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Abstract

The present work introduces an analysis framework for the de-

tection of metastable signal segments in multivariate time series. It

is shown that in case of linear data these segments represent tran-

sient generalized synchronization, while metastable segments in circu-

lar data reflect transient mutual phase synchronization. We propose

a single segmentation approach for both types of data considering the

space-time structure of the data. Applications to both event-related

potentials and single evoked potentials obtained from an auditory odd-

ball experiment reveal the lack of the component P300 in an experi-

mental condition, indicates attention effects in component N100 and

shows dramatic latency jitters in single trials. A comparison of the

proposed method to a conventional index of mutual phase synchro-

nization demonstrates the superiority of considering space-time data

structures.
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1 Introduction

In the last decades synchronization has been found in various systems in
biology, physics or medicine [Pikovsky et al. (2001)]. In neuroscience, syn-
chronization has attracted much attention as a concept of information pro-
cessing in the brain (see e.g. Singer & Gray (1995)). This approach is in
the tradition of results found more than two decades earlier, which revealed
cooperative, i.e. synchronized, activity in spatial cortical columns [Wilson
& Cowan (1972); Luecke & von der Malsburg (2004)]. In addition, several
studies have shown strong correlations between cooperative dendritic activ-
ity of neurons and electromagnetic activity on larger spatial scales, e.g. local
field detectors or encephalographic potentials and fields [Freeman (2000);
Nunez (1995)]. The present study focus to synchronization effects in evoked
electroencephalographic potentials.

In neuropsychology, most experiments apply paradigms with several dif-
ferent conditions to gain information about a specific functionality of the
brain, as e.g. processing of semantic differences [Kotz et al. (2001)] or
prosody in stimuli [Schirmer et al. (2002)]. In order to gain significant re-
sults, single experimental conditions are repeated several times. The number
of these repetitions depend on the complexity of the task and is typically in
the range of 50 − 500. In case of rather complex experimental paradigms,
the number of trials is low. To extract significant results, trials of the same
experimental condition are averaged. This procedure is reasonable under the
assumption of seldom artifacts, as head movements or low attentiveness of
the subject. However, in contrast to most experiments under controlled con-
ditions in a labortaory, more and more experiments are carried out under
less controlled every-day-life conditions [Schrauf & Kincses (2003)]. In these
cases, only few repeated trials are acquired and artifacts play an important
role. To extract significant results anyway, the analysis of averages over few
trials or even of single trials is necessary. Several corresponding methods
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have been proposed in the last years [Laskaris & Ioannides (2002); Ioannides
et al. (2002); Karjalainen & Kaipio (1999)].

One of the major aims of multivariate analysis in neuropsychological re-
search is the detection of functional components from observed data. Lehmann
& Skrandies (1980) developed an algorithm to extract spatial activity maps
from single data sets, which show metastable synchronized behaviour in time.
These time segments are called microstates and reflect functional states in
the brain [Brandeis et al. (1995)]. Subsequent work of Pascual-Marqui et al.
(1995) and Wackermann (1999) extended this approach by a cluster algo-
rithm and a classification scheme of the extracted components, respectively.
The original approach compares the spatial distributions of successive time
points and thus is succesfull mainly for single averaged data sets, which
exhibit smooth behaviour. In case of less smooth data, the clustering exten-
tion is more robust and detects components in more noisy data. However,
the method applies the cross-validation method to determine the number of
clusters and, hence, fails for high dimensional data.

In the last years many studies analyzed both linear and phasic multivari-
ate data. The former represents the observed data itsself while the latter
represent the instantaneous phases extracted from the linear data. The two
best-known definitions of instantaneous phases are given by the Hilbert- and
the wavelet transformation. Recently, the analysis of phase synchronization
between single time series attracted increased attention [Tass (1999); Haig
et al. (2000); Lee et al. (2003)]. However, applications to typical encephalo-
graphic data need to consider a large set of spatially-distributed detectors as
microscopic generators spread their activity on the scalp. Some methods have
been developed to extract instantaneous mutual phase synchronization [Haig
et al. (2000); Rosenblum et al. (2000)]. However, these methods neglect spa-
tial distributions of phases. In addition, we mention the work of Allefeld &
Kurths (2003), who recently developed a sophisticated method which extracts
an instantaneous index for mutual phase synchronization by considering the
space-time structure of data. However, most methods in this research field
considers a high number of trials and, to our best knowledge, the detection
of mutual phase synchronization in single data sets is still lacking.

The present work proposes a segmentation framework for both linear and
phasic data sets. It extends both the detection of mutual phase synchro-
nization to single trial analysis and the analysis of linear single trial analysis
to the treament of phasic data. Our approach considers the spatiotempo-
ral behaviour of multivariate brain signals and aims to extract segments of

3



metastable behaviour. The key point is the observation that all time series
show a mutual change of their time scale, which yield clusters in the cor-
responding data space [Hutt & Kruggel (2001); Hutt et al. (2003)]. This
observation is valid for both linear and phasic data, while clusters in lin-
ear data represent generalized synchronization and clusters in phasic data
represent mutual phase synchronization.

Hence, a single cluster detection algorithm is applied, while its concrete
implemementation depends on the data topology. Linear data behaves on a
plane, while phasic data lives on a torus. The following sections show the
application to auditory evoked potentials. The results reveal the effects of
averaging and the latency jitter of components in single trial subsets. Further,
the component N100 exhibits latency differences in two different experimental
conditions which indicates early cognitive processing in the brain after 100ms
from stimulus onset.

This article is structured as follows. The next section introduces the
examined data, the cluster algorithm for both topologies and the applied
statistical analysis. Application results follow in Sec. 3. The discussion in
Sec. 4 closes the work.

2 Methods

2.1 Clustering of linear data

Let us consider two typical time series QFz(t), QCz(t) obtained during a
cognitive experiment (Fig.1(a)). We observe mutual behaviour of the time
series about 105ms, 276ms and 331ms, that is

QFz(t) = F [QCz(t)], (1)

where F is a function independant from time. This relation is known in lit-
erature in the context of chaotic dynamics and defines generalized synchro-
nization [Rulkov et al. (1995); Pyragas (1996)]. We extend this definition
to the N -dimensional case and obtain the definition of global generalized
synchronization

Qi(t) = Fij[Qj(t)] ∀i, j = 1, ...., N, . (2)

Figure 2(b) shows both time series as a trajectory in data space. Obviously,
the trajectory at the three time points exhibits turning points. Focussing to
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Figure 1: Two typical time series of observed electroencephalographic po-
tentials, here taken at detectors Fz and Cz. They are plotted as single time
series (top part) and trajectory in data space (bottom part). The arrows in
the bottom part denote the temporal evolution direction of the signal.

5



-6 -5 -4 -3 -2 -1

-4

-3

-2

-1

cluster segment 1 cluster segment 2

cluster center 1

cluster center 2

cluster border at t=70ms

t=-20ms

cluster border at t=137ms

Figure 2: A trajectory segment in the time window [−20ms; 139ms]. The
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these turning points, data are more dense than between these points. Since
turning points of trajectories exhibit vanishing temporal derivatives, Eq.(2)
yields

dQi

dt
=

∂Fij

∂Qj

∂Qj

∂t
= 0 (3)

→ dQi

dt
= 0 ∀i = 1, ....., N. (4)

for turning points. Indeed, this inreased data density has been found in mul-
tivariate data in various studies [Pascual-Marqui et al. (1995); Hutt (2004);
Hutt et al. (2000); Hutt & Kruggel (2001); Hutt & Riedel (2003)]. In case
of event-related potentials/event-related fields (ERP/ERF), such metastable
phenomena have been called differently in literature, e.g. microstates by
Lehmann [Lehmann & Skrandies (1980)], quasi-stationary states [Hutt &
Riedel (2003)], states of synchronization and desynchronization Pfurtscheller
& da Silva (1999) or event-related components in many neuropsychological
studies (see e.g. Rugg & Coles (1996)). In addition, we mention the notion of
chaotic itinerancy Tsuda (2001); Kay (2003), which models the transients by
phase transitions of first order Freeman (2003). Despite differences in these
approaches, they describe the mutual decrease and subsequent increase in the
time scale of data. In addition, all definitions classify such metastabilities by
their latency shift from stimulus onset and their spatial activity distribution
at the corresponding latency. In the following, we shall call these phenom-
ena simply components. Subsequently, re-considering the previous discussion
components reflect global synchronization.

In case of non-smooth data, mutual behaviour of time series is not that
obvious anymore, however trajectory segments of components are assumed
to still exhibit an increased data density. In mathematical terms, turning
points subject to noise obey

Qi(t) = Q̄i + Γi(t) ∀i = 1, ..., N (5)

where Q̄i = const and Γi denote random fluctuations with 〈Γi〉 = 0. Here
〈...〉 denotes an average value. Hence, at a constant sampling rate trajecto-
ries near turning points obey 〈Qi(t)〉 ≈ Q̄i and, subsequently, components
represent clusters in data space.

To detect these clusters, we apply the K-means cluster algorithm [Duda
& Hart (1973)] which assumes a priorily a fixed number of clusters. Figure 2

7



shows a trajectory segment extracted from the data in Fig. 1. Two cluster
centers have been guessed for illustration reasons. Here data between −20ms
and 70ms and the two last data points are nearer to cluster center 2 than to
cluster center 1, while the data between 71ms and 137ms belongs to cluster
1. This means the two cluster centers segment the data into three temporal
segments, whose borders at 70ms and 138ms are determined by the distance
from cluster centers. Now, we apply the K-means algorithm to the data
segment of Fig. 2 for K = 2, K = 3 and K = 5 clusters, respectively. Figure 3
shows the computed squared Euclidean distances from cluster centers to data
for the different number of clusters and the plots exhibit the change of nearest
clusters and subsequently temporal segments.

The proposed method aims to find a reasonable quantity that distin-
guishes well-separated from intersecting clusters while taking into account
errors by single outliers. This quantity represents the cluster quality of a
data point at time t and is defined by the area al(t) in Fig. 3, while l = 1..NK

and NK denotes the number of segments for a fixed number of clusters K.
This area between the nearest and the second nearest cluster quantifies both
the spatial separation of two segments and its cardinality.

In mathematical terms, the well-known global cost function for K-means
clustering and K clusters reads

VK =
K
∑

l=1

∑

i∈Cl

(xi − x̄l)
2 =

K
∑

l=1

∑

i∈Cl

d2
ik (6)

where x̄l denote cluster centers and Cl are the corresponding sets of mem-
bers. VK gives the mean distance of data to clusters and is minimal for the
optimal choice of cluster centers. According to the previous discussion, the
method extends this formulation to temporal segments S and also considers
the distance to the second nearest cluster of each data point. That is

V ′

K =
S
∑

l=1

∑

i∈Sl

(e2
il − d2

il) =
S
∑

l=1

(Nl − 1)(σsn
l − σn

l ) =
S
∑

l=1

al (7)

where dik and eik denote the Euclidean distance from the data point xi

to its corresponding nearest and second-nearest cluster center in segment
l, respectively. Nl represents the number of data in segment l. Here, al is
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proportional to the difference of cluster variances σsn
l and σn

l between second-
nearest and nearest cluster center in segment l,respectively. Now, in contrast
to the global approach in (6),(7), the method associates each data point i to
the cluster quality of its segment by Ali = alI [i] with the indicator function
I [i ∈ Sl] = 1 , I [i 6∈ Sl] = 0. Finally, the normalization of Ali and averaging
over increasing number of clusters, i.e.

Āl(i) =
Ali

∑S
l=1 Ali

, p(i) =
1

U − 2

U
∑

K=2

Āl

yields the mean cluster quality p and the present work fixes the maximum
number of clusters U = 20. Previous studies [Hutt & Riedel (2003)] showed
that results are robust towards the value of U if U exceeds the maximum
number of expected clusters. According to this definition, large values of p
give well-separated clusters, that is well-detected components, while falls and
rises mark transitions between different clusters.

2.2 Clustering of circular data

In addition to the analysis of linear data, this section treats phasic or cir-
cular data. Several previous studies examined phase synchronization in
evoked brain signals [Tass (1999); Allefeld & Kurths (2003); Haig et al.
(2000); Breakspear (2002)]. Since a previous theoretical study has shown in-
creased data densities in temporal segments of mutually phase-synchronized
data [Hutt et al. (2003)], the extention of the derived cluster algorithm to
circular data is straight forward.

Phasic data are physically reasonable only in an associated narrow fre-
quency band. To obtain instantaneous phases from linear data, the present
work applies a Gaussian filter in frequency space in combination with a com-
plex Fourier transform [DeShazer et al. (2001)] obtaining

S(t) = 2

∫

∞

−∞

e−(ν−νk )2/ν2
νQ̃(ν)e−iνtdν. (8)

Here, Q̃(ν) denotes the Fourier transform of the signal Q(t). Since νk > 0,
S(t) is complex and the instantaneous spectral power and phase is given by

A(t) =
√

I(s(t))2 + R(s(t))2 , Φ(t) = arctan
I(s(t))

R(s(t))
(9)
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for each frequency band about νk, respectively. Here, s(t) = S(t)−S̄, S̄ is the
temporal average of S(t) and R(s) and I(s) denote the real and imaginary
part of s, respectively. The width of the frequency band is given by the
variance of the filter σ2

ν, which in turn determines the variance of the resulting
temporal filter by σ2

t = 1/σ2
ν according to the uncertainty principle. The

corresponding standard deviation in the time domain represents an estimate
for the number of correlated time points and we fix it to 2 ·10 oscillations, i.e.
σt = 10/ν. Subsequently, filtered data in low frequency bands exhibit higher
temporal correlations than data for higher frequencies. In turn, the width of
the frequency filter is proportional to the center frequency by σν = ν/10. We
mention the equivalence of this approach to the analysis by Morlet wavelets.

According to Pikovsky et al. (2000), mutual phase synchronization(MPS)
exhibits bounded differences of phase pairs

|Φk(t)− Φl(t)| < const ∀ k = 1, ..., N, l = k, ...., N. (10)

Hence MPS yields data clusters in the extended space of all phase pairs
defined by a new multivariate time series y(t) ∈ RM with M = N(N − 1)/2
and {yj(t)} = {Φk(t) − Φl(t) ∀ k > l}.

There are just two more implementation differences to the linear case,
namely the computation of circular distances and the computation of mean
circular values. These computations obey basic rules in circular statistics and
we refer the reader to Mardia & Jupp (1999) for more details. All subsequent
computations of distances, averages and variances of circular data obey these
rules.

Summarizing the proposed method for circular data, choose a narrow
frequency band, then compute the circular time series by (8) and (9) and
compute the new extended data set of phase differences before applying the
cluster algorithm as proposed in the previous section.

Similar to the linear case, the obtained cluster quality exhibits large values
in case of strong mutual phase synchronization, while sharp falls and rises,
respectively, mark transitions between different clusters.

2.3 Statistical analysis

Since the K-means algorithm is iterative and the obtained cluster centers are
sensitive to initial values, there is no guarantee that the algorithm converges
to the optimal cluster results. Hence, the method repeats the computation of
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p(t) 10 times obtaining mean values P (t) and corresponding variances σ(t)
for each time point t. To verify additionally the cluster results, surrogate
data is generated by randomizing the data in time and the re-application of
the cluster algorithm yields new mean cluster qualities Ps(t) and correspond-
ing variances σs(t). The obtained surrogate data set exhibits a decorrelated
temporal structure. Subsequently, no prominent cluster segment occurs and
Ps(t) is much smaller than in the original data. We shall verify the miss-
ing temporal struture by visual inspection, while the lower values of Ps are
verified by the t-test for every time point t. The t-value reads

T (t) =
P (t) − Ps(t)

σ(t) + σs(t)

√
n, (11)

with the degrees of freedom n = 19. Equation (11) sets the null hypoth-
esis such that P is indistinguishable from random cluster results Ps. For
T (t) > tα,n the test rejects the null hypothesis at an false positive error rate
α and P is significantly different from Ps. Here tα,n denotes the Students
t-distribution.

In addition, the present work considers a mutual phase synchronization
index motivated by Haig et al. (2000) and applied recently by Allefeld &
Kurths (2003). It represents the global circular variance

R(t) =
1

L

L
∑

l=1

√

√

√

√

(

M
∑

j=1

sin yjl(t)

)2

+

(

M
∑

j=1

cos yjl(t)

)2

, (12)

where {yjl} are phase differences in trial l = 1 . . . L. R(t) gives a rough
estimate of mutual phase synchronization for each frequency band. This
index extracts information from trial ensembles and is not applicable for
single trial analysis. However, we shall compare our results on single trial
averages to results from Eq. (12) in a later section.

2.4 Data acquisition

Event-related potential (ERP) data are analyzed in two conditions of a 2-
tone passive oddball paradigm. Tones used were a standard at a frequency
of 1kHz and an occurence rate of 0.85 and a deviant tone at a frequency of
2Khz and an occurence rate of 0.15. The tones were presented at a level of
70 dBSL and had a rise and fall time of 10ms, a duration of 50ms with an
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inter-stimulus-interval from 3.2s to 3.8s between the start of each stimulus.
Tones were played through earphones. ERP recordings were made from 32
sites (electrocap, 10 : 20-system, impedance < 5kΩ, linked mastoid refer-
ence) at a sampling rate of 1kHz and amplitude resolution 0.1µV. Hardware
filters were applied with the low cutoff at 0.5Hz, the high cutoff at 70Hz and
the notch filter at 50Hz.
Topographical scalp current source density(CSD)-maps (order of splines:4,
max. degree of Legendre polynomials: 10) were made for comparisons. The
frontal (Fz), central (Cz), and parietal (Pz) midline electrode sites were used
to facilitate correct identification of the P300 peak (Johnson (1993)). EOG
artifact rejection was applied (Gratton et al. (1989)). Data were evaluated
offline using a digital low-pass 25Hz filter (e.g. Polich (1998)). Driving tasks
(with or without using an active cruse control named distronic) were alter-
nated every 30 min to minimize effects of sequence and attention.
Recordings were analyzed from one physically and mentally healthy subject
(male, 45 years, 25 years driving experience, about 50.000 km driven with
the Mercedes Benz S-500 test car), with no history of neurological disorder,
free of medication and corrected to normal vision. The test route was a
400 km stretch of a german highway (Stuttgart-Duesseldorf). Digital video
of forward road scene was recorded for comparison of traffic density and to
identify particular variations of traffic scenes.

3 Results

Now, we examine results from both linear and circular data for both experi-
mental conditions. Since the present work proposes an algorithm to examine
single data sets, we show results from averages over all trials, from averages
over subsets of trials and results from single trials.

3.1 Application to linear data

Figure 4 presents time series from averages over all trials for both experi-
mental conditions. Conventional methods identify the components N100 at
∼ 100ms, component P200 at ∼ 200ms and component P300 at ∼ 300ms
for the distronic condition. For the non-distronic condition, we identify the
components N100 at ∼ 100ms and P200 at ∼ 200ms.

The proposed method yields the mean cluster quality P (t) which exhibits
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plateaus of constant values with sharp edges, as shown in Fig. 5a. We observe
various clustered segments in time windows coinciding to the conventional re-
sults from Fig. 4. Focussing to the time window [0ms; 400ms] and re-applying
the method, plateaus and edges in the same time windows occur, while subtle
edges in results from the larger time window are more pronounced.

The difference in absolute values occur mainly by virtue of the normal-
ization of P . Figure 5b presents the cluster results of randomized time series
exhibiting poor temporal structure and much lower values of cluster quality.
Here and in the following, the t-test gives p-values < 0.001 for all time win-
dows and both experimental conditions. That means the cluster results P (t)
are significant. Figure 6 shows cluster results for averages over trial subsets
in two different time windows for both conditions. It turns out that cluster
segments in the data occur in similar time windows as in Fig 5, however
slightly shifted, shortend or lengthend. This finding supports the hypothesis
of latency shifts in single trials. Figure 7 presents components in single trials,
which reveal the latency jitter as well.

Now, we focus to the shorter time window [0ms; 200ms] and classify com-
ponents by their latencies and spatial distributions. Figure 8 presents results
from averages over all trials and average current source density(CSD) maps
corresponding to the detected time segments. We identify component the
components N100 and P200 in both conditions. In addition, these results re-
veal a time shift of component N100 between both experimental conditions.
Hence component N100 depends on the cognitive task, and thus reflects an
endogeneous underlying process. This finding contrasts to the general hy-
pothesis that N100 is an exogeneous component, i.e. independant from the
cognitive task. Further results from trial subsets support this finding (Fig. 9),
however not such obviously.

We point out that the previously detected components are identified by
latency shift and duration only, as the corresponding spatial distributions
are noisy and do not allow a clear classification. Future research shall apply
spatial denoising of components and we refer the reader to forthcoming work.

3.2 Application to circular data

Now, we examine mutual phase synchronization in the data. Since the phases
are defined in a corresponding narrow frequency band, the spectral density
A(t) and the global circular variance R(t) are computed to indicate frequency
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poral segments. For illustration reasons, results 20 − 39 and 40 − 59 have
been shifted artificially to lower values in both experimental conditions.
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bands of functional relevance. Figure 10 reveals low spectral power beyond
15Hz, while the data exhibits increased global phase synchronization at 17Hz
and 20Hz. In addition, both increased power spectral density and global
phase synchronization occurs about ν = 6Hz in the distronic condition and
about ν = 5Hz in the non-distronic condition, respectively. Hence, the anal-
ysis focus to the frequency bands ν = 6 ± 0.6Hz and ν = 5 ± 0.5Hz.

The subsequent analysis focus to the time window [0ms; 400ms]. The
first examined datasets represent the averages over all trials and Fig. 11
shows short periods of increased MPS at ∼ 40ms, ∼ 80ms and ∼ 130ms
in the distronic condition. Further, MPS is strong in [240ms; 340ms] and
even stronger after 340ms. In the non-distronic condition, the results reveal
increased MPS from stimulus onset to ∼ 90ms, between 110ms and 185ms
and between 190ms and 240ms. After a longer transition period, strong MPS
emerges at 290ms and even stronger between 340ms and 400ms. Hence,
the time segments of increased MPS are different in both conditions, while
strong MPS coincide after ∼ 240ms. Here and in the following, the t-test
gives p-values < 0.001 for both experimental conditions, i.e. all results are
statistically significant.

Since these results reflect the average behaviour of all trials and might
be smeared due to latency shifts in single trials, the focus to averages of
trial subsets improves the temporal localization of components. Figure 12
shows latency shifts between all subset averages at rather early latencies
at about 90ms in the distronic condition. Further, all trial averages reveal a
synchronous plateau of MPS about 130ms, while averaged trials 0−19 reveal
retarded MPS at 260ms compared to the synchronous increase of MPS in
subsets 20 − 39 and 40 − 59. This rather synchronous behaviour between
different trials sets does not occur in the non-distronic condition, where only
the promiment plateau of subset 40 − 59 about 200ms coincides with the
less prominent plateaus in 20− 39. Finally, in the distronic condition results
from single trials reveal coincident components in [0ms;70ms], [70ms;140ms]
and [250ms;300ms] in trials 30 and 50 (Fig. 13). In contrast, trial 10 exhibits
components, which are shifted in latencies compared to trial 30 and 50. Less
coincident behaviour is observed in the non-distronic condition.

3.3 Comparison to an existing method

The global circular variance R(t) is only a rough quantity for mutual phase
synchronization, as it smears out spatial inhomogeneities by averaging. In
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Figure 10: Spectral power from the average over all trials and global circular
variance from all trials for both conditions. Spectral power contributions for
frequencies larger than 20Hz are negligible.
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Figure 12: Cluster results from single phasic averages over subsets of trials
for both experimental conditions. The cluster quality p quantifies the mutual
phase synchronization MPS(t) = p(t). Here, the phasic signals are chosen
in the same freqency bands as in Fig. 11. For illustration reasons, results
from 20−39 and 40−59 have been shifted artificially to lower values in both
experimental conditions.
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Figure 14: Comparison of cluster results to the conventional global circular
variance for both experimental conditions.

contrast, the proposed cluster quality P (t) takes into account the space-time
structure of data. Figure 14 presents a direct comparison of both quantities
for averages over all trials. In the distronic condition, the rough circular vari-
ance behaves in time similar to the cluster quality. More detailed, transients
at ∼ 170ms coincide, while the transition from the component at 250ms
to the component at 350ms occurs earlier in R(t) than in P (t). However,
the most important difference between both quantities is the more detailed
analysis of substructures by the proposed method. This is obvious in the
non-distronic condition, where the substructure between 100ms and 250ms
is lost in R(t) and present in P (t).

4 Discussion

The first part of the present work showed the relation of mutual space-time
behaviour in brain signals to synchronization effects. Metastable behaviour
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in linear data reflect transient generalized synchronization, while mutual
metastability of circular data represent transient mutual phase synchroniza-
tion. Considering these aspects, cluster analysis allows the segmentation of
multivariate time series into metastable segments. The application to em-
pirical linear and circular evoked potentials led to temporal segments, which
show good accordance to cognitive components. Investigating subsets of tri-
als revealed latency jitters between the sets. These latency shifts indicate
that external stimuli do not reset the phase of brain activity to the same
value at each stimulus onset. Hence, our findings attenuate the general as-
sumption of fixed time delayed evoked response to the stimulus onset sim-
ilar to previous studies (see e.g. Pfurtscheller & da Silva (1999)). That is
event-related potentials do not represent a linear superposition of signal and
uncorrelated noise and, subsequently, single trial averages have to be inter-
preted cautiously. In addition to the detection of latency jitters, we found
a latency shift of component N100 between both experimental conditions in
the averages over all trials. Against the conventional assumption, this novel
result indicates an early attention effect. However, this shift is not such clear
anymore in some trial subsets due to latency jitters in the component.

The major reason for the reason for the successful analysis of single data
sets is the consideration of the space-time structure of the data. This becomes
obvious by comparing our method to a conventional detection method for
mutual phase synchronization treating only the temporal structure. It turns
out that the conventional method looses important data structures, which
are extracted by the proposed approach. In future work, we aim to develop
a thorough single trial analysis with improved statistical assessment in order
to gain further insights to the phase synchronization processes of underlying
neural activity.
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