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Abstract. In this article we show, that the binding kinetics of a molecular system can be
identified by a projection of a continuous process onto a finite number of macro states. We thus
interpret binding kinetics as a projection. When projecting onto non-overlapping macro states the
Markovianity is spoiled. As a consequence, the description of e.g. a receptor-ligand system by a two
state kinetics is not accurate. By assigning a degree of membership to each state, we abandon the
non-overlapping approach. This overlap is crucial for a correct mapping of binding effects by Markov
State Models with regard to their long time behavior. It enables us to describe the highly discussed
rebinding effect, where the spatial arrangement of the system has the be included. By introducing
a “degree of fuzziness” we have an indicator for the strength of the rebinding effect, such that the
minimal rebinding effect can be derived from an optimization problem. The fuzziness also includes
some new paradigms for molecular kinetics. These new model paradigms show good agreement with
experimental data.
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1. Introduction. Various authors from natural sciences have described and an-
alyzed an effect which is denoted as rebinding effect (e.g. [Vau10, VL12, GAS+13,
WBH12]). This topic has been discussed in the context of clustered receptors and
clustered ligands in chemistry [CS11, MKMT05]. Whereas, in mathematical litera-
ture it is denoted as recrossing effect which has been investigated with respect to the
spoiling of the Markov property in Markov State Models [EVE10, VET05, GR13]. In
order to illustrate the meaning of this effect, think of a simple ligand-receptor binding
process. In the simple case, this process can be characterized by a reaction equation

L+R� LR,

where the ligand (L) binds to a receptor (R) and forms a complex (LR). The ligand
can be found in two different (macro)states – “bound” (LR) and “unbound” (L).
According to this reaction one can derive kinetic constants, usually connected to an
ordinary differential equation of the form

ẋT = xTQc,

where xT = 1
s (([L], [LR])), with s = [L] + [LR] = const., is the time-dependent vector

of the probabilities of the ligand to be bound or, respectively, to be unbound. These
probabilities are proportional to the concentrations [L] and [LR]. The matrix entries
of Qc are the rates of the reactions,

Qc =

(
−ka[R] ka[R]
kd −kd

)
,

where ka denotes the association and kd the dissociation constant. This mathematical
model of a binding kinetics comprises the Markov property. Given initial concentra-
tions of the system, one can predict the future evolution of the concentration curves by
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solving the ordinary differential equation (without knowing the “past”). The process
seems to be without memory on the level of the two macro states.

This Makovian view on the macro scale is no longer justified when switching
to the atomistic scale of a binding process. Here, the actual state depends still on
the past, since a ligand having dissociated rebinds with a higher probability than a
ligand being far away from the receptor. In other words, the spatial situation of the
molecules is no longer negligible on the molecular scale and, thus, the accuracy of the
discrimination between bound and unbound states is no longer sufficient.

Fig. 1.1. Sketch of a trivalent binding process being in a certain micro state: One part of the
tivalent ligand is located in its binding site of a trivalent receptor, whereas the two other ligands are
only “very near” to their binding sites. A strict classification of this micro state maybe impossible.

Rao et al. [RLWW00] have synthesized a trivalent molecular system with a high
binding affinity. Instead of giving thermodynamical reasons (lower entropy loss of
a pre-organized ligand system), they claimed that the source of the high affinity is
given by rebinding effects (Fig. 1.1). This means that the spatial arrangement of
receptors and ligands leads to faster association and slower dissociation kinetics if the
ligands approach the receptors. It is more likely that a ligand which unbinds will
bind again before the whole ligand complex is dissociated from the receptor. This is a
kind of memory effect included in the bound state of the system. This effect has also
been discussed in the context of “configurational cooperativity” [Whi08]. We, there-
fore, suggest a model which enables to describe besides the bound and non-bound
states also “intermediate” states, i.e. states between the bound and non-bound one
[WBH12]. This is accomplished by assigning each micro state of the system a cer-
tain degree of membership to the both macro states (bound/non-bound), instead of
just using a set based approach (see also [FRSW11] for a discussion). In this con-
text we can, therefore, refer to a micro state as “almost bound” or “almost unbound”.

This paper is structured as follows: In section two we show, how a molecular
system can be explained in terms of transition rates between subsets of the confor-
mational space. In section three we derive the minimal rebinding effect from a given
kinetics by solving an optimization problem. In section four we show the performance
of the method for some examples.

2. Molecular kinetics as a projection. In this article, we distinguish between
micro states and macro states of a molecular system. A micro state of a molecular
system with N atoms is represented in a 6N dimensional phase space, where q ∈ Ω =
R3N are the spatial coordinates and p ∈ R3N are the momenta. We assume that the
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molecular system has an equilibrium distribution of micro states. One possible model
is given by the Boltzmann distribution

ρ̃(q, p) ∝ exp(−βH(q, p)). (2.1)

Here β = 1/(kBT ) is the inverse temperature T multiplied with the Boltzmann con-
stant kB , and H denotes the Hamiltonian function which (in the classical, separable
case) is given by H(q, p) = K(p) +V (q), where K(p) is the kinetic energy and V (q) is
the potential energy. By taking advantage of the fact, that the Boltzmann distribution
π, can be decomposed as π = πpπq, where πp : R3N → R is the probability function
of the kinetic part in the momentum space and πq : Ω→ R is the probability function
of the potential part in the spatial coordinates Ω and by a suitable averaging of the
momentum information we project the dynamics onto Ω. The corresponding reduced
density πq =

∫
RN π(q, p) dp is positive, finite and smooth. An ensemble of micro states

is characterized by a density function ρ̃(q, p), such that ρ̃(q, p)dq ∧ dp gives the frac-
tion of micro states in the volume element dq ∧ dp. This point of view motivates to
group/cluster a “collection” of the micro states having the same or similar values in
one observable [Sch99, DHFS00, DDJS99, DW05]. We call such a collection of micro
states a macro state (e.g. “bound” or “unbound” state of a ligand-receptor-system).
By grouping micro states, the macro states yield statistical weights and entropic infor-
mation (regarding the corresponding part of the equilibrium density function). Macro
states need not be distinct sets, we follow the approach of [Web06, DW05] by defining
macro states as overlapping partial densities, which can be identified by membership
functions χ1, ..., χn : Ω→ [0, 1], giving each vector of spatial coordinates q of a micro
state a degree of membership to each macro state. These membership functions form
a partition of unity, i.e.

n∑
i=1

χi(q) = 1.

This partition of Ω also allows us, to assign the statistical weights to each macro state,
by

wi =

∫
Ω

χi(q)πq(q) dq. (2.2)

The evolution of a time dependent density function ρ : R × Γ → R of micro states
(q, p) ∈ Γ = Ω× R3N can then be given by an operator F : L1(Γ)→ L1(Γ):

ρ(t+ τ, ·) = Ft,τρ(t, ·), (2.3)

where t > 0 is the time and τ is a time span. In the followings, we will consider
the operator F in the case of an equilibrated molecular system. In this case, the
time-dependence Ft,τ = Fτ vanishes. The evolution (2.3) in the phase space can be
projected onto the configuration space giving

ρq(t+ τ, ·) = P̄(τ) ρq(t, ·), (2.4)

where P̄ is a density propagating Markov operator and ρq : R × Ω → R is the
time dependent projected density function. The propagation in time span τ > 0
of densities in the configuration space can be given by a linear self-adjoint Markov
transfer operator [Web11] P : L1,2

πq
(Ω) → L1,2

πq
(Ω). The construction of this transfer
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operator is based on a non-linear and possibly stochastic dynamics of the system. We
define for a given micro state (q, p) the probability density function Φ−τ (q̃|(q, p)) in
q̃. With this probability the system being in state q and momentum p switches to q̃
in time τ . The transfer operator is given by

P(τ)f(q) =

∫
R3N

(∫
Ω

f(q̃)Φ−τ (q̃|(q, p))dq̃
)
πp(p)dp. (2.5)

We remark, that for deterministic dynamics Φ is the Dirac delta. The self-adjointness
of this transfer operator stems from the assumption, that for every “trajectory” from
q to q̃ there exists in the equilibrium ensemble a reverse trajectory with the same
probability (detailed balance condition). The relation between the operator P(τ)
acting on membership functions and the density propagating Markov operator P̄ is
given by [Web11]

P̄(τ) = πq ◦ P(τ) ◦ (πq)
−1.

It has been shown by Weber [Web11], that the operator P(τ) which satisfies the
detailed balance equation, is self-adjoint with respect to the πq weighted scalar product
〈g, f〉π =

∫
Ω
f(q)g(q)π(q) dq, that is

〈g,P(τ)f〉π = 〈P(τ)g, f〉π,

and has a real valued spectrum σ(P) ⊂ [−1, 1]. Moreover the operator P(τ) is as-
sumed to have a discrete spectrum of eigenvalues 1 = λ1 ≥ λ2 ≥ ... ≥ λn, in particular
we assume that there exists a set of eigenvalues {λ1, ..., λn} close to 1. Their corre-
sponding eigenfunctions are denoted by X = {X1, ...,Xn}, such that P(τ)X = XΛ,
where Λ = diag(λ1, ..., λn). We now aim to reveal the underlying discrete Markov
state model, where each macro state is one possible Markov state and the transition
behavior is given by an n × n row-stochastic transition matrix P (τ). Thus, we need
to determine the size and shape of the macro states, i.e. the membership functions χ,
which we have not done yet. Moreover, it has to be guaranteed that the discrete model
is Markovian. More clearly, the time-discretized process in the continuous space of
micro states is Markovian (operator P). However, the time-series of projected densi-
ties of micro states at time 0, τ, 2τ, . . . (projected to a finite set of macro states) may
be non-Markovian. It is known, that the projection onto a finite dimensional state
space has to be taken with care, since in general the underlying discrete process is not
necessarily Markovian, see [SNS10]. It has been shown [Web11] that for the choice
χ = XA (χ is a linear combination of the eigenfunctions X ) the Markovianity can be
preserved. In particular

χj(q) =

N∑
i=1

AijXi(q), j = 1, ..., n, (2.6)

where A = {Aij}i,j=1,...,n is a non-singular transformation matrix and {Xi}i=1,...,n

the above mentioned eigenfunctions. This matrix A is the solution of a convex max-
imization problem called PCCA+ (Perron Cluster Analysis). For details we refer to
[Web06, DW05, FRSW11]. We remark, that individual eigenfunctions X do not over-
lap since they are orthogonal, but the membership functions χi as linear combinations
of the eigenfunctions might have an overlap. The Markov property of the projected
time-series is preserved, if we use the following Galerkin projection [KW07]:

P (τ) = (〈χ, χ〉π)−1(〈χ,P(τ)χ〉π), (2.7)
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where 〈χ, χ〉π and 〈χ,P(τ)χ〉π are n×n-matrices given by considering all pairs χi, χj ,
with i, j ∈ {1, . . . , n}. Markovianity can be expressed by the fact that P (sτ) =
P (τ)s, s ∈ N. The above projection reflects the correct dynamical long term behavior
of densities in the original micro system. The matrix P (τ) given by (2.7) represents,
therefore, the correct Markov State Model which also captures the spatial effects. Let
now D = diag(w1, ..., wn) be the n × n diagonal matrix of the statistical weights in
(2.2), then we can define two row-stochastic matrices

T = D−1〈χ,P(τ)χ〉π = D−1ATΛA and S = D−1〈χ, χ〉π = D−1ATA, (2.8)

see [Web11]. By using membership functions, a macro state of the system is not a
subset in conformational space. A macro state i is like a part of the ensemble given
by the density function χi · πq, which might be interpreted as a sub-density of the
ensemble. The matrix T can be interpreted in the following sense: Tij denotes the
relative portion of the sub-density χi · πq that can be found in χj after propagating
it in the time-span τ . This would correspond to our “usual” definition of a transition
matrix. Taking this matrix as a basis of a Markov chain would not lead to the correct
long term behavior of the micro states. The error is due to the recrossing events. The
relation between the matrix T , which can be interpreted as a transition matrix, and
the correct projection P (τ) is given by: P (τ) = S−1T . The more the matrix S differs
from identity the more the correct projection P (τ) differs from the transition matrix
T . Thus, the rebinding effect can be measured by the matrix S. In order to derive
this matrix from simulation data, we investigate transition rates instead of transition
probabilities. The operator P(τ) defines a time-independent operator Q by

Q = lim
τ→0+

P(τ)− I
τ

(2.9)

where I is the identity operator. If we assume that P meets the Chapman Kolmogorov
equation, that is P(τ1 + τ2) = P(τ1)P(τ2) for τ1, τ2 > 0 then Q is the infinitesimal
generator of P:

P(τ) = exp(τQ).

For a crisp, i.e. set-based, discretization there exists no infinitesimal generator in
general. However, it has been shown that for a discretization in terms of membership
functions there exists an infinitesimal generator [Web11]. Since the eigenfunctions
of Q and P are the same and the eigenvalues {ξi}i of Q meet exp(ξi) = λi, we can
employ the Galerkin discretization in the fashion of (2.7) by an n× n-rate matrix

Qc = A−1ΞA = (〈χ, χ〉π)−1〈χ,Qχ〉π, (2.10)

preserving the Chapman-Kolmogorov property [Web11, Web13]. Here the diagonal
matrix Ξ contains the leading eigenvalues 0 = ξ1 > ξ2 ≥ ξ3 . . . ≥ ξn of Q and A is the
above defined real n× n-transformation matrix, which transforms the eigenfunctions
of the infinitesimal generator Q into membership functions of the macro states. The
computation of eigenfunctions of some continuous operator Q is in general is a chal-
lenging numerical task. There exist adaptive schemes for an approximation of such
functions in the context of molecular simulation [Web11]. For the applications shown
in this article, we assume to either analyze discrete systems or to be able to estimate
Qc on the basis of experimental data.
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3. Deriving the minimal rebinding effect from a given kinetics. In sec-
tion one we explained on a simple example that the Markov property can be destroyed
by the rebinding effect. Moreover we motivated that knowing the rebinding effect is
demanded for a suitable and reliable simulation of the binding process. In this sec-
tion we provide a tool, for detecting the minimal rebinding effect spoiling the Markov
property. As it turns out the magnitude of the overlap between the conformations
seems to be an adequate indicator.

For sake of simplicity, we assume that the transition rates Qc can be measured
experimentally. We are interested in the (time-independent) entries of Qc in the case
of an equilibrated molecular system. The eigenvalues ξi of this matrix represent the
dominant time-scales of the molecular system. If these eigenvalues are close to zero
then the holding probabilities of the macro states are almost one. The macro states
are very stable. The trace of Qc is independent from A and identical to the sum of
the leading eigenvalues of Q. We define the quantity F := −trace(Qc) as an indicator
for the stability of the molecular system: The higher F the less stable is the molecular
system. The higher the quantity the “faster” and less stable is the molecular system.
Furthermore,

F = −trace(Qc) = −τ−1 log(exp(trace(τQc)))
= −τ−1 log(det(exp(τQc)))
= −τ−1 log(det(P (τ)))
= τ−1(log(det(S))− log(det(T ))), (3.1)

where S and T are given by (2.8). The higher the outer diagonal elements of the
transition matrix T , the faster is the process. This is an expected behavior. The
“unexpected” part of the quantity F is, that the overlap of different macro states
(off-diagonal elements of the S-matrix) have an influence, too. Furthermore, this
influence is the opposite of T , a higher overlap in S means slower processes. A low
value of det(S) leads to a low value of F . This is due to the rebinding. A low det(S)
value indicates a high rebinding effect. A system with strong rebinding effects is more
stable which has also been observed in the context of protein folding (and recrossing)
[Kri11].

3.1. Idea of solving an optimization problem. We remark, that the eigen-
values of the infinitesimal generator Q are also eigenvalues of Qc because of (2.10).
The (left) eigenvalue problem is

QcX = XΞ, (3.2)

where X ∈ Rn×n contains the corresponding eigenvectors Xi. Note that the first
eigenvector is given by X1 := (1, . . . , 1)T . We show in the following that knowing
these eigenvectors is sufficient for estimating the minimal rebinding effect of the cor-
responding kinetics.

Comparing equations (2.10) and (3.2), one can see that the columns of A−1 are
also eigenvectors of Qc. According to [Web06], the first row of A is given by the
statistical weights of the clusters. Their sum is 1. Thus, the first column of A−1 has
to be identical to X1 (because of AA−1 = I), whereas the other columns of A−1 can
be arbitrary multiples of the eigenvectors Xi:

A−1 =

1
... α2X2 · · · αnXn

1

 , (3.3)
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with α2, . . . , αn ∈ R.
Our aim was to estimate the minimal rebinding effect included in Qc. The overlap

matrix S of the membership functions should be considered to be as close as possible
to the identity matrix. Let us recall, that the entries of the matrix S are non-negative,
because of the non-negativity of the membership functions. If we take the equations
(3.2), (3.3), and (2.8) into account, the resulting minimization problem is

min
α1,...,αn∈R

|det(S)− 1| (3.4a)

such that α1 = 1, (3.4b)

A−1
ij = αiXij , ∀i,j (3.4c)

S = D−1ATA, (3.4d)

Sij ≥ 0 ∀i,j . (3.4e)

Here, the constraints (3.4b) and (3.4c) are given by (3.3), the condition (3.4d) deter-
mines the structure of S and (3.4e) ensures the positivity of S.

Thus, in order to estimate the minimal rebinding effect that is included in a given
kinetics Qc, one has to compute the eigenvectors Xi of Qc first, and then to solve
the optimization problem (3.4). The result is an optimal overlap matrix Sopt with
det(Sreal) ≤ det(Sopt) ≤ 1, where Sreal denotes the real overlap matrix (the real
rebinding effect). The smaller the determinant of Sopt, the smaller is the determinant
of Sreal and the more intensive is the rebinding effect.

Unfortunately, this method only gives non-trivial estimates for n > 2. In the
case of n = 2, the side constraints of Qc (row sum is zero, the statistical weights
of the clusters are stationary) lead to the fact, that Qc is a reversible matrix, i.e.,
DQc = QTc D, where D ∈ Rn×n is the diagonal matrix of the statistical weights
of the clusters. The following theorem shows that in this case, the estimation is
det(Sopt) = 1.

Theorem 1. Let the matrix Qc ∈ Rn×n be reversible. Furthermore, let Qc
stem from a clustering with positive definite overlap matrix S. Then there exists a
feasible matrix A ∈ Rn×n in the above optimization problem (3.4) with det(Sopt) =
det(D−1ATA) = 1.

Proof. Let Qc be generated by a regular matrix B, i.e. Qc = B−1ΞB. Since Qc
is reversible we have

DQc = DB−1ΞB = BTΞB−TD = QTc D (3.5)

Multiplying both sides of (3.5) by D−1 and defining C = B−TD we obtain

Qc = D−1BTΞB−TD = C−1ΞC.

Since Qc = B−1ΞB there exists a diagonal matrix M = diag(m1, ...,mm) such that
C−1 = B−1M . The entries of M are real and positive since S = D−1BTB = C−1B =
B−1MB and therefore M̃ = diag(

√
m1, ...,

√
mn)) is also a real positive diagonal

matrix. Define A := M̃−1B. This matrix is feasible according to the optimization
problem (3.4), because the columns of A−1 (like the columns of B−1) are multiples

of the eigenvectors of Qc with M̃−1
11 = 1.

The following equations hold (and also show the feasibility of Sopt):

D−1ATA = D−1BT M̃−1M̃−1B
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= D−1BTM−1B
= C−1M−1B
= B−1MM−1B = I,

where I is the n× n-identity matrix.

For a reversible example, the estimation (3.4) is trivial. In the general case, the
estimate can be good or bad, see Fig. 3.1. The randomly generated matrices Qc in

Fig. 3.1. 100 randomly sampled feasible 3 × 3-transformation matrices A are used to test the
estimation quality of the optimization problem (3.4). It can be seen that det(Sopt) is in fact an
upper bound of det(Sreal), but the approximation quality can be rather bad or sharp (the sampled
examples “fill the whole triangle”).

Fig. 3.1 often have negative off-diagonal entries, although the overlap matrix S was
constructed to be positive and also positive-definite. Note that S−1 can transform
a sparse matrix D−1〈χ,Qχ〉π with non-negative off-diagonal elements into a dense
matrix with possibly negative off-diagonal entries (negative transition rates). Thus,
in order to derive Qc from experimental data, one has to take dense matrices Qc
and also negative transition rates (for their correct reconstruction) into account. In
Fig. 3.2 one can see that the estimate det(Sopt) correlates with the “grade of non-
reversibility” and the minimal transition rates of the matrix Qc.

Fig. 3.2. 100 randomly sampled feasible 3 × 3-transformation matrices A are used for the
construction of Qc. Sopt is determined by the optimization problem (3.4). Left: The rebinding
effect det(Sopt) is compared to the minimal transition rate in Qc (for the construction of Qc, always
the same eigenvalues are used ξ1 = 0, ξ2 = −0.01, ξ3 = −0.02). Right: The non-reversibility is
measured by ‖DQc −QT

c D‖ and compared to det(Sopt). There is a strong correlation between these
two quantities.



REBINDING EFFECTS 9

3.2. Reformulation of the optimization problem. The optimization prob-
lem (3.4) can have many local solutions. In order to solve it, a multistart local
optimization procedure may be suitable. Some illustrative examples in Section 4 and
the entries in Figure 3.2 are solved in that way.

For high-dimensional problems (more than three states), however, a random mul-
tistart algorithm may miss the global optimum. In this section, the optimization
problem (3.4) is transformed into a linear program (3.12), which can be solved alter-
natively and has a slightly different objective function.

The columns of A−1 are (right) eigenvectors of Qc, which may be expressed by

A−1 = XU, (3.6)

where X is the eigenvector matrix of Qc and U = diag(α1, . . . , αn) is the diagonal
matrix of the optimization variables αi and α1 = 1.

Alternatively, one can see from equation (2.10) that AT is also a matrix of left
eigenvectors of Qc, which can be expressed by

A = ŪY T , (3.7)

where Y is the matrix of the left eigenvectors of Qc and Ū = diag(ᾱ1, . . . , ᾱn) is
the diagonal matrix of the alternative optimization variables ᾱi. Note, that ᾱ1 =
1 because the first row of A consists of the statistical weights of the clusters and,
therefore, is identical to the leading left eigenvector of Qc (stationary density).

With these preparations, we first change the objective function of (3.4). Instead
of minimizing the expression |det(S) − 1|, one can simply maximize det(S). The
reason is, that the entries of S are non-negative (according to the constraints) and
the row sums of S are equal to one (for every row), which will be shown now. Thus,
the eigenvalues of S (Gershgorin estimate) lie inside the interval [−1, 1]. Therefore,
det(S) ≤ 1.

Theorem 2. In the optimization problem (3.4) the row sums of the non-negative
matrix S are 1 by construction. Thus, det(S) ≤ 1 and trace(S) ≤ n. Identity only
holds if S is the unit matrix.

Proof. For the proof we need two different vectors. The vector e is a constant
vector consisting of the entries 1. The first entry of the vector e1 is 1, all other entries
are 0. We will complete the proof in two steps. First, we show Ae = e1:

XU = A−1 ⇒ A = U−1X−1

⇒ Ae = U−1X−1e
⇒ XUAe = e, (3.8)

since X consist of the (linear independent, right) eigenvectors of Qc and the first
eigenvector is e, we get UAe = e1. With α1 = 1 we arrive at Ae = e1. Second, we
show that D−1AT e1 = e and complete the proof.

D−1AT e1 = D−1Y Ūe1 = D−1Y e1 = e, (3.9)

where we have used that ᾱ1 = 1 and that the diagonal matrix D consists of the
elements of the first row of Y (stationary density).

The optimization problem (3.4) tries to find a matrix S which is a close as possible
to the identity matrix. Instead of maximizing det(S), one can also maximize trace(S)
according to Theorem 2. The objective function is:

trace(S) = trace(D−1ATA)
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= trace(D−1Y Ū2Y T )

=

n∑
i=1

n∑
k=1

ᾱ2
k

y2
ik

yk1
. (3.10)

The side constraints for i 6= j are:

Sij =

n∑
k=1

ᾱ2
k yik yjk ≥ 0. (3.11)

We get a linear program by substitution βi = ᾱ2
i (substitution in the objective function

(3.10) and in the constraints (3.11)). We have to add the positivity constraints βi ≥ 0
and β1 = 1. The complete optimization problem is:

max
β

n∑
k=1

βk

( n∑
i=1

y2
ik

yk1

)

s.t.βi ≥ 0, β1 = 1,

n∑
k=1

βk yik yjk ≥ 0. (3.12)

An optimal solution β provides an optimal matrix Sopt = D−1Y BY T , where B
is the diagonal matrix of the entries of β.

4. Illustrative Examples. In this section, we give examples, which show the
performance of our method.

Fig. 4.1. Artificial example: A transition graph. The corresponding transition network consists
of three sets of complete graphs. The complete graphs have a different number of vertices, but all
transitions (edges) have the same rate. Each set is connected to the other sets by transition vertices
(black). The rates to and from the transition vertices are ten times higher that the rates within the
sets (lower statistical weight of the transition vertices).

4.1. A transition network graph. Only if the kinetics Qc of a system is non-
reversible, a non-trivial rebinding effect can be estimated. The rebinding effect that is
included in a monovalent ligand-receptor binding kinetics is non-detectable from the
corresponding kinetics data (concentration vs. time), if it has only two distinguishable
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Fig. 4.2. Concentration curves of the illustrative example with increasing number of transition
vertices between set 1 and set 2. The more transition vertices are inserted (see arrows) the more the
equilibration between set 1 (green curves) and set 2 (blue curves) is slowed down compared to the
equilibration time of set 3 (red curves). By this slowing down, the kinetics becomes more and more
non-reversible (the minimal rebinding effect increases). Thus, the red curve is like a “baseline” in
this example.

macro states – bound and unbound. The following artificial example (see Fig. 4.1)
consists of three macro states. It illustrates the meaning of transition regions for the
rebinding effect.

In this example we see three different macro states (metastable regions). Every
micro state of these regions is connected to each other micro state of the same region.
For constructing the transition rate matrix Q, all edges in these fully connected sub-
graphs correspond to a transition rate of 1. The transitions between the regions are
indicated by black circles (transition vertices) which connect one state of one region
with one state of another region. The corresponding transition rates in Q are set to
10, to make the transition vertices less stable.

The rebinding effect stems from the overlap of the membership functions (=linear
combination of the eigenfunctions ofQ). This overlap is high if the transitions between
the macro states are slow and not “jump-like”. If we extend the transition regions
between the macro states, the rebinding effect should increase. In order to illustrate
this behavior we inserted more and more transition vertices between set 1 and set 2
in the transition network of Fig. 4.1. The kinetics between the three macro states is
changed, see Fig. 4.2.

Applying the optimization scheme of eq. (3.4), we can derive the resulting min-
imal rebinding effect, which is illustrated in Table 4.1. In fact, by slowing down the
transitions between the macro states, the rebinding effect increases.

4.2. An artificial bivalent binding process. Binding kinetics is often used
to describe the time-dependent binding process of ligand molecules to their recep-
tor molecules. One can discriminate between a monovalent binding process and a
multivalent binding process. For the monovalent case, the mathematical modeling of
its kinetics is well-understood. In the easiest examples, the association rate is propor-
tional to [L] · [R], i.e., the product of the ligand and the receptor concentrations. The
dissociation rate is proportional to [LR] – the concentration of the ligand-receptor-
complex. The basic assumption for these proportionalities is a well-stirred reaction
tube, which means that ligands and receptors are uniformly distributed. Sometimes,
however, there exist many identical receptors presented in a certain spatial arrange-



12 WEBER & FACKELDEY

number of t-vert. det(Sreal) det(Sopt) (3.4)

1 0.9913 1.0000
2 0.9897 0.9977
3 0.9882 0.9956
4 0.9867 0.9937
5 0.9852 0.9918
6 0.9837 0.9901
7 0.9823 0.9884
8 0.9810 0.9868
9 0.9796 0.9851
10 0.9783 0.9835

Table 4.1
Given the number of transition vertices between set 1 and set 2 (1st column) the overlap matrix

Sreal is computed according to PCCA+. The determinant of Sreal (2nd column) is estimated from
above by the result det(Sopt) of the optimization problem (3.4). One can see that the optimization
problem gives feasible upper bounds for det(Sreal). Both values are decreasing with an increasing
number of transition vertices. Interestingly, the optimization problem (3.12) gives the same results.
The reason is that the optimum is attained at a vertex of the feasible set. This set is identical in
(3.4) and (3.12). In the general case, the results may differ.

ment (e.g., by dimerization of a protein or by assembly on a cell surface), such that
it is possible to address neighboring receptors with ligands. A direct consequence is,
that the receptors are not spatially uniformly distributed. Whenever the receptor
molecules are spatially pre-organized, the corresponding binding process is denoted
as multivalent. Especially, the bivalent or the polyvalent case are often observed in
nature. These systems are of high interest for pharmaceutical and technical appli-
cations. If the ligands are linked to each other in an appropriate way to match the
pre-organized receptor molecules and, thus, are also presented multivalently, then
extremely high binding affinities are often observed.

A “straight forward” kinetic model for the multivalent binding process is given
by counting the binding events. As an example, for a bivalent ligand binding to a
bivalent receptor this means that there exist three macro states: The unbound state,
the singly bound state and the doubly bound state. This model is represented by the
following two reversible reactions:

LL + RR� L(LR)R,
L(LR)R� (LRLR), (4.1)

where L(LR)R denotes the singly bound macro state and (LRLR) is the doubly
bound macro state.

Section 4.1 has illustrated that slowing down the time scale of the transitions
between the macro states compared to the self-equilibration time within the macro
states leads to a increasing rebinding effect (det(Sreal) and det(Sopt) decrease). We
will illustrate what this means for a bivalent binding process. The reactions (4.1)
are the standard approach to model a bivalent binding process. We will add another
reaction to this model:

LL+RR� (LRLR), (4.2)

where we assume a direct transition from a unbound situation to a doubly bound
macro state. We have to add this further direct reaction to end up with a dense matrix



REBINDING EFFECTS 13

Fig. 4.3. Left: The minimal rebinding effect of Qc depends on the concentration [RR] of the
receptor molecules. The determinant det(Sopt) increases with [RR]. Thus, the minimal rebinding
effect decreases with higher concentrations of the receptor molecules. Right: For arbitrary sampled
feasible Qc-matrices, the minimal rebinding effect can depend on the scaling of the first row of Qc

in different ways.

Qc, which has to be assumed according to the theory. S−1 turns a sparse Galerkin
projection of an infinitesimal generator Q into a dense matrix Qc. Let’s say that we
have (by parameter optimization) fitted reaction rates of all these equations to a given
experimental time-concentration-plot, where we have measured the concentrations in
mol
l and the time in nanoseconds.

• For the reaction “0 =unbound ↔ 1 =singly bound” we get k01 = 0.99 l
mol·ns

and k10 = 0.1 1
ns .

• For the reaction “1 =singly bound ↔ 2 =doubly bound” we get k12 = 0.3 1
ns

and k21 = 0.01 1
ns .

• For the reaction “0 =unbound ↔ 2 =doubly bound” we get k02 = 0.01 l
mol·ns

and k20 = 0.001 1
ns .

If we insert these quantities into the rate matrix Qc, we arrive at:

Qc =

−(k01 + k02)[RR] k01[RR] k02[RR]
k10 −(k10 + k12) k12

k20 k21 −(k20 + k21)


=

−1[RR] 0.99[RR] 0.01[RR]
0.1 −0.4 0.3

0.001 0.01 −0.011

 ,

which has the unit ns−1. The matrix Qc depends on the concentration of the biva-
lent receptor molecules [RR]. The kinetics equation is ẋT = xTQc, where x is the
concentration vector consisting of the concentrations [LL],[L(LR)R] and [(LRLR)].
It is reasonable that the rebinding effect depends on the concentration of the recep-
tor molecules according to the results of the last section. The concentration of the
receptors determine the “size” of the transition regions between the binding events
(from the perspective of the ligand). In Fig.4.3 (left) one can see for the constructed
example that the rebinding effect decreases if the receptor concentration increases.
This behavior can not be observed for arbitrary 3×3-matrices Qc, see Fig.4.3 (right),
but in our example an increase of the receptor concentration leads to a decrease of
the transition regions between the binding events and, thus, to a decreasing rebinding
effect according to section 4.1.

It is counter-intuitive to say that “less receptors means more rebinding” and,
therefore, this insight needs a short explanation. In the constructed example of this
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section, we basically assumed that the kinetic model (given by eq. (4.1) and eq. (4.2))
is correct. This means, the unbinding of a ligand from one receptor and its binding
to another receptor are two kinetically distinguishable events. If one expects that the
rebinding effect increases if more receptors are available, then (from a mathematical
point of view) it is meant that the binding events between different receptors are
considered to be kinetically more or less indistinguishable. Instead of analyzing the
dependence of the rebinding effect on the receptor concentration, one has to analyze
the dependence of the correct kinetic model (leading eigenfunctions of the infinites-
imal generator) on the experimental setting of the molecular system. In order to
understand this, look at Figure 4.4. A bivalent ligand (doubly) bound to a bivalent
receptor is shown. It is the example of an HIV protease inhibitor binding to the
HIV-1-protease receptor [KBBD93].

Fig. 4.4. A symmetry-based HIV protease inhibitor (A-77003) binding to the HIV-1-protease
receptor. The inhibitor consist of two equivalent binding sites connected by a single CC-bond. This
ligand can not be “singly bound”.

In this case the singly bound macro state does not exist: If one ligand is bound to
its receptor, the second ligand is perfectly “pre-organized” such that it is in its bound
state too. One can imagine that in many other cases the singly bound state may be
seen as a transient state of a bivalent system and not as an own kinetic entity. Thus,
the kinetic model which counts the binding events may be too complex for given
ligand-receptor-systems. However, the model can also be too simple. In literature
there also exist more complicated models of this bivalent binding process, which not
only discriminate between a bound and an unbound ligand but also introduce a state
(or more states) denoted as “almost bound”. The more complicated models are
constructed in order to correctly include rebinding effects.

For all these reasons, straight forward binding kinetics may be an insufficient
model for a bi- or trivalent binding process. For a polyvalent binding process, this
model may be completely useless. Imagine a polyvalent ligand which binds to a surface
where polyvalent receptors are available. In this case, there are many possibilities
for rebinding events, such that the actual number of bounds may be of no interest,
whereas, other coordinates (like the distance between the polyvalent ligand to the
surface) may be the most relevant parameter for the kinetic model.

4.3. Interconversion rates. Estimating the rebinding effect in a multivalent
binding process is in general not possible by the optimization problem (3.4). The
reason is given in the last section: the measured concentrations of certain molecular
macro states need not coincide with the time-dominating processes of the system, i.e.
with the membership functions derived from the leading eigenfunctions of Q. In this
section, we will give an example of a recrossing effect. The flame retardant molecule
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hexabromocyclododecane (HBCD) is an example in which the measured concentration
curves should reflect the dominant processes of the system [KBJN08]. HBCD exists
in different stereo isomeric forms. Given a probe of pure (+)-γ-HBCD, this molecule
can transform into six different stereo isomeric forms. The time-dominating step is
an interconversion step which takes place on a very high energy level. Thus, the
concentration-vs.-time-experiment is carried out over a time-span of several hours.
The circles in Fig. 4.5 correspond to the experimental results (only the dominant
three stereoisomers are shown in different colors). Additionally, the equilibration
concentration of the six stereoisomeric forms is known and also used for the parameter
fitting in the followings. In the HBCD example, there is a well-known transition

Fig. 4.5. HBCD interconversion: Optimization results and comparison with experimental data
[KBJN08]. The most relevant enantiomers are plotted in different colors ((+)-α-HBCD blue, (-
)-α-HBCD red, (+)-γ-HBCD green) and the experimental measurements are included as circles.
The solid line represents the best Qc-fit to the experimental data. The dashed and the dotted lines
represent a Qc-fit which also aims at increasing the reversibility of Qc (dashed line: small weight
of the “reversibility” against fitting the data; dotted line: aiming at a reversible dense matrix Qc).
From a theoretical point of view one would expect a sparse reversible matrix Qc, if the kinetics does
not include a recrossing effect. The best Qc-fit in this case is given by the dash-dotted line. The
numbers in the boxes represent det(Sopt) for the optimal solution of (3.12). The experimental data
can not be fitted with a reversible matrix Qc, a recrossing effect is probably included.

micro state. That is a point in conformational space which has to be passed by
a HBCD stereoisomer in order to interconvert. The transition regions between the
stereoisomers seem to be small in conformational space at a first glance. One would
expect jump-like transitions between the stereoisomers (compare Section 4.1) and,
thus, a small recrossing effect. At a second glace the things are more complicated. In
order to interconvert from one stereoisomeric form into another, HBCD has to exist
in a special conformation (trans-position of certain atoms). Furthermore, there exist
lower energy barriers between these conformations. For example, after HBCD has
interconverted from (+)-γ-HBCD into (+)-α-HBCD, it has to change its conformation
before it can further transform into (−)-β-HBCD. These smaller energy barriers lead
to extended transition regions between the HBCD stereoisomers. Thus, we expect
recrossing effects. In Fig. 4.5 interconversion rates are fitted to the experimental data
(assuming a dense 6× 6-matrix Qc with probably negative rates). The results almost
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coincide with interconversion rates from literature. In literature we can only compare
our results to a sparse, non-negative matrix Qc (some rates are zero). Our fit also
explains the experimental data very well (solid line in Fig. 4.5). The optimization
problem (3.12) applied to our fitted Qc leads to a matrix Sopt with det(Sopt) = 0.2710
– a clear recrossing effect. Could the experimental data also be explained with less
recrossing? In order to analyze this, we have included a weighted objective function
to our parameter estimation problem. The fitted matrix Qc should also be “more”
reversible in order to decrease the recrossing effect (see Theorem 1). The dashed line
in Fig. 4.5 is the result if we include this further objective to the parameter estimation
problem. In this case, det(Sopt) = 0.5887 – still a recrossing effect. If we insist on a
reversible, dense matrix Qc and, thus, try to explain the data without any recrossing
effect, one would end up with the dotted line in Fig. 4.5. This line does not coincide
with the experimental data. Even worse: We also tried to explain the data with a
reversible, sparse matrix Qc. The reason is, that if S is the identity, then Qc has to
be sparse for this special chemical example (only special reactions are possible). The
corresponding best fit (dash-dotted line) is clearly different from the experimental
result. Thus, the HBCD-experiment can not be understood without recrossing.

5. Conclusion. Kinetics is usually said to be a “non-spatial” model of the pro-
cesses of a molecular system. However, experimentally measured kinetics includes
spatial information indirectly. A ligand which is close to its receptor contributes to
the association constant ka more than a ligand which is far away. The correct weight-
ing in this sense is done by membership functions. A microstate of a molecular system
more or less belongs to different macro states. The overlap S of these membership
functions scales up the observed stability of the system (via det(S)). The more the
membership functions overlap, the more stable the macro states appear to be. In this
paper, we have derived a method which is able to estimate the minimal overlap be-
tween the membership functions for a given kinetics. This overlap is called “rebinding
effect”. A ligand which unbinds from its receptor (on the micro level) may still have
a high degree of membership to the “bound”-macro state, if the membership func-
tions of the “unbound” and the “bound” state overlap each other. Thus, rebinding is
amplified, if and only if the membership functions have a significant overlap. The pre-
sented mathematical model allows for a complete and general description of rebinding
effects in an equilibrium situation. Taking the mathematical model of membership
functions as a basis for analyzing experimental time-concentration curves, one has to
fit an assumed dense rate matrix Qc with possibly negative reaction rates to the given
experimental data. Note, that our mathematical model not only includes rebinding
effects of ligand-receptor-systems but also general examples of molecular kinetics (see
HBCD).
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