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Abstract. We study the fundamental problem of scheduling bidirec-
tional traffic across machines arranged on a path. The main feature of
the problem is that jobs traveling in the same direction can be scheduled
in quick succession on a machine, while jobs in the other direction have
to wait for an additional transit time. We show that this tradeoff makes
the problem significantly harder than the related flow shop problem, by
showing that it is NP-hard even for jobs with identical processing and
transit times. We give polynomial algorithms for a single machine and
any constant number of machines. In contrast, we show the problem to
be NP-hard on a single machine and with identical processing and tran-
sit times if some pairs of jobs in different directions are allowed to run
on the machine concurrently. We generalize a PTAS of Afrati et al. [1]
for one direction and a single machine to the bidirectional case on any
constant number of machines.

1 Introduction

The scheduling of bidirectional traffic on a path is essential when operating
single-track infrastructures such as single-track railway lines, canals, or telecom-
munication channels. Roughly speaking, the schedule governs when to move jobs
from one node of the path to another along the edges of the path. The goal is
to schedule all jobs such that the sum of their arrival times at their respective
destinations is minimized. A central feature of real-world single-track infrastruc-
tures is that after one job enters a segment of the path, further jobs moving in
the same direction can do so with relatively little headway, while traffic in the
opposite direction has to wait until the whole segment is empty again.

In this paper, we introduce a novel scheduling model, which we term bidirec-
tional scheduling, that models this tradeoff when scheduling bidirectional traffic.
Our bidirectional scheduling model features a linear arrangement of machines
similar to a flow shop model, but with the major difference that jobs may run
on any consecutive subset of machines and in both directions. We distinguish
between the processing time pij of a job j and its transit time τij on machine i.
While the former blocks the machine from being used by any other job (running
in either direction), the latter only blocks the machine from being used by jobs
running in opposite direction. For example, this allows us to model settings with
bidirectional train traffic on a single-track railway line, where jobs correspond to
trains, and the linear arrangement of machines corresponds to a linear arrange-
ment of single-track lines connected by turnouts (cf. Lusby et al. [16, Section 2]).



The processing time of a job is the time needed for the train to move from a
turnout entirely into the next railway line, while the transit time is the time to
traverse the line.

We also study a generalization of the model to situations where some of the
jobs are allowed to pass each other when traveling in different directions. This
is a natural assumption, e.g., when scheduling the shipping traffic on a canal,
where smaller ships are allowed to pass each other while larger ships are not
(cf. Günther et al. [9]). In practice, the rules that decide which ships are allowed
to pass each other are quite complex and depend on multiple parameters of the
ships such as length, width, and draught (e.g., cf. [4]). We model these complex
rules in the most general way by a bipartite compatibility graph for each machine,
whose vertices correspond to the jobs and two jobs running in different directions
are connected by an edge if they can run concurrently.

Our results and techniques. Table 1 gives a summary of our results. We first
show that the bidirectional nature already makes our scheduling problem hard,
even without processing times and with identical transit times (Section 3). Our
reduction is from the NP-hard MaxCut problem, with multiple machines each
containing a gadget for each vertex. The central trick of our construction is a
way to swap the order of neighboring vertex gadgets from one machine to the
next. With this tool, we can reach every vertex order on some machine, which
allows to insert edge gadgets for each edge of the MaxCut-instance that make it
desirable for two neighboring vertex gadgets to assign their vertices to different
parts of the MaxCut partition.

We complement this hardness result by polynomial algorithms for identical
jobs on constant numbers of machines (Section 4). We devise dynamic programs
that even allow for a constant number of compatibility types, where each type
is defined by a neighborhood in the compatibility graph. To this end, we ob-
serve that the jobs can only be in polynomially many configurations that can
be ordered topologically. In contrast, we show that bidirectional scheduling with
arbitrary compatibility graphs is hard already on a single machine (Section 5).
We use a reduction from a variant of Sat with a sparse compatibility graph that
only allows for specific combinations of jobs to run concurrently.

Finally, we turn to the general case with different processing times for each
job and different transit times for each machine. This problem is known to be
hard already in the one-directional case (and without transit times) [15]. Afrati
et al. [1] gave a polynomial time approximation scheme (PTAS) for this setting.
Generalizing the technique of [1], we are able to give a PTAS for the bidirectional
case, and even extend this PTAS to constantly many machines (Section 6). To
do this, we have to cope with issues arising from the interplay of processing
and transit times for jobs in opposed directions as well as propagation effects
between the different machines.

Related work. Scheduling problems are a fundamental class of optimization
problems with a multitude of known hardness and approximation results (cf.
Lawler et al. [14] for a survey). To the best of our knowledge, the bidirectional
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Table 1. Overview of our results for bidirectional scheduling.
1 only if τi/p ≤ const, 2 even if p = 0, τi = 1, 3 even if τi = p = 1.

Number m of machines
compatibilities m = 1 m const. m arbitrary

Identical jobs (pij = p), τij = τi
none compatible

const. types polynomial [Thm. 2] polynomial1 [Thm. 3] NP-hard2 [Thm. 1]

arbitrary NP-hard3 [Thm. 7]

Different jobs (pij = pj), τij = τi
none compatible

all compatible NP-hard [15]/PTAS [Thm. 6] NP-hard2 [Thm. 1]

scheduling model that we propose and study in this paper has not been con-
sidered in the past nor is it contained as a special case in any other scheduling
model. We give an overview of known results for related models.

For a single machine and jobs traveling from left to right, bidirectional
scheduling reduces to the classical single machine scheduling problem, which
Lenstra et al. [15] showed to be hard when minimizing total completion time.
Afrati et al. [1] gave a polynomial-time approximation scheme (PTAS) with gen-
eralizations to multiple identical or unrelated machines. Chekuri and Khanna [5]
further generalized the result to related machines. We give a different generaliza-
tion for bidirectional scheduling on multiple machines. For unrelated machines
Hoogeveen et al. [10] showed that the completion time cannot be approximated
efficiently within arbitrary precision, unless P = NP. The case where jobs of both
directions but without compatibilities are given has similarities to scheduling of
two job families with a respective setup time. The general comments in Potts
and Kovalyov [17] on dynamic programs for such kinds of problems apply in part
to our technique for Theorem 2.

When all jobs need to be processed on all machines in the same order and all
transit times are zero, bidirectional scheduling reduces to flow shop scheduling.
Garey et al. [7] showed that it is NP-hard to minimize the sum of completion
times in flow shop scheduling, even when there are only two machines and no
release dates. They showed the same result for minimizing the makespan on
three machines. Hoogeveen et al. [10] showed that there is no PTAS for flow
shop scheduling without release dates, unless P = NP. In contrast, Brucker
et al. [3] showed that flow shop problems with unit processing time can be
solved efficiently, even when all jobs require a setup on the machines that can
be performed by a single server only. Our PTAS for bidirectional scheduling is
under the assumption that all processing times of a job coincide across machines.

Job shop scheduling is a generalization of flow shop scheduling that allows
jobs to require processing by the machines in any (not necessarily linear) order
(cf. Lawler et al. [14, Section 14] for a survey). Jansen et al. [11] gave a PTAS for a
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constant number of machines and the minimization of the makespan, and Bansal
et al. [2] gave improved algorithms for an unbounded number of machines. It is
worth noting that job shop scheduling does not contain bidirectional scheduling
as a special case, since it does not incorporate the distinction between processing
and transit times for jobs passing a machine in different directions.

Scheduling bidirectional traffic is related to the so-called contraflow problem.
Given a graph with travel times and capacities, the goal is to reverse some of
the edges so that the total evacuation time for the graph is minimized. Kim
and Shekhar [13] proposed a heuristic procedure that performs well on practical
evacuation scenarios. Rebennack et al. [18] showed that an optimal set of arc
reversals can be found efficiently for static flows, among other results.

2 Preliminaries

In the bidirectional scheduling problem, we are given a set M = {1, . . . ,m}
of machines which we imagine to be ordered from left to right. Further, we are
given two disjoint sets of J r and J l of rightbound and leftbound jobs, respectively,
with J = J r ∪ J l and n = |J |. Each job is associated with a release date rj ∈
N, a start machine sj and a target machine tj , where sj ≤ tj for rightbound
jobs and sj ≥ tj for leftbound jobs. A rightbound job j is processed in order
by machines sj , sj + 1, . . . , tj − 1, tj , and a leftbound job is processed in order
sj , sj − 1, . . . , tj + 1, tj . We denote the set of machines that job j needs to be
processed on by Mj . Each job j is associated with a processing time pj ∈ N and
each machine i is associated with a transit time τi ∈ N. Note that we restrict
ourselves to identical processing times for each job and identical transit times
for each machine. We call pj + τi the running time of job j on machine i.

A schedule is defined by fixing the start times Sij for each job j on each
machine i ∈ Mj . The completion time of job j on machine i is then defined as
Cij = Sij+pj+τi. The overall completion time of job j is Cj = Ctjj . A schedule
is feasible if it has the following properties.
1. Release dates are respected, i.e., rj ≤ Ssjj for each j ∈ J .
2. Jobs travel towards their destination, i.e., Cij ≤ Si+1,j (resp. Cij ≤ Si−1,j)

for rightbound (resp. leftbound) jobs j and i ∈Mj \ {tj}.
3. Jobs j, j′ traveling in the same direction are not processed on machine i ∈
Mj ∩Mj′ concurrently, i.e., [Sij , Sij + pj) ∩ [Sij′ , Sij′ + pj′) = ∅.

4. Jobs j, j′ traveling in different directions are neither processed nor in transit
on machine i ∈Mj ∩Mj′ concurrently, i.e., [Sij , Cij) ∩ [Sij′ , Cij′) = ∅.
We consider the objective of minimizing the total completion time

∑
Cj =∑

j∈J Cj . Other natural objectives are the minimization of themakespan Cmax =
max{Cj | j ∈ J} or the total waiting time

∑
Wj =

∑
j∈JWj where the individ-

ual waiting time of a job j is defined as Wj = Cj −
∑
i∈Mj

(pj + τi) − rj . Note
that minimizing waiting time is equivalent to minimizing completion times.

We also consider a generalization of the model, where some of the jobs trav-
eling in different directions are allowed to pass each other. Formally, for each
machine i, we are given a bipartite compatibility graph Gi = (J r ·∪J l, Ei) with
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Ei ⊆ J r × J l. Two jobs j, j′ that are connected by an edge in Gi are allowed to
run on machine i concurrently, i.e., condition 4 above need not be satisfied.

We denote the different variants of bidirectional scheduling considered in this
paper by three-field notation α |β | γ as introduced by Graham et al. [8], where α
defines the setup, β restrictions to the input, and γ ∈ {

∑
Cj ,
∑
Wj , Cmax} the

objective. The input may be characterized by {B,Bm,B1} for the general bidi-
rectional scheduling, bidirectional scheduling on a constant number m of ma-
chines, or for bidirectional scheduling on a single machine, respectively. Further
restrictions like pj = p or τj = τ for β are straightforward.

All proofs omitted in the following sections can be found in the appendix.

3 Unbounded number of machines

In this section we show that the bidirectional scheduling problem is hard, even
when all processing times are zero and all transit times coincide. In other words,
we eliminate all interaction between jobs in the same direction and show that
hardness is merely due to the decision when to switch between left- and right-
bound operation of each machine. This is in contrast to one-directional (flow
shop) scheduling with identical processing times, which is trivial. Formally, we
show the following result.

Theorem 1. B | pj = 0, τi = 1 |
∑
Cj is NP-hard.

We reduce from the MaxCut problem which is contained in Karp’s list of 21
NP-complete problems [12].

MaxCut
Input: An undirected graph G = (V,E) and k ∈ N.
Problem: Is there a partition V = V1 ·∪V2 with |E ∩ (V1 × V2)| ≥ k?

For a given instance I of MaxCut we construct an instance of the bidi-
rectional scheduling problem which can be scheduled without exceeding some
specific waiting time if and only if I admits a solution. We give an intuitive
overview of our construction and defer all details to Appendix A. Consult Fig-
ure 1 along with the following.

A cornerstone of our construction is the vertex gadget that occupies a fixed
time interval on a single machine and can only be (sensibly) scheduled in two
ways, which we interpret as the choice whether to put the corresponding vertex
in the first or second part of the partition, respectively. We introduce multiple
vertex machines that each have exactly one vertex gadget for each vertex in I and
add further gadgets that ensure that the state of all vertex gadgets for the same
vertex is the same across all machines. These gadgets allow us to synchronize
vertex gadgets on consecutive vertex machines in two ways. We can either simply
synchronize vertex gadgets that occupy the same time interval on the two vertex
machines (copy gadget), or we can synchronize pairs of vertex gadgets occupying
the same consecutive time intervals on the two vertex machines by linking the

5



Fig. 1. Illustration of our hardness construction for a single edge e = {u, v}. First,
a sequence of machines is used to change the order of vertex gadgets, such that the
vertex gadgets corresponding to u and v occupy consecutive time intervals. Then, an
edge gadget is added that incurs an increased waiting time if the vertex gadgets for u
and v are in the same state.

first gadget on the first machine with the second one on the second machine and
vice-versa, i.e., we can transpose the order of two consecutive gadgets from one
vertex machine to the next (transposition gadget).

We construct an edge gadget for each edge in I that incurs a small waiting
time if two vertex gadgets in consecutive time intervals and machines are in
different states and a slightly higher waiting time if they are in the same state.
By tuning the multiplicity of each job, we can ensure that only schedules make
sense where vertex gadgets are scheduled consistently. Minimizing the waiting
time then corresponds to maximizing the number of edge gadgets that link vertex
gadgets in different states, i.e., maximizing the size of a cut.

In order to fully encode the given MaxCut instance I, we need to introduce
an edge gadget for each edge in I. However, edge gadgets can only link vertex
gadgets in consecutive time intervals. We can overcome this limitation by adding
a sequence of vertex machines and transposing the order of two vertex gadgets
from one machine to the next as described before. With a linear number of vertex
machines we can reach an order where the two vertex gadgets we would like to
connect with an edge gadget are adjacent. At that point, we can add the edge
gadget, and then repeat the process for all other edges in I (cf. Figure 1).

We can reformulate Theorem 1 for nonzero processing times, simply by mak-
ing the transit time large enough that the processing time does not matter.

Corollary 1. B | pj = 1, τi = τ |
∑
Cj is NP-hard.

4 Constant number of machines

After establishing the hardness of bidirectional scheduling for an arbitrary num-
ber of machines and identical processing and transit times in the last section,
in this section we turn to the case of a constant number of machines. We first
show that the problem is easy for a single machine, and then expand our result
to any fixed number of machines. Due to the identical processing times, the jobs
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in each direction can simply be scheduled in the order of their release dates. The
only decision left is when to switch between left- and rightbound operation of
the machines. This decision is hard in the general case (Theorem 1), but we are
able to formulate a dynamic program for any constant number of machines.

Our result generalizes to the case when some jobs of different directions are
compatible (i.e., may pass each other), as long as the number of compatibility
types is constant, where two jobs j1, j2 in the same direction are defined to have
the same compatibility type if the set of jobs compatible with j1 is equal to
the set of jobs compatible with j2 on each machine. Formally, j1 and j2 have
the same compatibility type if

{
j : {j1, j} ∈ Ei

}
=
{
j : {j2, j} ∈ Ei

}
for the

compatibility graphs Gi = (J l ·∪J r, Ei) of each machine i.
We partition J into κ subsets of jobs J1, . . . , Jκ where all jobs of Jc, c ∈

1, . . . , k, have the same compatibility type c, and let nc = |Jc|. Since the jobs of
each subset only differ in their release dates, they can again be scheduled in the
order of their release dates. This allows us to expand the dynamic program to
encompass any constant number of compatibility types. We obtain the following
result for a single machine.

Theorem 2. B1 | pj = p, κ const. |
∑
Cj can be solved in polynomial time.

Proof. We consider each subset Jc ordered non-increasingly by release dates
and denote by Jci the i-th job of Jc in this order, i.e., the (nc − i)-th job to be
released. Each entry T [i1, t1, . . . , iκ, tκ; c] of our dynamic programming table is
designed to hold the minimum sum of completion times that can be achieved
when scheduling only the ic′ jobs of largest release date of each compatibility
type c′, such that Jc

′

ic′
is not scheduled before time tc′ and Jcic is the first job

that is scheduled. We start by setting T [0, t1, . . . , 0, tκ; c] = 0 and define the
dependencies between table entries in the following.

Let C(j, t) = max{t, rj}+p+τ1 denote the smallest possible completion time
of job j when scheduling it not before t. Depending on the types of jobs j1, j2 (and
in particular of their directions), we can compute in constant time the earliest
time θ(j1, t1, j2, t2) not before t1 that job j1 can be scheduled at, assuming that j2
is scheduled earlier at time max{t2, rj2}. We let δcc′ = 1 if c = c′ and δcc′ = 0

otherwise, abbreviate θc′ = θ(Jc
′

ic′
, tc′ , J

c
ic
, tc), and get the following recursive

formula for ic > 0:

T [i1, t1, . . . , iκ, tκ; c] = min
c′:ic′ 6=0

{T [i1 − δ1c, θ1, . . . , iκ − δκc, θκ; c′] + C(Jcic , tc)}.

We can fill out our table in order of increasing sums
∑
ic and finally obtain

the desired minimum completion time as minc T [n1, 0, . . . , nκ, 0; c]. We can re-
construct the schedule from the dynamic programming table in straight-forward
manner. It remains to argue that we only need to consider polynomially many
times tc. This is true, since all relevant times are contained in the set {rj+kτ+`p |
j, k, ` ≤ n} of cardinality O(n3). ut

We now consider a constant number of machines m > 1. The main compli-
cation in this setting is that decisions on one machine can influence decisions on
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other machines, and, in general, every job can influence every other job in this
way. In particular, we need to keep track of how many jobs of each type are in
transit at each machine, and we can thus not easily adapt the dynamic program
for a single machine. We propose a different dynamic program that relies on all
transit times being bounded by a constant.

Theorem 3. Bm | pj = 1, τi const., κ const. |
∑
Cj can be solved in polynomial

time.

Proof. Again, we consider subsets of identical jobs. In addition to their conflict
type c, we further distinguish jobs by their start and target machines s, t and form
subsets Jcs,t correspondingly. The number of subsets is bounded by κm2. Since
all release times are integer and since pj = 1, we only need to consider integer
points in time. Hence, only τi + 1 possible positions need to be considered for
a job running on machine i, and no two jobs of the same direction can occupy
the same position. The state of the system can be fully described by (i) the
number of available jobs per machine and Jcs,t, and (ii) for each position on each
machine and each Jcs,t, the fact whether a job of Jcs,t is occupying this position.
The number of states is bounded by

∏m
i=1 n

κm2 ·
∏m
i=1 2

κm2(τi+1) = poly(n).
We define the successors of each state to be all states that can be reached in

one time step where not all jobs wait, or by waiting for the next release date. This
way, the state representation changes from one state to the next. The system
always makes progress towards the final state where each job has arrived at its
target. The state graph can thus not have a cycle, and we may consider states
in a topological order. We formulate a dynamic program that computes for each
state the smallest partial completion time to reach the state, where the partial
completion time is defined as the sum of completion times of all completed jobs
plus the current time for each uncompleted job. The dynamic program is well-
defined as each value only depends on predecessor states. ut

We conclude a complementary result to Theorem 1.

Corollary 2. Bm | pj = 0, τi = 1, κ const. |
∑
Cj can be solved in polynomial

time.

Proof. Since all release dates are integer, at each integer point in time no jobs
are running on any machine. We can thus use a simpler version of the dynamic
program we introduced in the proof of Theorem 3. ut

5 Arbitrary compatibility graph

In the last section we demonstrated that the bidirectional scheduling problem can
be solved efficiently for a constant number of machines, even when some jobs are
compatible, as long as there are only a constant number of compatibility types
among jobs. We now show that for arbitrary compatibility graphs the problem
is hard already on a single machine with unit processing and transit times. For
ease of exposition, we first consider the minimization of the makespan and then
extend our result to minimum completion time.
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P1 and P2: variable assignment

xi

xi+1

xi

xi+1

...

P3: clauses

ck
ck+1

...

...

P4: leftover jobs

...

Fig. 2. Illustration (colored) of the four parts of our construction. Time is directed
downwards, rightbound (leftbound) jobs are depicted on the left (right) of each figure.

Theorem 4. B1 | pj = τ1 = 1, G1 |
∑
Cj is NP-hard.

We give a reduction from an NP-hard variant of Sat (cf. [6]).

(≤ 3, 3)-Sat
Input: A formula with a set of clauses C of size three over a set of
variables X, where each variable appears in at most three clauses.
Problem: Is there a truth assignment of X satisfying C?

For a given (≤ 3, 3)-Sat formula we construct a bidirectional scheduling
instance that can be scheduled within some specific makespan T if and only if
the given formula is satisfiable. Our construction is best explained by partitioning
the time horizon [0, T ] into four parts (cf. Figure 2 along with the following).

We use a frame of blocking jobs that need to be scheduled at their release
date. We can enforce this by making sure that at least one blocking job is released
at (almost) each unit time step and that blocking jobs that are not supposed
to run concurrently are incompatible. We release variable jobs that have to be
scheduled into gaps between the blocking jobs. More precisely, in the first part
of the construction we release 6 jobs within a separate time interval for each
variable. Two of these jobs are leftbound and need to be scheduled within the
first two parts of the construction, which implies that one of the two remaining
pairs of rightbound jobs must be scheduled after the second part. If the first
pair is delayed we interpret this as an assignment of true to the variable and
otherwise as false.

The third part of the construction has a gap for each clause, with compatibil-
ities ensuring that only variable jobs can be scheduled into the gap which satisfy
the clause. Since each literal can only appear in at most two clauses, there are
enough variable jobs to satisfy all clauses if the formula is satisfied. Finally, the
last part has 2|X| − |C| gaps that fit any variable job. In order to schedule all
variable jobs before the end of the last part, we thus need to schedule a variable
job into each gap of a clause. This is possible if and only if the given (≤ 3, 3)-Sat
formula is satisfiable. We can easily extend our result to completion or waiting
times by adding many blocking jobs after the last part, such that violating the
makespan also ruins the the total completion time.
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6 Arbitrary processing times

In this section we consider the case of general processing times. Lenstra et al. [15]
showed this problem to be hard already on a single machine if all jobs have the
same direction. Afrati et al. [1] gave a polynomial time approximation scheme
(PTAS), i.e., a polynomial (1 + ε)-approximation algorithm for each ε > 0.
Based on the same technique, we extend their result to the bidirectional case
on a constant number of machines with complete or without conflicts on each
machine. The main issue when trying to adopt the technique of [1] is to account
for the different roles of processing and transit times for the interaction of jobs
in the same and different directions. We start with a single machine.

Theorem 5. B1 |G1 ∈ {Knr,nl
, ∅} |

∑
Cj admits a PTAS.

The first part of the proof in [1] is to restrict to processing times and release
dates of the form (1+ε)x for some x ∈ N and rj ≥ ε(pj+τ1). Allowing fractional
processing and release times we can show that any instance can be adapted to
have these properties, without making the resulting schedule worse by a factor
of more than (1+ ε). We may thus partition the time horizon into intervals Ix =
[(1+ε)x, (1+ε)x+1], such that every job is released at the beginning of an interval.
Since jobs are not released too early, we may conclude that the maximum number
of intervals s covered by the running time of a single job is constant. This allows
us to group intervals together in blocks Bt = {Its, Its+1, . . . , I(t+1)s−1} of s
intervals each, such that every job scheduled to start in block Bt will terminate
before the end of the next block Bt+1.

To use the fact that each block only interacts with the next block in our
dynamic program, we need to specify an interface for this interaction. For that
purpose we introduce the notion of a frontier. A block respects an incoming
frontier F = (fl, fr) if no leftbound (rightbound) job scheduled to start in the
block starts earlier than fl (fr). Similarly, a block respects an outgoing fron-
tier F = (fl, fr) if no leftbound or rightbound job scheduled to start in the
block would interfere with a leftbound (rightbound) job starting at time fl (fr).
The symmetrical structure of the compatibility graph (Knr,nl

or ∅) allows us to
use this simple interface. We introduce a dynamic programming table with en-
tries T [t, F, U ] that are designed to hold the minimum total completion time of
scheduling all jobs in U ⊆ J to start in block Bt or earlier, such that Bt respects
the outgoing frontier F . We define C(t, F1, F2, V ) to be the minimum total com-
pletion time of scheduling all jobs in V to start in Bt with Bt respecting the
incoming frontier F1 and the outgoing frontier F2 (and ∞ if this is impossible).
We have the following recursive formula for the dynamic programming table:

T [t, F, U ] = min
F ′,V⊆U

{T [t− 1, F ′, U \ V ] + C(t, F ′, F, V )}.

To turn this into an efficient dynamic program, we need to limit the de-
pendencies of each entry and show that C(·) can be computed efficiently. The
number of blocks to be considered can be polynomially bounded by logD,
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where D = maxj rj+n · (maxj pj+ τ1) is an upper bound on the makespan. The
following lemma shows that we only need to consider polynomially many other
entries to compute T [t, F, U ] and we only need to evaluate C(·) for job sets of
constant size, which we can do in polynomial time by simple enumeration.

Lemma 1. There is a schedule with a sum of completion times within a factor
of (1 + ε) of the optimum and with the following properties:
1. The number of jobs scheduled in each block is bounded by a constant.
2. Every two consecutive blocks respect one of constantly many frontiers.

Proof (sketch). Partitioning the released jobs of each interval direction-wise by
processing time into small and large jobs and bundling small jobs into packages
of roughly the same size allows us to bound the number of released jobs per
interval by a constant, similarly as in [1]. Furthermore, we establish that we may
assume jobs to remain unscheduled only for constantly many blocks.

For the second property, we stretch all time intervals by a factor of (1 + ε),
which gives enough room to move the starting time of all jobs to the next 1/ε-
fraction of the same interval Ix. Thus, we only need to consider s/ε possible
frontier values per direction, or a total of (s/ε)2 possible frontiers. ut

To generalize our dynamic program to a constant number of machines, we
split our jobs into parts, one for each machine the job needs to be processed
on, with the additional constraint that no part may be scheduled before any
part of the same job on earlier machines. We are able to generalize Lemma 1
to this setting, using that each part of a job runs in at most two blocks and
partitioning jobs into small and large for each direction and combination of
start and target machines. The interface between consecutive time blocks needs
to be extended to a frontier on each machine. In addition, a part running in
block Bt imposes a lower bound on the start time of the next part of the same
job running in block Bt+1. Since the number of parts running in block Bt is
bounded by a constant b, the interface still has constant size. We assume that
jobs are ordered and write F = (F1, . . . , Fm), θ = (θ1, . . . , θb). We can define
our table with entries T [t,F , U, V,θ] containing the minimum sum of (partial)
completion times of scheduling the parts in U to start in block Bt or earlier,
such that: Bt respects the outgoing frontier Fi on machine i, the parts in V ⊆ U
are scheduled to start in block Bt, and the l-th part in V stops running by
time θl. Similarly, C(t,F ′,F , V,θ′,θ) is the minimum sum of completion times
for scheduling the parts in V in block Bt, respecting frontiers F ′,F on the
machines, such that the l-th part in V does not start running before time θ′l and
stops running by time θl (if possible, and ∞ otherwise). The recursive formula
restricted to subsets that respect the order in which parts need to be processed
becomes

T [t,F , U, V,θ] = min
F ′,V ′⊆U\V,θ′

|V ′| is consistent

{T [t− 1,F ′, U \ V, V ′,θ′] +C(t,F ′,F , V,θ′,θ)}.

We obtain the following result.

Theorem 6. Bm |Gi ∈ {Knr,nl
, ∅} |

∑
Cj admits a PTAS.
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A Proofs of Section 3 – Unbounded number of machines

In this section, we give a detailed proof of the hardness of the bidirectional
scheduling problem for a constant number of machines and identical processing
and transit times. We describe our reduction from MaxCut. Let an instance
I = (GI , k) of MaxCut be given, with G = (VI , EI), |VI | = nI , and |EI | =
mI . We introduce a set of jobs on polynomially many machines that can be
scheduled with a total waiting time of W if and only if I admits a solution. Our
construction is comprised of various gadgets which we describe in the following.
We make use of suitably large parameters x � y � z � 1 that we will specify
later. For example, x is chosen in such a way that if ever x jobs are located
at the same machine, these jobs need to be processed immediately in order to
achieve a waiting time of W . Note that because jobs take no time in being
processed (i.e., pj = 0), we can schedule any number of jobs sharing direction
simultaneously on a single machine. Also, since τ = 1, it makes no sense for a
machine to stay idle if jobs are available. This allows us to restrict our analysis
to schedules that are sensible in the sense that for each machine and at every
time step all jobs in one direction available at the machine get scheduled. On the
other hand, the non-zero transit time induces a cost of switching the direction
of jobs that are processed at a machine.
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Fig. 3. Illustration of the vertex gadget in the leftbound (left) and the rightbound
(right) state.

vertex gadget. Each of the machines 1, 10, 19, 28, . . . hosts one vertex gadget
for each of the vertices in VI (cf. Figure 3 with the following). Each vertex gad-
get gt on machine 9`+1 occupies a distinct time interval [13t, 13(t+1)), t < nI ,
on the machine and is associated with one of the vertices v ∈ VI . The gadget
comes with 24y vertex jobs that only need to be processed at machine 9` + 1,
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half of them being leftbound, half being rightbound. Exactly y jobs of each di-
rection are released at times 13t, 13t+1, . . . , 13t+11. We say that gt is scheduled
consistently if either all leftbound vertex jobs are processed immediately when
they are released and all rightbound jobs wait for one time unit, or vice-versa.
We say the gadget is in the leftbound (rightbound) state and interpret this as
vertex v being part of set V1 (V2) of the partition of VI = V1 ·∪V2 we are im-
plicitly constructing. A schedule is consistent if all vertex gadgets are scheduled
consistently. The following lemma allows us to distinguish consistent schedules.

Lemma 2. The vertex jobs of a single vertex gadget can be scheduled consis-
tently with a waiting time of 12y, while every inconsistent schedule has waiting
time at least 13y.

Proof. Since p = 0, we can schedule all available jobs with the same direction
simultaneously. It follows that both consistent schedules are valid, and, since in
both exactly half of the vertex jobs wait for one unit of time, the total waiting
time of such a schedule is 12y. Any inconsistent (sensible) schedule would have
to send jobs in the same direction in two consecutive unit time intervals, which
means that in addition to the minimum waiting time of 12y, at least y jobs have
to wait an extra unit of time. ut

synchronizing vertex gadgets. Since every vertex v ∈ VI is represented by
multiple vertex gadgets on different machines, we need a way to ensure that all
vertex gadgets for v are in agreement regarding which part of the partition v is
assigned to. We introduce two different gadgets that handle synchronization. The
copy gadget synchronizes the vertex gadgets gt occupying the same time interval
on machines 9` + 1 and 9` + 10, while the transposition gadget synchronizes
gadgets gt, gt+1 on machine 9`+1 with gadgets gt+1, gt on machine 9`+10. Using
a combination of copy and transposition gadgets, we can transition between any
two orders of vertex gadgets on distant machines.
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Fig. 4. Illustration of the copy gadget between two vertex gadgets. The dashed lines
depict all sensible trajectories of the synchronizing jobs, assuming that the vertex
gadgets are in the same state.
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We first specify the copy gadget that synchronizes the vertex gadgets gt on
two machines 9` + 1 and 9` + 10 (cf. Figure 4 with the following). The gad-
get consists of 2z rightbound synchronization jobs, half of which are released at
time 13t and half at time 13t + 1. The jobs need to be processed on all ma-
chines 9`+1, . . . , 9`+10 in this order. In addition, we introduce 3x blocking jobs
that are used to enforce that specific time intervals on a machine are reserved for
leftbound/rightbound operation. Essentially, releasing x blocking jobs at time t
on a single machine prevents any jobs to be processed in opposite direction dur-
ing the time interval [t, t + 1) (and even earlier). In this manner, we block the
interval starting at time 13t+ 3 on machines 9`+ 2, 9`+ 3, 9`+ 4.

Lemma 3. In any consistent schedule, the synchronization jobs of a single copy
gadget can be scheduled with a waiting time of 3z if the two corresponding vertex
gadgets are in the same state, otherwise their waiting time is at least 5z.

Proof. Since x � z, we need to schedule all blocking jobs as soon as they are
released. If both vertex gadgets gt linked by the copy gadget are in the rightbound
state, the synchronization jobs released at time 13t only have to wait for one
time unit at machine 9`+4, while the other jobs have to wait at machines 9`+1
and 9` + 2. Similarly, if the vertex gadgets are in the leftbound state, the first
half of the jobs have to wait at machines 9`+ 1 and 9`+ 3, while the other half
only has to wait at machine 9` + 3. The waiting time in either case is 3z. If
the vertex gadgets are in opposite states, all jobs have to additionally wait at
machine 9`+ 10, which results in a total waiting time of at least 5z. ut

We now describe the transposition gadget that synchronizes the vertex gad-
gets gt, gt+1 on machine 9`+1 with the vertex gadgets gt+1, gt on machine 9`+10
(cf. Figure 5 with the following). The challenge here is that jobs synchronizing
the different pairs of vertex gadgets need to pass each other without interfering.
We achieve this by making sure that the jobs never meet while being in transit
at the same machine. The gadget consists of 4z synchronization jobs, half being
rightbound and half being leftbound. Half of each are released at times 13t+ 6
and 13t + 7, and all need to be processed at machines 9` + 1, . . . , 9` + 10 (in
different directions). In addition, we introduce 12x blocking jobs to block the
intervals starting at the following times: at times 13t+9, 13t+10 for rightbound
jobs and at times 13t+14, 13t+15 for leftbound jobs on machine 9`+2, at times
13t+9 for rightbound and at 13t+15 for leftbound on machine 9`+3, and the
corresponding (symmetrical) intervals in opposite direction on machines 9` + 8
and 9`+ 9 (cf. Figure 5).

Lemma 4. In any consistent schedule, the synchronization jobs of a single trans-
position gadget can be scheduled with a waiting time of 10z if each of the two
pairs of corresponding vertex gadgets are in the same state, otherwise their wait-
ing time is at least 12z.

Proof. Since x � z, we need to schedule all blocking jobs as soon as they are
released. It is easy to verify that all synchronization jobs wait at exactly 2 ma-
chines due to blocking jobs. In addition, half of the jobs wait for one unit of time
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Fig. 5. Illustration of the transposition gadget. The dashed lines depict all sensible
trajectories of the synchronizing jobs, assuming that the vertex gadgets are pairwise
in the same states. Note that jobs in different directions never meet while in transit
through the same machine.

at the machine where they are released – for a total of 10z time units. If the
pair of vertex gadgets is in opposite states, all connecting synchronization jobs
need to wait at least one additional unit of time at their last machine. Observe
that synchronization jobs in opposite directions are never in transit on the same
machine at the same time. ut

edge gadget. The purpose of an edge gadget between vertex gadget gt on
machine 9` + 1 and gt+1 on machine 9` + 10 is to produce a small additional
waiting time if the two vertex gadgets are in the same state (cf. Figure 6 with the
following). We will introduce edge gadgets between vertex gadgets representing
two vertices u, v that share an edge in G. This way, every edge that connects
vertices in different parts of the partition is beneficial for the resulting waiting
time. The edge gadget itself consists of 2 rightbound edge jobs, one being released
at time 13t + 7 and the other at time 13t + 8. Both jobs need to be processed
on machines 9`+1, . . . , 9`+10. We add 3x blocking jobs to block the unit time
interval starting at time 13t+ 15 on machines 9`+ 7, 9`+ 8, 9`+ 9.

Lemma 5. In any consistent schedule, the edge jobs of a single edge gadget can
be scheduled with a waiting time of 3 if the two connected vertex gadgets are in
opposite states, otherwise their waiting time is at least 5.

Proof. One job always has to wait for a time unit at the first machine. Both
jobs have to wait for the blocking jobs (since x � 1). If the vertex gadgets are
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Fig. 6. Illustration of the edge gadget. The dashed lines depict all sensible trajectories
of the synchronizing jobs, assuming that the vertex gadgets are in opposite states.
Note that edge jobs do not interact with synchronization jobs of copy gadgets for both
vertices.

in the same state, both jobs have to wait an additional unit of time at the last
machine. ut

construction. We are now ready to combine our gadgets and explain the final
construction.

Theorem 1. B | pj = 0, τi = 1 |
∑
Cj is NP-hard.

Proof. We start by introducing a vertex gadget gt on machine 1 for each ver-
tex vt ∈ VI of the given MaxCut-instance. For each edge {u, v} we extend
the construction by appending more machines as follows. We add a sequence of
blocks of 9 machines, the last of which contains again a vertex gadget for each
vertex. In between we add copy and transposition gadgets in such a way that on
the last machine i the vertex gadgets g0 and g1 represent the vertices u and v.
We can achieve this by adding less than nI machines. We add an additional
block of 9 machines, and add copy gadgets for each of the variables. Finally, we
add an edge gadget connecting vertex gadget g0 on machine i with g1 on the last
machine. Observe that the edge jobs do not interfere with any of the synchroniza-
tion jobs for the copy gadgets for the first two vertices (cf. Figure 6). We repeat
the process once for each edge. The total number of machines is O(nImI), and
the total number of jobs is O(n2ImI(x+y+z)). The number of vertex gadgets is
nv < n2ImI , and the number of transposition and copy gadgets is nt < nc < nv.
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We claim that if the MaxCut instance admits a solution S, we can schedule
all jobs with waiting time at most W = 12nvy + 3ncz + 10ntz + 5mI − 2k. We
do this by scheduling all vertex gadgets consistently in the state corresponding
to the part of the partition the corresponding vertex belongs to in S. Lemmas 2
through 4 guarantee that we can schedule everything but the edge jobs without
incurring a waiting time greater than 12nvy + 3ncz + 10ntz. Finally, since at
least k edges in the MaxCut solution are between vertices in different sets of
the partition, and the vertex gadgets are set accordingly, by Lemma 5, we obtain
an additional waiting time of at most 5mI − 2k as claimed.

It remains to establish that the waiting time exceedsW in case the MaxCut
instance does not admit a solution. We set x = W + 1, such that all blocking
jobs have to be scheduled as soon as they are released. By Lemma 2, scheduling
at least one vertex gadget inconsistently produces a total waiting time of at least
12nvy+ y. We now set y = 18n2ImIz > 3ncz+10ntz+5mI for the vertex jobs,
such that a single inconsistent vertex gadget results in a waiting time greater than
W . Hence, each vertex gadget needs to be scheduled consistently. By Lemmas 3
and 4, we have that if not all vertex gadgets corresponding to the same vertex
are in the same state, the waiting time for vertex and synchronization jobs is at
least 12nvy + 3ncz + 2ntz + z. We set z = 5mI , which allows us to conclude
that all vertex gadgets are in agreement regarding the partition of the vertices.
Finally, Lemma 5 enforces that there are at least k edge gadgets between vertices
in different states. This however is impossible as our MaxCut instance does not
admit a solution. ut

Corollary 1. B | pj = 1, τi = τ |
∑
Cj is NP-hard.

Proof. The same construction works for p = 1 and τ = n ·m, since then even
waiting at each machine for all other jobs to process is preferable to waiting once
for the transit of another job. ut
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B Proofs of Section 5 – Arbitrary compatibility graph

In this section we give a detailed hardness proof for bidirectional scheduling
on a single machine where jobs can be compatible. Our proof holds even for
unit processing and transit times. We first consider the makespan objective and
extend the proof in a second step to waiting time and total completion time.

B.1 Makespan Minimization

Theorem 7. B1 | pj = τ1 = 1, G1 |Cmax is strongly NP-hard.

In the following, we construct a bidirectional scheduling instance for a given (≤
3, 3)-Sat instance. The constructed instance yields a demanded makespan Cmax

if and only if the given (≤ 3, 3)-Sat formula is satisfiable. We partition the
time horizon into 5 parts P1, . . . , P5 with start time A1 = 0, A2 = 6|X|, A3 =
10|X|, A4 = 10|X|+2|C|, andA5 = 12|X|+|C|. The demanded makespan Cmax =
A5 + 1 will enforce that all jobs start before the end of the fourth part.

The rough idea is as follows: In the first four parts we release a tight frame
of blocking jobs B and dummy jobs H that have to start running immediately at
their release date in any schedule that achieves Cmax. We use these jobs to create
gaps for variable jobs that represent the variable assignments. By defining the
compatibilities for the blocking jobs we are able to control which of these assign-
ment jobs can be scheduled into each gap. In the first part of our construction,
we release all variable jobs, which come in two types: one type representing a
true assignment to the corresponding variable and the other type representing a
false assignment. Our construction will enforce the following properties in each
of its parts:

Lemma 6. In every feasible schedule with makespan Cmax, all jobs released be-
fore S3 are scheduled in parts P1 and P2, except for two rightbound variable jobs
of same type for each variable.

Lemma 7. In every feasible schedule with makespan Cmax, the only jobs re-
leased before A3 and scheduled in P3 are rightbound variable jobs, where each
corresponds to a variable assignment satisfying a different clause.

Lemma 8. In every feasible schedule with makespan Cmax, the only jobs released
before A4 and scheduled in P4 are rightbound variable jobs, and there are not
more than 2|X| − |C| of them.

In the following we explicitly define the released jobs of each part achieving
the above properties. Each part is accompanied by a figure illustrating when jobs
are released, the respective compatibility graph and an example of a schedule.
In all figures, time is directed downwards, and all rightbound jobs are depicted
to the left and all leftbound jobs to the right of the machine. Since compatible
jobs can run concurrently, the schedules of the leftbound and the rightbound
jobs are drawn separately.

We start by specifying the jobs released in P4.
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jobs of P4. In the last part, 2|X| − |C| leftbound blocking jobs B4 = {bi | i =
0, . . . , 2|X| − |C| − 1} are released at A4 + i for each bj ∈ B4 in part P4 leaving
space for leftover rightbound variable jobs not scheduled until the beginning
of this part. Each of the blocking jobs is only compatible with all rightbound
variable jobs.

bi

bi+1

bi+2

.

.

.

.

.

.

.

.

.

bi

bi+1

bi+2

Fig. 7. Part P4 with blocking jobs reserving space for all remaining rightbound variable
jobs.

Proof (Proof of Lemma 8). First, observe that with the required makespan
of A5 + 1 = A4 + 2|X| − |C| + 1 each blocking job of B4 must be scheduled
directly at its release date. Consequently, there is no room to delay the start
of any leftbound job released before P4 to this part. Due to the compatibilities,
the rightbound blocking and dummy jobs released before P4 are also forced to
run before the start of P4. Therefore, there are exactly 2|X| − |C| open slots
within P4 reserved for rightbound variable jobs. ut

jobs of P3. The third part (Figure 8) is responsible for the assignment of sat-
isfying literals to each clause. It consists of a set of jobs B3 containing one
leftbound blocking job bk per clause ck released at A3 +2k, which is compatible
with each rightbound variable job that represents a variable assignment satis-
fying this clause. The gaps between the blocking jobs are filled with dummy
jobs H3 containing one rightbound job hrk and one leftbound job hlk with release
date A3 + 2k + 1 per clause ck ∈ C. Each leftbound dummy job is compatible
with all rightbound variable jobs, furthermore each rightbound dummy job h is
compatible with the three leftbound jobs released in [rh − 1, rh + 1].

Proof (Proof of Lemma 7). By Lemma 8 all jobs released within P3 must start
before the end of P3. Hence, each leftbound dummy and blocking job is forced to
start at its release date. Therefore, due to the compatibilities, each rightbound
dummy job must be scheduled directly when released. The only remaining |C|
free slots can be filled with rightbound variable jobs – exactly one free slot per
clause ck reserved for a variable job representing an assignment that satisfies ck.

ut
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Fig. 8. Part P3 for ck = (xa ∨ xb ∨ x̄c) and ck+1 = (x̄d ∨ xe ∨ x̄f ). Note that each
variable job can be adjacent with more than one clause job (although this does not
occur in the example).

We continue by introducing the released jobs within P1 and P2 to prove
Lemma 6 afterwards.

jobs of P1. In the first part, we release different kinds of jobs per variable (cf.
Figure 9). There are rightbound variable jobs T r = {tri,1, tri,2 | xi ∈ X} repre-
senting a true assignment as well as rightbound variable jobs F r = {f ri,1, f ri,2 |
xi ∈ X} representing a false assignment. These jobs are complemented by left-
bound variable jobs F l = {f li | xi ∈ X} and T l = {tli | xi ∈ X} and further
leftbound jobs Q = {qti , qfi | xi ∈ X} called indefinite, both with the purpose
to enforce a consistent assignment. To do so, we implement a certain structure
by leftbound jobs B1 = {bti, bfi | xi ∈ X} for blocking, and some further dummy
jobs H1 = {hrti , hlti , hrfi , hlfi | xi ∈ X} for filling, for each variable and each value
one leftbound and one rightbound job. We release the rightbound true jobs tri,1
at 6i and tri,2 at 6i+1, the rightbound false jobs f ri,1 at 6i+3 and f ri,2 at 6i+4.
Each indefinite job qti together with the leftbound f li is released at 6i+1, each qfi
together with tli at = 6i + 4. Furthermore we release the blocking jobs bti at 6i
and bfi at 6i+3 as well as the dummy jobs hrti , hlti at 6i+2 and hrfi , hlfi at 6i+5. The
compatibility graph G1 is defined such that each blocking job bti is compatible
with the corresponding tri,1 and tri,2, and each bfi with f ri,1 and f ri,2, respectively.
The first indefinite job qti is compatible with the corresponding rightbound true
jobs tri and tri as well as the second qfi with f ri and f ri , respectively. Finally, we
define each dummy job h ∈ H1 to be compatible with the opposed jobs released
in [rh − 1, rh + 1]. None of the remaining pairs of jobs are compatible.

jobs of P2. In the second part (Figure 10), there is room for exactly one indef-
inite job and one leftbound variable job per variable. This is realized by a set
of rightbound blocking jobs B2 = {bi,1, bi,2 | xi ∈ X} where each bi,1 released
at A2 + 4i is compatible with the corresponding two indefinite jobs qti and qfi .
Each bi,2 released at A2 + 4i+ 2 is compatible with the corresponding two left-
bound variable jobs f li and tli. The gaps between two subsequent released blocking
jobs are closed in both directions by dummy jobs H2 = {hri,1, hri,2, hli,1, hli,2 | xi ∈
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Fig. 9. Released jobs per variable xi in P1, the corresponding compatibilities given
by G1 and a scheduled example for a true variable assignment.

X} released at A2 +4i+1 and A2 +4i+3. Each dummy job is compatible with
all jobs of Q,T l, F l, or B2 and the corresponding opposed dummy job released
concurrently.

Proof (Proof of Lemma 6). By Lemmas 8 and 7 each rightbound dummy and
blocking job of H2 and B2 must be scheduled before the end of P2 and hence, di-
rectly at its release. By the given compatibilities this is also true for the leftbound
dummy jobs of H2. Therefore, there are exactly two open slots per variable xi,
one reserved for the two corresponding indefinite jobs qti , qf and one for the two
corresponding leftbound variable jobs f li , tli. Since no further space is left, for
both pairs exactly one can be scheduled within P2. The remaining one must be
completed already by the end of P1.

Also, for the first part, we can conclude that no blocking and no dummy job
released in P1 can start after the end of P1. Consider now one variable xi and
assume that no job corresponding to xi can start within part P1 after 6i + 5.
This assumption holds obviously for xn. Then, hrfi and hlfi , the latest released
jobs corresponding to xi, must both start at their release.

If the leftbound job tli is scheduled within part P1 it must be scheduled at its
release and hence f ri,1 and f ri,2 must be postponed to the next parts. In this case,
also the second blocking job bfi as well as the first two dummy jobs hrti and hlti are
forced to start at their release, consequently also bti. In this case it is not possible
anymore to schedule qfi within part P1. For this reason, the counter part qti must
be scheduled at its release time and the leftbound f li must be postponed. With
this, there is exactly one free slot for tri,2 and one for tri,1.

If, on the other hand, the leftbound job tli is scheduled after part P1, we have
to schedule f li within part P1. Due to the conflicts with hrfi , the start time of f li
and the blocking and dummy jobs in between must in particular be scheduled
at their release. For that reason qti must be postponed and qfi must be scheduled
at its release. Hence, also the rightbound true jobs tri and tri must be postponed
and there are exactly two slots for the two false jobs.
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Fig. 10. Part P2 creates a structure of blocking and dummy jobs with respective com-
patibilities that create space for exactly one indefinite job per variable xi.

In both cases, the scheduled leftbound jobs ensure that no earlier released
variable job can start after 6(i− 1)+5. Hence, it can be concluded by induction
that, for each variable, either all corresponding false jobs or all corresponding
true jobs must be scheduled after part P1. And since, by Lemmas 8 and 7, at
least 2n rightbound variable jobs must be scheduled within P1 the free spots
ensure that exactly the two counter parts are scheduled within P1. ut

We can conclude the following claim and hence, Theorem 7.
Claim. There is a satisfying assignment for the given (≤ 3, 3)−Sat instance

if and only if there is a feasible schedule for the constructed scheduling instance
with makespan Cmax = A5 + 1.

Proof (Proof of Theorem 7). If there is a schedule with makespan Cmax we can
apply Lemmas 8 to 6. Within the resulting schedule we can therefore be sure
that |C| rightbound variable jobs are scheduled within the clause part. Since by
Lemma 6 the assignment of each variable is well defined we get by Lemma 7 a
satisfying truth assignment for the clauses.

If on the other hand a satisfying truth assignment is given, the described
schedule with demanded makespan can be created in straight-forward manner,
by postponing the assignment jobs corresponding to the truth assignment and
scheduling all other jobs within the part they are released in (or in part P2 in
the case of leftbound variable jobs or indefinite jobs). ut

B.2 Minimization of Total Completion Time

Theorem 4. B1 | pj = τ1 = 1, G1 |
∑
Cj is NP-hard.

We give an analogous reduction as for Theorem 7. Note, that solutions opti-
mal for the total completion time and those optimal for the total waiting time
are equivalent. Hence, it is sufficient to prove the hardness for the latter. The
goal is to enforce the same structure as for makespan minimization when mini-
mizing the total waiting time. To do so, we start by calculating an upper bound
of the resulting waiting time.
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We can trivially bound the total waiting time of a schedule that achieves
makespan Cmax by W = |J | ·Cmax = |J | · (A5 +1), where J is the set of all jobs
in our construction. With this polynomial bound we can extend the construction
of a scheduling instance for a given (≤ 3, 3)-Sat instance by part P5 with W +1
further leftbound blocking jobs B5 = {bi | i = 0, . . . ,W} with release date A5+ i
for each b5i ∈ B5 that are not compatible to any of the previous jobs.

Claim. There is a satisfying truth assignment for the given (≤ 3, 3)-Sat
instance if and only if there is a feasible schedule for the constructed scheduling
instance with total waiting time of at most W .

Proof (Proof of Corollary 4). Assume first that there is a satisfying assignment
for the (≤ 3, 3)-Sat instance. In this case, there is a schedule where no job
released in the first four parts starts processing after A5 and hence the resulting
total waiting time does not exceed W .

Assume on the other hand, that there is a solution for the constructed
scheduling instance whose objective does not exceed W . For such a solution,
either all jobs released in the first four parts start before A5 or their is at least
one starting later. In the first case, we get, by Lemmas 8 to 6, a schedule together
with a satisfying truth assignment with waiting time bounded by W .

In the second case each postponed job j with starting time S′j increases the
already existing waiting time by at least an amount of (S′j−A5)+W +1− (S′j−
A5) =W + 1. Hence, the first case applies.

ut
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C Proofs of Section 6 – Arbitrary processing times

In this Section we restate the Lemmas with detailed proofs that are necessary
to show the existence of a PTAS if the processing times of the jobs are not
restricted to be equal.

C.1 Single Machine

We consider first the case of a single machine, more precisely B1 | pj , τ1, G1 ∈
{Knr,nl

, ∅} |
∑
Cj . Following the proof scheme of [1], we introduce several lem-

mas that allow us to make assumptions at “O(1 + ε)-loss”, meaning that we can
modify any input instance and optimum schedule to adhere to these assump-
tions, such that the resulting schedule is within a factor polynomial in (1 + ε)
of the optimum schedule for the original instance. To not complicate matters
unnecessarily, in the following we allow fractional release dates and processing
times.

Lemma 9. With O(1 + ε)-loss we can assume that rj , pj ∈ {(1 + ε)x | x ∈
N} ∪ {0}, rj ≥ ε(pj + τ1), and rj ≥ 1 for each j ∈ J .

Proof. Increasing any value v ∈ R to the smallest power of (1 + ε) not smaller
than v yields a value with (1 + ε)x = (1 + ε)(1 + ε)x−1 < (1 + ε)v.

By shifting the completion times by a factor of (1 + ε), we obtain increased
starting times S′j for each job j:

S′j = (1 + ε)Cj − (pj + τ1) ≥ (1 + ε)Sj + εpj + ετ1 ≥ ε(pj + τ1).

Hence, by losing not more than a (1 + ε)-factor we may assume that all jobs
have release dates of at least an ε fraction of their running time.

Multiplying furthermore all start times of a schedule by (1+ε) gives a feasible
schedule even when rounded up all nonzero processing times and release dates
to the next powers of (1 + ε). The total completion time does not increase by
more than a factor of (1 + ε).

All times can be scaled if necessary such that the earliest release date is at
least one (since jobs with rj = pj = τ1 = 0 can be ignored). ut

We define Rx = (1 + ε)x and consider time intervals Ix = [Rx, Rx+1] of
length εRx.

Lemma 10. Each job runs for at most σ := dlog1+ε 1+ε
ε e intervals.

Proof. Consider some job j and assume that j starts in Ix in some schedule. By
Lemma 9 we get

|Ix| = εRx ≥ εrj ≥ ε2(pj + τ1).

Thus, the running time of j is bounded by |Ix|/ε2. The constant upper bound
of 1/ε2 for the number of used intervals can still be improved since the length of
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the next σ succeeding intervals with increasing size is sufficient to cover a length
of |Ix|/ε2. Using the fact that

∑n
k=0 z

k = 1−zn+1

1−z we get

σ∑
i=0

|Ix+i| =
σ∑
i=0

(Rx+i+1 −Rx+i) = |Ix|
σ∑
i=0

(1 + ε)i

= |Ix|
1− (1 + ε)σ+1

1− (1 + ε)

≥ |Ix|
1− ε+1

ε

−ε
= |Ix|

ε+ 1− ε
ε2

=
|Ix|
ε2

ut

Lemma 11.
∑
x<y ε

2|Ix| ≤ ε|Iy|

Proof. To prove the claim we again use that
∑n
k=0 z

k = 1−zn+1

1−z :

ε3
∑
x<y

(1 + ε)x = ε3
1− (1 + ε)y

1− (1 + ε)

= ε2((1 + ε)y − 1)

≤ ε|Iy|

ut

To analyze the set of jobs released within each interval we partition them
as follows. A job j available in Ix is called small in Ix if pj ≤ ε2|Ix| and large
otherwise. With this, we partition the released jobs of Ix for each direction d ∈
{r, l} into the subsets Sd

x = {j ∈ Jd | rj = Rx and j is small in Ix} and Ld
x =

{j ∈ Jd | rj = Rx and j is large in Ix}. Fortunately, the arrangement of jobs of
each Sd

x does not influence the remaining jobs too much such that we can assume
a fixed order for each of these sets:

Lemma 12. With O(1 + ε)-loss we can restrict to schedules such that
1. the processing of no small job contains a release date,
2. jobs contained in the same Sd

x , x ≥ 0 are scheduled in SPT order, i.e., Sj1 ≤
Sj2 for any pair of jobs j1, j2 ∈ Sd

x with pj1 < pj2 , and
3. the jobs of Sd

x in SPT order are joined to unsplittable packages with size of at
most ε2|Ix| for all packages and at least ε2|Ix|/2 for all but the last packages.

Proof. To prove claim 1. we consider some schedule and apply a time shift to
the intervals, i.e., each Rx is multiplied by (1 + ε) and the start times of each
interval Ix are shifted by an amount of (1+ ε)Rx. By this, the schedule remains
feasible, no further crossing of a processing over a release date is produced and
the objective is increased by at most a factor of (1 + ε). If there was a release
date Rx contained in the processing interval of a small job of Ix−1 it is moved
behind the processing since the length of Ix−1 is increased by ε|Ix−1| which is
larger than the processing time of this job.
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For a proof of claims 2. and 3. consider a schedule where no processing
of a small job contains a release date. To achieve the demanded properties,
apply the following procedure for each direction d ∈ {r, l}. First, we apply two
time stretches, i.e. each interval |Iy| is increased by an amount of (2ε+ ε2)|Iy|.
For each x consider the set Sd

x of small jobs released at Rx of the considered
direction. Order these jobs in SPT order and iteratively join them to packages
with maximum amount of processing time not greater than ε2|Ix|. Then, each
but the last package has in sum a processing time of at least ε2|Ix|/2. Now,
remove all jobs of Sd

x from the schedule and fill the resulting gaps again by
the joined packages as follows: fill all but the last gap of an interval with the
packages as long as it fits, shift all following jobs of the schedule in this interval
left to eliminate eventual idle time, fill the last gap of this interval with packages
until the amount of original processing time by jobs of Sd

x in this interval is
covered (if enough jobs are still unscheduled), and shift following jobs of the
schedule in this interval right if necessary. This is possible since all jobs of Sd

x

have the same compatibilities and equal transit time. In the resulting schedule,
the amount of processing time by jobs of Sd

x in this interval is increased by at
most a value of ε2|Ix|. Since this amount is not decreased as long as jobs are
available the existing gaps are enough to schedule all jobs of Sd

x . By the described
rearrangement, the sum of completion times of jobs in Sd

x does not increase. Note,
that the movement of the other jobs within an interval does not increase their
completion times by more than a factor of (1 + ε). It remains to prove that the
initial double time shift is sufficient to create enough room for each Sd

x . This
follows from Lemma 11 since we got room for ε2|Iy| and

∑
x<y ε

2|Ix| ≤ ε|Iy|
within each interval Iy. ut

Since the order in which packages of each Sd
x are scheduled is now fixed we

can consider each package simply as one small job. Nevertheless, the original jobs
must be used for the evaluation of the completion times. Besides the scheduling
restrictions for small jobs we can also bound how much is released at the be-
ginning of each interval. To do so, we denote the sum of processing times of a
subset S ⊆ J of jobs as p(S).

Lemma 13. With O(1 + ε)-loss we can assume for each interval Ix, x ≥ 0 and
each d ∈ {r, l}:
1. p(Sd

x) ≤ (1 + ε2)|Ix|
2. the number of possible processing times in Ld

x is bounded by 4 log(1+ε)
1
ε , and

3. the number of jobs per processing time in Ld
x is bounded by 1

ε2 .

Proof. Consider some scheduling instance, some d ∈ {r, l} and some x ≥ 0. By
Lemma 12 we can assume at O(1 + ε)-loss that the jobs of each Sd

x can be
scheduled in SPT order. Let S′ be the smallest SPT-subset, such that p(S′) ≥
|Ix|. Hence, by the SPT assumption we can be sure that all jobs of Sd

x \S′ cannot
be scheduled within Ix and thus, we can move their release dates to Rx+1. We
have p(S′) ≤ (1 + ε2)|Ix| since all jobs of S′ are small in Ix.
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The processing time of the jobs in Ld
x are, by definition, at least ε3(1 + ε)x.

On the other hand, by Lemma 9, the processing times are at most 1
ε (1 + ε)x.

Let xj be such that pj = (1 + ε)xj . We get

ε3 ≤ (1+ε)xj

(1+ε)x ≤
1

ε

=⇒ log(1+ε) ε
3 ≤ xj − x ≤ log(1+ε)

1

ε

The difference of these bounds is 4 log(1+ε)
1
ε which gives a constant number of

possible integer values for xj and, hence, a constant number of possible process-
ing times for each job in Ld

x. Finally, since each large job in Ix has a processing
time of at least ε2|Ix|, we can schedule at most 1/ε2 jobs per direction within Ix,
and the remaining jobs need to start after Rx+1. ut

Lemma 14. With O(1+ ε)-loss we can assume, that each job is finished within
a constant number of intervals after its release.

Proof. We stretch all time intervals by a factor of (1 + ε) to create some buffer
for jobs that are scheduled too late, but keep the starting times of all jobs at
the same offset relative to the start of the interval where the job started before.
Consider the set of jobs Jx released at time Rx. By Lemma 9 the running time
of each such job is at most Rx/ε. To first schedule all jobs of one direction
and afterwards all jobs of the other direction, with an additional transit period
afterwards, we need time equal to∑

d∈{r,l}

[
p(Sd

x) + p(Ld
x) + τ1

]
+ τ1 ≤ 2

[
(1 + ε2)ε(1 + ε)x

+
1

ε2
· 1
ε
(1 + ε)x · 4 log(1+ε)

1

ε

]
= ε2(1 + ε)x · 2

[
(1 + ε2)

ε
+

4

ε5
log(1+ε)

1

ε

]
≤ ε2(1 + ε)x(1 + ε)σ

′
= ε|Ix+σ′ |,

where σ′ is the smallest possible integer such that 2
[
(1+ε2)
ε + 4

ε5 log(1+ε)
1
ε

]
≤

(1 + ε)σ
′
. Note, that σ′ is constant. The amount by which our time stretch

increased the size of Ix+σ′ would already be sufficient to host all jobs in Jx.
However, some or all of the extra space in Ix+σ′ may potentially be oc-

cupied by another job j that previously occupied intervals Ix+σ′ and Ix+σ′+1.
Let k ≤ σ′ + σ be such that, in the stretched schedule, job j completes within
interval Ix+k. Since j runs in interval Ix+σ′ , and all later jobs start in later in-
tervals, our time stretch ensures that no job is being processed for time ε|Ix+σ′ |
after j stops being processed. By definition of σ′, this time is sufficient to wait
for the transit of j and then schedule all remaining jobs of Jx. This way, all jobs
of Jx are scheduled before the end of the interval Ix+σ′+σ. ut
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We can now limit the interface of our dynamic program by showing Lemma 1
of Section 6.

Lemma 1. There is a schedule with a sum of completion times within a factor
of (1 + ε) of the optimum and with the following properties:
1. The number of jobs scheduled in each block is bounded by a constant.
2. Every two consecutive blocks respect one of constantly many frontiers.

Proof. By Lemma 12 we may assume that small jobs in Sd
x have processing time

at least ε2|Ix|/2. By Lemma 13, the total processing time of these jobs is at
most (1+ ε2)|Ix|, and hence the number of jobs in Sd

x is bounded by a constant.
The same is true for large jobs, by Lemma 13. Finally, together with Lemma 14,
this implies that the number of jobs running during each interval is bounded by
a constant.

For the second property, we stretch all time intervals by a factor of (1 + ε),
which gives enough room to move the starting time of all jobs to the next 1/ε-
fraction of the same interval Ix. Thus, we only need to consider s/ε possible
frontier values per direction, or a total of (s/ε)2 possible frontiers. ut

C.2 Multiple Machines

We now consider the problem Bm |Gi ∈ {Knr,nl
, ∅} |

∑
Cj with a constant

number m of machines and give detailed proofs for the required extensions to
the single machine case where the argumentation is more complex. We need to
generalize or reformulate all of the above lemmas. We denote by Sd

x,s,t the set
of all small jobs with respective source machine s and target machine t and
direction d that are released at time Rx and we denote the corresponding large
jobs by Ld

x,s,t.
The proofs of Lemmas 9, 10, and 13 can be adapted with small modifications.

Lemmas 12 and 14 become significantly more involved. We obtain the following
lemmas.

Lemma 15. With O(1 + ε)-loss we can restrict to schedules such that for each
direction d ∈ {r, l}, each source and target pair s, t = 1, . . . ,m, and each x ≥ 0:
– the jobs contained in Sd

x,s,t are scheduled on each machine i = 1, . . . ,m in
SPT order, i.e., Si,j1 ≤ Si,j2 for any pair of jobs j1, j2 ∈ Sd

x,s,t with pj1 < pj2 ,
and

– the jobs of Sd
x,s,t in SPT order are joined in the complete schedule to unsplit-

table packages with size of at most ε2|Ix| for all packages and at least ε2|Ix|/2
for all but the last packages.

Proof. The proof works in principle as the proof of Lemma 12. During the rear-
rangement procedure we have to ensure that each interval on the target machine
is filled with at least the same volume of small jobs as before, as long as jobs
are unscheduled. For this, the jobs in the demanded order must have arrived at
the respective machine in time. To ensure this property we have to deal with
the following two difficulties. A convoy of very small jobs can be replaced by one
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(larger) small job. This job can only continue its processing on the next machine
after its completion on the previous machine, while the first very small job could
already start on the next machine before the last very small job is completed on
the previous machine. The other difficulty arises from the fact that some jobs
scheduled within interval Ix arrive during interval Ix′ at the next machine, and
the remaining jobs arrive one interval later. Since all but the last gaps within
interval Ix have been decreased a bit within the rearrangement and only the last
gap covers the lost volume there might be not enough volume available for the
next machine in Ix′ .

To deal with the second difficulty, we employ the following procedure for
each direction d ∈ {r, l}. First, we apply m2 time stretches. Now, consider Sd

x,s,t

for each source target pair s, t = 1, . . . ,m compatible with d and each x ≥ 0.
If s = t, we can simply apply the same procedure as for Lemma 12. Otherwise,
proceed as follows. Define p(i, x̃) to be the amount of processing time from Sd

x,s,t

scheduled within Ix̃ on machine i. For each reasonable combination of i1 and a
succeeding i2 and x1 ≤ x2 define p(i1, x1, i2, x2) to be the amount of processing
time of jobs in Sd

x,s,t scheduled on machine i1 in interval Ix1
and on machine i2

on interval Ix2
. On the other hand, let u(i1, x1, i2, x2) be the latest point for the

end of processing of a small job within interval Ix1
on machine i1, such that it

still can be completely processed within interval Ix2 on machine i2 if possible.
Since the interval sizes are increasing with time, there is at most one interval Ix2

on machine i2 that yields an upper bound below Rx1+1.
Remove all jobs of Sd

x,s,t from the schedule. To refill the gaps consider each
machine i1 = s, . . . , t− 1 and on machine i1 each interval Ix1

that contains gaps
with increasing x1. For each succeeding machine i2 consider an interval Ix2

.
We now apply the gap filling procedure from the proof of Lemma 12 but de-
crease and increase by at most one small job appropriately such that before
each u(i1, x1, i2, x2) a volume of at least p(i1, x1, i2, x2) including the overage
of the former intervals is ensured. More formally, let the overage o(i1, x1, i2, x2)
be defined as the difference of the scheduled volume before u(i1, x1, i2, x2) plus
o(i1, x1 − 1, i2, x2) and the demanded p(i1, x1, i2, x2) for x1 > x and zero oth-
erwise. The refill now ensures that each o(i1, x1, i2, x2) ≥ 0. For i = s, . . . , t we
furthermore ensure the analog for p(i, x̃), o(i, x̃), and the end of Ix̃. For the mo-
ment, allow a small job to start already pj time units earlier than the completion
on the previous machine.

We now prove by induction over i = s, . . . , t that the required processing
volume within each interval Ix̃, x̃ ≥ x on machine i is available. To be more
precise we claim: for each machine i = s, . . . , t and each x̃ ≥ x, enough jobs
of Sd

x,s,t are available to ensure a volume of at least p(i, x̃, i2, x2) − o(i, x̃ −
1, i2, x2) until u(i, x̃, i2, x2) for each succeeding machine i2 until t and x2 ≥ x̃,
and a volume of at least p(i, x̃) − o(i, x̃ − 1) within the complete interval,
for as long as jobs are unscheduled. The claim is true for i = s since all
jobs of Sd

x,s,t are available by Rx. For some i ∈ {s, . . . , t} let i1 be the cor-
responding preceding machine. Consider a x̃ ≥ x with p(i, x̃) > 0. All the
demanded volume must have been scheduled earlier on i1. Hence, p(i, x̃) =
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∑
x1≤x̃ p(i1, x1, i, x̃). By the induction hypothesis, this amount on the previ-

ous machine is scheduled within each interval in time (in particular within the
former gaps). If x̃ is the first one considered on i, enough jobs with the re-
quired processing volume are available. Otherwise, there might be one small job
missing that is scheduled in an earlier interval. This is covered by the overage.
Consider now a succeeding i2 and an x2 with p(i, x̃, i2, x2) > 0. If u(i, x̃, i2, x2) =
rx̃+1 the claim ensues from p(i, x̃, i2, x2) ≤

∑
x1≤x̃ p(i1, x1, i, x̃). Otherwise, note

that u(i, x̃, i2, x2) − τi1 ∈ Ix1
is equal to u(i1, x1, i2, x2). Then, we additionally

have to use that p(i, x̃, i2, x2) ≤
∑
x′
1≤x1

p(i1, x1, i2, x2) is scheduled to be pro-
cessed before u(i1, x1, i2, x2). If one small missing job is scheduled again too
early, we use the overage. To conclude, all jobs arrive in time on their target
machine and the completion time is increased by a factor of at most O(1 + ε).

The described rearrangement procedure for the jobs of Sd
x,s,t still only needs

an extra time of ε2|Ix| on each machine for x ≥ 0 and s, t = 1, . . . ,m compatible
with d. By Lemma 11 we again get that m2 time stretches are sufficient to cover
this amount. To see this, consider some machine i and some interval y and bound
the needed amount as follows:∑

i1≺di

∑
i�di2

∑
x≤y

ε2|Ix| ≤
∑
i1≺di

∑
i�di2

(ε+ ε2)|Iy|

≤
m∑
i′=1

i′(ε+ ε2)|Iy| ≤ m2ε|Iy|

Finally, we have to resolve the first difficulty described initially. For this,
we readjust those small jobs that have been scheduled a bit before the actual
completion time on their previous machine. Since the respective error propagates
from machine to machine we have to create an extra time window of mε2|Ix| for
each Sd

x,s,t. We can do this by applying another 2m3 time stretches. ut

Lemma 16. At O(1 + ε)-loss we can assume, that each job is finished within a
constant number of intervals after its release.

Proof. We again start by applying one time stretch. This creates for each x
extra space within interval Ix+σ′ (where σ′ needs to be determined) for those
jobs Jx released at time Rx at some machine that are scheduled too late and must
be adapted. Unfortunately, at time Rx+σ′+1 there might be jobs with distinct
processing times running on different machines. Hence, we cannot use one strip
of extra space over all machines to reschedule all remaining jobs. For this reason,
we employ the following strategy. For each direction d ∈ {r, l} iterate over the
machines in the corresponding order and schedule the available jobs of Jd

x on each
machine that have to be processed there. On the first machine, insert these jobs
after the last job running at time Rx+σ′+1 is finished, which is within Ix+σ′+σ

at the very latest. With the created space, all inserted jobs arrive at the next
machine before the end of this interval. Hence, we can schedule the open jobs
on the next machine after the last job containing Rx+σ′+σ+1 in its running time
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has arrived at the end of the machine, which is before the end of Ix+σ′+2σ. The
extra space created by the time stretch was kept until this moment and the
jobs can finish running on the machine before the end of Ix+σ′+2σ. Continuing
analogously to the last machine ensures that the jobs arrive by interval Ix+σ′+mσ

at their destination.
Hence, we have to define σ′ to be large enough such that extra space for

both directions is available. On each machine, we have to provide space for jobs
released at time Rx for the current and all earlier machines. Hence, we need the
following space:

∑
d∈{r,l}

m∑
s=1

m∑
t=1

[
p(Sd

x,s,t) + p(Ld
x,s,t)

]
+ 2max

i
τi

≤ 2m2

[
(1 + ε2)ε(1 + ε)x

+
1

ε2
· 1
ε
(1 + ε)x · 4 log(1+ε)

1

ε

]
= ε2(1 + ε)x · 2m2

[
(1 + ε2)

ε
+

4

ε5
log(1+ε)

1

ε

]
≤ ε2(1 + ε)x(1 + ε)σ

′
= ε|Ix+σ′ |,

where we define σ′ to be the smallest possible integer such that

2m2

[
(1 + ε2)

ε
+

4

ε5
log(1+ε)

1

ε

]
≤ (1 + ε)σ

′
.

This space also covers the needed space for the transit of the last fixed job
running before the newly inserted jobs. ut
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