κ < D∗` (x) , (4.13)

a contradiction. Altogether, we have proved that

κ ≥ |D∗` (x)| ⇒ J∗` (x) = 0 .

Next, we verify the converse implication J∗` (x) = 0 ⇒ κ ≥ |D∗` (x)|. From the
variational inequality (4.7) we deduce for almost all x ∈ ΩC

0 = (D∗` + νJ∗` + κλ∗` )(x) = (D∗` + κλ∗` )(x) ,

hence |D∗` (x)| = κ|λ∗` (x)|. By the definition of the subdifferential, we have |λ∗` (x)| ≤ 1.
Therefore, κ ≥ |D∗` (x)| must be satisfied.

Finally, let us confirm the projection formula (4.11). For J∗` (x) = 0, we found
D∗` (x) + κλ∗` (x) = 0, i.e. λ∗` (x) = −κ−1D∗` (x). Since |λ∗` (x)| ≤ 1, this implies (4.11).
For J∗` (x) > 0 we have derived the inequality (4.12) that yields

λ∗` (x) = 1 < −D
∗
` (x)

κ
.

Again, this complies with (4.11). Analogously, we invoke (4.13), if J∗` (x) < 0.

In view of this result, we can expect that for increasing κ the support of the
optimal control functions J∗` becomes smaller. This is expressed by the following
conclusion.

Corollary 4.3. Assume ν > 0 and denote by J∗κ the optimal control of the
problem (4.2) for given κ > 0. Then there holds

lim
κ→∞

meas{x ∈ ΩC : |(J∗κ)`(x)| > 0} = 0 ∀` ∈ {1, 2, 3}. (4.14)

Proof. By the definition (3.31) of Jad, we have a bound c1 > 0 such that

‖J‖L2
R(ΩC)3 ≤ c1 ∀J ∈ Jad.

This bound remains valid for all associated J = eiφJ , J ∈ Jad, of the (complex) space
L2(ΩC)3. The control-to-state mapping J 7→ (HJ , ψJ , αJ) defined by the state equa-
tion (2.9) is continuous from L2(ΩC)3 to H(curl; ΩC)× (H1(ΩI)/C)×Cg. Therefore,
the mapping J 7→ EJ = σ−1(curl HJ − J) is continuous in L2(ΩC)3.
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In the adjoint equation (3.5), considered for Ĵ := J, the terms HJ −Hd, ∇ψJ −
∇ψd, αJ − αd, and σ−1(curl HJ − J) − Ed appear. In view of the continuity prop-
erties stated above, these terms depend continuously on J in the spaces H(curl; ΩC),
L2(ΩC)3, Cg, and L2(ΩC)3, respectively.

Therefore, also the mapping J 7→ (WJ , ηJ ,βJ) is continuous from L2(ΩC)3 to
the associated spaces. Consequently, in this way, the boundedness of the admissi-
ble set Jad implies the boundedness of the set of all adjoint states (WJ , ηJ ,βJ) in
H(curl; ΩC)× (H1(ΩI)/C)× Cg that can be generated by J ∈ Jad.

By the definition (3.12) of DJ , the set of all possible functions DJ that are
generated by the controls J ∈ Jad is bounded in L2(ΩC)3. Taking the real part of
e−iφDJ , this implies the existence of c3 > 0 such that

‖DJ‖L2
R(ΩC)3 ≤ c3 ∀J ∈ Jad. (4.15)

In particular, this holds true for D∗ = DJ∗ , that is related to the optimal control J∗.

After having found this bound, we argue by contradiction and assume that (4.14)
is not true. Then there exist `0 ∈ {1, 2, 3}, δ > 0, and a sequence κn →∞ as n→∞,
such that

meas(Sn) ≥ δ ∀n ∈ N,

where

Sn = {x ∈ ΩC : |(J∗κn)`0(x)| > 0} .

Let us write for short D∗n := DJ∗κn
and D∗n,`0 := (DJ∗κn

)`0 . From Corollary 4.2,
condition (4.10), we deduce that

κn < |D∗n,`0(x)| a.e. in Sn .

Now we find

c3 ≥ ‖D∗n‖L2
R(ΩC)3 ≥

(∫
Sn

|D∗n,`0(x)|2
)1/2

≥ κn (meas(Sn))
1/2 ≥ κn

√
δ .

This is a contradiction to (4.15), since κn →∞ as n→∞.

Remark 4.4. By the particular form of Jad, we might expect a stronger result.
The set of all possible control functions J is bounded in L∞R (ΩC)3 by the constant
jmax. If we were able to deduce from this fact that all associated functions DJ are
bounded in L∞R (ΩC)3 by a joint constant as well, then we would obtain the existence
of some κ0 such that the optimal controls must vanish whenever κ > κ0. However, to
our knowledge a boundedness result for the state functions in the space L∞R (ΩC)3 is
not available.
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[30] I. Yousept and F. Tröltzsch. PDE-constrained optimization of time-dependent 3D electromag-
netic induction heating by alternating voltages. ESAIM M2AN, 46(4):709–729, 2012.


