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Abstract

We derive formulae for the second-order subdifferential of polyhedral norms. These formulae
are fully explicit in terms of initial data. In a first step we rely on the explicit formula for
the coderivative of normal cone mapping to polyhedra. Though being explicit, this formula
is quite involved and difficult to apply. Therefore, we derive simple formulae for the 1-norm
and - making use of a recently obtained formula for the second-order subdifferential of the
maximum function - for the ∞-norm.

Keywords: Second-order subdifferential, polyhedral norms

Mathematics Subject Classification: 49J52, 49J53.

1 Introduction

The theory and applications of second-order generalised differentiation is a rapidly growing area
of variational analysis. For major results of variational analysis we refer to the books [6, 7, 12].
There are numerous applications to problems which involve nonsmooth functions, multifunctions
or sets with nonsmooth boundaries. For instance, in [4] tools of the second-order theory are used
to derive stationarity conditions for equilibrium problems with equilibrium constraints (EPECs).
The obtained results are applied to EPEC models of oligopolistic competition in electricity spot
markets. In [8] the second-order subdifferential of the so-called separable piecewise C2 functions is
applied to certain problems of continuum mechanics. In [1] convexity of piecewise linear functions
and separable piecewise C2 functions is characterised via positive-semidefiniteness of their second-
order subdifferentials. In [10, 9] and [11] second-order characterisations of tilt and full stability of
local minimisers of constrained problems are derived respectively. For further applications of the
second-order theory we refer to [8, 10] and the references therein.

One of the important aspects, which makes it possible to apply the second-order subdifferential
construction to many nonsmooth problems, is its rich calculus. Convenient second-order calculus
rules can be found in [6, 8, 10] and in references therein. Using this rules it is possible to reduce
computation of second-order subdifferentials of complex functions to basic ones. Thus, along with
calculus rules it is important for their efficient application to have explicit formulae for second-order
subdifferentials of certain elementary functions. In [4] the second-order subdifferential of indicator
functions to smooth nonpolyhedral inequality systems was calculated. For the second-order subdif-
ferential of separable piecewise C2 functions we refer to [8]. In [10] the second-order subdifferential
of piecewise linear-quadratic functions can be found. In [3] the second-order subdifferential of the
maximum of coordinates was calculated. This result was then expanded to the extended partial
second-order subdifferential of finite maxima of smooth functions by using a chain rule from [10].

In this paper we derive explicit formulae for second-order subdifferential of polyhedral norms
on Rm, i.e. the 1-norm ‖x‖1 :=

∑m
i=1 |xi| and the∞-norm ‖x‖∞ := maxi=1,...,m |xi|. These results

∗This work was supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin
†Weierstrass Institute Berlin, Germany
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generalise the simple example of the second-order subdifferential of the absolute value function on
R given in [6].

2 Basic tools and notation

As usual, we denote by ’gr M ’ the graph of a multifunction M , by R the extended real line, i.e.
R := [−∞,+∞], and by Zo the polar cone of some set Z, i.e. Zo := {y|〈y, z〉 ≤ 0 ∀z ∈ Z}.
Furthermore, we shall make use of the sign function defined as

sgn t :=


1 if t > 0,
0 if t = 0,
−1 if t < 0.

We recall the following definitions (see [6]):

Definition 1. Let C ⊆ Rm be a closed set and x̄ ∈ C. The Mordukhovich normal cone to C at x̄
is defined by

NC(x̄) := {x∗| ∃ (xn, x∗n)→ (x̄, x∗) : xn ∈ C, x∗n ∈ [TC(xn)]o} .

Here, [TC(x)]o refers to the Fréchet normal cone to C at x, which is the polar of the contingent
cone

TC(x) := {d ∈ Rm |∃tk ↓ 0, dk → d : x+ tkdk ∈ C,∀k }

to C at x. For an extended-real-valued, lower semicontinuous function f : Rm → R with |f(x̄)| <
∞, the Mordukhovich normal cone induces a subdifferential via

∂f(x̄) := {x∗| (x∗,−1) ∈ Nepi f (x̄, f(x̄))} .

Definition 2. Let M : Rn ⇒ Rm be a multifunction with closed graph. The Mordukhovich
coderivative D∗M(x, y) : Rm ⇒ Rn of M at some (x, y) ∈ grM is defined as

D∗M(x, y)(u) := {v ∈ Rn |(v,−u) ∈ NgrM (x, y)} .

Definition 3. For a lower semicontinuous function f : Rn → R which is finite at x ∈ Rn and for
an element s ∈ ∂f(x) the second-order subdifferential of f at x relative to s is a multifunction
∂2f(x, s) : Rn ⇒ Rn defined by

∂2f(x, s) (u) := (D∗∂f) (x, s) (u) ∀u ∈ Rn.

From these two definitions results the following formula for the second-order subdifferential of the
p-norm with arbitrary 1 ≤ p ≤ ∞:

∂2 ‖·‖p (x̄, s̄) (u) =
{
v
∣∣∣(v,−u) ∈ Ngr ∂‖·‖p

(x̄, s̄)
}
, (1)

where (x̄, s̄) is a fixed point of the gr ∂ ‖·‖p. In the next proposition we give an equivalent repre-
sentation of the second-order subdifferential (1).

Proposition 4. Let (x̄, s̄) ∈ gr ∂ ‖·‖p be fixed, 1 ≤ p ≤ ∞. Then it holds

∂2 ‖·‖p (x̄, s̄) (u) =
{
v
∣∣∣(−u, v) ∈ NgrNBq

(s̄, x̄)
}
, (2)

where Bq denotes the unit ball of the q-norm and q is defined by 1
p + 1

q = 1.
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Proof. The p-norm is the support function of the unit ball Bq:

‖x‖p = σBq
(x) := max

v∈Bq

〈v, x〉 .

Thus we have the following equivalences

s̄ ∈ ∂ ‖·‖p (x̄) ⇐⇒ s̄ ∈ ∂σBq
(x̄)

⇐⇒ x̄ ∈ NBq
(s̄) ,

where the second line follows from [12, Example 11.4]. Hence, it holds

(x̄, s̄) ∈ gr ∂ ‖·‖p ⇐⇒ (s̄, x̄) ∈ grNBq
. (3)

With the notation L =
(

0 I
I 0

)
, where I denotes the identity matrix, (3) can be equivalently written

as L gr ∂ ‖·‖p = grNBq
. The claim of the Proposition follows now from (1) and [12, Exercise

6.7].

Finally we cite the Proposition 3.2 from [5], which is a concretisation of a well-known result
[2, Proof of Theorem 2]. Let (ȳ, z̄) ∈ grNC , where C denotes a convex polyhedron given by
C = {y ∈ Rn |Ay ≤ b}, b ∈ Rm and A is a matrix of order (m,n). Let

I := {j ∈ {1, . . . ,m} |〈aj , ȳ〉 = bi } (4)

be the set of active indices at ȳ, where aj and bj refers to the rows of A and elements of b,
respectively. Since z̄ ∈ NC(ȳ), there exist λj ≥ 0 for j ∈ I, such that

z̄ =
∑
j∈I

λjaj (5)

We introduce the following subset of I:

J = {j ∈ I |λj > 0} (6)

Furthermore, for each index subset I ′ ∈ I, we introduce the closed cone

MI′ := {h |〈aj , h〉 = 0 ∀j ∈ I ′, 〈aj , h〉 ≤ 0 ∀j ∈ I \ I ′ } (7)

as well as the characteristic index set

χ(I ′) := {j ∈ I |〈aj , h〉 = 0 ∀h ∈MI′ } . (8)

Proposition 5 (Henrion, Römisch [5]). With the notation introduced above, one has

NgrNC
(ȳ, z̄) =

⋃
J⊆I1⊆I2⊆I


(u, v) ∈ R2n

∣∣∣∣∣∣∣∣∣∣∣∣

〈aj , v〉 = 0, j ∈ I1,
〈aj , v〉 ≤ 0, j ∈ χ(I2) \ I1,

u =
∑
j∈I1

λjaj +
∑

j∈χ(I2)\I1

µjaj ,

λj ∈ R, µj ∈ R+.


.

Clearly, the characteristic index set χ(I ′) consists of indices of all active constraints given that
the constraints in I ′ are active. It holds I ′ ⊆ χ(I ′) ⊆ I for all I ′ ⊆ I.

Remark 6. If the vectors {aj}j∈I are linearly independent, then χ(I ′) = I ′ for all I ′ ⊆ I.

The next example illustrates the role of the characteristic index set.
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Example 7. Let C be a convex polyhedral cone with apex in (0, 0, 1) given by C :=
{
y ∈ R3 |Ay ≤ 1

}
,

where

A :=


1 1 1
1 −1 1
−1 1 1
−1 −1 1

 .

The set of active indices in the apex is given by I = {1, 2, 3, 4}. Let I ′ = {1, 4}, then it follows
from (7) and (8) that χ(I ′) = I. Here, the constraints in I ′ defines the opposite sides of the convex
polyhedral cone C, which have only one common point y = (0, 0, 1). In this point all constraints
from I are active. If we set I ′ = {1, 2}, then χ(I ′) = I ′. Here, the constraints in I ′ define two
adjacent sides of C, which have a common edge. No further constraints from I are active in all
points of this edge.

3 Special case x̄ = 0, s̄ ∈ int ∂ ‖·‖p (0)

In the special case of x̄ = 0 and s̄ is an interior point of ∂ ‖·‖p (0), there is a simple formula which
is valid for all 1 ≤ p ≤ ∞.

Proposition 8. Let x̄ = 0, s̄ ∈ int ∂ ‖·‖p (0). Then for all 1 ≤ p ≤ ∞ it holds

∂2 ‖·‖p (0, s̄)(u) =

{
Rm, if u = 0,
∅, if u 6= 0.

(9)

Proof. Hence s̄ is an interior point of the subdifferential ∂ ‖·‖p (0) there exists a neighbourhood U
of s̄ such that s ∈ int ∂ ‖·‖p (0) for all s ∈ U . Let (x, s) ∈ gr ∂ ‖·‖p ∩ [Rm × U ]. Then s ∈ ∂ ‖·‖p (x).
This is equivalent to x ∈ NBq

(s). Due to the well-known fact that ∂ ‖·‖p (0) = Bq with 1
p + 1

q = 1,
it holds s ∈ int Bq. Thus, x = 0 for all x with (x, s) ∈ gr ∂ ‖·‖p ∩ [Rm × U ]. This implies
gr ∂ ‖·‖p ∩ [Rm × U ] = {0}×U . As a consequence the tangent cone to gr ∂ ‖·‖p at (x, s) is given by

Tgr ∂‖·‖p
(x, s) = {0} × Rm

for all (x, s) ∈ gr ∂ ‖·‖p∩ [Rm × U ]. It follows, that the Fréchet normal cone has the following form

N̂gr ∂‖·‖p
(x, s) = Rm × {0}

for all (x, s) ∈ gr ∂ ‖·‖p ∩ [Rm × U ]. Because of the fact that the Fréchet normal cone does not
change in the neighbourhood of (0, s̄), we conclude that the Mordukhovich normal cone to gr ∂ ‖·‖p
at (0, s̄) coincides with the Fréchet normal cone. The claim of the proposition follows now from
(1).

4 Maximum norm

In this section we develop a formula for the second-order subdifferential ∂2 ‖·‖∞ (x̄, s̄) of the max-
imum norm at any arbitrary point (x̄, s̄) ∈ gr ∂ ‖·‖∞. With each x ∈ Rm we associate the set of
indices

J(x) := { i ∈ {1, . . . ,m}| |xi| = ‖x‖∞} (10)

and denote by Jc(x) its complement. Observe that J(x) 6= ∅.
In the next lemma we describe a local representation of the maximum norm which we will use

later.
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Lemma 9. Let x̄ 6= 0. Then, there is a neighbourhood U of x̄ such that

‖x‖∞ = max
i=1,...,m

(sgn x̄i)xi ∀x ∈ U .

As a consequence,
∂ ‖·‖∞ (x̄) = conv {(sgn x̄i)ei|i ∈ J (x̄)} ,

where the ei refer to the unit vectors of Rm.

Proof. By definition, it holds for all x that

‖x‖∞ = max
i=1,...,m

|xi| = max
i∈J(x)

|xi| , (11)

where the second equality follows from J(x) 6= ∅. We have that |x̄i| = ‖x̄‖∞ > 0 for all i ∈ J(x̄).
Hence, there is a neighbourhood U of x̄ such that for all x ∈ U it holds sgn x̄i = sgnxi for i ∈ J(x̄)
and J(x) ⊆ J(x̄). Furthermore, it holds (sgn x̄i)xi ≤ ‖x‖∞ for all i. This allows us to continue
(11) for all x ∈ U as

‖x‖∞ = max
{

max
i∈J(x)

|xi|, max
i∈Jc(x)

(sgn x̄i)xi

}
= max

{
max
i∈J(x)

(sgnxi)xi, max
i∈Jc(x)

(sgn x̄i)xi

}
= max

{
max
i∈J(x)

(sgn x̄i)xi, max
i∈Jc(x)

(sgn x̄i)xi

}
= max
i=1,...,m

(sgn x̄i)xi.

In order to derive an explicit formula for the second-order subdifferential of the maximum norm
we intend to use the Propositions 4 and 5. To be able to do this we need a representation of the
unit ball B1 in a form which is convenient to work with. Due to the definition of the absolute value
function,

∑
|vi| ≤ 1 is equivalent to the system 〈aj , v〉 ≤ 1, where j ∈ Ĩ = {1, . . . , 2m}, aj are

vectors consisting of all possible combinations of 1 and -1. Thus, the unit ball B1 can be written
as a convex polyhedron in the following form

B1 =
{
v
∣∣∣〈aj , v〉 ≤ 1, j ∈ Ĩ

}
with aj and Ĩ described above. The set of active indices defined in (4) corresponds to

I =
{
j ∈ Ĩ |〈aj , s̄〉 = 1

}
. (12)

Now by (2) we can obtain an explicit formula for the second-order subdifferential of the maximum
norm, using thereby the Proposition 5 for the representation of the normal cone NgrNB1

(s̄, x̄).

Theorem 10. Let (x̄, s̄) ∈ gr ∂ ‖·‖∞. It holds

∂2 ‖·‖∞ (x̄, s̄)(u) =
⋃

J⊆I1⊆I2⊆I


v ∈ Rm

∣∣∣∣∣∣∣∣∣∣∣∣

〈aj , v〉 = 0, j ∈ I1,
〈aj , v〉 ≤ 0, j ∈ χ(I2) \ I1,

u = −
∑
j∈I1

λjaj −
∑

j∈χ(I2)\I1

µjaj ,

λj ∈ R, µj ∈ R+.


, (13)

where I and J are defined in (12) and (6), respectively.

Proof. The statement of this theorem follows directly from (2) and the Proposition 5.
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The above theorem yields a general formula for the second-order subdifferential of the maximum
norm, which holds for arbitrary points (x̄, s̄) ∈ gr ∂ ‖·‖∞. Simpler characterisation can be achieved
if we consider special points of gr ∂ ‖·‖∞. There are three cases to be distinguished: if x̄ 6= 0, then
we may benefit from a formula for the second-order subdifferential of maximum functions proven
in [3]; if x̄ = 0 and s̄ ∈ int ∂ ‖·‖∞ (0), then the second-order subdifferential of the maximum norm
is given by the simple formula (9); the remaining case of x̄ = 0 and s̄ ∈ bd ∂ ‖·‖∞ (0) turns out to
be the most delicate one. In the last case the constraints, which are active in s̄, are not necessarily
linearly independent. For an illustration see the Example 7, where C locally coincides in (0, 0, 1)
with the unit ball B1 in R3.

We now turn to the points (x̄, s̄) ∈ gr ∂ ‖·‖∞ with x̄ 6= 0. In this case the formula for the second-
order subdifferential of the maximum norm (13) can be drastically simplified as a consequence of
a result in [3, Theorem 4.2].

Let g : Rm → Rp be a continuously differentiable mapping and denote by

ϕ := max
j=1,...,p

gj (14)

the associated maximum function. We fix any x̄ ∈ Rm and s̄ ∈ ∂ϕ(x̄) and introduce the index set

Ī := {i ∈ {1, . . . , p} |gi(x̄) = ϕ(x̄)} . (15)

Since ∂ϕ(x̄) = conv
{
∇gi(x̄)|i ∈ Ī

}
(see [12, Exercise 8.31]), there exists a vector v ≥ 0 such that

s̄ =
∑
i∈Ī

vi∇gi(x̄). (16)

The following theorem is a corollary to [3, Theorem 4.2]. The latter has been proven in the
slightly more general context of parameter-dependent maximum functions and makes a statement
on the extended partial second-order subdifferential, whereas here we are interested in the simpler
case of non-parametric maximum functions and their conventional second-order subdifferential.

Theorem 11. Assume that the set {∇gi(x̄)}i∈Ī is linearly independent and let v ≥ 0 be the unique
solution of (16). Denote L := {i ∈ Ī|vi > 0}. Then, for arbitrary u ∈ Rm, one has that:

∂2ϕ(x̄, s̄)(u) 6= ∅ ⇐⇒ ∃c ∈ R : 〈∇gi(x̄), u〉 = c ∀i ∈ L. (17)

In this case it holds that w̃ ∈ ∂2ϕ(x̄, s̄)(u) if and only if there exists some w ∈ Rm such that

w̃ =
[
∇2 〈v, g〉 (x̄)

]
u+∇T g(x̄)w,

p∑
i=1

wi = 0, wi ≥ 0 ∀i ∈ I>, wi = 0 ∀i ∈ I< ∪ Ic. (18)

Here, I> :=
{
i ∈ Ī |〈∇gi(x̄), u〉 > c

}
and I< :=

{
i ∈ Ī |〈∇gi(x̄), u〉 < c

}
.

With this result we are able to prove the following theorem.

Theorem 12. Let x̄ 6= 0, (x̄, s̄) ∈ gr ∂ ‖·‖∞, L (x̄, s̄) := {i ∈ J(x̄)|s̄i 6= 0}, with J(x̄) as in (10).
Then for all u ∈ Rm one has that:

∂2 ‖·‖∞ (x̄, s̄)(u) 6= ∅ ⇐⇒ ∃c ∈ R : (sgn x̄i)ui = c ∀i ∈ L(x̄, s̄), (19)

In this case it holds

∂2 ‖·‖∞ (x̄, s̄)(u) ={
w ∈ Rm

∣∣∣∣∣
m∑
i=1

(sgn x̄i)wi = 0, x̄iwi ≥ 0 ∀i ∈ J>(x̄), wi = 0 ∀i ∈ J<(x̄) ∪ Jc(x̄)

}
, (20)

where J>(x̄) := {i ∈ J(x̄) |(sgn x̄i)ui > c} and J<(x̄) := {i ∈ J(x̄) |(sgn x̄i)ui < c}.
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Proof. Thanks to Lemma 9, around x̄ the local representation ‖x‖∞ = maxi=1,...,m(sgn x̄i)xi holds
true. Hence,

∂2 ‖·‖∞ (x̄, s̄) = ∂2ϕ(x̄, s̄)

with ϕ as defined in (14) and linear functions gi(x) := (sgn x̄i)xi for i = 1, . . . ,m. From (15) and
(10) we derive that

Ī = {i ∈ {1, . . . ,m} |(sgn x̄i)x̄i = ‖x̄‖∞ } = {i ∈ {1, . . . ,m} ||x̄i| = ‖x̄‖∞ } = J(x̄).

Therefore,
{∇gi(x̄)}i∈Ī = {(sgn x̄i)ei}i∈J(x̄) .

Observing that i ∈ J(x̄) implies |x̄i| = ‖x̄‖∞ > 0 and, hence, sgn x̄i 6= 0, it follows that the set
{∇gi(x̄)}i∈Ī is linearly independent. This allows us to invoke Theorem 11. First, note that (16)
implies s̄i = (sgn x̄i)vi for i ∈ Ī. By virtue of sgn x̄i 6= 0 and vi ≥ 0, this allows to identify the
index set L from Theorem 11 to be the same as the index set L(x̄, s̄) introduced in the statement
of this Theorem. Hence, (17) entails (19). Similarly, the index sets I> and I< from Theorem 11
are easily seen to coincide with the index sets J>(x̄) and J<(x̄), respectively, introduced in the
statement of this Theorem. Now, (18) entails that w̃ ∈ ∂2 ‖·‖∞ (x̄, s̄)(u) if and only if there exists
some w ∈ Rm such that

w̃i = (sgn x̄i)wi ∀i = 1, . . . ,m,
m∑
i=1

wi = 0, wi ≥ 0 ∀i ∈ J>(x̄), wi = 0 ∀i ∈ J<(x̄) ∪ Jc(x̄).

Here, we exploited the fact that the second-order term in (18) vanishes due to the linearity of g.
Recalling that sgn x̄i 6= 0 and, hence, (sgn x̄i)

2 = 1 for i ∈ J(x̄), it is easily seen that the set of
relations above is equivalent to

m∑
i=1

(sgn x̄i)w̃i = 0, (sgn x̄i)w̃i ≥ 0 ∀i ∈ J>(x̄), w̃i = 0 ∀i ∈ J<(x̄) ∪ Jc(x̄)).

This amounts to (20).

Example 13. Let m = 7, x̄ = (1,−1, 1,−1, 1, 0, 0) and s̄ = (1
3 ,−

2
3 , 0, 0, 0, 0, 0), then J(x̄) =

{1, 2, 3, 4, 5}, Jc(x̄) = {6, 7} and L(x̄, s̄) = {1, 2}. Due to the Lemma 9, s̄ ∈ ∂ ‖·‖∞ (x̄). Let u =
(2,−2, 2,−3, 0,−1, 4), then (sgn x̄i)ui = c for all i ∈ L(x̄, s̄) with c = 2. Thus, ∂2 ‖·‖∞ (x̄, s̄)(u) 6= ∅.
J>(x̄) = {4}, J<(x̄) = {5}. It holds

∂2 ‖·‖∞ (x̄, s̄)(u) =
{
w ∈ R7 | w1 − w2 + w3 − w4 = 0, w4 ≤ 0, w5 = w6 = w7 = 0

}
.

In the remaining case x̄ = 0, s̄ ∈ bd ∂ ‖·‖∞ (0) no simplification of (13) is obvious. In the points,
where the active constraints are not linearly independent, we have to compute the characteristic
index set χ(·) and rely on (13). But certain specification are still possible.

Proposition 14. Let x̄ = 0 and s̄ ∈ bd ∂ ‖·‖∞ (0). Then the index set J defined in (6) and used
in (13) is empty. Furthermore, (aj)i = sgn s̄i for all j ∈ I and all i ∈ L (0, s̄), where I and L(x̄, s̄)
are defined in (12) and the Theorem 12 respectively.

Proof. Since s̄ ∈ bd ∂ ‖·‖∞ (0) it follows by (3) that 0 ∈ NB1(s̄). Thus, there exist multipliers
λj ≥ 0 such that

∑
j∈I λjaj = 0. As a consequence it holds

0 =
∑
j∈I

λj〈aj , s̄〉 =
∑
j∈I

λj .

Thus, λj = 0 for all j ∈ I and hence, J = ∅.
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Let s̄ ∈ bd ∂ ‖·‖∞ (0) = bd B1. Then on the one hand

m∑
i=1

|s̄i| =
∑

i∈L(0,s̄)

|s̄i| = 1

and on the other hand

〈aj , s̄〉 =
m∑
i=1

(aj)i s̄i =
∑

i∈L(0,s̄)

(aj)i s̄i = 1.

for all j ∈ I. By virtue of si = sgn si |si| we have∑
i∈L(0,s̄)

(
(aj)i sgn s̄i − 1

)
|s̄i| = 0.

Thus, (aj)i sgn s̄i = 1 and, consequently, (aj)i = sgn s̄i for all j ∈ I and all i ∈ L (0, s̄).

5 1-norm

In the next theorem we present an explicit formula for the second-order subdifferential ∂2 ‖·‖1 (x̄, s̄)
of the 1-norm at any arbitrary point (x̄, s̄) ∈ gr ∂ ‖·‖1.

Theorem 15. For any fixed (x̄, s̄) ∈ gr ∂ ‖·‖1 and any fixed u ∈ Rm the second-order subdifferential
∂2 ‖·‖1 (x̄, s̄)(u) is nonempty if and only if uj = 0 for all j ∈ Ic, where I := {j ∈ {1, . . . ,m} | |s̄j | = 1}.
In this case it holds

∂2 ‖·‖1 (x̄, s̄)(u) =

{
v ∈ Rm

∣∣∣∣∣ vj = 0, j ∈ K
s̄jvj ≤ 0, j ∈ L \K

}
, (21)

where K := {j ∈ I | uj 6= 0, s̄juj > 0} ∪ J , L := {j ∈ I | uj 6= 0} ∪ J and J := {j ∈ I | x̄j 6= 0}.

Proof. In this proof we will, once again, make use of the Propositions 4 and 5. Thus, we begin
with the statement, that the unit ball of the maximum norm is a convex polyhedron, given by

B∞ = {v ∈ Rm | |vi| ≤ 1} .

It holds
s̄ ∈ B∞ ⇐⇒ |s̄i| = 〈(sgn s̄i)ei, s̄〉 ≤ 1, i = 1, . . . ,m.

Thus, if we set
aj := (sgn sj) ej , bj := 1, j = 1, . . . ,m (22)

the index set I introduced in the statement of this theorem coincides with the same index set
defined in (4). Furthermore, by (3) and (22) it holds

x̄ =
∑
j∈I

λjaj =
∑
j∈I

λj (sgn s̄j) ej

with λj ≥ 0. Hence, x̄j = λj(sgn s̄j) for j ∈ I. Recalling that sgn s̄j 6= 0 for j ∈ I it follows
λj > 0 ⇔ x̄j 6= 0 for j ∈ I. Consequently, the index set J from this theorem coincide with the
same index set defined in (6).

The vectors {(sgn s̄j)ej}j∈I are linearly independent, therefore it holds χ(I ′) = I ′ for all I ′ ⊆ I.
Due to (22) it holds 〈aj , v〉 = sgn s̄jvj . Together with s̄j 6= 0 for j ∈ I this implies

〈aj , v〉 = 0, j ∈ I1 ⇐⇒ vj = 0, j ∈ I1 (23)
〈aj , v〉 ≤ 0, j ∈ I2 \ I1 ⇐⇒ s̄jvj ≤ 0, j ∈ I2 \ I1 (24)
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for all I1 ⊆ I2 ⊆ I.
Next we set

u := −
∑
j∈I1

λjaj −
∑

j∈I2\I1

µjaj , (25)

where λj ∈ R and µj ∈ R+. It holds

uj =


−λj sgn s̄j if j ∈ I1,
−µj sgn s̄j if j ∈ I2 \ I1,
0 if j ∈ Ic2 .

Thus, due to s̄j 6= 0 for j ∈ I, (25) is equivalent to
uj ∈ R, j ∈ I1,
s̄juj ≤ 0, j ∈ I2 \ I1,
uj = 0, j ∈ Ic2 .

(26)

Now, from (23), (24), (26) and the Propositions 4 and 5 it follows

∂2 ‖·‖1 (x̄, s̄)(u) =
⋃

J⊆I1⊆I2⊆I

AI1,I2 , (27)

where

AI1,I2 =

v ∈ Rm

∣∣∣∣∣∣∣∣∣
vj = 0, j ∈ I1
s̄jvj ≤ 0, j ∈ I2 \ I1
s̄juj ≤ 0, j ∈ I2 \ I1
uj = 0, j ∈ Ic2

 .

It holds

AI1,I2 6= ∅ ⇐⇒

{
uj = 0, j ∈ Ic2
s̄juj ≤ 0, j ∈ I2 \ I1

⇐⇒


uj = 0, j ∈ Ic

{j ∈ I |uj 6= 0} ⊆ I2
{j ∈ I |uj 6= 0, s̄juj > 0} ⊆ I1

With the notation

M :=

{
(I1, I2)

∣∣∣∣∣ {j ∈ I |uj 6= 0, s̄juj > 0} ∪ J ⊆ I1
{j ∈ I |uj 6= 0} ∪ J ⊆ I2

}
(28)

(27) can be equivalently written as

∂2 ‖·‖1 (x̄, s̄)(u) =

{⋃
(I1,I2)∈M BI1,I2 if uj = 0 ∀j ∈ Ic,
∅ otherwise,

(29)

where

BI1,I2 =

{
v ∈ Rm

∣∣∣∣∣ vj = 0, j ∈ I1
s̄jvj ≤ 0, j ∈ I2 \ I1

}
. (30)

We show that BI1,I2 is a decreasing family of sets. Let for this sake Ia1 ⊆ Ib1 ⊆ I2, (Ia1 , I2) ∈ M ,(
Ib1, I2

)
∈M . We claim that BIa

1 ,I2
⊇ BIb

1 ,I2
. For arbitrarily given v ∈ BIb

1 ,I2
it holds

vj = 0 j ∈ Ib1, s̄jvj ≤ 0 j ∈ I2 \ Ib1. (31)

Since Ia1 ⊆ Ib2 and I2 \ Ia1 =
(
I2 \ Ib1

)
∪
(
Ib1 \ Ia1

)
, it follows from (31) that v ∈ BIa

1 ,I2
. Next we

consider I1 ⊆ Ia2 ⊆ Ib2, (I1, Ia2 ) ∈M ,
(
I1, I

b
2

)
∈M . Since Ia2 \ I1 ⊆ Ib2 \ I1 and due to (30) it holds

BI1,Ia
2
⊇ BI1,Ib

2
.

The claim of the theorem follows now from (28), (29), (30) and the fact thatBI1,I2 is a decreasing
family of sets.

10



Example 16. Let x̄ = (1,−2, 0, 0) and s̄ = (1,−1,−1, 0.5). Then I = {1, 2, 3} and J = {1, 2}. It
holds x̄ =

∑
j∈I λjaj with λj ≥ 0 and aj defined in (22). Thus, x̄ ∈ NB∞(s̄) and as a consequence

s̄ ∈ ∂‖ ·‖1(x̄). Let u = (1, 0,−1, 0). Then L = {1, 2, 3}, K = {1, 2} and uj = 0 for all j ∈ Ic = {4}.
Thus, ∂2 ‖·‖1 (x̄, s̄)(u) 6= ∅ and it holds

∂2 ‖·‖1 (x̄, s̄)(u) =
{
v ∈ R4 | v1 = v2 = 0, v3 ≥ 0

}
.
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