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Abstract Multi-valued network models can be described by their topol-
ogy and a set of parameters capturing the effects of the regulators for
each component. Dynamics can then be derived and represented as state
transition systems. Different network models may lead to the same tran-
sition system, meaning dynamics analysis of a representative model cov-
ers a larger class of models. While rather clear in the Boolean case, the
properties contributing to this effect become more involved for multi-
valued models. We analyse these properties and present a mathematical
description of the resulting model equivalence classes.

1 Introduction

Boolean and multi-valued network models have long since shown their worth
in providing insights into complex systems, e.g., in the context of molecular
networks [1]. System components are represented as variables with a finite value
range, e.g., Boolean variables, and component interactions are captured in a
directed (multi-)graph. Logical parameters then determine the value evolution
of each component over time depending on the values of its regulators. Utilizing
some update strategy leads to a transition system describing the evolution of
the system state. We focus on the (unitary) asynchronous update allowing only
one component value change per transition and only by absolute value one [2].
In particular for describing biological systems, this yields realistic trajectories.

Analysis of such transition systems can be hard due to non-determinism of the
dynamics. In biological applications, one often has to compare transition systems
of many models since data uncertainty may result in several models consistent
with the data. In this context, it is an interesting observation that different
models may give rise to the same state transition system. For Boolean networks
this phenomenon has been investigated and is directly related to superfluous
edges, meaning edges without detectable dynamical effect, in the graph capturing
the network topology (see e.g. [3]). In the multi-valued setting however, not only
existence but also strength of a regulatory effect can be captured in the model.
This allows for models differing both in topology and parametrization to generate
the same transition system, even if only functional edges are considered.

In this paper, we clarify the reasons leading to different models exhibiting
the same dynamics. We also determine a representative for each class of models
sharing the same transition system and propose a procedure for testing whether
two model belong to the same class.



2 Background

We start by introducing the relevant notions, with a simple illustrative example
given in Fig. 3.

A multi-valued regulatory multi-graph is a triple G = (V,E, ρ) where:

– V = {1, . . . , n} with n ∈ N+ is a set of components,
– ρ : V → N+ assigns the maximal activity level to a component,
– E ⊆ V × N+ × V , n ≤ ρ(u) for all (u, n, v) ∈ E, is a set of regulations.

We denote G the set of multi-valued regulatory graphs.
The function θ : V × V → 2N

+

giving the thresholds of all edges between
two vertices is defined as θ(u, v) = {n | (u, n, v) ∈ E} where u, v ∈ V . Note that
θ(u, v) = ∅ if there is no edge from u to v.

2.1 Discrete kinetic parameters

As the range of values for each component is finite, we can describe the set of all
possible configurations of the system, called state space S =

∏
v∈V [0, ρ(v)]. Note

that the state space is shared among the graphs that have the same function ρ
and thus also the same V . We will use Gρ = {(V,E, ρ′) | ρ = ρ′} to refer to the
class of graphs that share the state space.

The set S represents all the qualitatively different configurations of a system.
However, each component is dependent only on the values of its regulators. An
equivalence class on S w.r.t. regulation of a component v ∈ V is called the
regulatory context. To define the relevant notions we first describe the activity
interval of a regulator. For formal reasons we consider an extended threshold
function θ̃ with θ̃(u, v) = θ(u, v) ∪ {0, ρ(u) + 1} for all u, v ∈ V . Then

Iuv = {[j, k) | j, k ∈ θ̃(u, v), j < k,¬(∃l ∈ θ̃(u, v)(j < l < k))} (1)

is the set of activity intervals of u in regulation of v. Here, the intuition is that
the regulator effect of u on v is constant in each of the intervals of Iuv . Note that⋃
Iuv = [0, ρ(u)], even in the case that there is no edge from u to v.
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V = {1}
E = {(1, 2, 1)}

ρ(1) = 2

I11 = {{0, 1}, {2}}
Ω1 = {({0, 1}), ({2})}

(b)

P1({0, 1}) = 2

P1({2}) = 0
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Figure 3: (a) A regulatory graph with a single node. (b) Properties of the network.
(c) A single non-canonical parametrization and the respective update function.
(d) The transition system based on the update function FP .



The set of regulatory contexts of v is then denoted and definedΩv =
∏
u∈V I

u
v .

For each v ∈ V , a regulatory context ω ∈ Ωv is a |V |-tuple where ωu is the ac-
tivity interval Iuv for each u ∈ V .

The dynamics of the regulatory graph are given via integral values, called
logical parameter, assigned to each context. We use a parametrization function
Pv : Ωv → [0, ρ(v)] for each v ∈ V . The parametrization of a regulatory network
G ∈ G is then a tuple P = (P1, . . . , P|V |). Lastly, we denote PG the set of all
parametrizations of the regulatory graph G, called the parametrization space.

2.2 Asynchronous transition systems

Having a regulatory graph G = (V,E, ρ) and a parametrization P ∈ PG we can
fully describe its dynamical behaviour as a transition system over its state space
S. This is a directed graph (S,→) where→⊂ S×S is the transition relation. As
mentioned, we are interested in asynchronous dynamics which means that the
transition relation is non-deterministic.

First P is converted into a so-called update function FP = (FPv )v∈V where
FPv : S → [0, ρ(v)] for all v ∈ V . Here we exploit the fact that for each s ∈ S
and for each v ∈ V there exists a context ω ∈ Ωv such that s ∈

∏
u∈V ωu. To

simplify the notation we will further write s ∈ ω instead of s ∈
∏
u∈V ωu. For

every v ∈ V we obtain the function FP : S → S from a parametrization Pv as

FPv (s) =


sv + 1, if sv < Pv(ω), s ∈ ω,

sv, if sv = Pv(ω), s ∈ ω,

sv − 1, if sv > Pv(ω), s ∈ ω.

(2)

Having FP , we now assign each parametrized regulatory graph a transition sys-
tem via the function TG : PG → {(S,→)} where TG(P ) = (S,→) such that

∀v ∈ V,∀s ∈ S(s→ s[v/n] ⇐⇒ (FPv (s) = n ∧ FPv (s) 6= sv)), (3)

with x[i/k] denoting that in the vector x, the i-th value is substituted for k.
In the following, we will compare the resulting transitions systems generated

by regulatory graphs with the same state space, i.e., those in Gρ for some ρ.
We denote this set of transition systems Tρ = {(S,→) | TG(P ) = (S,→), G ∈
Gρ, P ∈ PG}.

3 Equivalence classes of parametrizations

We now investigate the cases where different parametrized regulatory graphs
generate the same transition system. From (3) it is clear that two functions
FP1 6= FP2 will lead to distinct transition systems, while coinciding functions
FP1 , FP2 lead to the same dynamics. We therefore focus on describing the situ-
ations where for P1 6= P2 we still have FP1 = FP2 .

Considering the simple example in Fig. 2a. We see that replacing P1({2}) = 0
by P1({2}) = 1 still yields F1(2) = 1 and therefore the transition system remains



the same. This illustrates that, other than in the Boolean case, information on
parameter values may get lost when deriving the update function. In Fig. 2a we
have a case where the parameter value lies outside its context and by incremental
change we leave the context even before the value can be attained.

We now define the notion of a canonical parametrization that prohibits such
effects. Observe that a value change in v can cause the change of context only if
v regulates itself. Therefore we say that P ∈ PG is canonical if and only if

∀v ∈ V,∀ω ∈ Ωv, ωv = [j, k)((Pv(ω) ≥ j − 1) ∧ (Pv(ω) ≤ k)). (4)

We also denote ṖG ⊆ PG the subset of canonical parametrizations in PG.
We can obtain a clear correspondence between P and FP if all the contexts

contain just a single state, so that no ambiguities are introduced in (2). This
partition is achieved when only considering complete graphs. For clarity we add
that (V,E, ρ) ∈ G is complete if and only if for all u, v ∈ V and every n ∈ [1, ρ(u)]
the edge (u, n, v) is in E. This gives us the following theorem:

Theorem 1. For each G = (V,E, ρ) ∈ G it holds that if G is complete then TG
defines a bijection between ṖG and Tρ.

Proof. Let TG(P ) = (S,→) for some complete G = (V,E, ρ) ∈ G such that P ∈
ṖG. The one-to-one correspondence between FP and (S,→) immediately follows
from (3). We therefore need to show that there is also such a correspondence
between P and FP .

First, it is important to note that if the graph is complete, each regulatory
context depicts only a single configuration. This follows since if G is complete
then by (1) we have:

∀v ∈ V (Ωv =
∏
u∈V
{[0, 1), [1, 2), . . . , [ρ(u), ρ(u) + 1)}).

Since each context is a singleton, each component can only adopt one value.
Now, canonicity requires that the parameter of the context differs from that
value only by 1. Therefore we have only three options for the parameter value.
More precisely, by substituting (4) we have

∀v ∈ V,∀s ∈ S(sv − 1 ≤ Pv({s}) ≤ sv + 1).

Then in such a case, (2) can be written as

FPv (s) =


sv + 1, if sv + 1 = Pv({s}),
sv, if sv = Pv({s}),
sv − 1, if sv − 1 = Pv({s}),

from which we immediately see that FPv (s) = Pv({s}). Thus we can write (3) as

∀v ∈ V,∀s ∈ S(s→ s[v/n] ⇐⇒ Pv({s}) = n ∧ Pv({s}) 6= sv).

ut



Based on this theorem, we can consider a complete graph with canonical para-
metrization as a representative of a class of models with the same behaviour.
Now we show that it is possible to convert any graph with some parametriza-
tion into a complete graph with canonical parametrization, while keeping the
dynamics unchanged.

First, we focus on the canonization function Can : {(G,P ) | G ∈ G, P ∈
PG} → {(G, Ṗ ) | G ∈ G, Ṗ ∈ ṖG}. To define Can(G,P ) = (G, Ṗ ) we proceed as
follows. For each component v ∈ V and for each regulatory context ω ∈ Ωv with
ωv = [j, k) we construct Ṗ as follows:

Ṗv(ω) =


j − 1, if Pv(ω) < j − 1

k, if Pv(ω) > k .

Pv(ω), otherwise

The goal is to avoid that the parameter value cannot be reached in one transition
from any state in the context, since this allows effects as illustrated in Fig. 3 to
occur. We now prove that this procedure indeed yields a canonical parametriza-
tion for any regulatory graph that shares the transition system with the original
one.

Lemma 1. Canonization is correct. For all G ∈ G and all P ∈ PG it holds that
if Can(G,P ) = (G, Ṗ ) then Ṗ is canonical.

Proof. Consider some Can(G,P ) = (G, Ṗ ) and assume P is not cannonical,
since otherwise P and Ṗ coincide by definition. There are two cases for P to be
considered. The first option is that

∃v ∈ V,∃ω ∈ Ωv, ωv = [j, k)(Pv(ω) < j − 1)

but then Ṗv(ω) = j − 1, so Ṗ is canonical. The second case

∃v ∈ V,∃ω ∈ Ωv, ωv = [j, k)(Pv(ω) > k)

can be treated analogously. ut

Lemma 2. Canonization is conservative. For all G ∈ G and all P ∈ PG it holds
that if Can(G,P ) = (G, Ṗ ) then TG(P ) = TG(Ṗ ).

Proof. Recall that the transition systems TG(P ) and TG(Ṗ ) are fully defined by

FP and F Ṗ , respectively. We therefore need to show that FP = F Ṗ .
For all v ∈ V and for all ω ∈ Ωv the value Ṗv(ω) is set based on one of the

three cases in the definition. First consider the case that Pv(ω) < j − 1, ωv =
[j, k). We have ωv = [j, k) and therefore for all s ∈ ω it holds that sv > j − 1.
This means that

∀s ∈ ω(Pv(ω) < sv ∧ Ṗv(ω) < sv)

and therefore for each s ∈ ω we have FPv (s) = sv − 1 = F Ṗv (s).
The case that Pv(ωv) > k, ωv = [j, k) can be treated analogously.
The third case is that we have Pv(ωv) = Ṗv(ωv) and thus by definition

FPv (s) = F Ṗv (s) for any s ∈ ωv . ut



Now, we extend the topology of a graph using the completion function Comp :
{(G,P ) | G ∈ G, P ∈ PG} → {(Ĝ, P̂ ) | Ĝ ∈ G, P̂ ∈ PĜ}. IfG is complete, we map
(G,P ) to itself. For an incomplete G = (V,E, ρ) and some P ∈ PG we consider
the non-empty set of missing edges Ê = {(u, n, v) | u, v ∈ V, n ∈ [1, u], (u, n, v) /∈
E}. Assume that the set of all possible edges has some ordering. We extend the
graph G to Ĝ such that Ĝ = (V,E ∪ {min(Ê)}, ρ).

To extended the parametrization P̂ to the new topology we observe that Ĝ
gives rise to new contexts that were obtained by partitioning some context of G
into two. To preserve the dynamical behaviour we simply assign the parameter
value of the original context to both resulting new contexts. Formally, we define
two assisting variables n−, n+ ∈ θ̃(û, v̂) that denote the closest lower and higher
thresholds to n̂ that is already in E, i.e.,

¬(∃m ∈ θ(û, v̂)(n− < m < n)) ∧ ¬(∃m ∈ θ(û, v̂)(n < m < n+)).

For each v ∈ V and for each ω̂ ∈ Ω̂v we then create P̂ as

P̂v(ω̂) =

{
Pv(ω̂) if v 6= v̂ ∨ (ωû = [j, k) ∧ (j 6= n− ∨ k 6= n+))

Pv(ω̂[û/[n−, n+)]) otherwise

We now prove that for an incomplete regulatory graph we can use the completion
procedure to add a new edge while retaining the dynamics.

Lemma 3. Completion is sound. For all G ∈ G and all P ∈ PG it holds that if
Comp(G,P ) = (Ĝ, P̂ ) then Ĝ ∈ G and P̂ ∈ PĜ.

Proof. For G ∈ G, denote (û, n̂, v̂) the newly added edge in Ĝ. We have û, v̂ ∈ V
and n̂ ∈ ρ(û). By definition of G we have that if (V,E, ρ) ∈ G then (V,E ∪
{(û, n̂, v̂)}, ρ) ∈ G.

The variables n−, n+ exist since 0 is always a possible choice for n− and
ρ(û) + 1 for n+. For any m ∈ θ(u, v̂) we know that (0 < m < ρ(û) + 1).

From (1) we know that the only change occurs in the interval I ûv̂ . We there-

fore only need to show that P̂v̂ is extended to the corresponding contexts. Since
n−, n+ exist, for any ω ∈ Ωv̂ we have that ωû ∈ {i1, . . . , [n−, n+), . . . , ik}. There-
fore, for any ω̂ ∈ Ω̂v̂, we also have ω̂[û/[n−, n+)] ∈ Ωv̂. Thus P̂v is defined on
the whole Ω̂v for each v ∈ V . ut

Lemma 4. Completion is conservative. For each G ∈ G and for each P ∈ PG
it holds that if Comp(G,P ) = (Ĝ, P̂ ) then TG(P ) = TĜ(P̂ ).

Proof. We have that P differs from P̂ only in a context ω̂ ∈ Ωv̂ with ω̂ = [j, k)
where either j = n− or k = n+.

Assume there excists some s ∈ ω̂ for which FPv̂ (s) 6= F P̂v̂ (s). We know
that [j, k) ⊂ [n−, n+) and therefore s ∈ ω̂[û/[n−, n+)]. This implies that also
P̂v̂(ω̂v̂) 6= Pv̂(ω̂[û/[n−, n+)]), which contradicts the definition of P̂ .

We therefore have that FP (s) = F P̂ (s). ut



Since the completion procedure adds only one edge at the time, we need to
repeat the procedure. This is captured in the following Lemma.

Lemma 5. For G ∈ G and P ∈ PG, consider the recursive sequence Comp(G,P ),
Comp(Comp(G,P )), . . . .
This sequence converges to a fixed point (Gc, P c) and Gc is complete.

Proof. The set Ê of missing edges in G is finite as V is finite. For each v ∈ V
also [1, ρ(v)] is finite. In each iterative use of Comp the size of Ê is decremented
by one. The recursive sequence becomes constant, when Ê is empty, signifying
a fixed point (Gc, P c) of Comp. By definition, Gc is complete. ut

Combining all the statements above, we arrive at our final theorem:

Theorem 2. Let G,G′ ∈ G, P ∈ PG, and P ′ ∈ PG′ and denote Comp∗(G,P )
and Comp∗(G′, P ′) the fixed points derived from iterating Comp starting in
(G,P ) resp. (G′, P ′) .
Then TG(P ) = T ′G(P ′) if and only if Can(Comp∗(G,P )) = Can(Comp∗(G′, P ′)).

Proof. We now know that Can(Comp∗(G,P )) and Can(Comp∗(G′, P ′)) are
canonical and complete. The equivalence follows from TG being a bijection, as
proven in Theorem 1. ut

4 Conclusion

In the setting of multi-valued networks, both different topologies and different
parametrizations do not necessarily lead to distinct dynamics. We have shown
how such networks can be grouped into classes according to their transition
systems, provided an explicit description of a representative of such a class and a
procedure to identify this representative for an arbitrary network. The procedure
highlights two key aspects, namely the resolution of the state space via the
regulatory contexts and the parameter values related to self-regulation.

Our method for identifying the classes is not efficient in application, since
it relies on construction of a complete graph. In future work, we would like to
be able to identify, for each class of models that share the transition system,
a representative that is minimal in some sense, and to provide the respective
reduction. In the boolean case one does so by removing superfluous regulations.
However in the multi-valued graph it is not so easy to recognize when an edge
is superfluous and it may be that different order of reduction will yield different
results. A fruitful strategy could be to eliminate edges without dynamical impact
as can be read off of the parameter values and then focus on components carrying
loops, aiming at eliminating as many loops as possible.
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