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Abstract. Trajectory- or mesh-based methods for analyzing the dynamical behavior of large
molecules tend to be impractical due to the curse of dimensionality - their computational cost in-
creases exponentially with the size of the molecule. We propose a method to break the curse by a
novel square root approximation of transition rates, Monte Carlo quadrature and a discretization
approach based on solving linear programs. With randomly sampled points on the molecular energy
landscape and randomly generated discretizations of the molecular configuration space as our initial
data, we construct a matrix describing the transition rates between adjacent discretization regions.
This transition rate matrix yields a Markov State Model of the molecular dynamics. We use Perron
cluster analysis and coarse-graining techniques in order to identify metastable sets in configuration
space and approximate the transition rates between the metastable sets. Application of our method
to a simple energy landscape on a two-dimensional configuration space provides proof of concept and
an example for which we compare the performance of different discretizations. We show that the
computational cost of our method grows only polynomially with the size of the molecule. However,
finding discretizations of higher-dimensional configuration spaces in which metastable sets can be
identified remains a challenge.
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1. Introduction. In statistical mechanics, a molecule is described by a suitably
chosen ensemble of systems having the same equations of motion but different initial
conditions. The ensemble is specified by a probability density function which gives the
probability that a system lies in a certain subset of the phase space. If the dynamical
behaviour of a system exhibits two or more time scales, then we can consider the
metastabilities of each system in the following way: in the fine scale (smaller time
scale) dynamics, the system fluctuates but relaxes for certain given initial conditions
to subsets which are almost stable; in the coarse scale (larger time scale) dynamics,
the system appears to be a Markovian process jumping between the almost stable
subsets, where the transition probability depends only on the current state. A subset
is ‘almost stable’ if the expected exit time of a system from the subset is large, relative
to the fluctuations occurring at the short time scale. One sometimes uses the terms
‘metastabilities’ or ‘conformations’ to refer to the almost stable subsets of the phase
space. In Figure 1.1 we see a trajectory of a system exhibiting the kind of multiscale
dynamics we have described. The identification of the metastabilities of a system and
the study of its coarse scale dynamics are among the primary goals of coarse graining
and multiscale methods [3, 13,16].

Methods based on Markov State Models (MSMs) [15, 24, 26] seek to identify the
metastabilities and study the coarse scale dynamics by constructing a Markov chain
on a finite state space. These methods work by studying certain eigenfunctions of
a semigroup of transfer operators or the associated infinitesimal generator [6, 12, 38].
The Markov chain is obtained by constructing a matrix which contains the transition
probabilities between the metastabilities [8, 10, 14, 28]. In order to assemble such a

∗Zuse Institute Berlin (ZIB), Berlin, Germany; Institut für Mathematik, Freie Universität Berlin;
Berlin Mathematical School
†Zuse Institute Berlin (ZIB), Berlin, Germany.
‡Zuse Institute Berlin (ZIB), Berlin, Germany.

1



2 Han Cheng Lie, Konstantin Fackeldey & Marcus Weber

matrix, the operators (or the generator) must be suitably discretized, or the transition
probabilities must somehow be approximated, e.g. via molecular dynamics simula-
tions. For systems of practical interest, the high dimension of the phase space leads to
difficulties for either approach: if one wishes to discretize an operator, the number of
basis functions required (e.g. for an application of the finite element method) grows
exponentially with the dimension; if one wishes to simulate the molecular dynamics,
one must apply a grid or mesh to the phase space, and the computational cost of ap-
plying such a mesh grows exponentially with the dimension of the phase space. The
exponential increase in computational cost is also known as the curse of dimension-
ality [2] and features prominently in computational methods for studying molecular
dynamical systems.

In this paper we propose a method to break the curse of dimensionality. We adopt
the operator approach, but construct a transition rate matrix instead of a transition
probability matrix. Starting from a theorem in [38], we compute the rates in terms of
quantities of the discretized energy landscape of the system - the Boltzmann weights
of discretization sets, the Boltzmann weights of the surfaces of intersection between
adjacent sets, and the instantaneous flux across intersections. We present and explain
this theorem in Section 2.1.

In Section 2.2 we assume that the flux between discretization sets is constant over
all pairs of discretization sets. Using a linear interpolation or averaging argument,
we then express the weights of the surfaces of intersection as square roots of the
products of the weights of adjacent discretization sets. This yields a square root
approximation of transition rates. We show the sequence of approximations leading
from the continuous to the discretized dynamics below and italicize the novel steps in
the sequence.

{ P(τ) }τ>0 semigroup of generalized transfer operators [38]

↓
Q transition rate matrix from [38]

↓ (Assumption of constant flux)

Q′

↓ (Square root approximation)

Q′′

The novel steps in the approximation - the assumption of constant flux and the
square root approximation - are important in breaking the curse of dimensionality. By
the assumption of constant flux, we can avoid simulating the dynamics. By the square
root approximation, we only need to compute the Boltzmann weights of discretization
sets, and we approximate these weights by Monte Carlo quadrature.

It remains to choose a discretization method. We need to assign randomly sam-
pled points on the energy landscape to discretization regions for Monte Carlo quadra-
ture, and we need to determine when two regions are adjacent in order to apply the
square root approximation. In this article we will use Voronoi tesselations because
they are not mesh-based discretizations. In Section 2.3 we present a formulation of
Voronoi tesselations in terms of convex polyhedra. This formulation provides us a
discretization method that does not incur the curse of dimensionality.

The method proceeds as follows: discretize the state space by Voronoi tesselations
and compute the adjacency relations; randomly sample points on the energy landscape
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and compute the Boltzmann weights of the Voronoi regions by Monte Carlo quadra-
ture; use the adjacency relations and the square root approximation to compute the
transition rate matrix Q′′; apply Perron Cluster Analysis and coarse-graining tech-
niques to Q′′ in order to identify the metastabilities and coarse-scale dynamics. We
describe the method in greater detail in Section 3.

In Section 4 we present the results of applying our method to a low-dimensional
model. In Section 5 we critique the method, analyzing the computational cost in
Section 5.1 and the performance of our method on higher-dimensional models in
Section 5.2. We present our conclusions in Section 6.

2. Theory. In this section we present the key theoretical ideas behind our
method. We discuss the sequence of approximations which leads from transfer oper-
ators to the transition rate matrix Q′′ of our method. We present a formulation of
Voronoi tesselations in terms of convex polyhedra and end with a brief overview of
the Perron cluster analysis and coarse-graining methods.

2.1. Transfer operators and transition matrices. Modelling molecular dy-
namical systems according to Newton’s laws of motion gives rise to differential equa-
tions. These differential equations in turn lead to operators which describe how sys-
tems evolve in some state space. In order to study systems using computational
methods, one needs to first choose operator which describes the continuous dynamics.
Discretizing this operator yields a matrix that describes the discretized dynamics.

Consider the transfer operator P(τ) which describes how the configuration (the
vector of spatial coordinates of the atoms of a molecule) evolves over a time lag
τ > 0 [34, 38]. For computation purposes, one projects the operator, which acts
on a high-dimensional continuous space, to a lower-dimensional space Ω, which one
then discretizes using closed discretization sets {Ωi}i=1,...,n which overlap only at
their boundaries. We use Voronoi tesselations as our discretization method because
they are a meshless discretization method and because we can compute adjacencies
between the resulting discretization sets without incurring the curse of dimensionality,
as we will show in Section 2.3. The projection of P(τ) to the discretization yields a
transition probability matrix (P (τ)ij)i,j∈I associated with the discretization, where

P (τ)ij gives the probability of a transition from Ωi to Ωj after τ units of time.
In practice, one computes P (τ)ij by computing many molecular dynamics simu-

lation (MD) trajectories and counting the proportion of trajectory segments starting
in Ωi that are in Ωj after τ units of time. As computing trajectories suffers from the
curse of dimensionality, we need a different approach to studying the transition be-
haviour over the discretization sets - one that does not need trajectory segments. The
key is to avoid estimating transition probabilities over τ and to consider instantaneous
transition rates instead. We will need Theorem 4 from [38], which we abbreviate as:

Theorem 1. Given a Voronoi tesselation Ω = ∪ni=1Ωi and the associated matrix
P (τ) ∈ Rn×n of a transfer operator P(τ), the matrix Q := ∂

∂τ P (τ)
∣∣
τ=0

satisfies

Qij =

∫
Ωi∩Ωj

z(q)πi(q)dS(q)

for i 6= j, where dS(q) is the surface measure on Ωi ∩ Ωj, πi : Ω → [0,∞) is the
normalized restriction to Ωi of the Boltzmann density over Ω, and z(q) denotes the
flux of configurations from Ωi to Ωj through the point q ∈ Ωi ∩ Ωj.

The quantity Qij describes the instaneous rate of flux of molecular configurations
moving from Ωi to Ωj across the surface Ωi∩Ωj , given that states in Ωi are distributed
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according to πi(·). To see how, we follow [38], and rewrite Qij as Qij = sij〈z〉ij/wi,
where wi =

∫
Ω

1Ωi
(q̃)πq(q̃)dq̃ is the Boltzmann weight of Ωi, sij =

∫
Ωi∩Ωj

πq(q)dS(q)

is the Boltzmann weight of the surface Ωi ∩ Ωj , and

〈z〉ij =

∫
Ωi∩Ωj

z(q)
πq(q)∫

Ωi∩Ωj
πq(q̂)dS(q̂)

dS(q)

is the flux per unit area from Ωi to Ωj across Ωi ∩ Ωj . Thus, sij 〈z〉ij quantifies the
flux of configurations from Ωi to Ωj across Ωi∩Ωj , and we establish that Qij describes
the conditional transition rate of configurations from Ωi to Ωj .

2.2. Square root approximation. Now we present the novel idea of our method:
the construction of the square root approximation transition rate matrix. We assume
that the flux per unit area term 〈z〉ij from Theorem 1 is equal to a constant ẑ that
is independent of i and j. This assumption is equivalent to assuming that the flux
per unit area across any surface Ωi ∩ Ωj is the same for all pairs i 6= j for any
given discretization of Ω, and yields a matrix Q′ with off-diagonal entries given by
Q′ij = ẑ sij/wi.

Let the Boltzmann density on configuration space πq : Ω → (0,∞) be given by
πq(·) = Z−1 exp [−βV (·)], where Z is the partition function or the normalizing con-
stant, β = (kBT )−1 is the inverse of the product of temperature T with Boltzmann’s
constant kB and V : Ω → R is the potential energy function of the molecule. Recall
that a Voronoi tesselation of Rd generated by n distinct points {gi}ni=1 is a partition
of Rd into n closed Voronoi regions {Ωi}ni=1, where the Voronoi region Ωi generated
by gi is the set of points which are closer to gi than to other gj in the Euclidean
distance metric:

Ωi :=
{
x ∈ Rd : ‖x− gi‖ ≤ ‖x− gj‖, i 6= j

}
. (2.1)

In particular, Ωi ∩Ωj = ∂Ωi ∩ ∂Ωj for i 6= j. Now consider a simple one-dimensional
configuration space and a Voronoi tesselation of that space, as in Fig. 2.1. The
intersection q = Ωi ∩ Ωj of adjacent Voronoi regions Ωi and Ωj is the midpoint
between their respective generators gi and gj . If we approximate the potential energy
function between gi and gj by a linear interpolant between gi and gj , we have that
V (q) ≈ 0.5(V (gi) + V (gj)) and obtain

sij =
1

Z
exp [−βV (q)] ≈ 1

Z

√
exp(−βV (gi)) exp(−βV (gj)) (2.2)

What if we have the energy values of scattered points in Ωi and Ωj , but do not wish
to create a Voronoi region for each point? One possible solution would be to let

sij ≈
√
w̄iw̄jNij (2.3)

where Nij = 1 if Ωi and Ωj are adjacent (i.e. if dim(Ωi ∩ Ωj) = dim(Ωi) − 1 ) and
Nij = 0 otherwise, and w̄i denotes the arithmetic mean of Boltzmann density values
of points in each Voronoi region,

w̄i := M−1
i

(
M∑
k=1

1Ωi(qk)πq(qk)

)
:=

(
M∑
k=1

1Ωi(qk)

)−1( M∑
k=1

1Ωi(qk)πq(qk)

)
. (2.4)

In Eq. (2.4), the {qk}Mk=1 are the scattered data points in the configuration space Ω,
M is their total number, Mi denotes the number of data points in Ωi, and 1Ωi

(x) = 1
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if x ∈ Ωi and 0 otherwise. We will refer to the symmetric matrix (Nij)
n
i,j=1 as the

‘matrix of adjacency relations’.
The rationale for the approximation in Eq. (2.3) is as follows. Let Ωi and Ωj be

adjacent and recall the definition of sij given in Section 2.1. In the limit of arbitrarily
small Voronoi regions, the Boltzmann density values of points on ∂Ωi ∩ ∂Ωj will
be arbitrarily close to the Boltzmann density values of the generators gi and gj , by
continuity of the energy function V ; the Boltzmann density values of gi and gj will
also be arbitrarily close to w̄i and w̄j for the same reason.

Now we apply the square root approximation. Replace sij and wi in the expression
Q′ij = ẑ sij/wi from Section 2.1 with

√
w̄iw̄jNij and w̄i respectively. The latter

replacement holds since w̄i converges in probability to the true Boltzmann weight wi
as Mi →∞ by the Law of Large Numbers. We obtain

Q′′ij = ẑ
√
w̄iw̄jNij/w̄i = ẑ

√
w̄j/w̄iNij , (2.5)

which is our square root approximation for the transition rate of configurations from
Ωi to Ωj for i 6= j. An immediate advantage of (2.5) is that by taking the ratio
w̄j/w̄i we no longer need to compute the partition function Z in Eq. (2.4). It also
follows from (2.5) that detailed balance between the transition rate matrix Q′′ and
the measure w̄ = (w̄1, . . . , w̄n) holds:

w̄iQ
′′
ij = w̄jQ

′′
ji. (2.6)

The equation above implies time-reversibility of the associated Markov chain [27].
Interesting consequences follow from the interpretation of the off-diagonal entries

of Q′′ as transition rates. Since the total concentration of states leaving Ωi for adjacent
regions must be deducted from the concentration of states in Ωi, we must have

Q′′ii = −
n∑
j 6=i

Q′′ij . (2.7)

Furthermore, Q′′ must also describe the evolution of distributions x(t) ∈ [0, 1]n over
the {Ωi}ni=1 by d

dtx
>(t) = x>Q′′. Since the Boltzmann distribution is an equilibrium

distribution of the continuous dynamics, we expect that its discretization w is an
equilibrium distribution of the discretized dynamics: 0 = w>Q.

Lemma 1. Let v ∈ Rn be a strictly positive vector and let R = R(v) ∈ Rn×n be
the matrix whose entries are given by

Rij =

{√
vj
vi

i 6= j

−
∑
k 6=iRik i = j

.

Then the vector v satisfies 0 = v>R.
Proof : Fix j ∈ {1, . . . , n}.

(v>R)j =
∑
i 6=j

viRij + vj

−∑
k 6=j

Rjk

 =
∑
i 6=j

vi

√
vj
vi

+ vj

−∑
k 6=j

√
vk
vj

 = 0. �

Note that Lemma 1 also follows from detailed balance of v and R [27].
Corollary 1. The sample mean approximation w̄ of the discrete Boltzmann

measure given in Eq. (2.4) is the invariant measure of the transition rate matrix Q′′

given by Eqs. (2.5,2.7): 0 = w̄>Q′′.
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2.3. Convex polyhedra formulation of Voronoi tesselations. In this sec-
tion we present the second important idea of our method: a formulation of Voronoi
tesselations in terms of convex polyhedra, which we use to avoid the curse of dimen-
sionality when we discretize the configuration space Ω and compute the matrix N of
adjacency relations. In Eq. (2.1) we defined a Voronoi region Ωi associated with a
generator gi as the set of points which were closer to gi than any other generator. We
will present an alternative definition and show that these two definitions agree.

For the set of n distinct generating points {gi}ni=1 ⊂ Rd, let gi,j denote the j-th
coordinate of gi, construct b ∈ Rn and A ∈ Rn×(d+1) according to

bi := ‖gi‖2 and Aij :=

{
2gi,j 1 ≤ j ≤ d
−1 j = d+ 1,

(2.8)

and use these to construct the (d+ 1)-dimensional convex polyhedron P ⊂ Rd+1,

P :=
{
x̃ = (x, xd+1) ∈ Rd × R : b−Ax̃ ≥ 0

}
. (2.9)

For i = 1, . . . , n, define f i : Rd+1 → R by f i(x̃) := bi −
∑d+1
`=1 Ai`x̃`. The supporting

hyperplane hi of P and the facet Fi associated with gi are given by

hi :=
{
x̃ ∈ Rd+1 : f i(x̃) = 0

}
and Fi := P ∩ hi.

(Recall that a facet of a convex k-polyhedron has dimension k − 1, so that Fi has
dimension d.) Let Πd be the operator which projects subsets of Rd+1 to the first d
coordinates. Consider the d-dimensional set Ω′i,

Ω′i := ΠdFi. (2.10)

Lemma 2. Let Ωi be as in Eq. (2.1) and Ω′i be as in Eq. (2.10). Then Ω′i = Ωi.
Results similar to Lemma 2 appear in [1, 23]. The proof below is our own.
Proof : By definition of hi, b and A, every x̃ = (x, xd+1) ∈ hi satisfies xd+1 =
2〈gi, x〉 − ‖gi‖2. Substitute x̃ = (x, 2〈gi, x〉 − ‖gi‖2) into bj −

∑
k Ajkx̃k ≥ 0 for j 6= i:

‖gj‖2 − 2〈gj , x〉+ 2〈gi, x〉 − ‖gi‖2 ≥ 0.

Since Fi = P ∩ hi, we have

Ω′i := Πd

{
(x, 2〈gi, x〉 − ‖gi‖2) ∈ Rd × R :

‖gj‖2 − 2〈gj , x〉+ 2〈gi, x〉 − ‖gi‖2 ≥ 0 for j 6= i
}

=
{
x ∈ Rd : ‖gj‖2 − 2〈gj , x〉+ 2〈pi, x〉 − ‖gi‖2 ≥ 0 for j 6= i

}
=
{
x ∈ Rd : ‖gj‖2 − 2〈gj , x〉+ ‖x‖2 − ‖x‖2 + 2〈pi, x〉 − ‖gi‖2 ≥ 0 for j 6= i

}
=
{
x ∈ Rd : ‖x− gj‖2 ≥ ‖x− gi‖2 for j 6= i

}
= Ωi. �

Recall from Section 2.2 that two Voronoi regions were defined to be adjacent if
dim(Ωi ∩ Ωj) = dim(Ωi)− 1. Now consider

Definition 1. Two d-dimensional Voronoi regions Ωi = ΠdFi and Ωj = ΠdFj
are adjacent if their liftings Fi and Fj have the property that dim(Fi ∩ Fj) = d − 1.
Equivalently, Ωi and Ωj are adjacent if Fi ∩ Fj is a facet of Fi.

Together, Lemma 2 and Definition 1 lead to a method for computing the matrix
N of adjacency relations via linear programming. The linear programming approach
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allows us to discretize configuration spaces while avoiding the curse of dimensionality.
We first found the idea of using linear programs to compute N in [9].

Fix i ∈ {1, . . . , n} and j 6= i. Let {ek}nk=1 ⊂ Rn be the set of canonical orthonor-
mal basis vectors and define the linear program

LP (i, j) :


minimize f i(x̃)

subject to (b+ ei)−Ax̃ ≥ 0

f j(x̃) = 0.

(2.11)

For v ≥ 0, consider the closed half-spaces

Hi,≥−v :=
{
x̃ ∈ Rd+1 : f i(x̃) ≥ −v

}
and Hi,≤−v :=

{
x̃ ∈ Rd+1 : f i(x̃) ≤ −v

}
.

The half-spaces are important because they define the polyhedron P via P = ∩kHk,≥0.
The idea from [9] behind the linear program LP(i, j) is that only the Voronoi regions
which are adjacent to Ωi will change when Ωi changes. We change Ωi by trans-
lating the supporting hyperplane hi down along the xd+1-axis by unity to obtain
the parallel hyperplane h′i. Translating hi to h′i perturbs Hi,≥0 to Hi,≥−1 and P to
P ′ := (∩k 6=iHk,≥0) ∩ Hi,≥−1. The facets of P ′ are given by F ′j := P ′ ∩ hj for j 6= i
and F ′i := P ′ ∩ h′i. In LP(i, j) above, we minimize over F ′j ; adjacency of Fj to Fi
implies that the image F ′j of Fj under the perturbation will properly contain Fj , in

which case f i(·) will attain strictly negative values. On the other hand, if f i(·) attains
strictly negative values, then we can also show that Fj must be adjacent to Fi. We
now make these arguments rigorous.

Lemma 3. If Fi ∩ Fj is not a facet of Fj, then ∩k 6=i (Hk,≥0 ∩ hj) ⊆ Hi,≥0 ∩ hj.
Proof : We prove the contrapositive. Suppose ∩k 6=i (Hk,≥0 ∩ hj) ⊃ Hi,≥0 ∩ hj .

Intersecting both sides with Hi,≥0 ∩ hj yields Fj = Hi,≥0 ∩ hj , and intersecting both
sides of Fj = Hi,≥0 ∩ hj with hi yields Fj ∩ hi = hi ∩ hj . But Fj ∩ hi = Fj ∩ Fi and
dim(hi ∩ hj) = d− 1 since hi and hj are hyperplanes in Rd+1. �

Lemma 4. It holds that Fj ⊆ F ′j. If ∩k 6=i (Hk,≥0 ∩ hj) ⊆ Hi,≥0∩hj then Fj = F ′j.
Proof : Since Hi,≥0 ⊂ Hi,≥−1, for j 6= i we have

[∩k 6=i (Hk,≥0 ∩ hj)] ∩ (Hi,≥0 ∩ hj) ⊆ [∩k 6=i (Hk,≥0 ∩ hj)] ∩ (Hi,≥−1 ∩ hj) . (2.12)

The second conclusion follows immediately from Hi,≥0 ∩ hj ⊆ Hi,≥−1 ∩ hj . �
Lemma 5. The optimal value of f i(·) in LP (i, j) is strictly negative if and only

if Fj ⊂ F ′j.
Proof : ‘⇐’: Since F ′j ⊂ Hi,≥−1 and Fj ⊂ Hi,≥0, it holds that Fj ⊂ F ′j implies

∅ 6= F ′j \ Fj ⊂ Hi,≥−1 \Hi,≥0. Thus there exists a x̃ in F ′j for which f i(x̃) < 0.
‘⇒’: Suppose that F ′j = Fj . Then LP(i, j) is a minimization problem over Fj ⊂

Hi,≥0. Over Hi,≥0, f i(·) has only nonnegative values. �
We now state and prove the main result of this section.
Theorem 2. Let {Ωi}ni=1 ⊂ Rd be a Voronoi tesselation of Rd generated by

{gi}ni=1. Fix i 6= j ∈ {1, . . . , n} and define LP (i, j) as in (2.11). Then the optimal
value of f i(·) is strictly negative if and only if Ωi and Ωj are adjacent.

Proof of Theorem 2: Since the optimization problem in LP(i, j) is over the
facet F ′j = P ′ ∩ hj 6= ∅ and since P ′ ⊆ Hi,≥−1 it holds that the objective function

f i(·) is bounded from below by −1, so the minimization problem is well-defined.
‘⇐’: Suppose Ωi and Ωj are adjacent. Then Fj ∩Fi = Fj ∩ hi is a facet of Fj , by

Definition 1. Since Fj ∩ hi 6= F ′j ∩ h′i, it follows that a facet of Fj changes under the
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perturbation which sends P to P ′. Changing a facet of a convex polyhedron changes
the polyhedron itself and Fj is a convex polyhedron, so F ′j 6= Fj . Applying the first
part of Lemma 4 and then Lemma 5 yields the desired conclusion.

’⇒’: Suppose Ωi and Ωj are not adjacent. Then Fj ∩ hi is not a facet of Fj , so
we can use Lemma 3, the second part of Lemma 4 and Lemma 5 (in that order). �

Theorem 2 appears without proof in [9]. The proof we have shown above, (in-
cluding Lemmas 3-5) is our own. Connections between linear programs and Voronoi
tesselations have been studied for other problems in [11,33,36].

In this section, we computed adjacency relations by solving a linear program
that was expressed in terms of (b, A). We can also use (b, A) to assign a randomly
sampled configuration q ∈ Ω to a Voronoi region. Let q̃ := (q, ‖q‖) ∈ Rd × R. The
index i = argmink(b−Aq̃)k gives the index of the Voronoi region which contains q. In
Section 4, we compute Centroidal Voronoi tesselations [30] using uniformly distributed
generators, because such tesselations are simple to generate via an iterative method
and yield discretization regions which are close to uniform. We leave the question of
how to best choose the generators for future work. In Section 5.1 we compare the
computational cost of different methods of discretizing via Voronoi tesselations, and
show that the linear programming formulation we presented above enables us to break
the curse of dimensionality.

2.4. Identifying conformations. In this section we review some results from
[37] on identifying conformations from transition matrices. In the previous section we
used non-overlapping, closed Voronoi regions to discretize the configuration space,

Ω = ∪nk=1Ωk, int(Ωi ∩ Ωj) = int(∂Ωi ∩ ∂Ωj) = ∅ for i 6= j, (2.13)

and we used indicator functions to assign configurations to Voronoi regions: 1Ωi
(q) = 1

if q ∈ Ωi and 1Ωi
(q) = 0 otherwise. We wish to find a partitioning of configuration

space into nc overlapping conformations, {Cj}nc

j=1

Ω = ∪nc

`=1C`, int(Ci ∩ Cj) 6= ∅ for adjacent Ci and Cj , i 6= j, (2.14)

where the regions of overlap are the transition regions.
To describe the conformations, we use membership functions χi : Ω→ [0, 1], which

assign a degree of membership to each conformation Ci. The χi generalize indicator
functions by permitting configurations to belong to more than one conformation, and
form a partition of unity: ∀q ∈ Ω,

∑nc

j=1 χj(q) = 1. Discretizing the set of membership

functions yields a matrix χ′ ∈ [0, 1]n×nc where the i-th column is the discretization
of the i-th membership function and χ′ij gives the degree of membership of the jth
discretization region to the i-th conformation. It follows from the nonnegativity and
partition of unity properties of the membership functions {χi}nc

i=1 that χ′ is non-
negative and row-stochastic, which is equivalent to the following property:

(P0): Each row (χ′>)i as a point in Rnc must lie on or in the (nc)-standard simplex,
i.e. the simplex in Rnc spanned by the canonical orthonormal basis vectors.

We want to compute χ′ from the transition rate matrix Q′′ that we constructed in
Section 2.2, which is an approximation of Q = d

dτ P (τ)|τ=0 from Theorem 1. The ma-
trix P (τ) is a discretization of the generalized transfer operator P(τ) which describes
the transfer of configurations q over a lag time τ . We must have P(τ)χi(q) ≈ χi(q)
because configurations in Ci tend to stay in Ci over τ units of time, i.e. since Ci is a
metastable set. If {P(τ)}τ>0 is a semigroup with an infinitesimal generator Q, then

Qχi(q) = lim
τ↘0

P(τ)χi(q)− χi(q)
τ

≈ lim
τ↘0

χi(q)− χi(q)
τ

= 0. (2.15)
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Thus, the membership functions are close to eigenfunctions of Q associated with
eigenvalues near zero, and (2.15) implies the following property:

(P1): the columns of χ′ are close to right eigenvectors of Q′′ corresponding to eigen-
values {θi}nc

i=1 near zero:

Q′′χ′ ≈ χ′Θ, Θ := diag(θ1, . . . , θnc
), θi ≈ 0, i = 1, . . . , nc. (2.16)

If Θ = θ Id ∈ Rnc×nc for some θ near 0, then given an eigenvector matrix X satisfying
Q′′X = θX, any transformation T ∈ GL(nc) yields another eigenvector matrix:

Q′′(XT ) = (Q′′X)T = (θX)T = θ(XT ).

We know by (P1) that Θ ≈ 0 Id. Thus, for any matrix X computed from standard
eigenvector algorithms satisfying Q′′X = XΘ, we have χ′ ≈ XT . Combining this
fact with (P0) implies that the rows of X are close to a simplex. In order to obtain
a membership vector matrix χ′ from an eigenvector matrix X, it suffices to map the
vertices of the simplex formed by the rows of X to the canonical orthonormal basis
vectors in Rnc . The idea behind the Inner Simplex Algorithm is to construct T from

T−1 =

X(ρ1, 1) . . . X(ρ1, nc)
...

. . .
...

X(ρnc
, 1) . . . X(ρnc

, nc)

 , (2.17)

where the {ρi}nc

i=1 are indices of the rows of the eigenvector matrix X that are furthest
away from each other (i.e. indices of the rows which form the vertices of a simplex) [37].
If the resulting matrix χ′ := XT has negative entries, one may use Robust Perron
Cluster Analysis (PCCA+) to turn χ′ into a non-negative matrix [7, 20].

In the discussion above, we assumed that we knew the number of conformations
nc. If one does not know the value of nc, one identifies a cluster of eigenvalues of
Q′′ which are close together near zero (of smallest magnitude) and separated from
the rest of the spectrum of Q′′ by a spectral gap, and sets nc equal to the number
of eigenvalues in the cluster. The smallest eigenvalues are related to the time scales
of the slow dynamics [24], and in order to obtain a spectral gap, one must identify
a configuration space in which one can distinguish between fine scale dynamics and
coarse scale dynamics [15]. One calls the eigenvalues in the cluster ‘Perron eigenvalues’
and the corresponding right eigenvectors ‘Perron eigenvectors’.

2.5. Conformation dynamics. So far, we have seen that with Q′′ we can
describe the evolution of distributions of configurations over the Voronoi regions and
identify the conformations of the system. In this section, we identify the equilibrium
distribution on the conformations and compute conformational transition rates by
coarse-graining [21,22].

We obtain distributions xc over conformations from distributions x over discretiza-
tion sets by projection. Let R : Rn → Rnc be given by Rx := χ′>x ∈ [0, 1]nc and set
xc := Rx; it holds that xc is non-negative and its elements sum to one. We obtain
the equilibrium distribution over conformations

w̄c := Rw̄. (2.18)

Define D := diag(w̄), Dc := diag(w̄c), the interpolation operator I : Rnc → Rn by

Iy := Dχ′D−1
c y and the reduction Q′′c of Q′′ by Q′′c :=

(
R(Q′′)>I(RI)−1

)>
. Using

the definitions of R and I and using χ′ = XT one can show that

Q′′c = T−>ΘT>. (2.19)
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Note that the entries of Q′′c are not true transition rates, because the conformations
overlap. We can mitigate, but not fully eliminate, this problem by reducing the overlap
between conformations [18]. However, the matrix Q′′c that we obtain from the coarse-
graining procedure is ‘correct’ in the sense that one obtains the same coarse-grained
distributions, regardless of whether one first evolves x(t) forward in time using Q′′ and
then coarse-grains using R, or first coarse-grains x(t) and then evolves the resulting
xc(t) forward in time using Q′′c (see Theorem IV.2 of [22]). Eq. (2.19) is useful if one
wishes to compute Pc(τ) = exp(τQ′′c ) - the matrix of ‘transition probabilities’ between
conformations over a lag time τ - since then one only needs to compute exp(τΘ).

Note also that since we obtain the rate matrix Q′′ after the assumption of constant
flux (see Section 2.2) Q′′c is a scalar multiple of the true coarse-grained propagator.
Thus, one can only use the entries of Q′′c to compute ratios between transition rates.
For example, the ratio Qc,ik : Qc,ij - the ratio of the k-th entry of the i-th row of Qc to
the j-th entry in the i-th row of Qc - is the ratio of the absolute rate of transition from
the i-th to the k-th metastable set, relative to the absolute rate of transition from
the i-th to the j-th metastable set. The diagonal entries are related to the average or
expected time that a molecule stays in the conformation [22].

The idea of coarse-graining - that some Markov chains can be simplified by parti-
tioning their state spaces into groups - has been studied before under different names,
e.g. ‘lumping’ [4] or ‘aggregation’ [35], and chains which can be simplified this way
are sometimes called ‘nearly completely decomposable’.

3. Method. We now provide a more detailed description of our method to sup-
plement that given in Section 1. We assume that one has a potential energy function
V : Ω → R described over a configuration space Ω and has fixed the value of the
inverse temperature β. We ignore the computation of the partition function Z in
steps 1 and 3 below.

1. Generate a collection {qj}j=1,...,M ⊂ Ω of M configurations. Compute the

Boltzmann densities {pj := exp(−βV (qj))}j=1,...,M .
2. Using n random generators drawn from the uniform distribution on a subset

of the configuration space, compute a centroidal Voronoi tesselation [30] such
that every Voronoi region contains at least one configuration.

3. Compute the {w̄i}i=1,...,n as given in Eq. (2.4). Normalize the resulting vector
to get a discretized distribution.

4. Compute the matrix of adjacency relations N ∈ {0, 1}n×n using Theorem 2.
5. Construct the matrix Q′′ as described in Eqs. (2.5) and (2.7).
6. Given nc, compute the Perron eigenvector matrix X ∈ Rn×nc for Q′′. If nc

is not known, identify a cluster of Perron eigenvalues in the spectrum of Q′′

near zero and set nc to the number of elements in this cluster.
7. Transform the Perron eigenvector matrix X into a matrix χ′ of membership

vectors, using the Inner Simplex Method or Robust Perron Cluster Analysis.
8. Compute the vector wc of weights of conformations using (2.18) and the

matrix Q′′c of relative conformational transition rates using (2.19).

4. Examples. In this section we investigate the performance of the method on
some examples.
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4.1. A simple model of an energy landscape. We applied the method to a
model of a molecule with the potential energy function

V (q) =3 exp
(
−q2

1 − (q2 − 1/3)
2
)
− 3 exp

(
−q2

1 − (q2 − 5/3)
2
)

− 5 exp
(
− (q1 − 1)

2 − q2
2

)
− 5 exp

(
− (q1 + 1)

2 − q2
2

)
+ 0.2q4

1 + 0.2 (q2 − 1/3)
4
.

(4.1)

This energy landscape has been studied before, e.g. in [29, 32]. This system has
three metastable sets: C2 and C3, centered at (−1, 0) and (1, 0) respectively; and C1

centered at (0, 5/3). The basins of low energy at C2 and C3 are deeper than the basin
at C1. A small bump centered at (0, 1/3) gives an energy barrier between the basins
at C2 and C3. The configuration space is Ω = R2.

We applied the method to the above model. We used the value β = 3.34 for the
inverse temperature, and we used n = 100 generators and M = 2000 configurations
drawn from the uniform distribution on [−2, 2]× [−1, 2]. We show some of our results
in Figures 4.1 to 4.6.

In Figure 4.1, a Voronoi region has a darker shade if its Boltzmann measure is
higher. Two clusters of dark regions correspond to the basins at C2 and C3. The
regions clustered around (0, 5/3) are not as dark because the basin at C1 is shallower
than the basins at C2 and C3, so the Voronoi regions in C1 have smaller Boltzmann
measure. In the plot of the smallest nine eigenvalues of Q′′ (Figure 4.2) a spectral
gap separates the three smallest eigenvalues from the rest of the spectrum, indicating
that this application of our method has resolved three conformations, i.e. that nc = 3.
In Figure 4.3, the rows of the reduced Perron eigenvector matrix X ∈ R100×2 almost
perfectly span a simplex in R2 (by the ‘reduced Perron eigenvector matrix’, we refer to
the Perron eigenvector matrix without the constant right eigenvector corresponding
to the zero eigenvalue of Q′′). We map this simplex to the standard simplex in R2

to obtain the membership vectors for each conformation. We show the membership
vectors in Figures 4.4, 4.5, and 4.6, where a Voronoi region is darker if its membership
to the conformation is higher (closer to unity).

We evaluated the method by comparing the statistical weights and ratios of tran-
sition rates to the reference values obtained by Gauss-Legendre quadrature on a reg-
ular 9 × 9 grid as given in [38]. We used a regular 201 × 151 mesh of data points
in [−2, 2] × [−1, 2] as our set of data on the energy landscape. On this data set we
applied four different discretizations: 9 × 9 and 18 × 18 mesh-based discretizations,
and random CVTs consisting of 81 and 324 centers computed after 500 iterations.

In Table 4.1 we present the results from mesh-based discretizations and from
CVTs. Refining the discretization led to better approximations of weights and tran-
sition rates for both the mesh-based and centroidal Voronoi tesselation discretiza-
tions. However, mesh-based discretizations yielded better approximations of statisti-
cal weights, while CVTs yielded better approximations of ratios of transition rates.

The spectral gap |θ4| − |θ3| of the transition rate matrix Q′′ decreased when the
discretization was refined for both discretization methods, from 1.5249 to 0.6984 for
mesh-based discretizations and from 1.7700 to 0.6107 for CVTs. This observation
suggests that refining discretizations uniformly need not lead to a better description
of the slow dynamics.

4.2. Entropic effects. To illustrate that our method can also resolve the en-
tropic effects as mentioned in [29], we applied a CVT to [−2, 2]× [−1, 2], while using
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the same mesh-based data sites as in Table 4.1. We used two different values of the
inverse temperature, β = 1.67 and β = 6.67. We summarize our results in Table 4.2.

In Table 4.2 the ratio 2→ 1 : 2→ 3 is 1.4969 : 1 when β = 1.67 and is 3.1027 : 1
when β = 6.67. That is, at both temperatures, more molecules in C2 transition to C1

than to C3, because they need less energy to move from C2 and C1. Decreasing the
temperature (changing from β = 1.67 to β = 6.67) reduced the transition rate from
C2 to C3, because at lower temperatures the molecules have less energy on average
to overcome the energy barrier between C2 and C3.

We observed that increasing the temperature reduced the spectral gap |θ4| − |θ3|
from 1.0330 at β = 6.67 to 0.3354 at β = 1.67. That is, increasing the temperature
reduces the separation between the short and large time scales. This agrees with the
physical intuition that at higher temperatures, molecules have more energy on average
and thus are able to leave the metastable sets sooner.

5. Critique. In this section we analyze our method. We discuss the compu-
tational cost of the method, and study the performance of the method when the
dimension of the problem increases.

5.1. Computational cost. The bottleneck in our method lies in the computa-
tion of the matrix N of adjacency relations given the generators of a tesselation. A
straightforward approach would be to compute the full Voronoi tesselation in order
to find all the vertices of the Voronoi regions and compare vertices of each Voronoi
region. However, algorithms for computing full Voronoi tesselatons suffer from restric-
tions due to dimensionality. For example, the Qhull algorithm does not a priori suffer
from the curse of dimensionality but works only for spaces of dimension d ≤ 9 [5]. An
incremental algorithm for computing a full Voronoi tesselation of Rd into n regions
runs in O(ndd/2e) [17]. Methods for finding all the vertices in Voronoi tesselations of
spaces of any dimension seem to lead to the curse of dimensionality, given the tight
upper bound for the number of vertices of O(nb(d+1)/2c) [31].

The discretization method we presented in Section 2.3 has an important advantage
in that we need not find any vertices at all in order to find the adjacency relations. The
cost of the linear program used to solve LP (i, j) in Theorem 2 depends on the choice
of linear program solver. A straightforward, practical choice would be the simplex
algorithm, which is known to have at worst exponential computational cost but on
average polynomial computational cost [25]. Furthermore, it was shown in [19] that
linear programs can be solved in polynomial time. We conclude that the discretization
method shown in Section 2.3 does not lead to the curse of dimensionality.

The most expensive part of computing the transition rate matrixQ′′ after comput-
ing N is the computation of w̄. For a Voronoi region Ωi, the Monte Carlo quadrature
approximation w̄i converges in probability with order O(1/

√
Mi) to the true Boltz-

mann weight wi as the number Mi of configurations belonging to Ωi goes to infinity.
Note that approximating the potential energy V (qj) of a configuration qj may be very
expensive for large molecules, given that such potential energies are often computed
using pairwise atomic interactions, and given that the number of pairwise interactions
increases exponentially with the number of atoms.

In Section 2 we showed how we obtained Q′′ from the rate matrix Q defined in
Theorem 1. In [38], the complexity of this approach is O(n(fn + 1)) (see Table 4.1
of [38] under ‘Theorem of Gauss’). The quantity fn is the average number of nonzero
entries in N ∈ {0, 1}n×n, i.e. the average number of neighbours of a Voronoi region.
Compared to the complexity of O(1/(1 − λ2)) of thermostated molecular dynamics
simulations from the same table (where λ2 ∈ (0, 1) is the eigenvalue of the transfer
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operator P(τ) closest to unity), the approach we use is more favourable in terms of
complexity.

We conclude our critique by observing that our method is robust with respect
to the dimension of the configuration space of the molecule, since the computational
cost is effectively polynomial in the dimension d and the number of Voronoi regions
n. Furthermore, the computational complexity of our method is smaller than using
thermostated molecular dynamics simulations.

5.2. Higher-dimensional models. Now we investigate how our method per-
forms when we consider higher-dimensional models. Rewrite the potential energy
function in (4.1) as the sum of Gaussian and polynomial terms,

V (q) =

s∑
i=1

ai exp
[
−‖q − wi‖2

]
+

d∑
j=1

bj(qj − cj)4 (5.1)

where d = 2 is the dimension of the configuration space and s = 4 is the number of
Gaussian terms. The coefficient vectors are a = (3,−3,−5,−5)>, b = (0.2, 0.2)>, and
the centering terms are c = (0, 1/3)> and W ∈ Rd×s, where

W =

(
0 0 1 −1

1/3 5/3 0 0

)
.

We call c and W the ‘centering terms’ because they provide the centers for the poly-
nomial and Gaussian terms.

We investigated the effect of increasing the dimension of the simple model given
by (4.1) by appropriately augmenting the centering terms c and W with zero rows.
For example, if we consider the model into R4 by adding two extra dimensions, we
obtain the parameter set

a =


3
−3
−5
−5

 , b =


0.2
0.2
0.2
0.2

 , c =


0

1/3
0
0

 , W =


0 0 1 −1

1/3 5/3 0 0
0 0 0 0
0 0 0 0

 .

For d = 2, . . . , 7 we applied our method by using a CVT with 324 regions and 3000 data
sites drawn from the uniform distribution on [−2, 2]× [−1, 2]×

∏d−2
[−0.005, 0.005],

and specifying β = 3.34. In Figures 5.1-5.6 we plot the rows of the corresponding
Perron eigenvector matrices. We observe that the simplex structure persists for d = 2
and d = 3, but for 4 ≤ d ≤ 7, there is very little simplex structure to the rows. Recall
that the simplex structure of the Perron eigenvector matrix is important in identifying
the matrix χ′ of membership vectors (see Section 2.4). When the eigenvector matrix
lacks a clear simplex structure, it becomes difficult to identify the conformations.

The examples above emphasize that working with high-dimensional energy land-
scapes is difficult, because it is difficult to find a discretization in which conformations
can be identified when the dimension of the landscape is high.

5.3. Voronoi tesselations with other metrics. An important aspect of
Voronoi tesselations which we have not investigated in this article is the application
of Voronoi tesselations to spaces other than Rd. Given that some molecules may have
configuration spaces with torsion angle coordinates, the choice of metric for computing
distances to generators may lead to difficulties. For example, if the configuration space
of a molecule is given in terms of two torsion angles, then this configuration space
corresponds to the 2-torus, R2/Z2, and the metric on the 2-torus is different from the
Euclidean metric we have used in this article.
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6. Conclusion. In this paper we presented a method for constructing a Markov
State Model of a molecular system. The novel ideas in our method are the assump-
tion of constant flux and the square root approximation of transition rates between
two adjacent discretization regions. These ideas enabled us to avoid trajectories and
reduce the computation of transition rates between discretization sets to the compu-
tation of Boltzmann weights of discretization sets and the computation of adjacency
relations. We approximate the Boltzmann weights by Monte Carlo quadrature, which
gives dimension-independent but only probabilistic convergence. We obtain the adja-
cency relations using a linear programming formulation of Voronoi tesselations, which
allows us to break the curse of dimensionality when discretizing the configuration
space. Finding discretizations of high-dimensional configuration spaces in which con-
formations can be identified remains a challenge.

The key idea in our method is that the equilibrium dynamics of a molecular system
are determined completely by its energy landscape. In particular, if one only wishes to
approximate the conformation statistical weights and relative conformation transition
rates, then it is not necessary to simulate trajectories; simulations are only necessary
if one wishes to obtain dynamic quantities. It suffices to randomly sample the energy
landscape at points and to construct a Markov State Model using these point data
on the energy landscape. By avoiding trajectory-based methods (and more generally,
mesh-based methods) one can break the curse of dimensionality and in principle study
large molecules which are too large to be simulated.
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[25] J. Matousek and B. Gärtner, Understanding and Using Linear Programming, Springer, 2007.
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Fig. 1.1. Sample trajectory of a metastable dynamical system. Metastable sets of the dynamical
system are the intervals (−1.7, 0.2) and (0.2, 1.5). In each metastable set, the dynamical system
evolves at a smaller time scale, i.e. the dynamical system exhibits very rapid fluctuations. On the
other hand, the dynamics between the metastable sets occurs at a larger time scale - the system
appears to be a Markovian process which jumps from one metastable set to another at a slower rate.
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Fig. 2.1. Potential energy function, with Voronoi regions Ω1 = [−1.5,−0.5] and Ω2 =
[−0.5, 0.5] generated by g1 = −1 and g2 = 0, and the surface of intersection ∂Ω1 ∩ ∂Ω2 = {−0.5}.
The potential energy function between g1 = −1 and g2 = 0 is approximated by the average of V (−1)
and V (0).

Gauss-Legendre 9× 9 Mesh 81 centers CVT 18× 18 Mesh 324 centers CVT
wc(1) 0.0024 0.0023 0.0028 0.0025 0.0025
wc(2) 0.4987 0.4990 0.5360 0.4988 0.5157
wc(3) 0.4987 0.4987 0.4612 0.4987 0.4819

1→ 2 : 1→ 3 1:1 0.8728:1 0.5647:1 1.1130:1 0.9059:1
2→ 1 : 2→ 3 1.7647:1 0.4211:1 0.4118:1 1.0028:1 1.6754:1
3→ 1 : 3→ 2 1.7647:1 0.2857:1 0.75:1 0.9146:1 1.3967:1

Table 4.1
Comparison for discretizations. Data set: points on 201 × 151 mesh. Inverse temperature

β = 3.34.
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Fig. 4.1. Discretized Boltzmann distri-
bution corresponding to Eq. (4.1).
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Fig. 4.2. Absolute value, first 9 eigen-
values of Q′′. Spectral gap |θ4| − |θ3| ≈ 1.96.
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Fig. 4.3. Rows of Perron eigenvector
matrix X are close to a simplex.
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Fig. 4.4. Conformation C1 at (0, 5/3).
Dark regions belong strongly to C1.
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Fig. 4.5. Conformation C2 at (−1, 0).
Dark regions belong strongly to C2.
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Fig. 4.6. Conformation C3 at (1, 0).
Dark regions belong strongly to C3.

β = 1.67 β = 6.67
wc(1) 0.0500 0.0000
wc(2) 0.4894 0.4826
wc(3) 0.4606 0.5174

1→ 2 : 1→ 3 0.8790:1 0.9674:1
2→ 1 : 2→ 3 1.4969:1 3.1027:1
3→ 1 : 3→ 2 1.0757:1 2.6857 :1

Table 4.2
Entropic effects due to different temperatures β = 1.67 and β = 6.67, based on results using

324-center CVT and 202 × 151 mesh-based data set as in Table 4.1. Decreasing the temperature
(changing from β = 1.67 to β = 6.67) leads to increases in the ratios in the last two rows because
molecules have on average less energy at lower temperatures, so fewer molecules can overcome the
high energy barrier between C2 and C3 and as a result prefer to transition into C1.
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Fig. 5.1. Dimension 2 model, rows of
Perron eigenvector matrix. Clear simplex
structure.
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Fig. 5.2. Dimension 3 model, rows of
reduced Perron eigenvector matrix. Observ-
able simplex structure.
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Fig. 5.3. Dimension 4 model, rows of
reduced Perron eigenvector matrix. Simplex
structure difficult to distinguish.
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Fig. 5.4. Dimension 5 model, rows of
reduced Perron eigenvector matrix. No clear
simplex structure.
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Fig. 5.5. Dimension 6 model, rows of
reduced Perron eigenvector matrix. No clear
simplex structure.
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Fig. 5.6. Dimension 7 model, rows of
reduced Perron eigenvector matrix. No clear
simplex structure.


