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Summary. Markov State Models (MSMs) are widely used to represent molecular
conformational changes as jump-like transitions between subsets of the conforma-
tional state space. However, the simulation of peptide folding in explicit water is
usually said to be unsuitable for the MSM framework. In this article, we summarize
the theoretical background of MSMs and indicate that explicit water simulations do
not contradict these principles. The algorithmic framework of a meshless conforma-
tional space discretization is applied to an explicit water system and the sampling
results are compared to a long-term molecular dynamics trajectory. The meshless
discretization approach is based on spectral clustering of stochastic matrices (MSMs)
and allows for a parallelization of MD simulations. In our example of Trialanine we
were able to compute the same distribution of a long term simulation in less com-
puting time.
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1 Introduction

The dynamics of biomolecules is inherently multiscale since it involves time
scales ranging from femtoseconds (bond-bond oscillations) to microseconds
(protein folding, binding process). In the literature many methods can be
found, which seek to capture this multiscale behavior. In molecular dynamics
(MD) [1, 2] for instance, the integration step for the simulation is bounded
to femtoseconds, which complicates the simulation of the above mentioned
folding (e.g.[3]). On the other hand, coarse graining models [4, 5], which allow
for larger or even unphysical time steps, suffer from the fact that the descrip-
tion may be too coarse and thus information is lost. In the last few years,
much effort has been invested into combining the advantages of the coarse
graining models with the ones of molecular dynamics. One approach is based
on so-called Markov State Models (MSM) e.g.[36]. In particular, we mention
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the works in the context of Folding at Home [35, 37], the works in the context
of conformation dynamics [6, 7, 8] or approaches by other groups also using
MSM e.g. [39, 38]. We remark that this list is far from being exhausive. In
such models, the different conformational states of a molecular system and
its transition probabilities between the states are incorporated, so that the
“future” of the system over an arbitrary time span can be predicted. Thereby,
it is assumed, that the system has a Markov property, which means that the
probability of the system to switch to the next state depends on the current
state only. In this context a state (or conformation) is an almost invariant
subset in the phase space, where the system is not stable but almost sta-
ble (metastable). The performance of this method has been shown in various
examples for molecular systems in vacuum. However, to find a MSM which
represents the dynamics of a molecule simulated in (explicit) solvent is more
difficult [40]. Explicit solvent can spoil the Markov property, such that the
long-term behavior of the system is not reproduced correctly by the MSM
[16, 14]. A classical MSM is a projection of the continuous dynamics to a
low number of discrete (Markov) states, i.e. to a low number of subsets of
the conformational space. In this article we want to fill this gap and present
simulations of Trialanine in water. In the classical theory of Markov State
Models [9, 10], the clusters, corresponding to the molecular conformations of
the system, are represented by a collection of characteristic basis functions
that yield 1 if the state belongs to the one conformation and zero otherwise.
Here, we relax the condition, by softening the hard clustering [11]. More pre-
cisely, we allow a state to belong to more than one conformation and assign
a degree of membership to each state. As a consequence, this soft clustering
allows for a faithful representation of intermediate states, i.e. states which lie
in transition regions between metastable conformations. These intermediate
states are prevalent in simulation of biomolecules in water, where hydrogen
bonds of the surrounding liquid can influence the stability of the molecule [12].
The existence of intermediate states allows for a correct representation of the
long-term behavior of molecular systems including explicit solvent. This will
be exemplified with Trialanine in water.

2 Basics of Conformation Dynamcis

Let us assume, that the dynamics of a molecular system is given by the Hamil-
tonian function:

H(q, p) = V (q) +K(p) (1)

where K(p) is the kinetic energy, which depends on the N generalized mo-
menta p = (p1, ..., pN ) ∈ R3N and V (q) is the potential energy depending on
the N generalized positions q = (q1, ..., qN ) ∈ R3N . The term H(q, p) is de-
noted as the internal energy of the system x = (q, p) ∈ Γ = Ω×R3N , where Γ
is the state space and Ω ⊂ R3N is the position space. We consider a canonical
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ensemble, where the number of particles, the volume and the temperature is
kept constant. According to the Boltzmann distribution, the positions q and
momenta p of each atom in a molecule are then given by:

µ(x) = µ(q, p) ∝ exp(−βH(q, p)). (2)

Here, β = 1/kBT is the inverse of temperature T times Boltzmann constant
kB . This canonical density can be split into a distribution of positions π(q)
and momenta η(p), where

π(q) ∝ exp(−βV (q)) and η(p) ∝ exp(−βK(p)). (3)

We can now introduce the Hamiltonian equations of motions by

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (4)

For an initial state x(0) = x0, the Hamiltonian flow φt over time span t is
given by

x(t) = (q(t), p(t)) = φtx0 ,

where φt conserves the energy and is reversible. Moreover, the Hamiltonian
flow conserves the energy, which implies that the Lebesgue measure on Γ is
invariant under φt.

Let Πq be the projection of the state (q, p) onto the position q, let Φτ be the
discrete Hamiltonian flow for a time span τ . It is realized by a velocity verlet
integrator with a constant time step and let further p be chosen randomly
according to the distribution η(p), then

qi+1 = ΠqΦ
τ (qi, pi)

describes a Markov process where the i+ 1th state depends on the preceding
ith state only. Since µ(q, p) is symmetric in the sense µ(q, p) = µ(q,−p) it can
be shown, that the reduced density

π(q) =

∫
RdN

µ(p, q) dp

is smooth, positive, finite and π(q) = 1, which allows us to define the transition
operator [6]

T τu(q) =

∫
RdN

u(ΠΦ−τ (q, p))η(p)dp, (5)

where u(q) is a function on Ω. The operator in (5) can be explained as fol-
lows: We apply the Hamiltonian dynamcis backwards to a lag time τ and
obtain Φ−τ (q, p), which is then projected by Πq onto the state space. The in-
tegral then, averages over all possible initial momentum variables with given
Boltzmann distribution η.
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This operator on the weighted Hilbert space L2
π(Ω), which is equipped

with the inner product

〈u, v〉π :=

∫
Ω

u(q)v(q)π(q)dq ,

is bounded, linear and self-adjoint. This allows us to compute the transition
probability between two sets A and B by

p(A,B, t) =

∫
A
χB(Φτ (x))η(p)dp∫

A
η(p)dp

=
〈TχA, χB〉π
〈χA, χB〉π

,

where χA ist the characteristic function being 1 in A and 0 otherwise. Based
on this, we define a subset B ⊂ Ω as almost invariant, if

p(B,B, t) ≈ 1.

and a metastable conformation as a function C : Ω → [0, 1] which is nearly
invariant under the transfer operator T τ , i.e.

T τC(q) ≈ C(q). (6)

The fundamental idea behind this formulation is, that the transfer operator
T τ in (5) is a linear operator, although the ordinary differential equation (4)
is (extremely) non-linear.

2.1 Discretization of the State Space

The linearization by the above introduced transfer operator allows for a
Galerkin discretization of T τ and thus for a numerical approximation of eigen-
functions and eigenvalues of the discrete spectrum of T τ .

We thus decompose the state space into metastable sets. More precisely,
with respect to (6), we aim at a set {C1, ..., Cnc} such that they form a par-
tition of unity, i.e.

nc∑
J=1

CJ(q) = 1Ω ∀q ∈ Ω ,

where CJ : Ω → [0, 1] is a function and CJ(q) ≥ 0 ∀q ∈ Ω.
Of course, this decomposition is not given in advance, i.e. the metastable

sets have to be detected. To do so, we discretize the state space by meshfree
basis functions.

Let {xi}Ni=1 be a set of points from which we construct the meshfree basis
functions by Shepard’s approach [32] :

ϕi(q) =
exp(−α‖q − xi‖)∑N
i=1 exp(−α‖q − xi‖)
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such that

∀q ∈ Ω :

N∑
i=1

ϕi(q) = 1 and

N⋃
i=1

supp(ϕi) = Ω .

Finally, this allows us to represent each CJ as a linear combination of the
basis functions {ϕi}Ni=1, so that

CJ(q) =

N∑
i=1

GiJϕi(q), J = 1, ..., nc, (7)

where each entry GiJ of the matrix G ∈ RN×nc represents the contribution
of the ith basis function to the conformation CJ . By employing a Galerkin
discretization of (5), we obtain the stochastic matrix

P τji =
〈ϕj , T τϕi〉π
〈ϕj , ϕj〉π

=

∫
Ω

T τϕi(q)
ϕj(q)∫

Ω
ϕj(q)π(q)dq

dq (8)

Taking advantage of the partition of unity property of the set ϕi, we can
then localize the global quantities. More precisely, associated with each ϕi, a
partial density is given by

πi(q) =
ϕi(q)π(q)∫
Ω
ϕi(q)π(q)

. (9)

Note that the term in the denominator of (9) represents the localized ther-
modynamical weight. Analogous to (6), we then obtain for the coefficients
GiJ

P τgJ ≈ gJ , (10)

where gJ = [G1J , G2J , . . . , GNJ ]T .
From the knowledge of the transition matrix P τ we can identify the

metastable states as a linear combination of the meshfree basis functions.
This fact is based on the Frobenius Perron theory, which we first introduce
for decoupled Markov states in the following section.

2.2 Decoupled Markov states

In the case of a completely decoupled Markov State Model, we do not have
metastable states, but nc stable states. The transition matrix P can be rear-
ranged by permutations such that it has a block diagonal structure, i.e.

P =


P1

P2 ε
ε P3

. . .

 (11)
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where ε = 0. Each submatrix PI , I = 1, ..., nc is associated with a right
eigenvector uI and an eigenvalue λI , such that PIuI = λIuI . This vector can
be trivially embedded such that it is also an eigenvector of the matrix P .
For a row stochastic matrix, i.e.

∑
j Pij = 1, we can employ the Frobenius -

Perron theory, which states that its largest eigenvalue is 1, the corresponding
left eigenvector gives the stationary distribution and the elements of the right
eigenvector are all identical. Consequently, the matrix P has nc eigenvalues
equal to 1. Thus, the dominant right eigenvectors uI have the form

uI = (c1, ..., c1, c2, ..., c2, c3, ..., c3, ..., cnc , ..., cnc).

Summing up, in a decoupled Markov process, the subspace of the domi-
nant eigenvalue 1 is spanned by nc piecewise constant eigenvectors. Thus,
the metastable states can be identified by the identical entries in the right
eigenvectors. Or, alternatively, a linear transformation of the eigenvector ba-
sis provides a set of nc characteristic vectors, such that for the vector uI
corresponding to the I-th cluster all elements are zero except for cI = 1.

2.3 Nearly Decoupled Markov states & Water

In the following, the Markov process is only nearly decoupled, i.e., ε > 0. At
the beginning, let us restate the results of the Frobenius-Perron theory from
the foregoing section by rewriting G as

G = XA

where X represents the eigenvectors of P τ corresponding to eigenvalues
close to one, and the non-singular, still unknown transformation matrix
A ∈ Rnc×nc .

Due to the definition of the conformations and the basis functions, we can
state the following constraints:

i. GiJ ≥ 0 ∀i ∈ {1, . . . , N}, J ∈ {1, . . . , nc} (positivity)

ii.
∑nc
J=1GiJ = 1 ∀i ∈ {1, . . . , N} (partition of unity)

iii. G = XA where P τX = XΛ, Λ = diag(λ1, . . . , λnc), A non-singular
(invariance)

The transformation matrix A is not uniquely defined by these constraints.
Given the eigenvectors of P τ and a transformation matrix A, the matrix
elements GiJ are computed according to (iii). The conformations CI are then
constructed according to (7). In order to yield an “optimal” transformation
matrix, a corresponding optimization problem is formulated. One possibility

is to maximize the “crispness” of the conformations (i.e. 〈CI ,CI〉π〈CI ,e〉π close to one),

which can be achieved by maximizing

I(A;X,π) =
1

nc

nc∑
I=1

〈CI , CI〉π
〈CI , e〉π

≤ 1, (12)
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where e denotes the constant function equal to 1, cf. [13]. PCCA+ solves the
maximization problem (12) subject to the linear constraints (i) through (iii).
Given a good starting guess, this convex global maximization problem can be
solved by local maximization methods as described in [8, 11].

By PCCA+, the concept of metastable sets is replaced by the concept of
metastable membership functions. A conformation of the molecular system
is given by a membership function, which may also attain values inside the
interval [0, 1]. Although this approach seems to be of technical interest only, it
is the key to formulate Markov State Models for molecular systems including
explicit water molecules. Usually, Markov State Models are said to be invalid
in the case of explicit water simulations, because

1) transitions between molecular conformations can not be modeled as jump-
processes, due to the fact that there is a diffusive part in the system. The
system is assumed to be non-Markovian.

2) the dynamics of the system is highly non-linear and can not be captured
by a linear matrix P .

3) a spectral gap of T τ for identifying the number of metastable conforma-
tions does not exist.

Ad 1): A jump inside a Markov State Model, which is based on membership
functions, is not a jump between two subsets of the conformational space.
Diffusive processes can be modeled correctly by allowing for a “soft” decom-
position of the conformational space, cf. [14].
Ad 2): Non-linear (stochastic) dynamics corresponds to a linear Fokker-
Planck-operator. The main problem is given by the projection error of this
linear operator to a low-dimensional transition matrix P . In principle, a cor-
rect projection is possible. However, this projection has to include all relevant
degrees of freedom which may also include the “conformational state” of the
water molecules. Note that only degrees of freedom which are necessary to
distinguish between different conformations of the system are relevant.
Ad 3): In explicit water simulations, the timescales of conformational transi-
tions are not well-separated from the time scales of “internal fluctuations”,
such that T τ does not provide a spectral gap. In this situation, the projection
error of set-based Markov State Models might be high, because the spectral
gap plays an important role in its error estimation, cf. [15]. However, if con-
tinuous membership functions are allowed, it is only mandatory to identify an
invariant subspace of T τ , the spectral gap does not enter in the error estimator
directly, cf. [16, 14]. Additionally, the spectral gap is not the only possibility
to identify the number of clusters in PCCA+, cf. [17].

3 Simulation of Trialanine in an Explicit Solvent

The structure of Trialanine at a pH value of 1 was created by using the
visualization software Amira [18]. All molecular dynamics simulations were
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performed using the molecular dynamics software package GROMACS 4.5
[30]. Trialanine was parameterized according to the Amber-99SB force field
[19]. As protonated C-terminal alanine is not part of the standard force field,
we created and parameterized a novel residue in compliance with the Amber-
99SB force field by using the software Antechamber from AmberTools 1.5
[20, 21, 22], with charges calculated by the AM1-BCC method. [23, 24]. For the
explicit solvent system, we used the TIP4P-Ew water model [25]. Trialanine
was placed in a rhombic dodecahedron solvent box of about 4.2 nm side length.
In order to neutralize the overall charge, we placed a single negative counter
ion in the box. The energy of the system was minimized by using the steepest
descent algorithm. Afterwards, a 200 ps simulation was performed during
which the position of all heavy atoms of Trialanine was restrained in order
to settle the solvent molecules. The output of this run was used as starting
configuration for a molecular dynamics run of 100 ns. In order to maintain
a constant temperature of 300 K and a pressure of 1 bar, velocity rescaling
[26] and Berendsen weak coupling [27] were applied. A twin range cut-off
of 1.0/1.4 nm for van-der-Waals interactions was applied and the smooth
particle mesh Ewald algorithm [28] was used for Coulomb interactions, with
a switching distance of 1.0 nm. Bond length oscillations of bonds involving
hydrogen atoms were contrained using the LINCS algorithm [29], allowing for
an integration step of 1 fs.

For the ZIBgridfree sampling, the same parameter settings were adopted,
save molecular dynamics run time, which was set to 500 ps per node. The ZIB-
gridfree algorithm uses short local sampling in order to evaluate the partial
densities associated with the n basis functions ϕi. In order to ascertain thor-
ough local sampling, each local sampling is confined to the essential support
of the corresponding basis function. In this process, the short time trajectories
can be parallelized on the force field level (such as provided by state-of-the-
art molecular dynamics code). A second level of parallelization is given by the
possibility to perform multiple local samplings at the same time, as the basis
functions can be evaluated independent of each other. The ZIBgridfree sam-
pling algorithm was implemented using a Python framework built around the
GROMACS molecular dynamics code (publication in preparation). In ZIB-
gridfree, the conformational space discretization is based on internal degrees
of freedom. Only degrees of freedom which indicate conformational changes
are relevant. Here we follow the work of Mu et al. [31] by taking the two cen-
tral dihedral angles Φ and Ψ indicated in Figure 1. In Figure 2, we plotted the
histograms of the two dihedrals in explicit water simulations. The ZIBgridfree
simulation shows good agreement with the 100 ns long term molecular dy-
namics trajectory. It can also be found in literature [33, 31, 34], that the PII
(polyglycine II) conformation is predominant in explicit water. The mean di-
hedral angles and the statistical weights of the four conformations calculated
by ZIBgridfree are given in Table 1. However, as observed by [31], the choice
of the force field has a dramatic influence on the Boltzmann distribution of
the states and thus, a comparison with results from simulations with differ-
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Figure 1. Top: dihedral angle Φ. Bottom: dihedral angle Ψ .

Figure 2. Left: Trialanine in explicit water, computed by molecular dynamics (sam-
pling time 100 ns), Right: Trialanine in explicit water, computed by ZIBgridfree
(joint sampling time 10 ns).
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Table 1. Mean dihedral angles and statistical weights of the conformations.

conformation (Φ, Ψ) weight

helical (≈ -143, ≈ -18) 0.0183
αR (≈ -77, ≈ -40) 0.0583
β (≈ -143, ≈ 158) 0.3199
PII (≈ -77, ≈ 151) 0.6034

ent force fields is hardly possible. The four identified conformations are given
in Figure 3 and 4. Since we have applied Markov State Models and contin-
uous membership functions in order to identify the conformations, they are
given by a family of microstates. Hence, conformations are best represented
by density clouds, and not by single representatives. What is the difference

Figure 3. Left: Helical structure of Trialanine, cluster with the lowest weight. Right:
αR structure of Trialanine, cp. with Table 1. The smeared-out microstates suggest
that the conformations are represented by density clouds.

Figure 4. Left: β structure of trialanine. Right: PII structure of trialanine, cluster
with the largest weight.

between vacuum and explicit water simulations for the given molecular sys-
tem? In contrast to vacuum simulations, we observe that the conformations β
and PII overlap. Seemingly, the transition between these two conformations
is not jump-like. This statement is true if we try to define subsets of the con-
formational space identified as β or as PII . A Markov State Model based on
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subsets would lead to a systematic error (and probably to a wrong equilib-
rium density). However, in the presented approach, subsets are replaced by
membership functions. The “Markovian jump” does not take place between
two subsets, it takes place between two overlapping densities, see also Figure
5.

Figure 5. Distribution of torsion angle Φ. Dark blue histogram: Distribution ob-
tained by long term MD (sampling time 100 ns). Light blue histogram: Joint
reweighted distribution obtained by ZIBgridfree (joint sampling time 10 ns). Red
histogram top: Density corresponding to Φ-part of the PII conformation. Red his-
togram bottom: Density corresponding to Φ-part of the β conformation..

For the given example, the spectral gap (λ4 = 0.97 and λ5 = 0.94) for the
calculation of CI via PCCA+ is not significant as it has been expected for
the analysis of an explicit water simulation. Since the memebership functions
allow for each state a certain “degree of memebership”, we call these kind
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of clusters soft. The MSM for those membership functions (conformations
according to Table 1) is given by

Psoft(1ps) =


0.981 0.015 0.002 0.002
0.005 0.995 0.000 0.000
0.000 0.000 0.982 0.018
0.000 0.000 0.009 0.991

 ,

its spectrum exactly reproduces the eigenvalues of the Galerkin discretization
of the transfer operator. The construction of a set-based MSM (hard cluster)
leads to

Phard(1ps) =


0.981 0.017 0.001 0.001
0.007 0.993 0.000 0.000
0.000 0.000 0.964 0.036
0.000 0.000 0.017 0.983

 .

Although the difference is small, this matrix does not reproduce the cor-
rect spectrum. Especially the transition probabilities between the overlap-
ping conformations are overestimated. This can be seen in the following way.
If we compute the diagonal elements of a transition matrix Pij by using
〈·, ·〉π-normalized eigenfunctions φi in equation (8) instead of characteristic
functions, then (according to the Rayleigh-Ritz principle) these elements are
maximized (see also [Huisinga-Diss]). In fact, PCCA+ provides a linear com-
bination of approximations of eigenfunctions of T τ . Thus, the trace of P (1ps)
is lower, if we restrict the corresponding approximation space to characteristic
functions. This means, the outer diagonal elements are higher in the set-based
approach. Therefore, the transition probabilities are overestimated if we do
not account correctly for the overlapping conformations.

4 Conclusions

The discretization of the phase space by meshfree basis functions allows us to
localize the densities and thus to compute them by short MD runs which are
confined to the support of the meshfree basis functions. This enables us to run
several MD trajectories in parallel, allowing for parallelization on both force
field and basis function level. After these short localized MD simulations, the
independent localized densities are reweighted according to the Boltzmann
distribution. In our example we observed that this sampling scheme can be
applied to small molecular systems in explicit water. Additionally, the theory
of MSMs is not restricted to vacuum simulations and allows for the analysis of
spatially overlapping conformations. In our future work, we plan to investigate
MSMs applied to large molecules (such as proteins) in explicit water.
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