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Abstract

The analysis of adaptive finite element methods in practice immediately leads
to eigenvalue clusters which requires the simultaneous marking in adaptive finite
element methods. A first analysis for multiple eigenvalues of the recent work [Dai,
He, Zhou, arXiv Preprint 1210.1846v2] introduces an adaptive method whose
marking strategy is based on the element-wise sum of local error estimator con-
tributions for multiple eigenvalues. This paper proves optimality of a practical
adaptive algorithm for eigenvalue clusters for the eigenvalues of the Laplace oper-
ator in terms of nonlinear approximation classes. All estimates are explicit in the
initial mesh-size, the eigenvalues and the cluster width to clarify the dependence
of the involved constants.
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1 Introduction

Let Q C R?, d > 2, be a bounded Lipschitz domain with polyhedral boundary. The
adaptive finite element approximation of multiple eigenvalues of the model problem

—Au=Au

leads to the situation of an eigenvalue cluster as the eigenvalues of interest and their
multiplicities may not be resolved by the initial mesh. The optimality analysis of adap-
tive finite element methods for eigenvalue problems [DXZ08, GM11, CG12, CGS13]
is based on the comparison of the finite element solutions on different meshes. In the
case of multiple eigenvalues, this leads to the difficulty that the discrete orthonormal
systems of eigenfunctions produced by the adaptive algorithm may change in each step
of the adaptive loop. The works [GMZ09, GG09, CG11] study the plain convergence
of adaptive algorithms for eigenvalue problems. The proofs of [DXZ08, GM11, CG12,
CGS13] on optimal convergence rates are restricted to simple eigenvalues. The first
optimal convergence result of adaptive finite element schemes with a multiple eigen-
value [DHZ13] introduces the innovative methodology to use one bulk criterion for
all discrete eigenfunctions in the algorithm for automatic mesh refinement and proves
equivalence to the simultaneous error of the discrete eigenvalue approximation to the
fixed orthonormal basis of the exact eigenspace. In practice, little perturbations in co-
efficients or in the geometry immediately lead to an eigenvalue cluster of finite length.
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In case that the multiplicities are resolved by the initial mesh in the sense that the
multiplicities are known and each of the corresponding discrete eigenvalues is well-
separated from the remaining spectrum, the algorithm of [DHZ13], which is based on
the multiplicity of the exact eigenvalues, can still be employed. In the case that the
cluster is narrow, this separation condition is unrealistic and a modification is required.
A posteriori error estimates and adaptive marking strategies for eigenvalue clusters
were discussed in [GO09, BGO13]. This article extends the approach of [DHZ13]
based on explicit residual-based error estimators to the more practical case of eigen-
value clusters. A first-glance generalisation of the analysis of [DHZ13] to clustered
eigenvalues would lead to an additive term in the reliability estimate that describes the
cluster-width and thus is not efficient. This paper presents a different analysis that leads
to “cluster-robust” error estimates.

The energy error for an L>-normalised eigenfunction u is measured by the quantity
[llu — Agu||. Here, A, is the L? projection of the Galerkin projection Gu onto the space
W, spanned by the discrete eigenfunctions within the cluster (more details follow in
Section 2). A theoretical non-computable error estimator is employed which allows a
proof of equivalence to the refinement indicator of the adaptive algorithm. In contrast
to the case of one multiple eigenvalue, care has to be taken that the reliability and
equivalence constants of the error estimator do not depend on the cluster or its length.
This restricts the analysis to the lowest-order conforming finite element method based
on piecewise affine functions.

The non-computable error estimator allows reliable and efficient error estimates
for ||lu — Asu|| and is locally equivalent to the computable explicit residual-based error
estimator. The proof of this property requires a careful analysis and further conditions
on the initial mesh-size. This is due to the fact that A; does not map orthonormal sets
onto orthonormal sets.

The equivalence of error estimators allows to consider the theoretical error estima-
tor in the analysis with some modified bulk parameter. Since this error estimator does
not depend on the choice of discrete eigenfunctions, it allows for the error estimator
reduction and contraction properties. These ingredients lead to the proof of optimal
convergence rates for the error of the simultaneous approximation of the eigenfunc-
tions within the cluster. Let (A; | j € J) denote the cluster under consideration with
(possibly different) eigenspaces £(A;). Then the error quantities

P 12
(W) and sup sup inf [lw—v|
0k jes WEE(M)WEW[
il =1

decay as (card(%;) — card(.%)))~°, provided all eigenfunctions are in the approxima-
tion class .75, see Section 3 for more details.

One subtle aspect are the requirements on the fineness of the initial mesh for the
optimality proof and the dependence of the bulk parameter on the cluster and its length.
This paper gives a detailed explicit analysis of all those sufficient conditions for optimal
convergence in Table 1.

Although the analysis in this paper is concerned with the eigenvalues of the Laplace
operator for the sake of exposition, it can also be applied to more general symmetric
second-order elliptic eigenvalue problems of the form div KDu 4 cu = Au with a sym-
metric uniformly positive definite diffusion matrix field K and a nonnegative coefficient
function c, provided the coefficients are essentially bounded and resolved by the initial
mesh.
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2
(H1) | Mj:= sup ax ax — % < Section 2.3
ZeTie(l.. Paim(vi) 1\ R WJ—M
(H2) H§S32cdrel(1+MJ) <1 Section 4
(H3) | €:=maxjeslluj— Apujl| </1+(2N)~"1 -1 Lemma 5.1
1—
(H4) | (14M))2(BCyHE* +2BC2,HZ) < min { gt } /4 | Prop. 6.3

Table 1: Overview of assumptions on the initial mesh-size and their first occurrence in
this article. B acts as upper bound for all (4; | j € J).

The remaining parts of this article are organised as follows. Section 2 introduces
the eigenvalue problem and its finite element discretisation. The adaptive algorithm
and the optimality result based on the concept of approximation classes is introduced
in Section 3. Sections 4-5 introduce the theoretical error estimator and prove equiva-
lence to the computable error estimator. Section 6 establishes the contraction property;
the proof of optimal convergence rates is given in Section 7. The numerical tests of
Section 8 and the comments of Section 9 conclude the paper.

Throughout this article, standard notation on Lebesgue and Sobolev spaces and
their norms is employed; the L? scalar product is denoted by (-,-) 2(Q)- The d-dimens-

ional Lebesgue measure of a measurable set @ C R? is denoted by meas(w). All
estimates are explicit with respect to the initial mesh-size Hy, the eigenvalues (A¢)ies
and the separation constant M;, which depends on the cluster J. All other constants may
depend on the domain Q, the space dimension d or the angles of the initial triangulation
o, they do neither depend on the mesh-size nor on the eigenvalue cluster.

2 Preliminaries

This section introduces the finite element discretisation of the eigenvalue problem
along with the necessary notation for simplicial triangulations and discrete spaces.

2.1 Triangulations and Finite Element Spaces

Let 9 be a regular simplicial triangulation of Q in the sense of [Ste08], i.e., UF = Q
and any two elements of .7 are either disjoint or share exactly one k-dimensional face
for k <d (e.g., a vertex or an edge). Throughout this paper, any regular triangulation
of Q is assumed to be admissible in the sense that it is regular and a refinement of
9 created by the refinement rules of [Ste08]. The set of all admissible refinements is
denoted by T. Given a triangulation .7; € T, the piecewise constant mesh-size function
h := hg, is defined by hy|r := hr := meas(T)'/¢ for any simplex T € .7}.

The set of (d — 1)-dimensional hyper-faces (e.g., edges for d = 2 or faces for d = 3)
of . is denoted by %, while the interior (d — 1)-dimensional hyper-faces are denoted
by Z(Q). Let every F € .%; be equipped with a fixed normal vector vr. Given
F € 7(Q), F = 9T N JT- shared by two simplices (Ty,7_) € 7,2, and a piecewise
smooth function v, define the jump of v across F by

Vg = vir, —vlr.

For a simplex T, the set of (d — 1)-dimensional hyper-faces belonging to T is denoted
by Z#(T).
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The set of piecewise polynomial functions of degree < k with respect to .7} is
denoted by B;(.7;). The L? projection onto B (.7;) is denoted by H’f% =TI, The
conforming finite element space of piecewise affine functions is defined as

Vi :=V(7) :=P1(7) NHy (Q).

2.2 The Eigenvalue Problem and its Discretisation
Let V := H} (Q) be equipped with the scalar products

a(v,w) = (Dv,Dw)2q) and  b(v,w) = (»,W)12(q)

and induced norms ||v|| := a(v,v)"/? and ||v|| := b(v,v)/2. The Laplace eigenvalue
problem seeks eigenpairs (4,u) € R x V with |lu|| = 1 such that

a(u,v) =Ab(u,v) forallveV. 2.1

The finite element discretisation based on a regular triangulation .7 seeks discrete
eigenpairs (A¢,up) € R x V; with |lug]| = 1 and

aug,ve) = Ab(ug,ve) forall vy €V,. (2.2)

It is well known [Eval0] that (2.1) has countably many eigenvalues, which are real and
positive with 4o as only accumulation point. Suppose that the eigenvalues and the
discrete eigenvalues are enumerated

O<)~1§)~2§... and 0<A’[,1§"'§2'é/,dim(w)'
Let (u1,uz,u3,...) and (ug1,up2, - .-, Uy gim(v,)) denote some b-orthonormal systems of
corresponding eigenfunctions. For a cluster of eigenvalues A, 1,..., A,y of length

N € N define the index set J := {n+1,...,n+ N} and the spaces W := span{u;} jes
and W, := span{uy ;} je;. In the situation of a true eigenvalue cluster, the eigenspaces
E(A;) may differ for different j € J. Itis assumed that in the eigenvalue cluster multiple
eigenvalues are not split, in other words it holds that

2frz < zfnJrl <. < anrN < )LnJrNJrl

(with the convention Ay := 0). The cluster is contained in a bounded interval [A, B]. In
the present case of nested conforming finite element spaces, A and B can be chosen as
A= Apt1, B:= A 4N with respect to the coarse initial triangulation .%. The min-max
principle [SF73] assures that the discrete eigenvalues of the cluster will be contained
in [A, B] for all .7, which are refined from .%.

2.3 Approximation of Eigenvalue Clusters and L> Control

The a priori analysis of [SF73, BO91, Bof10] shows that the eigenvalues converge
on a sequence of uniformly refined triangulations. In particular, for a sufficiently fine
initial mesh-size Hy < 1, the quantities 4,41 — Ay, and Ay, N1 — Angn are positive
and uniformly bounded from below by some positive real number. Hence, there exists
a separation bound

A
Mj := sup ma k

X max —— < (HI)
ZreT je{l.dim(VON kel |Agj— A
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Note that upper bounds for M; can be computed by employing the recent results of
[CG14,LO13] on guaranteed lower eigenvalue bounds which allow to compute a lower
bound for A. Let Gy : V — V; denote the Galerkin projection, i.e., for any w € V the
function Gyw satisfies

a(w—Gyw,vg) =0 forallv, €V,.
Let P, denote the L? projection onto W, and define
A/j = A% =P oGy. (2.3)

For any eigenfunction u € W, the function A,u € W, is regarded as its finite element ap-
proximation. This approximation does not depend on the choice of the discrete eigen-
functions in the computation. Notice that Ayu is neither computable nor necessarily an
eigenfunction.

The following lemma provides an L? error estimate for Aju. The proof follows
immediately from Proposition 3.1 of [CG11] and the Aubin-Nitsche duality technique
[Bra08] for the boundary value problem.

Lemma 2.1. Provided the condition (H1) holds true, any eigenfunction u € W with
||ue]] = 1 satisfies

HAgu—GguH SMJ”M—G/MH 2.4)
and

([ — Poul| < e — Agul| < (14 My)CregHpllu — Geul| < (14 My)CregHplu— Agull
(2.5)

for a constant Creg and a parameter 0 < s < 1 that describes the elliptic regularity of
the function u.

Proof. The first stated inequality (2.4) is proven in [CG11, Proposition 3.1]. The fact
that Pyu is the L? best-approximation of u in W, proves ||u — Pu|| < ||u— Agul|. The
triangle inequality and (2.4) prove ||u— Agu|| < (14+M;)||u — Gul|. The Aubin-Nitsche
duality technique therefore leads to some constant Creg such that

[l = Agu]| < (1+My)CregHp | = G|

The last inequality in (2.5) follows from the fact that Gyu is the best-approximation of
u in V; with respect to the energy norm ||-|||. [ |
The following algebraic identity will be frequently used in the analysis.

Lemma 2.2. Any exact eigenpair (A,u) € R X V satisfies
a(Apu,vp) = Ab(Pu,vy)  forall vy € V.
Proof. The representation of Asu in terms of the orthonormal basis (uy,;) jcs reads as

A=Y oyug; with o; = b(Geu,uy ;) forall jeJ.
jeJ

The symmetry of a and b proves for any j € J that

aj =b(Gou,uy ;) = ijla(Ggu,ug,j) = lgjjllb(u, ugj)-
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Therefore, the discrete eigenvalue problem reveals
a(Agu,ve) =Y oA ib(ugj,ve) = A Y b(b(u,ug j)ug j,ve) = Ab(Pu,ve).
jeJ jeJ

The analysis of this paper is merely concerned with an approximation of the eigen-
functions. The following consequence of [KO06, Corollary 3.4] gives a bound on the
eigenvalue error. Recall that the eigenvalue cluster is contained in the interval [A, B].

Proposition 2.3. There exists some constant C such that for any j € J the eigenvalue
error is controlled as

M,g’j—ﬁ,ﬂ Sa,[_j(l +MJZBZC) sup inf |||W—V[|||2.
weE(4;) VeV
fiwll=1

3 Adaptive Algorithm and Optimality Result

This section introduces the adaptive algorithm AFEM and states the optimality result,
which is based on the concept of approximation classes.

3.1 Adaptive Algorithm

For any simplex T € .9, the explicit residual-based error estimator from [DPRO3]
consists of the sum of the residuals of the computed discrete eigenfunctions (uy ;) jey,

ni(T) =Y, (h%||7ww,j||,2_zm + Y hrl[Dulr VF||iz(F)> :

jeJ FeZ(T)NF(Q)

Let, for any subset " C .7,

ni(A) =Y, ni(T).
Tex

The adaptive algorithm is driven by this computable error estimator and runs the
following loop

Input. Initial triangulation %, bulk parameter 0 < 6 < 1.

for (=0,1,2,... do

Solve. Compute discrete solutions (A j,us ;) jes of (2.2) with respect to .7;.
Estimate. Compute local contributions of the error estimator (17(T)) 7
Mark. The Dorfler marking chooses a minimal subset .#; C .7; such that

on; () < i ().

Refine. Generate a new triangulation 7 as the smallest admissible refinement of .7;
satisfying .#; N ;41 = 0 by using the refinement rules of [Ste08] (see Figure 1 for
d=2). end do

Output. Sequences of triangulations (.7;), and discrete solutions ((M ol j) je j) -
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N A A

Figure 1: Possible refinements of a triangle T in one level in 2D. The thick lines indi-
cate the refinement edges of the sub-triangles as in [BDDO04, Ste08].

3.2 Approximation Classes

Let, for any m € N, the set of triangulations in T whose cardinality differs from that of
Jp by m or less be denoted by

T(m):={7 €T |card(.7) —card(Fp) < m}.
Define the seminorm

o 0
U| gy = supm” _inf 1—1IT5)Du
|ua] SR 7€T<m)”( 7 )Dul|

and the approximation class
g ={vEV ||V <o}.

The set <7 is a true approximation class which does not depend on the finite element
method and instead concerns the approximability of the gradient by piecewise constant
functions. The following alternative set, also referred to as approximation class, will
turn out to be more suitable for the analysis

Ay :={u €V |uis eigenfunction and |u] o < o0}

for
6
ul = supm® inf ||lu—Azul|.
g 2= supm® inf|fu—A7ul
Subsection 3.3 will establish the equivalence of those two approximation classes in the

sense that any eigenfunction u € W satisfies u € o7 if and only if u € <7}

3.3 Equivalence of Approximation Classes

The following best-approximation result generalises [CPS12, Gud10] to eigenvalue
problems.

Proposition 3.1 (best-approximation result). There exists a constant Cy, such that,
provided the condition (H1) holds, any eigenpair (A,u) € R x W with ||u|| = 1 satisfies

llse — Agul| < Coa(1+ (1 4+ My)AHg) (14 AHg)||(1 = TI9) Dul .
Proof. Let vy := Gou— Agpu. Lemma 2.2 and the eigenvalue problem for « lead to
a(Ggu —Agu,w) = lb(u — Pgu,w) <A Hu — Pg” ||V[||

Hence, the Friedrichs inequality with constant Cg proves ||Gou — Agul| < ACg|lu —
Pyu||. This and the triangle inequality lead to

e — Actl] < [l — Goul] + ACllu — Pru]. G.D)
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Since P is the L? projection, it holds that ||u — Pyu|| < ||u — Ayul|. Therefore, (3.1) and
Lemma 2.1 prove

lloe = Aguf] < (14 HoA (1 + M) Creg Cr) [ — Geul|-

The comparison results of [CPS12, Gud10] prove the existence of a constant Ceomp,
which only depends on the shape-regularity in T, such that

e = Geull < Ceomp (|| (1 —TT9) Dt + [ (1 — T17) A}

(Note that the analysis of [CPS12, Gud10] is carried out for d = 2. The generalisation to
d > 3, however, is immediate.) The remaining part of the proof bounds the oscillation
term ||hy(1 —TI9)Au|. Let T € Z and let by € H}(int(T)) N*By41(T) denote the
bubble function on 7' with ||bz||;=r) = 1. Let IT; : L*(Q) — B1(7) denote the L2

projection onto piecewise affine functions. Define W7 := b7I1} (Au). The arguments of
[Ver96] with the equivalence constant Cequiv yield

i 2l 2 ) < Cequiv (B7b(Au, wr) + [lhr (1 =) (Au) | 727))- (B2)

Since H?Dl// = 0 by the divergence theorem, the eigenvalue problem implies

b(Au, yr) = (Du,DYr)12(0) = (1 = T19) D, DYT) 12
This and an inverse estimate || Dyr [|;2(7) < Cihy! || wr l22(r) and ||b7 || =(r) = 1 prove

b(Au, yr) < Ciny | (1= T12)Dutll 2 7 ' TI (An) [ 127
The second term of (3.2) can be bounded as

[[Ar(1 _Hé)()“”)”]}(T) < whpA(1- H(z?)D”HLZ(T)

for the constant k¥ from the error estimate for the nonconforming *J3;-interpolation

[CG14]. ]

3.4 Optimal Convergence Rates

This subsection presents the optimality of the adaptive algorithm. The proof will be
given in Section 7.

Theorem 3.2 (optimal convergence rates). Provided the bulk parameter 60 < 1 is suf-
ficiently small and the initial mesh size Hy satisfies the conditions (H1)-(H4) of Ta-
ble 1, the adaptive algorithm computes triangulations (), and discrete eigenpairs
((),(;7 ol j) je ]) , with optimal rate of convergence in the sense that, for some constant

Copt;

1/2

1/2
(leluj —ij'llz) < Copi(card(7) —card(%)) ° <Z|“j|i/é>
jel

jer

Propositions 2.3 and 3.1 imply the following immediate consequence.
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Corollary 3.3. Under the conditions of Theorem 3.2, the adaptive algorithm computes
triangulations (J;)¢ and discrete eigenpairs ((M’j, I/tg’j)je])é with optimal rate of con-
vergence in the sense that, for all k € J,

|3~k—lé,k|)]/2

+sup sup inf |||W—V[|||
Aok

JeT weE(a;) veEWe
[wll=1

A1+ M2B2C)™ 1/2<

1/2
< 2Cwa(1+ (1+My)BH)(1+ BHZ )Cop(card(J}) — card( %)) ~° <Z uj|b2%> .
jel

Proof. The proof follows from Theorem 3.2 together with Propositions 2.3 and 3.1 and
the observation that

sup sup 1nf |||wng|||2<7L sup sup 1nf H|W*VfH|2

JEI weE(A) Ve Jel wek(aj) VW
llwil=1 [Iwll=1
where A, = sup, .y (IIv][?/[lIv[l[*) acts as the square of the Friedrichs constant. [ |

4 Theoretical Error Estimator

In order to compare two finite element solutions on different meshes, the analysis relies
on a theoretical, non-computable error estimator that does not depend on the choice of
the discrete eigenfunctions. Given an eigenpair (A,u), the error estimator includes the
elementwise residuals in terms of Pyu and Ayu. More precisely, define, for any T € .7,

uF (T, A,u) = hy ||)*P/”HL2 Z hT||[DAW]F'VFHiZ(F>
Fe,@(r)m,%(sz)

and, for any subset #" C .7,

W2 Agg) = Y BT 2pu) and p2() = Y 2 (A Aguuy).
Tex jeJ

The theoretical error estimator satisfies the following discrete reliability.

Proposition 4.1 (discrete reliability). Under the assumption (H1) there exists Cgre|
solely dependent on 9y such that any discrete eigenpair (A,u) € R x W with |ju|| =1
satisfies

Aot — Al? < Coy (WZ(«%\«%WJW)+H§S7LZ(1+M1)2||IM—AMIIIZ>~

Proof. Let @y := Apymit — Agu € Vippyy,. It is well-established [SZ90] that there exists
a quasi-interpolant ¢, € V, with quasi-local approximation and stability properties

1 @m0l 27y + 1PPell 27y < Cotab ID Pl 2oy

for any T € .} and its patch @y, which is the interior of the set U{K € % |KNT # 0}
consisting of those simplices that meet 7. Moreover, following [SZ90], the function
@y can be chosen in such a way that ¢; = @/, holds along all (d — 1)-dimensional
hyper-faces in the set .%#; N .%/,,,. Elementary algebraic manipulations lead to

a((AZ+rn - Ag)u, (PZ-&-m) = a(Ag+,nu, (Pé-&-m) - a(/\gu, (PZ) + a(AZW @ — (Pl+m)'
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The arguments of [Ste07, Theorem 4.1] and the aforementioned properties of ¢, lead
to some mesh-size independent constant C; such that

a(Aw’(P[_(P”"’Kq( Lk hT'[DAMF-vFIIiz<F>> 9csml.
TEZ\‘ZerFe?(T)m?[(Q)

Here, the fact that ¢y = @, holds along all hyper-faces of .%, N .%;,,, was used to
obtain only the error estimator contributions of the set .7} \ 7}, on the right-hand side.
Lemma 2.2 and the approximation and stability properties of the quasi interpolation
imply for the constant Cg of the Friedrichs inequality that

a(Agmit, @rim) — a(Agut, @r)

= A(b(Prymtt, Prm) — b(Pru, 9r))

= A (b(Pry it — Pott, e m) + b(Pott, Qo m — 1))

< max{Cr, Cuan} (A1 Prsmte— Pott| + APl 2070 7,1 ) 19 m -
The triangle inequality reveals

| Pramut — Pout|| < ||t — Pooput| + || — Pyue]]. 4.1)
Lemma 2.1 proves that
[t = Prmul| < [l = Apmull < (14M;)CregH ||t — Gormull-

An analogous argument for the second term of (4.1) and the relation V; C V;,, con-
clude the proof of the proposition. [ |

Proposition 3.1 shows that Agy,,u — u with respect to |||-|| on a sequence of tri-
angulation such that ||/ || =(q) — O for m — . Hence, Proposition 4.1 proves the
reliability estimate

2w~ Aull* < Clrer (7 (T2, A1) + HG AP (14 My )2 lu— Agu|?) -
Provided the initial mesh is sufficiently fine in the sense that
HPA?CLa(1+M))* < 1, (H2)
the reliability reads as
Il = Agul* < Caraipi? (72, A, w). 4.2)
The efficiency
2110( T3, Ay u) < Cer (14 AH) ™ (14+M;)Creg) [t — Aul

follows from the standard arguments of [Ver96], cf. the proof of Proposition 3.1. The
assumption (H4) from Table 1 implies

ﬂ[(%,z,,u) Sceff|||u—/\€”|” (43)

Remark 4.2. In the analysis of this paper, the cluster-width (B — A) does not enter the
estimates of Proposition 4.1 and inequality (4.2) as an additive constant. Lemma 2.2 is
the technical tool that allows the ‘cluster-robust’ (discrete) reliability. Correspond-
ing error estimates in the present literature on multiple eigenvalues, e.g., [DHZ13,
eqn. (3.17)], are only valid in the case of one multiple eigenvalue, that is in the case
that A,y 1 = = Apyn.
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S Equivalence of Error Estimators

This section establishes the equivalence of the local error estimator contributions of the
practical and the theoretical error estimator.

Lemma 5.1. Suppose Hy < 1 is small enough such that

8::majx||uj—A;ujH <4 /14+(2N)"1 -1 (H3)
je

holds. Then, both (Pguj)jej and (AWJ')/'EJ form a basis of Wy. For any wy € Wy with
lwell = 1, the coefficients of the representation wy =Y. jc; BjPruj and we =Y. je; ViAot

are controlled as
max{ Y IB15 Y lyl?p <2+44N (5.1)
jeJ jeJ

Sfor N = card(J).
Proof. The proof is carried out for Ay only. Analogous arguments and max{||u; —
Puuj|| | j € J} < € yield the result for P;.

For any (j,k) € J? the triangle inequality plus |[u;|| = 1 and the definition of &
reveal (8, denotes the Kronecker 9)

‘b(/\guj,/\guk) — 5jk| = |b(Aguj — uj,Aguk) —|—b(uj,/\guk —uy)|
< e(1+[|Agul) (5.2)
< E(2+4 ||lup — Apui]]) < €(2+€).
For any j € J it follows from (H3) and (5.2) that
2N —1
2N

b(Aguj, Aguj) 2 1—€(2+€) =
and
N-—1

Y (bl Ag)| < (N—1)e(2+2) < .

keN\{j}
Thus, the Gershgorin theorem implies that all eigenvalues of the matrix

(D(Aguj, Aewr)] ;e

are positive and, hence, (Au;);cs is a basis of W,. Let w, € W, with ||w,|| = 1 and
wy =Y jes YiAeu; for real coefficients (y; | j € J).

For any k € J it holds that
b(Agug,we) = Y ¥ib(Agu, Aguy) = Y+ Y ¥ (b(Agug, Agu) — i)
jeJ jeJ

Hence, the triangle and Young inequalities together with (5.2) and |[Aguu| < 1+ ¢€
prove

2
nl* < <|b(AZ“k,WZ)| + Y 1Yl (Agur, Aguj) — 5jk|>
jes
< 2|b(Agug, w)[*+2N Y |9 P 1b(Aguy, Aguj) — 8|
jes
<2(1+e)*+2N(e(2+¢))” Y Inl*
jes

11
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Summation over k € J yields

Y Inl> <2N(1+e)? + 2N (e(2+¢))* Y yil*
keJ jeJ

Since €(2+¢) < (2N)~! by assumption (H3), it follows that

Y 171> <4aN(1+¢€)* <2+4N. [
jed

Recall that all eigenvalues in the cluster as well as their approximations are con-
tained in the interval [A, B] and therefore sup(; ;)2 4, "2 j < B/A.

Proposition 5.2 (bulk criterion). Suppose (H1) and (H3) are satisfied. Then, for any
T € 9, the error estimator contributions can be compared as follows

N=UY uf (T, A4,u;) < (B/A)*n; (T) < (BJA)* (2N +4N*) Y u7 (T, Aj,uj).  (5.3)
jel jeJ

Therefore, U7 (.#;) satisfies the bulk criterion
Ou (Tr) < ui (M)
for the modified bulk parameter
§:= ((B/A(2N>+4N%)) "0 <1, (5.4)

Proof of the first inequality in (5.3). Letk € J. For the volume term the expansion with
respect to the orthonormal basis (uy,; | j € J) reads Py = ¥ je; Qjug j with Y e ajg =
|| Pou||? < 1. Thus, the triangle inequality followed by the Cauchy inequality proves

2
1A Peug |72 ) < (Zlklajw,jﬂwr))

jer

< ;Llcz <Z 0‘?) Z”"‘é.j”]Z_z(T) < (B/A)2 Z”M.,jué.,j”izg)-

jeJ jes jel

An analogous expansion of the jump terms of Ajuy =Y je; Bjuy,; with real coefficients
Bj = b(Goug,uy ;) = /l[fj] Aicb(ug,ug ;) results in Zjejﬁjz < (B/A)?* and, thus, for any
hyper-face F € .Z(T),

DAl Ve gr) < (B/AY LDl Ve
je

Proof of the second inequality in (5.3). Let k € J. According to Lemma 5.1 (Pyu;) jes
is a basis of Wy and ugy = ¥ je; ¥;Pou; for coefficients (y; | j € J). The triangle inequal-
ity proves for the volume term

1A pieelFary = ek X ¥iPousl oy < (B/AY? (Z ﬁ) L 122

jeJ jeJ jeJ
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As proven in Lemma 5.1 it holds that ) ;c; yjz < (2+4N). Analogously, Lemma 5.1
shows that there exist real coefficients (6; | j € J) such that ugy = ¥ ;c; 8;Aeu;. For
any interior hyper-face F € .%;(Q), the triangle inequality leads to

|[Dueslr - Vel f2r) < (Z 5}) Y DA IF - VE( 72y

jeJ jeJ
Lemma 5.1 therefore proves

IDueslr - Vel < (24+4N) Y DA F - Ve[| . u
JjeJ

6 Contraction Property

This section presents the contraction property for a linear combination of error and
error estimator under the conditions (H1)—-(H4) of Table 1.

Proposition 6.1 (quasi-orthogonality). Let (A,u) € R x W with |u|| = 1 be an eigen-
pair of (2.1). Under hypothesis (H1) there exists a constant Cqo such that any F € T
and any admissible refinement I, € T satisfy

12a(tt — Ay mits Mgt — Age)| < ACqo (14 My )2H*|[lu — Agu]|*.

Proof. The eigenvalue problem (2.1) and Lemma 2.2 followed by the Cauchy and
Young inequalities show

a(u— Ayt Apot — Agit) = Ab(u — Pyt Apy it — Agut)
<Al = Prymta]]* + [ A mie = Au]*) /2.
The triangle inequality and Lemma 2.1 prove the result. [ ]

Proposition 6.2 (error estimator reduction for (). Provided the initial mesh-size H
satisfies (H1) and (H3), there exist constants 0 < p; < 1 and 0 < K < o such that
and its one-level refinement 7, generated by AFEM and any eigenfunction u € W
with ||u|| = 1 and eigenvalue A satisfy

ng+1(=%+1,k,u)
<Pt (o Asu) + K ([|Avru— Ag* + || o1 A(Prsyu — Pan)||?) .

Proof. The design of the error estimator /.L,?(ﬁbhu) allows the use of the standard
arguments of [CKNSO08, Ste07] to prove the result. ]

Proposition 6.3 (contraction property). Under the conditions (H1)-(H4) of Table 1
there exist 0 < py < 1 and 0 < B < oo such that, for any eigenpair (A,u) € R x W with
ul| =1, the term &} := uZ (T, A,u) + B||u— Agul|?* satisfies

‘g'[z_H < pr&} forallteN.
Proof. Throughout the proof, the following shorthand notation is employed

eq:=u—Nu, epp1 = u—Agyu,

”[2 = #52(%71714)7 “€2+1 = M22+1(‘%+17)L?u)'

13
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The error estimator reduction from Proposition 6.2 and elementary algebraic ma-

nipulations lead to

2 2
Bigr +Klllestll

< i + K (Jledl? +2alers1, (A = Avii)u) + HIA (P = Pul).

The quasi-orthogonality of Proposition 6.1 reads as
12a(ep1, (Arr1 —Ag)u)| < lCqO(1 +MJ)2H§S|”66H|2-
The triangle inequality and Lemma 2.1 lead to
H | A(Pryr = Poul® < 2(1+My)* A2 CogHg ™ (llecs 1[I + el )

The combination of the preceding two displayed formulas with (6.1) leads to
g+ K (1= (1M 2222 C2 HE Y e |2
< pip? + K (1 (14 M) (ACqoH + 222 CEHZY™) ) e

reg

For any 0 < & < 1, the reliability (4.2) bounds the right-hand side of (6.2) by

(p1 + SCHK (14 (1+ My P (ACqoHG +242ChHE ™)) | u?
+ K (14 (1+M))* (ACgoHg® +227CgHy ™)) (1= 8) lec|®
< p2 (U7 (A u, ) + Bl — Aul|*)

for B := K(1 — (1+M,)?2A%C2,H ™) and

reg

P 1= max { P14 8CG K (1+ (14+M))*(ACqoHG" +2A°Ch Hy ™)),

1+ (14 M;)*(ACqoHZ* +2A*C2,Hy ™) (- 5)}
1— (14 M;)222C2, HF '

reg

The choice of a sufficiently small Hy such that
. 1—p;
2 2s 2,2 2425
o Y 0
(1+M;)"(ACqoHy* +2A7CieoHy ™) <minq 1, —— 5 /4
¢ KCdrel

and § := 2(1+M;)*(ACqoHZ* +2A%CL,H ™) leads to p, < 1 and 0 < B < K.

reg

7 Proof of Optimal Convergence Rates

6.1)

6.2)

(H4)

This section is devoted to the proof of Theorem 3.2. While the results of the preceding
sections were stated for each eigenfunction u; € W separately, the optimality proof of
this section is concerned with the simultaneous error of all eigenfunction approxima-

tions. Consider

EF = ui () +B Y lluj— Aguj||* forall £=0,1,2,...
jeJ

14
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for the parameter 3 from Proposition 6.3. The proof excludes the pathological case
Eo =0. Choose 0 < T < ¥ ;c|uj|?, /E5. and set £(¢) := \/TE;. Let N({) € N be
minimal with the property

Y lujl2, < e(0)*N(£)*.
= °

The minimality of N(¢) (and the definition of £(¢) plus the contraction property from
Proposition 6.3 in the case of N(¢) = 1) proves

1/(20)
N(€)§2(Z|ujf%> e(0)~'/%  forall £ € Ny. (7.1)
jeJ

Let :?; € T denote the optimal triangulation of cardinality

card(7}) < card(%) + N(¢)

in the sense that the projection A= A% from (2.3) with respect to :?; satisfies
Yl — Aujl> < N@)TOY Jui 2, < () (7.2)
jeJ jeJ

The overlay %\ is the smallest common refinement of .7; and f?; and is known
[CKNSO08] to satisfy

o~ —_—

card(7;) — card(J}) < card(F;) — card(%) < N(¥). (7.3)

o~ —~

It is known that card(7; \ %) < card(.%;) — card(.7;). This and (7.1)—(7.3) lead to
e 1/(20)
card(.7; \ 7;) < N(¢) gz(Du,Eé) e(0)~1/o. (7.4)
jes
Let A := A%\ denote the projection from (2.3) with respect to @

Lemma 7.1. Under the assumptions of Table I there holds

Yl — Au|* < 2e(0)2. (7.5)
jels

Proof. Elementary manipulations and the quasi-orthogonality from Proposition 6.1 re-
veal for any j € J that

o — A1 = iy — Aot I — A — Aot I — 2a(ue; — Auey, A — Aay)
< (14 AjCo(1+M; )2 Hg) luj — Auj > = [l Aguj — Auj|.
This, the assumption (H4) and (7.2) lead to

Nl = AujlF <2 Y ey — Auj||* < 2e(0)*. L
JjeJ jeJ
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Lemma 7.2 (key argument). There exists Cy with
wi (7)) < Copi (T\ 70)
and therefore, by Proposition 5.2,
(7)) < C2(B/A) 2N + NN (T \ To) (7.6)

Proof. The quasi-orthogonality from Proposition 6.1 and the discrete reliability from
Proposition 4.1 plus (H2) and (H4) yield, for any j € J, that

et — A |* = 2a(u; — Aguej, At — Aguy) + [y — Agujl|* + (| Ague — Agues |
< luj — Ao |I? + A7 (1+M;)*Hg* (Coo +27 ' Cran) lluj — Acus |
+27 Chralif (T0\ T Ajyuj)
~ 1 B —~
< ety = Acul|* + 5 lluj = AP +27 Cara? (T0\ Tu A o).
Therefore, (7.5) implies
1 B —
5 Xl — A ||> < 26(0) +27 Chgh? (71 7).
jes
Let Ceq denote the constant of 227 < Cequu7(Z7) (which exists by reliability). The
efficiency (4.3), the definition of £(¢) and the preceding estimates prove

1 _ —
S Cait M7 (F7) < 28(0)* +27' Chrat (1 77)
< TCequ(T) +27 ' Rt (T0\ 70).

Define C; := (27! Cif — ©Ceq) ' €2, /2, Which is positive for sufficiently small choice
of 7. u
The finish of the optimality proof follows the arguments of [CKNSO08, Ste07].

Lemma 7.3 (finish of the optimality proof). The choice
0<6<1/(C(B/A)*(2N*+4N?))
implies
1/2 12
(e}
(card(77) — card(%)) (leluj —Aﬂ‘sz) <C(o) ( Zlujﬁfé)
JjeJ jeJ
for a constant C(0).

Proof. The marking step in the adaptive algorithm selects .#; C 7; with minimal car-
dinality such that 607 (.7;) < n7(.#;). Lemma 7.2 and

0 < 1/(C2(B/A)*(2N* +4N?)) (7.7)

imply that also 7 \ :%\ satisfies the bulk criterion. The minimality of .#, and (7.4)
prove that

. 1/(20)
card(A) < card( T\ F;) < 2(Z|”J'i4) T_l/(m)EZI/G-

JjeJ

16
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It is proven in [BDDO04, Ste08] that there exists a constant Cgpy such that

-1
card(.7;) — card(%) < Cppy Z card(.#},)
k=0

) )/ 1/(2 )é_l 1/o

—1/(26 _—

§2CBDV(Z|MjMé> T Z"‘k .
jel k=0

The contraction property from Proposition 6.3 implies E% < péf”’E%l for0 <m < /.

Since p» < 1, a geometric series argument leads to

{—1 (-1
Y= g, 7y —j _

g, l/ogiy /o p2( j)/(20) SC« 1/Gp21/ (20) /(l_pzl/(Zcr)) )
Jj=0 Jj=0

The combination of the above estimates results in
card(.7;) — card(%)

1/(20)
SZCBDV<Z|ujli4> o 1/(20)g 1/ 1/ (20) /(171)21/(26))_

jel

The equivalence of & with the error ¥ j|[Ju; — Agu;||* concludes the proof. [ |

8 Numerical Examples

This section presents three numerical tests on non-convex domains where not all eigen-
functions have full H2-regularity. All adaptive computations are based on the bulk pa-
rameter 6 = 0.1. All convergence graphs are logarithmically scaled, the error quantities
are plotted against the degrees of freedom.

8.1 Simultaneous Approximation on a Symmetric Geometry

Let the square domain with four symmetric slits be defined as

B v{(0.5,0), (1,0)} Uconv{(0,0.5), (0,1)}
Q=(-11)"\ ( Geone{(.0.5.0). (~1.0)] Uconv{(0.0.8),(0, ~1)} ) :

The symmetry of the domain shows that there are simple as well as multiple eigenval-
ues. The following close approximations of the first 12 eigenvalues were obtained by
a3, finite element method on uniform meshes and Aitken extrapolation

A =10.1474 A, =17.6625 A3 =17.6625 A4 =19.7392
As =26.1018 Ag=38.3491 A7 =38.3491 Ag =46.5539
A9 =49.1496  Aj0 =49.1496 A1 =49.3480 A, = 49.3480.

Figure 2 displays the convergence history of the eigenvalue errors under uniform
mesh-refinement. The sub-optimal convergence rate of several eigenvalues suggests
that some of the eigenfunctions are singular. The simultaneous adaptive approximation
with J = {1,...,12} and the bulk parameter 6 = 0.1 leads to the optimal convergence
rates displayed in Figure 3. Figure 4 displays the efficiency index, which describes the
ratio of the squared error estimator and the sum of the relative eigenvalue errors via

A
effind : —m/z hi

jes M o

The values for the efficiency index displayed in Figure 4 range from 30 to 60.

17



AFEM for Clustered Eigenvalues

|
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—— Ag,4— A4 uniform
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—— )\[;6—)\6 uniform 100
—— /\[;7—/\7 uniform
—H&— Ag,8 —Ag uniform
- +- Ag,9g—Ag uniform

Ll

1071 |
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10° 10° 10* 10°
ndof

Figure 2: Convergence history on the square with symmetric slits under uniform mesh-
refinement.

FT T T T T T T T T T T T T T T T T T T
10> £ .
+AZ’1—A1 adapt = B
Ae—Ang)\Q adapt - —
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**;)‘Z,E)*)‘S adapt [ 1
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—%— X\g 7— X7 adapt = B
—F— Ay g—\g adapt r 1
’ 1071 =
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— A— Xp 11—Xpq adapt [ h
’ 1072 E
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1072 | .
= 1 E
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ndof

Figure 3: Convergence history on the square with symmetric slits under adaptive mesh-
refinement based on J = {1,...,12} and 6 = 0.1.
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50 |- —
—+— effind uniform
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30 [~ —
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Figure 4: Efficiency index for the symmetric slitted square domain.

——-——v———~|———+—————y_0.501

L|¢y_(),5

x=—0.499 x=0.5005

Figure 5: Square domain (—1,1)? with perturbed slits and coarse initial partition with
5 interior vertices.

8.2 Narrow Cluster on a Perturbed Symmetric Geometry

This example studies a perturbation of the geometry of Section 8.1 displayed in Fig-
ure 5. The second and third eigenvalues of the Laplacian on this domain are approxi-
mated by a 3, FEM and the Aitken extrapolation as

Ay = 17.6557 Az = 17.6660.

The convergence history based on the coarse initial triangulation of Figure 5 is dis-
played in Figure 6. Uniform mesh refinement leads to a suboptimal convergence rate.
The simultaneous adaptive approximation based on J = {2,3} leads to the optimal con-
vergence rate. The choice of J = {2}, that is marking only with respect to the second
computed eigenfunction us, yields a large pre-asymptotic effect up to 4 x 10° degrees
of freedom where the adaptive algorithm is not significantly better than uniform refine-
ment. This behaviour can —at least on a heuristic level- be explained from the plots of
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—+— Ag,p—Ag adapt J={2}
—A— X o — A2 adapt J={2,3}
—O— Ay o — A2 uniform 10—1
—4— Xp 3—Ag adapt J={3}
—— >\L37>\3 adapt J={2, 3}
—90— Ag,3—Ag uniform 10,2

1073

T T B T WA 1
10! 10? 10® 10* 10° 10°
ndof

Figure 6: Convergence history on the square with perturbed slits. Adaptive mesh-
refinement is based on J C {2,3}. The initial triangulation .7 has 5 degrees of freedom.

discrete eigenmodes and the adaptive meshes. The second eigenfunction u; shows its
significant singularities at different slit tips than the third eigenfunction u3 (this follows
from the axial symmetry in the non-perturbed case). Figure 7 displays (close approx-
imations to) the eigenmodes u; and u3. Figure 8 displays the eigenmodes computed
by the adaptive algorithm for J = {2}. The initial triangulation does not resolve the
eigenvalue cluster in that the computed eigenfunction u,, does not capture the shape
of up. Accordingly, the AFEM refines near those reentrant corners where the error es-
timator contributions of u,, are large, but where u; is smooth. This can be seen in the
adaptive mesh of Figure 9 for J = {2}. This yields only little improvement for the ap-
proximation of u,. The eigenvalue cluster is only resolved when the global mesh-size
is sufficiently small, which requires a large amount of iterations in an adaptive algo-
rithm. In contrast, the adaptive algorithm for J = {2,3} refines at all reentrant corners,
even if the eigenvalues in the cluster are not well-separated on the initial mesh. This
explains why this algorithm is more robust in the sense that it only requires separation
of the cluster from the remaining spectrum, but no resolution within the cluster.

On a finer initial mesh (after one red-refinement) with 41 degrees of freedom, this
effect is no more present and the adaptive algorithm appears optimal for any choice of
J C{2,3} as displayed in the convergence history of Figure 10.

8.3 Multiple Eigenvalue on a Symmetric Geometry

The first five eigenvalues on the slitted squared domain

- nv{(0.15,0), (1,0)} Uconv{(0,0.15), (0, 1)}
Q= (‘1’”2\( Doy {(—0.13.0(~1.0)} Ucomv{(0, ~0.15). (0, 1)} )

displayed in Figure 11 are approximated by a *J3; FEM and Aitken extrapolation as
A =19.6518 A, =19.7198 A3 =19.7198 A4 =19.7392 A5 =48.4497.
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Figure 7: Approximation of the eigenmodes u, and u3 on the perturbed slit domain on
a uniform mesh with 16 001 degrees of freedom.

PPN N
i 7,‘4’#4&‘ YA A
0 ! N 0 N
NS R NN iy
RN N\,
RN \ \Wﬁi;“ﬂ:ky/y/ﬂé\ S
B K \ &i%'v’;)'?,{f’ "
‘ » LS .

Figure 8: Adaptive approximation of the eigenmodes u, and u3 on the perturbed slit

domain, J = {2}, 1 085 degrees of freedom, level 30, from initial triangulation .7 with
5 degrees of freedom.

Figure 9: Adaptive meshes for the perturbed slit domain from initial triangulation %

with 5 degrees of freedom. Left: J = {2}, 1085 degrees of freedem, level 30. Right:
J =1{2,3}, 1056 degrees of freedom, level 27.
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Figure 10: Convergence history on the square with perturbed slits for adaptive mesh-
refinement based on J C {2,3}. The initial triangulation .7 has 41 degrees of freedom.

Figure 11: Square domain (—1,1)? with symmetric slits of length 0.85 and coarse
initial partition with 5 interior vertices.

The symmetry of the domain shows that the second eigenvalue has indeed multi-
plicity 2. The first four eigenvalues are close to 27> which would be the first eigenvalue
on each of the four sub-squares in the case of full decoupling. Figure 12 displays the
convergence history of the first four eigenvalues under uniform mesh-refinement. The
FEM approximation of the multiple eigenvalue A, = A3 for uniform and adaptive mesh-
refinement results in the convergence history of Figure 13. One observes that marking
with respect to J = {2,3} leads to a kink in the convergence history of 4,3 up to 3 x 10*
degrees of freedom. An explanation for this behaviour can be given from the adaptive
mesh in Figure 14 (left): The discrete eigenvalues A5, A3 are not well-separated
from A, 4 and the discrete eigenfunctions uy, and uy 3 lead, similar to the example in
Subsection 8.2, to an inappropriate adaptive mesh. The simultaneous marking with
respect to the cluster J = {2,3,4} leads to the optimal convergence rate which can be
observed starting from 100 degrees of freedom. A typical adaptive mesh is displayed
in Figure 14 (right).
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10t

10°

—— Xy, 1 — X1 uniform 10~¢
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10? 10° 10* 10° 10° 107
ndof

Figure 12: Convergence history on the square with symmetric slits of length 0.85 for
uniform mesh-refinement.

102

10t

—&— Xy 2 —Ag uniform
—o— /\[;3—/\3 uniform 10°
—A— >\5727>\2 adapt J={2, 3}
—+— X323 adapt J={2, 3}
—sk— Ag o —Ag adapt J={2, 3, 4} 107!
—— >\2737>\3 adapt J={2, 3,4}

Ll vl

1072
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L

O A A A \HHH} Ll 1
10' 10? 103 10* 10°
ndof

[T

Figure 13: Convergence history on the square with symmetric slits of length 0.85 for
adaptive mesh-refinement based on J C {2,3,4}. The initial triangulation % has 5
degrees of freedom.
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Figure 14: Adaptive meshes for the symmetric domain with slits of length 0.85 from
initial triangulation .7 with 5 degrees of freedom. Left: J = {2,3}, 4543 degrees of
freedem, level 49. Right: J = {2,3,4}, 4496 degrees of freedom, level 47.

9 Conclusions

()

(b)

()

(d)

This paper reduces the usual assumption of sufficiently small Hy to the four con-
ditions displayed in Table 1. While the constants Cyyel, Cqo, Creg can (in principle)
be computed at least on simple domains with structured initial meshes, and con-
dition (H1) can be verified a posteriori with the methodology of [CG14, LO13],
sufficient criteria to verify condition (H3) are not known.

In particular for coarse initial triangulations, the simultaneous approximation
by the algorithm of Section 3 seems to be superior compared to the use of an
adaptive scheme for each eigenvalue separately, even if all eigenvalues on the
continuous level are simple: While the use of a coarse initial mesh in the example
of Subsection 8.2 with the latter strategy leads to a wide pre-asymptotic regime,
the simultaneous approximation produces optimal rates which are observed in
Figure 6 even for less than 100 degrees of freedom.

The choice of the bulk parameter 6 = 0.1 in the experiments leads to optimal
results. From the numerical tests one cannot observe a different behaviour than
in the case of a linear PDE although (7.7) appears to be a severe (theoretical)
restriction on the bulk parameter which scales badly with the size of the cluster.
The pre-asymptotic regime, however, may be large as seen in the experiment
of Subsection 8.2. That experiment and the heuristic explanation suggest that an
improvement of this pre-asymptotic behaviour is rather achieved by a finer initial
mesh-size than by a smaller bulk parameter.

It is evident from the convergence history plot in Figure 6 that the initial separa-
tion of the eigenvalue cluster has a strong influence on the quality of the adaptive
approximation. The critical quantity is the separation of the cluster from the re-
maining spectrum and not a full resolution of the multiplicities within the cluster.
The separation of the cluster is a more relaxed condition than the separation of a
single eigenvalue. Accordingly, the simultaneous marking strategy yields better
results. The further assumptions on sufficiently small initial mesh-sizes seem-
ingly indicate that a uniform refinement might be competitive with an adaptive
mesh-refinement at least in a large pre-asymptotic regime. This is indeed untrue
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as seen in the numerical examples for simultaneous marking. While the remain-
ing theoretical conditions on the initial mesh-size are vital for the analysis, the
numerical tests for the simultaneous marking strategy yield optimal results in all
examples.

The optimal convergence rates proven in this paper are of asymptotic nature and
do not quantify the pre-asymptotic range. The results of [GMZ09] state that for
any arbitrarily coarse initial mesh % there is convergence towards some eigen-
pair and the global mesh-size |||[;=(q) — O tends to zero. The combination
with the results of this paper implies that at some point the global mesh-size is
small enough to allow for the optimal convergence rate. The quasi-optimality
results in this paper, however, cannot dispense with the restrictions on the initial
mesh-size because the involved constant (e.g., Cop in Theorem 3.2) has a univer-
sal character in that it only depends on the domain and the shape-regularity of
the triangulations. Without any restrictions on the mesh-size one also eventually
obtains the optimal convergence rate, but with an unquantified constant that may
be sensitive with respect to the eigenvalue of interest or the angles in the initial
triangulation. Furthermore, it is clear that the separation constant M; heavily de-
pends on the definition of the cluster J and the numerical experiments show that
the separation has influence on the width of the pre-asymptotic range.

The extension of the present analysis to higher-order methods based on 3, poly-
nomials with k£ > 2 remains as an open question. The volume contribution of
the error estimator on a simplex 7" reads as || Ay, jur,j + Auy jl| ;2 (7). The proof of
equivalence of this term to theoretical quantities of the form

IA P+ AA@M”Lz(T) or || AAu+ AAZ”HE(T)

with the methodology of Proposition 5.2 seems problematic unless only one mul-
tiple eigenvalue is considered. Let k € J and let, in analogy to the proof of Propo-
sition 5.2, Aguy =Y ;e @jug,j. The Cauchy and triangle inequalities show

l| A Aguty + AA@”kHZZ(n

< [|Aeuill 2 ZHA’kué,j+Auiﬁj”12dz(T)
=

2
< Aanlzry X (W jue s+ B iz + e Ly Aoy — 2l

jer

Only in the case that all (A4, | j € J) converge to one multiple eigenvalue A
the additional term |4, ; — A¢| is an appropriate error measure. In case of an
eigenvalue cluster, this term describes the cluster width (B — A) and, thus, is not
efficient.
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