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Abstract. In this paper a new theorem is formulated which allows a rigorous proof of the shape
differentiability without the usage of the material derivative; the domain expression is automatically
obtained and the boundary expression is easy to derive. Furthermore, the theorem is applied to a
cost function which depends on a quasi-linear transmission problem. Using a Gagliardo penalization
the existence of optimal shapes is established.
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1. Introduction. A map defined on a set of subsets of Rd is called shape func-
tion. The study of these functions is the main topic of shape optimization. The
concept of derivative in Banach spaces does not apply to shape functions since there
is no immediate vector space structure on spaces of shapes. Nevertheless, it is possible
to introduce a derivative for a shape function called shape derivative. To be more
precise, let a shape function J : Ξ → R, with Ξ ⊂ {Ω : Ω ⊂ Rd} be given and
assume that it is shape differentiable, i.e., the limit

(1.1) dJ(Ω)[θ] = lim
t↘0

(J(Ωt)− J(Ω)) /t,

exists and θ 7→ dJ(Ω)[θ] is continuous and linear. Here, we defined Ωt := Φt(Ω), where
the mapping Φt is the flow generated by the differentiable vector field θ : Rd → Rd

with compact support. The structure theorem for shape functions on open domains
Ω ⊂ Rd of class Ck+1 is due to Zolésio [18] in 1979 and not to the Hadamard even
if the theorem is often called Hadamard structure theorem. It states that the shape
derivative in an open domain Ω of class Ck+1 is a distribution on the boundary
Γ := ∂Ω that only depends on the normal part θn := θ · n of the vector field θ.
Moreover, if the boundary Γ is smooth enough, the shape derivative can often be
written in the form

(1.2) dJ(Ω)[θ] =

∫
Γ

g θnds,

where g ∈ L1(Γ) is an integrable function. We call the integral over the boundary Γ
in (1.2) boundary expression of the shape derivative.

There are at least four ways to prove the existence of (1.1) when the cost function
is constrained by a partial differential equation (PDE): material derivative method
(also called “chain rule approach”) [17], minimax formulation by [9], Céa’s Lagrange
method introduced in [4] and rearrangement method introduced in [12].

As a byproduct of the proof of the existence of the shape derivative (1.1), one
usually gets the following expression

(1.3) dJ(Ω)[θ] =

∫
Ω

F (θ, ∂θ, ∂2θ, . . .) dx,
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2 LAGRANGE METHOD IN SHAPE OPTIMIZATION

where F is some function acting on θ and its derivatives. Under some smoothness
assumptions on the boundary of the domain Ω and the regularity of the solution of
the underlying PDE, this expression can be brought by partial integration into the
form (1.2). In most cases, the domain expression (1.3) can be derived without any
further regularity assumption on the PDE or the domain. In this sense the domain
expression is more general than the boundary expression.

The material derivative method analyzes the differentiability of the PDE with
respect to the domain. The material derivative is introduced to derive the shape
differentiability, but it is not present in the final formula of the shape derivative.

Céa’s Lagrange method incorporates the PDE constraints in a Lagrangian and
assumes that the shape derivatives of the PDE and the adjoint equation exist. While
the material derivative method gives a rigorous proof of the differentiability of the
shape function, this is different for Céa’s Lagrange method. There are examples (see
[15]), where Céa’s Lagrange method fails.

A theorem on the differentiability of a minimax in the infinite dimensional setting
was given by [6] and later applied to shape optimization by [8, Theorem 3, p. 842].
This latter theorem provides a rigorous way to prove shape differentiability under the
assumption that the corresponding Lagrangian has saddle points. Also in [8] another
theorem was proved that requires no saddle point assumption. Nevertheless, this
theorem is not directly applicable and one has to go to a dual problem and require a
saddle point assumption. We also refer the reader to [7, p. 93, Theorem 3], where a
theorem is presented that does not use a saddle point assumption, but which is not
applicable for Lagrangian functionals.

Finally, the recently introduced rearrangement method of [12] bypasses the mate-
rial derivative by some Hölder continuity of the domain-solution mapping plus a first
order expansion of the state equation and the cost function, which is assumed to be
of order two. This method is applicable to many elliptic partial differential equations.

We would like to have a criterion when the minimax of the Lagrangian is differ-
entiable without going to a dual problem or any saddle point assumption. Moreover,
we wish to establish a theorem with very mild and fairly simple assumptions on the
cost function and the state equation. This paper presents a novel approach to the
differentiability of the minimax of a Lagrangian that is an utility function plus a lin-
ear penalization of the state equation. Its originality is to replace the usual adjoint
state equation by an averaged adjoint state equation. When compared to the former
theorems by [8, Theorem 3, p. 842], [7, Theorem 3, p. 93] and [6], all the hypotheses
are now verified for a Lagrangian functional without going to the dual problem and
any saddle point assumption. It relaxes the classical continuity assumptions on the
derivative of the Lagrangian involving both the state and adjoint state to continuity
assumptions that only involve the averaged adjoint state. This result opens new hori-
zons not only for the shape calculus but also probably in mathematical programming
and optimal control (the maximum principle). Nevertheless, this is beyond the scope
of the present paper.

The main contributions of the paper are:

1. Novel approach to the rigorous computation of first order optimality condi-
tions for equality constrained optimization problems without using the dif-
ferentiability of the control-solution operator.

2. Application of the theorem to a cost function constrained by a quasi-linear
transmission problem. In particular, it is shown:
(a) the existence of optimal shapes by a Gagliardo penalization,
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(b) the existence of the shape derivative and a formula for the boundary and
domain expression.

The structure of the paper:
Section 2, the material method, a modification of Céa’s Lagrange method, the

minimax formulation and the rearrangement method are briefly discussed and a mo-
tivation for our main result is given. Moreover, the reason why Céa’s Lagrange method
is not always applicable is explained and a solution is provided.

Section 3, we make some general assumptions and state then the main theorem.
We prove that the new theorem allows an efficient computation of the shape derivative
without using the material derivative or more generally without differentiating the
control-state operator.

Section 4, the results from Section 3 are applied to a non-linear transmission
problem. For the presented example an application of the material derivative method
(i.e. the strong material derivative) is not possible due to the lack of regularity.
Finally, we present a minimization problem with penalization and show that the
associated cost function is shape differentiable.

2. Motivation and preliminaries. First we give some basic definitions and
introduce notations. Then we give a motivation for the main result, which is proved
in the next section.

2.1. Notations and definitions. Let E and F be Banach spaces and U ⊂ E an
open subset. We denote by C(U ;F ) the space of all continuous functions f : U → F .
The space C(U ;F ) comprises all continuous f : U → F and is endowed with the norm
‖f‖C(U ;F ) := supx∈U ‖f(x)‖F < ∞. We call a function f : U → F differentiable in

x ∈ U if it is Fréchet differentiable at x and denote the derivative by ∂f(x). The
function is called differentiable if it is differentiable at every point x ∈ U . For k ≥ 1,
the space of all k-times continuously differentiable functions f : U → F is denoted
by Ck(U ;F ). The Gateàux derivative of f : U → F at x ∈ U in direction v ∈ E
is denoted by ∂vf(x). For a differentiable function f : U → F , we have ∂f(x)(v) =
∂vf(x) for all x ∈ U and v ∈ E. If we only consider the directional derivative of f ,
we write df(x; v) or df(x)(v) to indicate the directional derivative at x in direction
v. For a function f : E1 × · · · × En → F , where E1, . . . , En are Banach spaces, we
also write ∂xkf(x1, . . . , xn)(x̂k) := ∂(0,...,x̂k,...,0)f(x1, . . . , xn), where k, l ≥ 0 are such
that 1 ≤ k ≤ n < ∞. In the case F = R and E being a Hilbert space, we have
that ∂f(x) : E → R is a continuous, linear mapping and therefore we may write
by the Riesz representation theorem ∂f(x)(v) = v · ṽ for some element ṽ ∈ E (“ · “
being the inner product on E). The vector ṽ is then called gradient of f at x and
denoted by ∇f(x). For p ≥ 1, the space of all measurable functions f : Ω → R for

which ‖f‖Lp(Ω) :=
(∫

Ω
|f |p dx

)1/p
< ∞ is denoted by Lp(Ω). The space of functions

of bounded variations on D are denoted by BV (D). For the right sided limit limt→0
t>0

we write limt↘0.
Let d ∈ N+. Assume that D ⊂ Rd is an bounded domain with Lipschitz bound-

ary. For any k ≥ 1, we define the space

CkD(Rd) := {θ ∈ Ck(Rd; Rd) : supp(θ) ⊂ D}.

The flow of a vector field θ ∈ CkD(Rd) is defined for each x0 ∈ D by Φθt (x0) := x(t),
where x : [0, τ ]→ Rd solves

ẋ(t) = θ(x(t)) in (0, τ), x(0)= x0.
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In the sequel, we write Φt instead of Φθt . For an invertible matrix L ∈ Rd,d,
we have (L−1)T = (LT )−1 and therefore we define L−T := (L−1)T . Henceforth, the
following abbreviations are frequently used in the paper

(2.1) ξ(t) := det(∂Φt), A(t) := ξ(t)∂Φ−1
t ∂Φ−Tt , B(t) := ∂Φ−Tt .

Note that by the chain rule (∂(Φ−1
t )) ◦ Φt = (∂Φt)

−1 =: ∂Φ−1
t . We use the notation

θn := θ · n for the normal component of the vector field θ, where n ∈ Rd such that
|n| = 1. Let us recall some useful facts about the transformation Φt associated with
the vector field θ ∈ CkD(Rd).

Lemma 2.1. Fix k ≥ 1. Let θ ∈ CkD(Rd) be a given vector field and Φt its flow.
1. Assume p > 1 and f ∈ Lp(R

d). Then limt↘0 ‖f ◦ Φ−1
t − f‖Lp(Rd) =

limt↘0 ‖f ◦ Φt − f‖Lp(Rd) = 0.

2. Let f ∈ H1(Rd). Then limt↘0 ‖f ◦ Φt − f‖H1(Rd) = 0.
3. The jacobian ξ(t) is differentiable from the right side with derivative

lim
t↘0

(ξ(t)− 1)/t = div (θ) in C(D).

4. The limit limt↘0(A(t)−A(0))/t exists in C(D; Rd,d) and is given by

(2.2) A′(0) = div (θ)Id,d − ∂θ − ∂θT .

5. The derivative A′ is continuous, i.e., A′(t)→ A′(0) in C(D; Rd,d).
Proof. See [9, p.527], [17] and [12].
Definition 2.2 (Eulerian semi-derivative). Suppose we are given a shape func-

tion J : Ξ → R on the set Ξ ⊂ {Ω| Ω ⊂ D}. Denote by Φt : D ×R → D the flow
generated by the vector field θ ∈ CkD(Rd), where k ≥ 1 and set Ωt := Φt(Ω). Then the
Eulerian semi-derivative of J at Ω ⊂ D in the direction θ is defined as the limit
(if it exists)

dJ(Ω)[θ] := lim
t↘0

1

t
(J(Ωt)− J(Ω)) .

In general, the derivative dJ(Ω)[θ] can be non-linear in θ.
Definition 2.3. Let Ω ⊂ D and D ⊂ Rd be open sets. The function J is said to

be shape differentiable at Ω if the Eulerian semi-derivative dJ(Ω)[θ] exists for all
θ ∈ C∞D (Rd) and the map θ 7→ dJ(Ω)[θ] : C∞D (Rd)→ R, is linear and continuous.

Finally, we state the following theorem from [9, pp. 483-484], which will later
allow us to calculate the boundary expression of the shape derivative.

Theorem 2.4. Let θ ∈ CkD(Rd), where k ≥ 1. Fix τ > 0 and let ϕ ∈
C(0, τ ;W 1,1

loc (Rd))∩C1(0, τ ;L1
loc(R

d)) and an bounded domain Ω with Lipschitz bound-
ary Γ be given. The right sided derivative of the function

f(t) :=

∫
Ωt

ϕ(t) dx

at t = 0 is given by

d+

dt
f(0) =

∫
Ω

ϕ′(0) dx+

∫
Γ

ϕ(0) θn dx,

where d+

dt f(0) := limt↘0(f(t)− f(0))/t.
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2.2. Motivation. In order to motivate the main theorem presented in Section 3,
we consider simple model problem. Let Ω ⊂ Rd be an open, bounded set with smooth
boundary ∂Ω. We consider the state equation

−∆u = f, in Ω,

u = 0, on ∂Ω,
(2.3)

where f : Rd → R is a smooth function. The function u : Ω→ R is called state. To
simplify the exposition, we choose as objective function

(2.4) J(Ω) :=

∫
Ω

|u− ud|2 dx,

where ud ∈ H2(Rd) is given and | | denotes the absolute value. We call u ∈ H1
0 (Ω) a

weak solution of (2.3) if

(2.5)

∫
Ω

∇u · ∇ψ dx =

∫
Ω

fψ dx, for all ψ ∈ H1
0 (Ω).

We aim to calculate the shape derivative of (2.4). For this purpose, we consider the
perturbed cost function and apply a change of variables to obtain

(2.6) J(Ωt) =

∫
Ω

ξ(t)|ut − ud ◦ Φt|2 dx,

where ut := ut ◦ Φt and ut denotes the weak solution of (2.5) on the domain Ωt :=
Φt(Ω). To study the differentiability of (2.6), we can study the function t 7→ ut. The

limit u̇ := limt↘0
ut−u
t is called strong material derivative if we consider this limit

in the norm convergence in H1
0 (Ω) and weak material derivative if we consider the

weak convergence in H1
0 (Ω).

Henceforth, we make use of the following convention. Whenever a function f :
D → R on the hold-all D is given, we denote by f t := Ψt(f) := f ◦Φt the ’pull-back’
of f and define also its inverse Ψ−1

t (ϕ̂) := Ψt(f) := f ◦ Φ−1
t .

It is readily verified by considering the equation (2.5) on Ωt and an application
of the change variables Φt(x) = y that ut satisfies

(2.7)

∫
Ω

A(t)∇ut · ∇ψ dx =

∫
Ω

ξ(t)f tψ dx, for all ψ ∈ H1
0 (Ω),

where we used the notation from (2.1). By standard regularity theory, we may assume
that the solution belongs to H2(Ω) ∩H1

0 (Ω). Note that the solution of the previous
equation is the unique minimum of the strongly convex energy Ẽ : [0, τ ]×H1

0 (Ω)→ R
with respect to the second argument

(2.8) Ẽ(t, ϕ) :=
1

2

∫
Ω

ξ(t)|B(t)∇ϕ|2 dx−
∫

Ω

ξ(t)f tϕdx.

It can be shown that t 7→ ut : [0, τ ]→ H1
0 (Ω) is differentiable, see for instance [17].

Remark 1. We would like to stress that the proof of the differentiability of
t 7→ ut in the appropriate function space is not obvious in general and may involve
heavy tools from analysis such as the implicit function theorem. In many situations
the implicit function theorem is not applicable. For other non-linear problems such as
the Navier-Stokes equations, we refer the reader to the monograph [16].
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Without going into further details, we may show by introducing the adjoint equa-
tion

(2.9) Find p ∈ H1
0 (Ω) :

∫
Ω

∇p·∇ψ dx = −2

∫
Ω

(u−ud)ψ dx, for all ψ ∈ H1
0 (Ω),

and verifying that the material derivative u̇ satisfies

(2.10)

∫
Ω

∇u̇ · ∇ψ dx+

∫
Ω

A′(0)∇u · ∇ψ dx =

∫
Ω

div (θ)fψ dx+

∫
Ω

∇f · θψ dx,

that the shape derivative is given by

dJ(Ω)[θ] =

∫
Ω

div (θ)|u− ud|2 dx−
∫

Ω

2(u− ud)∇ud · θ dx

+

∫
Ω

A′(0)∇u · ∇p dx−
∫

Ω

div (θ)fp dx−
∫

Ω

∇f · θp dx.
(2.11)

Note that the domain expression already makes sense when u, p ∈ H1
0 (Ω). According

to the structure theorem (cf. [9, p.479-481, Corollary 1]), the previous equation can
be written as an boundary integral over ∂Ω depending only on the normal part of
the perturbation field θ. This can be accomplished by integrating by parts in (2.11)
or by introducing the shape derivative of the state u. However, this requires higher
regularity of u and p. We refer the reader to [17] for the usage of the shape derivative
method.

We point out that there is no material derivative u̇ in the final expression (2.11).
This suggests that there might be a way to obtain this formula without the compu-
tation of u̇. Indeed, instead of computing the material derivative and deriving an
equation for this derivative, one may also introduce the function

(2.12) G(t, ϕ, ψ) =

∫
Ω

ξ(t)|ϕ− utd|2 dx+

∫
Ω

A(t)∇ϕ · ∇ψ dx−
∫

Ω

ξ(t)f tψ dx.

It is evident that the shape differentiability of J is equivalent to the differentiability
of

(2.13) t 7→ g(t) := G(t, ut, ψ),

from the right in 0 for any ψ, where ut solves (2.7). Note that we have the relation

(2.14) G(t, ut, ψ̃) = min
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

G(t, ϕ, ψ)

for any ψ̃ ∈ H1
0 (Ω), therefore the differentiability of g can be obtained by differentiat-

ing a minimax of a Lagrangian with respect to a parameter. Notice that the relation
(2.14) only holds when the PDE has a unique solution. One way to prove the differ-
entiability of g under the assumption that G is convex as function ϕ 7→ G(t, ϕ, ψ) for
all t ∈ [0, τ ] and ψ provides the Theorem of Correa-Seeger [8]. The recently proposed
rearrangement method of [12] provides another way to prove the differentiability of
(2.13) without using the material derivative. For non-linear problems the rearrange-
ment requires a first order expansion of the PDE with respect to the unknown as well
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as the cost function such that the remainder converges towards zero with order two.1

We refer the reader to [12] and [13] for more details on this method and also point out
the paper [14], where second order shape derivatives are computed by this method.

Finally, let us remark that if the cost function J is the energy of the PDE, i.e.
J(Ωt) = Ẽ(t, ut) then it is well-known that J may be differentiated without using the
material derivative by only employing the continuity of t 7→ ut, see e.g. [9, p.524,
Theorem 2.1]. In this case it is not nessacary to introduce an adjoint equation and
the shape derivative involves only the state u.

2.3. Céa’s classical Lagrange method and a modification. Let the func-
tion G be defined by (2.12). Assume that G is sufficiently differentiable with respect
to t, ϕ and ψ. Additionally, assume that the strong material derivative u̇ exists in
H1

0 (Ω). Then by invoking the chain rule we may calculate as follows

(2.15) dJ(Ω)[θ] =
d

dt
(G(t, ut, p))|t=0 = ∂tG(t, u, p)|t=0︸ ︷︷ ︸

shape derivative

+ ∂ϕG(0, u, p)(u̇)︸ ︷︷ ︸
adjoint equation

,

and due to u̇ ∈ H1
0 (Ω) it implies dJ(Ω)[θ] = ∂tG(t, u, p)|t=0. Therefore, we can follow

the lines of the calculation of the previous section to obtain the boundary and domain
expression of the shape derivative. In the original work [4], it was calculated as follows

(2.16) dJ(Ω)[θ] = ∂ΩL(Ω, u, p) + ∂ϕL(Ω, u, p)(u′) + ∂ψL(Ω, u, p)(p′),

where ∂ΩL(Ω, u, p) := limt↘0(L(Ωt, u, p)−L(Ω, u, p))/t. Then it was assumed that u′

and p′ belong toH1
0 (Ω), which has as consequence that ∂ϕL(Ω, u, p)(u′) = ∂ψL(Ω, u, p)(p′) =

0. Thus (2.16) leads to the wrong formula

dJ(Ω)[θ] =

∫
Γ

(|u− ur|2 + ∂nu ∂np) θn ds.

This can be fixed by noting that u′ = u̇−∇u ·θ and p′ = ṗ−∇p ·θ with u̇, ṗ ∈ H1
0 (Ω):

dJ(Ω)[θ] = ∂ΩL(Ω, u, p)− ∂ϕL(Ω, u, p)(∇u · θ)− ∂ψL(Ω, u, p)(∇p · θ),

which gives the correct formula. Note that we do not claim that the Lagrange method
to calculate the volume or boundary expression is always applicable, but it is appli-
cable under the described assumptions also for non-linear problems. For a particular
problem one has to carefully check the assumptions. One example where the de-
scribed method is not working is the p-Laplacian, where it is known that the material
derivative only belongs to some weighted Sobolev space and not to the solution space
of the PDE.

3. Avoiding the material derivative. We have seen in the previous section
that the shape derivative of a PDE constrained shape optimization problem can be
expressed as the derivative of the function g(t) := G(t, ut, ψ), at t = 0. The rear-
rangement method and the Theorem of Correa-Seeger show that the differentiation of
g does not require the differentiation of t 7→ ut, in general. In this section, we present
a novel theorem to prove the differentiability of g, which extends the Theorem of
Correa-Seeger for the special class of Lagrangians.

1By a first order expansion with remainder of order two of a function f : E → R, where (E, ‖ · ‖)
is a Banach space, we mean that f satisfies

f(x)− f(y)− df(x;x− y) ∈ O(‖x− y‖2).
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3.1. Differentiability of the Lagrangian without material derivatives.
Let the Banach spaces E,F and a number τ > 0 be given. Consider a function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ).

We introduce the solution set of the state equation

(3.1) E(t) := {u ∈ E| dψG(t, u, 0; ψ̂) = 0 for all ψ̂ ∈ F}.

Let us introduce the following hypothesis.
Assumption (H0).
(i) For all t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0) and p̃ ∈ F the mapping

[0, 1]→ R : s 7→ G(t, sut + s(ut − u0), p̃)

is absolutely continuous. This implies that for almost all s ∈ [0, 1] the deriva-
tive dϕG(t, u0 + s(ut − u0), p̃;ut − u0) exists and in particular

G(t, ut, p̃)−G(t, u0, p̃) =

∫ 1

0

dϕG(t, sut + (1− s)u0, p̃;ut − u0) ds.

(ii) For all t ∈ [0, τ ], ϕ ∈ E, p̃ ∈ F , ut ∈ E(t) and u0 ∈ E(0)

dϕG(t,sut + (1− s)u0, p̃;ϕ)

exists and s 7→ dϕG(t, sut + (1− s)u0, p̃;ϕ) belongs to L1(0, 1).
(iii) For every (u, t) ∈ E × [0, τ ] the mapping F → R : p 7→ G(t, u, p) is affine-

linear.
Introduce for t ∈ [0, τ ], ut ∈ E(t) and u0 ∈ E(0) the following set

(3.2) Y (t, ut, u0) :=

{
q ∈ F | ∀ϕ̂ ∈ E :

∫ 1

0

dϕG(t, sut + (1− s)u0, q; ϕ̂) ds = 0

}
,

which is called solution set of the averaged adjoint equation with respect to t,ut and
u0. For t = 0, we set Y (0, u0) := Y (t, ut, u0), which coincides with the solution set of
the usual adjoint state equation

(3.3) Y (0, u0) :=
{
q ∈ F | dϕG(0, u0, q; ϕ̂) = 0 for all ϕ̂ ∈ E

}
.

We call any p ∈ Y (0, u0) an adjoint state. In the most general situation, we define for
t ∈ [0, τ ], ut ∈ E(t) and u0 ∈ E(0) the set

(3.4) Y (t, ut, u0) :=
{
q ∈ F | G(t, ut, q)−G(t, u0, q) = 0

}
.

Note under the assumption (H0), we have Y (t, ut, u0) ⊂ Y (t, ut, u0) for all t ∈ [0, τ ],
ut ∈ E(t), u0 ∈ E(0). In particular, we have Y (0, u0, u0) = F .

We now prove a theorem which enables us to calculate the shape derivative with-
out the knowledge of the material derivative u̇. The key ingredient is the introduction
of the set (3.2).

Theorem 3.1. Let the linear vector spaces E and F , the real number τ > 0, and
the function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ),

be given. Let Assumption (H0) and the following conditions be satisfied.
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(H1) For all t ∈ [0, τ ] and all (u, p) ∈ E(0)× F the derivative ∂tG(t, u, p) exists.
(H2) For all t ∈ [0, τ ], E(t) is nonempty and single-valued. For all t ∈ [0, τ ],

ut ∈ E(t) and u0 ∈ E(0), the set Y (t, ut, u0) is nonempty and single-valued.
(H3) Let u0 ∈ E(0) and p0 ∈ Y (0, u0). For any sequence (tn)n∈N of non-negative

real numbers converging to zero, there exist a subsequence (tnk)k∈N, elements
utnk ∈ E(tnk) and ptnk ∈ Y (tnk , u

tnk , u0) such that

lim
k→∞
t↘0

∂tG(t, u0, ptnk ) = ∂tG(0, u0, p0).

Let us pick any ψ ∈ F . Then letting t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0) and p0 ∈ Y (0, u0),
we conclude

(3.5)
d

dt
(G(t, ut, ψ))|t=0 = ∂tG(0, u0, p0).

Proof. Step 1: Let t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0) and pt ∈ Y (t, ut, u0), p0 ∈
Y (0, u0) be given. We will show that there exist a ηt ∈ (0, 1) such that

G(t, ut, ψ)−G(0, u0, ψ) = t∂tG(ηtt, u
0, pt),(3.6)

for all ψ ∈ F . Write

G(t, ut, ψ)−G(0, u0, ψ) = G(t, ut, pt)−G(0, u0, p0)

= G(t, ut, pt)−G(t, u0, pt) +G(t, u0, pt)−G(0, u0, pt)

(3.7)

for all ψ ∈ F , where we used G(0, u0, pt) − G(0, u0, p0) = 0, since p 7→ G(t, u, p) is
affine linear. By hypothesis (H1), we find for each t ∈ [0, τ ] a number ηt ∈ (0, 1) such
that

(3.8) G(t, u0, pt)−G(0, u0, pt) = t∂tG(ηtt, u
0, pt).

Now using part (i) and (ii) of hypothesis (H0), we obtain pt ∈ Y (t, ut, u0) and thus
plugging (3.8) into (3.7), we recover (3.6).
Step 2: For arbitrary ψ ∈ F , we show that limt↘0 δ(t)/t exists, where δ(t) :=

G(t, ut, ψ) − G(0, u0, ψ). To do so it is sufficient to show that lim inft↘0
δ(t)
t =

lim supt↘0
δ(t)
t . By definition of the lim inf, there is a sequence (tn)n∈N such that

lim
n→∞

δ(tn)/tn = lim inf
t↘0

δ(t)/t =: dδ(0).

Now let u0 ∈ E(0) and p0 ∈ Y (0, u0). Recall that δ(t)/t = ∂tG(ηtt, u
0, pt). Owing to

(H3), for any sequence (tn)n∈N converging to zero, i.e., tn → 0 as n→∞, there exists
a subsequence (tnk)k∈N, elements utnk ∈ E(tnk) and ptnk ∈ Y (tnk , u

tnk , u0) such that

lim
k→∞
t↘0

∂tG(t, u0, ptnk ) = ∂tG(0, u0, p0).

Thus we conclude

dδ(0) = lim
n→∞

∂tG(ηtntn, u
0, ptn) = lim

k→∞
∂tG(ηtnk tnk , u

0, ptnk )

= ∂tG(0, u0, p0).
(3.9)



10 LAGRANGE METHOD IN SHAPE OPTIMIZATION

Completely analogous, we may show for dδ(0) := lim supt↘0 δ(t)/t that

(3.10) dδ(0) = ∂tG(0, u0, p0)

Combining (3.9) and (3.10), we obtain dδ(0) = ∂tG(0, u0, p0) = dδ(0), which shows

that limt↘0
δ(t)
t = ∂tG(0, u0, p0). Since ψ ∈ F was arbitrary, we finish the proof.

Remark 2. In concrete applications the conditions (H0)-(H3) have the following
meaning.

(i) Condition (H0) ensures that we can apply the fundamental theorem of calculus
to G with respect to the primal variable. Condition (H1) allows an application
of the mean value theorem with respect to t. Note that the assumption (H0)
is much milder than Fréchet differentiability.

(ii) Condition (H2) ensures that the state equation and the perturbed state equa-
tion has a unique solution. The set Y (t, ut, u0) can be understood as the
solution of some averaged adjoint state equation.

(iii) Condition (H3) can be verified by showing that pt converges weakly to p0

and that (t, ψ) 7→ G(t, u0, ψ) is weakly continuous. Note that there is no
assumption on the convergence of ut ∈ E(t) to u0 ∈ E(0), but in applications
we need the convergence ut → u0 to prove pt → p0 in some topologies.

(iv) The set E(t) corresponds to the solution of the state equation on the perturbed
domain Ωt brought back to the fixed domain Ω.

3.2. Possible generalizations. We can consider a weaker averaged equation
and thus weaken the conditions (i),(ii) of assumption (H0). We may write G as

G(t, ϕ, ψ) = f(t, ϕ) + l(t, ϕ, ψ),

for two functions f : [0, τ ]×E → R and l : [0, τ ]×E×F → 0, where the function l is
linear in p. Now it is sufficient to require that l satisfies assumption (H0) (G replaced
by l) and for f we need: for all t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0) the function

[0, τ ]→ R : s 7→ f(t, sut + (1− s)u0)

is differentiable. Under these assumptions, we conclude by the mean value theorem
that there exists s′ ∈ [0, τ ] depending on t such that

(3.11) f(t, ut)− f(t, u0) = dϕf(t, s′ut + (1− s′)u0;ut − u0)

and in particular

G(t, ut, p)−G(t, u0, p) =

∫ 1

0

dϕl(t, su
t + (1− s)u0, p;ut − u0) ds

+ dϕf(t, s′ut + (1− s′)u0;ut − u0).

Now assume that for all t ∈ [0, τ ], ut ∈ E(t), u0 ∈ E(0), s′ ∈ (0, 1) and for all û ∈ E

dϕf(t, s′ut + (1− s′)u0; û)

exists. Then instead of considering the averaged equation, we could consider the
modified averaged equation: Find pt ∈ F such that

(3.12)

∫ 1

0

dϕl(t, su
t + (1− s)u0, pt; û) ds+ dϕf(t, s′ut + (1− s′)u0; û) = 0
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for all û ∈ E. Since s′ (defined by (3.11)) depends on t, the set Y (t, ut, u0) has to be
replaced by

Ỹ (t, ut, u0) := {q ∈ F : q solves (3.12) with s′ such that (3.11)}.

Then we can follow the lines of the proof of Theorem 3.1 with the mentioned changes.
Since in applications f will be the cost function, this remark means that we only need
the cost function to be directional differentiable without continuity. Nevertheless, to
identify the limit p0 we need some continuity to pass to the limit t ↘ 0 in (3.12).
Using the Henstock–Kurzweil integral in (3.12) (cf. [3]), we may even weaken the
absolute continuity of s 7→ l(t, sut + (1− s)u0, p) (p ∈ F ) to differentiability, since for
this integral the fundamental theorem is satisfied for merely differentiable functions.

4. A quasi-linear transmission problem. As an application of Theorem 3.1,
we investigate a non-linear transmission problem and use it to compute the shape
derivative. We associate with the transmission problem a minimization problem. To
achieve the well-posedness of the minimization problem a Gagliardo regularization is
used. The considered model constitutes a generalization of the electrical impedance
tomography (EIT) problem, which can be found in [1].

4.1. The problem setting. Let D ⊂ Rd be a bounded domain with Lipschitz
boundary ∂D and Ω ⊂ D be a measurable subset. We set Ω+ := Ω, Ω− := D \ Ω+

and Γ := ∂Ω+ ∩ ∂Ω−. An example of a domain D with subset Ω+ ⊂ D is depicted in
Figure 4.1. We consider for p ∈ (1,∞) and 0 < s < 1/p the cost function

(4.1) J(Ω) := J1(Ω) + αJ2(Ω) :=

∫
D

|u(Ω)− ur|2 dx+ α|χΩ|pW s
p (D)

constrained by the equations

−div (β+(|∇u+|2)∇u+) = f+ in Ω+

−div (β−(|∇u−|2)∇u−) = f− in Ω−

u = 0 on ∂D

(4.2)

complemented by transmission conditions on Γ

(4.3) [u]Γ = 0 and β+(|∇u+|2)∂nu
+ = β−(|∇u−|2)∂nu

−.

Here, n := n+ denotes the outward unit normal vector along the interface Γ = ∂Ω+ ∩
∂Ω−. We denote by n− := −n = −n+ the outward unit normal vector of Ω−. The
bracket

[φ]Γ (x) := lim
z→x,z∈Ω+

φ(z)− lim
z→x,z∈Ω−

φ(z)

will indicate the jump of a function φ across Γ at x ∈ Γ. For a given function
ϕ : D → R, we write ϕ+ for the restriction ϕ|Ω+ : Ω+ → R and likewise ϕ− for
ϕ|Ω− : Ω− → R. The penalty term in (4.1) is called Gagliardo semi-norm and
defined by

|χΩ|pW s
p (D) :=

∫
D

∫
D

|χΩ(x)− χΩ(y)|p

|x− y|d+sp
dx dy.

For later usage it is convenient to introduce the functions βχ : R×R→ R
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Ω+

Γ

D

Ω−

n+

Fig. 4.1. Domain D which contains Ω+ and Ω−, where Γ is the boundary of Ω+.

βχ(y, x) := χ(x)β+(y) + χc(x)β−(y),

where χ is a characteristic function and χc := (1−χ) its complement. The derivative
β′χ : R × R → R is defined piecewise by β′χ(y, x) := χ(x)∂yβ+(y) + χc(x)∂yβ−(y).
Subsequently, the characteristic function χ = χΩ is always defined by the set Ω =
Ω+ ⊂ D. To simplify notation, we write β(|∇u|2, x) instead of βχ(|∇u|2, x) and
similarly β′(|∇u|2, x) for β′χ(|∇u|2, x). We make the following assumptions.

Assumption 1. We require the functions β+, β− : R→ R to satisfy the following
conditions.

1. There exist constants β̄+, β+, β̄−, β− > 0 such that

β̄+ ≤ β+(x) ≤ β+, β̄− ≤ β−(x) ≤ β− for all x ∈ Rd.

2. For all x, y ∈ R, we have

(β+(x)− β+(y))(x− y) ≥ 0 and (β−(x)− β−(y))(x− y) ≥ 0.

3. The functions β+, β− are C1-regular, i.e., β+, β− ∈ C1(R).
4. There are constants k,K > 0 such that

k|η|2 ≤ β±(|p|2)|η|2 + 2β′±(|p|2)|p · η|2 ≤ K|η|2 for all η, p ∈ Rd.

Moreover, we assume that ur ∈ H1(D) and f ∈ C1(D).
Remark 3. Note that from item 4 of the previous assumption it follows by

plugging η = p 6= 0

β′±(|η|2) ≤ K

2

1

|η|2
for all 0 6= η ∈ Rd.

Thus the functions β± are bounded and vanish at plus infinity. The weak formulation
of (4.2),(4.3) reads: find u ∈ H1

0 (D)∫
D

βχ(|∇u|2, x)∇u · ∇ψ dx =

∫
D

fψ dx for all ψ ∈ H1
0 (D).(4.4)

Along with the previous equation, we are going to investigate the perturbed equation:
find ut ∈ H1

0 (D) such that

(4.5)

∫
D

βχ(|B(t)∇ut|2, x)A(t)∇ut · ∇ψ dx =

∫
D

ξ(t)f tψ dx for all ψ ∈ H1
0 (D).

Note that for t = 0 both equations coincide and thus u0 = u.
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4.2. Existence of optimal shapes. We are interested in the question under
which restriction on the characteristic functions a minimization of (4.1) admits a
solution. We investigate the problem

(4.6) min Ĵ(χΩ) over χΩ ∈ BW s
p (D),

where Ĵ(χΩ) := J(Ω) and J is given by (4.1). In the following, we use the notation
X(D) to indicate the set of all characteristic functions χΩ defined by a Lebesque
measurable set Ω ⊂ D. For every p ∈ (1,∞) and 0 < s < 1/p, we introduce the space

(4.7) BW s
p (D) := {χΩ : R→ R| χΩ ∈ X(D) and |χΩ|W s

p (D) <∞},

which is not empty since BV (D) ∩ L∞(D) ⊂ BW s
p (D), see [9, p.253, Theorem 6.9.].

Compared with the perimeter2 PD(Ω) the function |χΩ|pW s
p (D) provides a weaker regu-

larization. In particular, the regularization term and its shape derivative are domain
integrals. This makes the regularization favorable for numerical simulations. Also
note that an open and bounded set Ω ⊂ Rd of class C2 has finite perimeter and thus
χΩ ∈ BV (D) ∩ L∞(D), which implies χΩ ∈ BW s

p (D). We begin our investigation
with the study of the state equations (4.4) and (4.5).

Theorem 4.1. Let θ ∈ C2
D(Rd) be a vector field and Φt its associated flow. Then

the equation (4.5) has for each t ∈ [0, τ ] and χ ∈ X(D) a unique solution in H1
0 (D).

Proof. Let Ω+ ⊂ D be measurable and define the measurable set Ω− := D \ Ω+.
Then by definition D = Ω+ ∪ Ω−. Introduce the family of energy functionals

E(t, ϕ) :=

∫
D

1

2
[χ(x)ξ(t)h+(|B(t)∇ϕ(x)|2) + (1− χ(x))ξ(t)h−(|B(t)∇ϕ(x)|2)]+

+ ξ(t)f t(x)ϕ(x) dx,

(4.8)

where h± is the primitive of β± and given by

(4.9) h±(z) = c± +

∫ z

0

β±(s) ds,

for some constants c± ∈ R. We may choose c± = 0. We are going to show that the
energy E(t, ϕ) is convex with respect to ϕ. The first order directional derivative at
ϕ ∈ H1

0 (D) in direction ψ ∈ H1
0 (D) reads:

dE(t, ϕ;ψ) =

∫
D

β(|B(t)∇ϕ|2, x)A(t)∇ϕ · ∇ψ dx−
∫
D

ξ(t)f tψ dx.

Note that the equation dE(t, ut;ψ) = 0 for all ψ ∈ H1
0 (D), conicides with equation

(4.5). We now prove that the second order directional derivative of E(t, ϕ) exists and
is strictly coercive. Note that in order to prove the existence of the second order
directional derivative of E(t, ϕ), it is sufficient to show that for any u, ϕ, ψ ∈ H1

0 (D)

s 7→
∫
D

β(|B(t)∇(u+ sϕ)|2, x)A(t)∇(u+ sϕ) · ∇ψ dx(4.10)

2Recall that the perimeter of a set Ω ⊂ Rd is defined as PD(Ω) :=
sup

ϕ∈C1
D

(Rd)

‖ϕ‖L∞(D)<∞

∫
Rd div (ϕ)χΩdx.
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is continuously differentiable on R. Moreover for this it is sufficient to show that

s 7→
∫

Ω±

β±(|B(t)∇(u+ sϕ)|2, x)A(t)∇(u+ sϕ) · ∇ψ dx(4.11)

is differentiable on R. Put s 7→ αs(x) := |B(t)∇(u + sϕ)|2, then it is immediate
that the function γ±s (x) := β±(αs(x))A(t)∇(u(x)+sϕ(x)) ·∇ψ(x) is differentiable for
almost all x ∈ Ω±, respectively. The derivative in the respective domain Ω+ and Ω−
(briefly Ω±) reads

d

ds
γ±s (x) =β′±(|B(t)∇(u+ sϕ)|2)B(t)∇(u+ sϕ) ·B(t)∇uA(t)∇(u+ sϕ) · ∇ψ

+ β±(|B(t)∇(u+ sϕ)|2)A(t)∇ϕ · ∇ψ.

(4.12)

Using Assumption 1 item 4, we conclude that there exists a constant K > 0 such that

(4.13)
d

ds
γ±s (x) ≤ K|∇ϕ(x)||∇ψ(x)|, for almost every x ∈ Ω±, for all s ∈ R.

Since s 7→ d
dsγ
±
s (x) is also continuous on R, we get by the fundamental theorem of

calculus

γ±s (x)− γ±s+h(x)

h
=

1

h

∫ s+h

s

d

ds
γ±s (x) ds′

(4.13)

≤ K|∇ϕ(x)||∇ψ(x)| for almost all x ∈ Ω±.

(4.14)

Note, that the constant K is independent of x and s. Thus we may apply Lebesque’s
theorem of dominated convergence to show that (4.11) is indeed differentiable with
derivative

d

ds

∫
Ω±

β±(αs(x))A(t)∇(u+ sϕ) · ∇ψ dx

=

∫
Ω±

β′±(αs(x))B(t)∇(u+ sϕ) ·B(t)∇ϕA(t)∇(u+ sϕ) · ∇ψ

+ β±(αs(x))A(t)∇ϕ · ∇ψ dx.

(4.15)

It is immediate from the previous expression that the derivative is continuous. We
conclude that d2E(t, ϕ;ψ,ψ) exists for all ϕ,ψ ∈ H1

0 (D) and t ∈ [0, τ ]. Moreover,
using Assumption 1 item 4, we get that there is C > 0 such that

(4.16) d2
ϕE(t, ϕ;ψ,ψ) ≥ C‖ψ‖2H1(D) for all ϕ,ψ ∈ H1

0 (D), and for all t ∈ [0, τ ].

In the next lemma, we prove the Lipschitz continuity of the mapping X(D) 3
χ 7→ u(χ) ∈ H1

0 (D), where u(χ) denotes the weak solution of (4.4) and X(D) is
endowed with the Lp(D)-norm (p > 1).

Lemma 4.2. Let γ > 0 be a real number. Assume that there exist C > 0 and
ε > 0 such that for every χ ∈ X(D) we have ‖u(χ)‖W 1,2+ε(Ω) ≤ C, where u = u(χ)
solves (4.4). Then there is a constant C > 0 such that for all characteristic functions
χ1, χ2 ∈ X(D):

‖u(χ1)− u(χ2)‖H1(D) ≤ C‖χ1 − χ2‖L1+γ(D),
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where u(χ1) and u(χ2) are solution of the state (4.4).

Proof. Let p ∈ (1,∞) and 0 < s < 1/p. Let u(χ1) = u1 and u(χ2) = u2 be
solutions in H1

0 (D) of (4.4) associated with the functions χ1, χ2 ∈ X(D). Then by
boundedness of βχ1

and βχ2
, we obtain

C1‖u1 − u2‖2H1(D) ≤
∫
D

βχ1(|∇u1|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫
D

(βχ2
(|∇u2|2, x)− βχ1

(|∇u1|2, x))∇(u1 − u2) · ∇u2 dx

and also

C2‖u1 − u2‖2H1(D) ≤
∫
D

βχ2
(|∇u2|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫
D

(βχ2(|∇u2|2, x)− βχ1(|∇u1|2, x))∇(u1 − u2) · ∇u1 dx.

Adding both inequalities yields with C := C1 + C2

C‖u1 − u2‖2H1(D) ≤
∫
D

(βχ2(|∇u2|2, x)− βχ1(|∇u1|2, x))∇(u1 − u2) · ∇(u1 + u2) dx

=

∫
D

(χ2β+(|∇u2|2)− χ1β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

(χc2β−(|∇u2|2)− χc1β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

and therefore

C‖u1 − u2‖2H1(D) ≤
∫
D

(χ2 − χ1)β+(|∇u2|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

(χ1 − χ2)β−(|∇u2|2)∇(u1 − u2) · ∇(u1 + u2) dx

+

∫
D

χc1(β−(|∇u2|2)− β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx.

(4.17)

Now we use the monotonicity of β+ and β− to conclude∫
D

χc1(β−(|∇u2|2)− β−(|∇u1|2))(∇u1 −∇u2) · (∇u1 +∇u2) dx

= −
∫
D

(1− χ1)(β−(|∇u2|2)− β−(|∇u1|2))(|∇u2|2 − |∇u1|2) dx ≤ 0

and similarly∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))(∇u1 −∇u2) · (∇u1 +∇u2)

= −
∫
D

χ1(β+(|∇u2|2)− β+(|∇u1|2))(|∇u2|2 − |∇u1|2) ≤ 0.
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By assumption there exist ε > 0 and C > 0 such that ‖u(χ)‖W 1,2+ε(D) ≤ C for all
χ ∈ X(D). Therefore using Hölder’s inequality, we deduce from (4.17)

C‖u1 − u2‖2H1(D) ≤ (β̄+ + β̄−)‖χ2 − χ1‖L2q′ (D)‖∇(u1 − u2)‖L2(D)‖∇(u1 + u2)‖L2q(D),

where q = 2+ε
2 and q′ := q

q−1 = 2
ε + 1. Finally, using Hölder’s inequality and the

boundedness of D it follows that for any γ > 0 there exists C > 0 depending on D
such that ‖χ2 − χ1‖L2q′ (D) ≤ C‖χ2 − χ1‖L1+γ(D) for all χ1, χ2 ∈ X(D).

Before we turn our attention to existence of optimal shapes, we prove the Lipschitz
continuity of t 7→ ut. Note that the continuity is a consequence of the previous
theorem.

Proposition 4.3. Let us pick any measurable set Ω ⊂ D. Let Φt be the flow of
the vector field θ ∈ C2

D(Rd) and set Ωt := Φt(Ω).3 Then there exists δ > 0 such that

‖ut − u‖H1
0 (D) ≤ c t, for all t ∈ [0, δ].

Proof. Let E(t, ϕ) be the energy defined in (4.8) and recall from the proof of
Theorem 4.1 that there is C > 0:

d2E(t, ϕ;ψ,ψ) ≥ C
∫
D

|∇ψ|2dx for all ψ ∈ H1(D), for all t ∈ [0, τ ].

Denote by ut the unique minimum of E(t, ·), which is characterised by

dE(t, ut, ψ) = 0, for all ψ ∈ H1
0 (D).

Let us first show that for all ϕ,ψ ∈ H1(D) the function [0, τ ] 7→ R : t 7→ dE(t, ϕ, ψ)
is continuously differentiable. The only difficult part is the nonlinearity

(4.18) t 7→
∫
D

β(|B(t)∇ϕ(x)|2, x)A(t)∇ϕ · ∇ψ dx

where ϕ,ψ ∈ H1
0 (D) are arbitrary functions. The other terms in G(t, ϕ, ψ) are differ-

entiable due to Lemma 2.1. Again it will be sufficient to show that

t 7→
∫

Ω±

β±(|B(t)∇ϕ(x)|2)A(t)∇ϕ · ∇ψ dx

is differentiable. We have that t 7→ α̃±t (x) := β±(|B(t)∇ϕ(x)|2)A(t)∇ϕ(x) · ∇ψ(x) is
differentiable for almost every x ∈ Ω± with derivative

d

dt
α̃±t (x) = β′±(|B(t)∇ϕ(x)|2)B(t)∇ϕ(x) ·B′(t)∇ϕA(t)∇ϕ(x) · ∇ψ(x)

+ β±(|B(t)∇ϕ(x)|2)A′(t)∇ϕ(x) · ∇ψ(x).
(4.19)

Since θ ∈ C2
D(Rd), we have α̃t(x) ∈ C1([0, τ ]) for almost every x ∈ Ω±. Using item 4 of

Assumption 1 and taking into account Remark 3, we can show that d
dt α̃
±
t is pointwise

bounded by an L1(D) function. The calculation is similar to the one leading to (4.13)

3Note that Φt(Ω) is Lebesque measurable; cf. [11, Theorem 263D].
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and omitted. Thus we may apply Lebesque’s dominated convergence theorem to show
that (4.18) is indeed differentiable and

∂tdE(s, ϕ, ψ) =

∫
D

β′(|B(s)∇ϕ|2, x)2(B′(s)∇ϕ ·B(s)∇ϕ)A(s)∇ϕ · ∇ψ dx

−
∫
D

ξ(s) div (θs) ◦ Φs f
sψ dx−

∫
D

ξ(s)B(s)∇fs · θsψ dx

−
∫
D

β(|B(s)∇ϕ|2, x)A′(s)∇ϕ · ∇ψ dx.

We proceed by the observation that∫ 1

0

d2E(t, utν ;ut − u, ut − u) dν = dE(t, ut;ut − u)− dE(t, u;ut − u)(4.20)

= −(dE(t, u;ut − u)− dE(0, u;ut − u))(4.21)

= −t ∂tdE(ηtt, u;ut − u),(4.22)

where utν := ν ut + (1 − ν)u. In the step from (4.21) to (4.22), we applied the
mean value theorem yielding the ηt ∈ (0, 1). Using Hölder’s inequality and item 4 of
Assumption 1, we conclude that there is a constant C > 0 such that

∂tdE(s, ϕ;ψ) ≤ C (1+‖ϕ‖H1(D)) ‖ψ‖H1(D), for all ϕ,ψ ∈ H1(D), for all s ∈ [0, τ ].

Using the previous inequality and estimating (4.20) by (4.16), we get the desired
inequality c‖ut − u‖H1(D) ≤ C t (1 + ‖u‖H1(D)), for all t ∈ [0, τ ].

The considerations from the above paragraph condense in the following result.
Theorem 4.4. Assume that there exist C > 0 and ε > 0 such that for every

χ ∈ X(D) we have ‖u(χ)‖W 1,2+ε(Ω) ≤ C, where u = u(χ) solves (4.4). Let p ∈ (1,∞)
and s > 0 be such that 0 < s < 1/p. Then the optimization problem (4.6) has at least
one solution χ = χΩ ∈ BW s

p (D).
Proof. First note that BW s

p (D) ⊂ Lp(D) is a bounded subset for each p ∈ (1,∞).
By [10, Theorem 7.1], we get that for any bounded sequence (χn)n∈N in BW s

p (D),
there exists a subsequence (χnk)k∈N, converging in Lp(D) to some χ ∈ X(D). Now

let us denote by j := infχ∈BW s
p (D) Ĵ(χ). Since Ĵ(χ∅) is finite, we conclude j < ∞.

Then pick a sequence of (χn)n∈N in BW s
p (D) such that limn→∞ Ĵ(χn) = j. After the

preceding, we may choose a subsequence still denoted by (χn)n∈N such that χn → χ
in Lp(D), where χ ∈ BW s

p (D). Using Lemma 4.2, we conclude u(χn) → u(χ) in
H1(D) and thus

Ĵ(χ) ≤ lim
n→∞

Ĵ(χn) = inf
χ∈BW s

p (D)
Ĵ(χ).

4.3. Shape derivative of J2. We show that the penalty term J2(Ω) = |χΩ|pW s
p (D)

is shape differentiable.
Lemma 4.5. Let θ ∈ C2

D(Rd). Fix p ∈ (1,∞) and 0 < s < 1/p. Then, for given
open set Ω ⊂ D such that |χΩ|W s

p (D) <∞ the mapping

Ω 7→ J2(Ω) := |χΩ|pW s
p (D)



18 LAGRANGE METHOD IN SHAPE OPTIMIZATION

is shape differentiable with derivative

dJ2(Ω)[θ] = 2

∫
Ω

∫
D\Ω

div (θ)(x) + div (θ)(y)

|x− y|d+sp
dx dy

+ c

∫
Ω

∫
D\Ω

(x− y)

|x− y|d+sp+1
· (θ(x)− θ(y)) dx dy

where c := −2(d+ ps). This can be written in terms of χΩ as

dJ2(Ω)[θ] =

∫
D

∫
D

( div (θ)(x) + div (θ)(y))
|χΩ(x)− χΩ(y)|p

|x− y|d+sp
dx dy

+
c

2

∫
D

∫
D

|χΩ(x)− χΩ(y)|p

|x− y|d+ps+1
(x− y) · (θ(x)− θ(y)) dx dy.

(4.23)

Proof. Using the change of variables x̂ = Φt(x) gives

J(Ωt) = 2

∫
Ω

∫
D\Ω

ξ(t)(x)ξ(t)(y)

|Φt(x)− Φt(y)|d+ps
dx dy

and consequently using that Φt is injective, we obtain the desired formula by differ-
entiating the above equation at t = 0.

Remark 4. Note that due to the Lipschitz continuity of θ and supp(θ) ⊂ D the
shape derivative (4.23) is well-defined.

4.4. Shape derivative of J1. We are going to prove that the cost function J1

given by (4.1) is shape differentiable by employing the Theorem 3.1. Moreover, we
derive the boundary and domain expression of the shape derivative. The main result
of this subsection reads:

Theorem 4.6. Let D ⊂ Rd be a bounded, open set with Lipschitz boundary.
Fix any measurable set Ω ⊂ D. Then the shape function J1 given by (4.1) is shape
differentiable for every θ ∈ C2

D(Rd).4 The domain expression reads

dJ1(Ω)[θ] =

∫
D

div (θ)|u− ur|2 dx−
∫
D

2(u− ur)∇ur · θ dx−
∫
D

div (θ)fp dx

−
∫
D

∇f · θp dx+

∫
D

β(|∇u|2, x)A′(0)∇u · ∇p dx

−
∫
D

2β′(|∇u|2, x)(∂θT∇u · ∇u)(∇u · ∇p) dx,

(4.24)

where u ∈ H1
0 (D) satisfies (4.4) and p ∈ H1

0 (D) solves∫
D

2β′(|∇u|2, x)(∇u · ∇p)(∇u · ∇ψ) dx+

∫
Ω

β(|∇u|2, x)∇ψ · ∇p dx

= −
∫
D

2(u− ur)ψ dx, for all ψ ∈ H1
0 (D).

(4.25)

4We use the notation A ⊂⊂ B indicate that A ⊂ B and A ⊂ B is compact.
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Moreover, if Ω ⊂⊂ D and Γ is of class C2 and u+, p+ ∈ C2(Ω
+

), u−, p− ∈ C2(Ω
−

)
then the boundary expression is given by

dJ1(Ω)[θ] =−
∫

Γ

[
2β′(|∇u|2, x)(∇Γu · ∇Γp+ ∂nu ∂np)∂nu ∂nu

]
Γ
θnds

+

∫
Γ

[
β(|∇u|2, x)∇Γu · ∇Γp− β(|∇u|2, x)∂nu ∂np

]
Γ
θn ds.

(4.26)

For the first part of the theorem we let Ω+ ⊂ D be any measurable set and define
Ω− := D \ Ω−. We apply Theorem 3.1 to the function

G(t, ϕ, ψ) =
∑

ς∈{+,−}

(∫
Ως
ξ(t)|ϕς − utr|2 dx+

∫
Ως
βς(|B(t)∇ϕς |2)A(t)∇ϕς · ∇ψς dx

)

−
∑

ς∈{+,−}

∫
Ως
ξ(t)(f ς ◦ Φt)ψ

ς dx,

(4.27)

with E = H1
0 (D) and F = H1

0 (D), to show the previous theorem. Notice that
J(Ωt) = G(t, ut, ψ), where ut ∈ H1

0 (D) solves

(4.28)

∫
D

β(|B(t)∇ut|2, x)A(t)∇ut · ∇ψ dx =

∫
D

ξ(t)f tψ dx, for all ψ ∈ H1
0 (D).

Roughly spoken the function G constitutes the sum of the perturbed cost function
J(Ωt) and the weak formulation (4.28).

Let us now verify the four conditions (H0)-(H3).
(H0) Condition (iii) is satisfied by construction. As a byproduct of Theorem 4.1, we
get that conditions (i) and (ii) of hypothesis (H0) are satisfied, since the Lagrangian
G can be written as

G(t, ϕ, ψ) =
∑

ς∈{+,−}

∫
Ως

ξ(t)|ϕ− utr|2 dx+ dE(t, ϕ;ψ).

(H1) In Proposition 4.3, we proved that for all ϕ,ψ ∈ H1(D) the mapping [0, τ ] →
R : t 7→ dE(t, ϕ;ψ) is differentiable. Therefore, the function t 7→ G(t, ϕ, ψ) is differ-
entiable for all ϕ,ψ ∈ H1

0 (D) with derivative

∂tG(t, ϕ, ψ) =−
∫
D

2 ξ(t) (ϕ− utr)B(t)∇utr · θt dx+

∫
D

ξ(t) div (θt) ◦ Φt |ϕ− utr|2 dx

+

∫
D

β′(|B(t)∇ϕ|2, x)2(B′(t)∇ϕ ·B(t)∇ϕ)A(t)∇ϕ · ∇ψ dx

−
∫
D

ξ(t) div (θt) ◦ Φt f
tψ dx−

∫
D

ξ(t)B(t)∇f t · θtψ dx

−
∫
D

β(|B(t)∇ϕ|2, x)A′(t)∇ϕ · ∇ψ dx.

(4.29)

(H2) Note that E(t) = {ut} and Y (t, ut, u0) = {pt}, where ut ∈ H1
0 (D) is the solution
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of the state equation (4.28) and pt ∈ H1
0 (D) is the unique solution of∫ 1

0

∫
D

2ξ(t)β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇pt)(B(t)∇ust ·B(t)∇ψ) dx ds

+

∫ 1

0

∫
D

β(|B(t)∇ust |2, x)A(t)∇ψ · ∇pt dx ds

= −
∫ 1

0

∫
D

ξ(t)2(ust − ur)ψ dx ds, for all ψ ∈ H1
0 (D),

(4.30)

where ust := sut + (1− s)u. Due to condition (H0) this equation is well-defined. The
existence of a solution pt follows from the theorem of Lax-Milgram. Moreover, by
Assumption 1, we conclude β′ ≥ 0 and β ≥ c > 0. Note that p0 = p ∈ Y (0, u0) is the
unique solution of the adjoint equation (4.25).
(H3) (H3) We show that for any real sequence (tn)n∈N such that tn ↘ 0 as n →
∞, there is a subsequence (tnk)k∈N such that (ptk)k∈N, where ptk ∈ Y (tk, u

tk , u0)
converges weakly in H1

0 (D) to the solution of the adjoint equation and that (t, ψ) 7→
∂tG(t, u0, ψ) is weakly continuous.

With the help of Proposition 4.3, we are able to show the following.
Lemma 4.7. For any sequence (tn)n∈N of non-negative real numbers converging

to zero, there is a subsequence (tnk)k∈N such that (ptnk )k∈N, where ptnk solves (4.30)
with t = tnk , converges weakly in H1

0 (D) to the solution p of the adjoint equation
(4.25).

Proof. The existence of a solution of (4.30) follows from the Theorem of Lax-
Milgram. Inserting ψ = pt as test function in (4.30), we see that the estimate
‖ut‖H1(D) ≤ C implies ‖pt‖H1(D) ≤ C̃ for all sufficiently small t, where C, C̃ > are
some constants. Now let (tn)n∈N be a sequence of non-negative numbers converging
to zero. Then using the boundedness of (ptn)n∈N, we may extract a weakly converging
subsequence (ptnk )k∈N converging to some w ∈ H1

0 (D). In Proposition 4.3 we proved
ut → u in H1(D) which can be used to pass to the limit in (4.30) and obtain ptnk ⇀ p
in H1(D), for tnk → 0, as k → ∞, where p ∈ H1

0 (D) solves the adjoint equation
(4.25). By uniqueness of a solution of the adjoint equation, we conclude w = p.

Finally note that for fixed ϕ ∈ H1
0 (D) the mapping (t, ψ) 7→ ∂tG(t, ϕ, ψ) is weakly

continuous. This finishes the proof that condition (H3) is satisfied. Consequently, we
may apply Theorem 3.1 and obtain dJ1(Ω)[θ] = ∂tG(0, u, p), where u ∈ H1

0 (D) solves
the state equation (4.4) and p ∈ H1

0 (D) is a solution of the adjoint equation (4.25).
This proves formula (4.24).

4.5. Boundary integrals. We continue to show that the boundary expression of
dJ1(Ω) is given by formula (4.26). In the following, we assume that Γ := ∂Ω+∩∂Ω− is
of class C2, where Ω+ ⊂⊂ D and Ω− := D\Ω+. Then it can be seen from the domain
expression (4.24), that the mapping dJ1(Ω) : C∞D (Rd) → R is linear and continuous
for the C1

D(Rd)–topology. Thus by the structure theorem under the assumption that
h ∈ L1(Γ), the shape derivative is of the form

(4.31) dJ1(Ω)[θ] =

∫
Γ

h θnds.

In order to derive the boundary expression of the shape derivative, we need the
following assumption.

Assumption 2. The solutions u of (4.4) and p of (4.32) are classical solutions
in the sense that there is some 0 < α < 1 such that u+, p+ ∈ C2,α(Ω+) and u−, p− ∈
C2,α(Ω−).
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Note first by taking appropriate test functions in the weak formulation of the
adjoint equation (4.25) that p solves

−div (β+(|∇u+|2)∇p+ + 2β′+(|∇u+|2)(∇u+ · ∇p+)∇u+) = −2(u+ − ur) in Ω+,

−div (β−(|∇u−|2)∇p− + 2β′−(|∇u−|2)(∇u− · ∇p−)∇u−) = −2(u− − ur) in Ω−,

p = 0 on ∂D,

(4.32)

complemented by transmission conditions

[p]Γ = 0 on Γ,[
β(|∇u|2, x) ∂np+ 2β′(|∇u|2, x)∇u · ∇p ∂nu

]
Γ

= 0 on Γ.
(4.33)

Using the change of variables Φt(x) = y, the function G can be rewritten as

G(t, ut, ψ̂) =
∑

ς∈{+,−}

(∫
Ωςt

|Ψt(uς,t)− utr|2 dx−
∫

Ωςt

f ςΨt(ψ̂t,ς) dx

)

+
∑

ς∈{+,−}

∫
Ωςt

βς(|∇(Ψt(ut,ς))|2)∇(Ψt(ut,ς)) · ∇(Ψt(ψ̂t,ς)) dx,

(4.34)

where ut,ς := Ψt(u
ς
t), ψ̂

t,ς := Ψt(ψ̂
ς
t ) and ψ̂ ∈ H1

0 (D). Recall the definitions Ψt(f) :=
f ◦ Φt and Ψt(f) := f ◦ Φ−1

t . Therefore using Theorem 2.4 yields

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫
Ως

2(u− ur)ũς dx+

∫
Ως

2β′ς(|∇uς |2)(∇uς · ∇ũς)∇uς · ∇pς dx

+
∑

ς∈{+,−}

∫
Ως
βς(|∇uς |2)∇ũς · ∇pς + βς(|∇uς |2)∇uς · ∇p̃ς − f ς p̃ς dx

+

∫
∂Ως

(βς(|∇uς |2)∇uς · ∇pς − f ςpς) θnς ds,

(4.35)

where we use the notation ũς = −∇uς · θ and p̃ς = −∇pς · θ.
Remark 5. Note that

(4.36) p̃(x) :=

{
p̃+(x), x ∈ Ω+

p̃−(x), x ∈ Ω−
ũ(x) :=

{
ũ+(x), x ∈ Ω+

ũ−(x), x ∈ Ω−

are piecewise H1(D)-functions, but do not belong to H1
0 (D). Therefore it is not al-

lowed to insert them as test functions in the adjoint or state equation.
Integrating by parts in (4.35) gives

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

{∫
Ως

div
(
βς(|∇uς |2)∇pς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∇uς

)
ũς dx

+

∫
Ως

2(u− ur)ũς dx
}
−

∑
ς∈{+,−}

∫
Ως

(
div

(
βς(|∇uς |2)∇uς

)
+ f ς

)
p̃ς dx

+
∑

ς∈{+,−}

∫
∂Ως

βς(|∇uς |2)ũς∂nςp
ς + βς(|∇uς |2)p̃ς∂nςu

ς dx

+
∑

ς∈{+,−}

∫
∂Ως

βς(|∇uς |2)∇uς · ∇pς θnς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς ũςds,
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and taking into account Assumption 2, we see that the first two lines vanish and thus

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)(−∇uς · θ)∂nςpς − βς(|∇uς |2)∂θp
ς∂nςu

ς dx

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∇uς · ∇pς θnς ds−
∫

Γ

2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς∂θuςds,

(4.37)

where ∂θu
ς := ∇uς · θ. According to (4.31) the right hand side of (4.37) depends

linearly on θn = θ · n. This can be accomplished by splitting θ into normal and
tangential part in two different ways on Γ: θ+

T := θ − θn+n+ and θ−T := θ − θn−n−,
where θn− := θ ·n− and θn+ := θ ·n+. Note that θn+n+ = θn−n

− implies θ+
T −θ

−
T = 0

and ∇p+ · θ+
T = ∇Γp

+ · θ+
T = ∇Γp

− · θ−T = ∇p− · θ−T , since ∇Γu
+ = ∇Γu

− on Γ. Thus
we see that the tangential terms in (4.37) vanish, i.e.∑
ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∇pς · θ)∂nςuς dx =
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∂nςp
ς∂nςu

ς)θnς dx

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∂nςu
ς(∇Γp

ς · θςT ) dx

︸ ︷︷ ︸
=0,(4.4)

,

and similarly∑
ς∈{+,−}

∫
Γ

βς(|∇uς |2)(∇uς · θ)∂nςpς dx+

∫
Γ

β̂′ς,uς (∇uς · ∇pς)∂nςuς(∇uς · θ)ds

=
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∂nςu
ς∂nςp

ςθn dx+

∫
Γ

β̂′ς,uς (∇uς · ∇pς)∂nςuς∂nςuςθnds

where we abbreviated β̂′ς,uς := 2β′ς(|∇uς |2). Thus we finally obtain from (4.37) the
boundary expression

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

∫
Γ

2β′ς(|∇uς |2)(∇uς · ∇pς)(∂nςuς)2 θnςds

+
∑

ς∈{+,−}

∫
Γ

βς(|∇uς |2)∇Γu
ς · ∇Γp

ς θnς − βς(|∇uς |2)∂nςu
ς∂nςp

ς θnς ds,

which is equivalent to (4.26).
Remark 6. If the transmission coefficients are constant in each domain, that is

β′(|∇u|2, x) = 0, then the formula coincides with the one in [2]. To the authors knowl-
edge this formula also corrects the one in [5]. When β′(|∇u|2, x) 6= 0 then the linear
case differs from the non-linear by the term −

∫
Γ

[
2β′(|∇u|2, x)(∇u · ∇p)∂nu∂nu

]
Γ
θnds.

Using Cea’s original method, would lead to the wrong formula

dJ1(Ω)[θ] =

∫
Γ

[
β(|∇u|2, x)∇u · ∇p

]
Γ
θn ds.
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