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Abstract

For regular matrix pencils the distance in norm to the nearest singular pencil under
low rank perturbation is studied. Characterizations of this distance are derived via the
Weyl function of the perturbation. Special attention is paid to the Hermitian pencil case.
Estimates for the distance of a given pencil to the set of singular pencils are obtained.
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1 Introduction

Consider a regular complex n×nmatrix pencil A+λE, i.e., a pencil satisfying det(A+λE) 6≡ 0,
and suppose the pencil is perturbed to Ã+λẼ := (A+∆A)+λ(E+∆E). It is a long-standing
open problem in matrix analysis, see [3], to find the smallest (in some appropriate norm)
perturbation (∆A,∆E) such that the pencil Ã + λẼ is singular, i.e., that det(Ã + λẼ) ≡ 0.
The norm of this smallest perturbation is called the distance to singularity of the pencil
A + λE. Determining this distance is important in many applications, in particular in the
analysis of differential-algebraic equations (DAEs), see [2, 14, 15, 22] for the theory and for a
large number of applications. General DAEs have the form of implicit systems of equations

F (t, x, ẋ) = 0, (1)

where ẋ denotes the time derivative of the state x. If such systems are linearized along a
stationary solution, then one obtains a linear DAE

Eẋ+Ax = f, (2)

with constant coefficients A,E ∈ Cn×n.
Consider the initial value problem of solving (2) with initial value x(t0) = x0. If the pencil

A+ λE is regular, f is sufficiently smooth, and the initial value is consistent, then the initial
value problem has a unique solution. However, if A + λE is singular, then a solution only
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exists if the inhomogeneity f lies in the image of the DAE operator Eẋ + Ax, and even if a
solution exists then it will not be unique.

In many engineering applications and in most industrial environments, modern modeling
packages such as simscape and modelica [17, 20] or modeling environments such as simulink
[18] are used to construct DAE models of the form (1) automatically. It is then necessary
to analyze whether the model equations have a unique solution or not, and also to study
the sensitivity of the model under small perturbations, which are inevitable due to modeling
errors or uncertainty in the model parameters. This analysis is usually done by checking
the regularity of the pencil A + λE associated with the linearization. The rule of thumb is
that if the pencil A + λE is close to a singular pencil within the uncertainty of the data,
then in a numerical simulation the DAE behaves just like a singular system, and the results
of numerical simulations cannot be trusted. Unfortunately, only upper bounds are known
for the distance to singularity, see [3] for a survey. One should also mention, that in many
applications, in particular those arising from network analysis in electrical engineering [22] or
multi-body system simulation [7], the physical application restricts the entries of the pencil
A + λE, where data uncertainties arise. This results in the effect that the perturbation
matrices ∆A and ∆E typically have a rank that is small compared to the overall system size.
This situation motivates the study of the distance to the nearest singular pencil under small
rank perturbations, i.e., we consider perturbed pencils of the form

A+ τB1B
∗
2 + λ(E + τF1F

∗
2 ), (3)

where τ is a complex parameter describing the perturbation level, and where the matrices

B1, B2 ∈ Cn×κA , F1, F2 ∈ Cn×κE ,

describing the perturbations satisfy

rankB1 = rankB2 = κA ≥ 0, rankF1 = rankF2 = κE ≥ 0,

with κA, κE being small. An important special case is the case that the matrix E is not
perturbed at all, i.e., κE = 0. This is motivated from applications in circuit simulation [22],
where the matrix E is a matrix with entries 0, 1,−1 that describes the network topology and
which is not influenced by possible parameter uncertainties. In this case one can study pa-
rameter uncertainties in A arising in a rank κA part of the matrix by a sequence of consecutive
rank-one perturbations of the form

A+ τuv∗ + λE, (4)

where u, v ∈ Cn \ {0}. In our study we will concentrate on the rank one case, i.e., rank-one
perturbations of a regular pencil, for which the perturbed pencil becomes singular.

We will give particular emphasis to the class of Hermitian pencils, i.e., pencils with both
A and E being Hermitian, and their Hermitian perturbations. This special type of pencils
appears in a large number of applications [9, 11, 16], where the Hermitian structure arises
from the physical structure of the problem. In this case it is essential that the perturbations
also have the Hermitian structure, which leads to the different notion of Hermitian distance
to singularity.

The paper is organized as follows. In Section 2 the Weyl function Q(λ) = v∗(A−λE)−1u
associated with a rank one perturbation as in (4) is introduced. It allows to determine the
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spectrum of the perturbed pencil. In particular, with the help of the Weyl function one is
able to see how the spectrum changes in dependence of the parameter τ . We show that
A + τuv∗ + λE is a singular pencil for some value of τ if and only if Q(λ) is constant, see
Theorem 4. We also observe that in this case the eigenvalues of the perturbed pencils are
constant functions in the parameter τ . This peculiar behavior stands in contrast to existing
results on the local behavior of the eigenvalues of matrices [12, 21, 24, 25] or regular matrix
polynomials [4], but is in line with the existing results on perturbations on singular matrix
pencils [6] and matrix polynomials [5].

In Section 3 we study the rank-one distance to singularity as the smallest norm of a rank-
one perturbation that makes a given pencil singular and show in Theorem 7, that this distance
can be expressed as a quadratic constrained optimization problem with quadratic constraints.
This leads to a reformulation of the problem in the language of zeros of polynomials and a
simple estimate, see Theorem 13.

We then specialize to Hermitian pencils in Section 4 and characterize for which canonical
forms of the Hermitian pencil A + λE is it possible to construct a Hermitian perturbation
of A of rank one, such that the perturbed pencil is singular. In Section 5 a closed formula
for the rank-one distance to singularity in a special case is obtained, see Theorem 23. The
formula is followed by several examples showing its limitations. In Section 6 we describe
major differences between the Hermitian and non-Hermitian case, cf. Theorems 13 and 32,
and illustrate these with examples.

Section 7 presents a suggestion for a numerical method of alternating projections for find-
ing the closest rank-one singularizing perturbation. Several examples indicate the difficulties
in applying the method. Finally, Section 8 presents extensions of the results from Section 2
to perturbation matrices of arbitrary rank.

2 The Weyl function and its relation to singularity of pencils

Throughout the paper, the following notation is used. For a complex matrix B of any dimen-
sions the symbol B∗ denotes the conjugate transpose of B and ‖B‖F the Frobenius norm of B.
If X1, . . . , Xl ∈ Cn×n then by span {X1, . . . , Xl} we denote the set of all linear combinations
of matrices X1, . . . , Xl. The space Cn×n will be interpreted as a unitary space with the inner
product given by

〈X,Y 〉 := tr(Y ∗X),

and the corresponding norm is the Frobenius norm. The symbol ‘⊥’ denotes the orthogonal
complement in the space (Cn×n, 〈·, ·〉). If V is a subspace of Cn×n then by PV we denote the
orthogonal projection from Cn×n to V.

Let A,E ∈ Cn×n. We say that a point λ0 ∈ C is a regular point of the pencil A + λE if
the matrix A+λ0E is invertible. Infinity is called a regular point of A+λE if E is invertible.
A point of the extended complex plane C∪{∞} which is not a regular point of A+λE will be
called a singular point. A pencil is called regular, if it has regular points, otherwise it is called
singular. The singular points are zeros of the characteristic polynomial p(λ) = det(A+ λE).

For a regular point λ0 we introduce the resolvent

R(λ0) := (A+ λ0E)−1.

Then for the one-parameter family of rank-one perturbations

A+ τuv∗ + λE, τ ∈ C, (5)
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with u, v ∈ Cn \ {0}, on the set of regular points of A + λE, we define the rational Weyl
function

Q(λ) = v∗R(λ)u. (6)

We recall the following basic proposition, an extension of this result to the case of perturba-
tions of arbitrary rank and point λ0 =∞ will be presented in Section 8 below.

Proposition 1 Let A+ λE be a regular pencil with A,E ∈ Cn×n, let u, v ∈ Cn \ {0} and let
τ0 ∈ C \ {0}. Then

(i) det(A+ τ0uv
∗ + λE) = det(A+ λE) · (1 + τ0Q(λ));

(ii) a regular point λ0 ∈ C of A + λE is a singular point of A + τ0uv
∗ + λE if and only if

1 + τ0Q(λ0) = 0.

Proof. The proof of (i) follows standard lines, cf. [21, 23], but we include it for the sake
of completeness. We obtain

det(A+ τ0uv
∗ + λE) = det(A+ λE)

(
In + τ0uv

∗(A+ λE)−1
)

= det(A+ λE) · (1 + τ0Q(λ)) ,

using the formula det(In +BC) = det(Im +CB) for B,CT ∈ Cn×m. This proves (i), and (ii)
follows immediately from (i).

A direct consequence of Proposition 1 is that a regular point λ0 ∈ C of A+λE is a singular
point of the pencil A+ τuv∗ + λE for at most one value of τ ∈ C.

Another important tool for the investigation of matrix pencils is the Kronecker canonical
form, see e.g., [8, Ch. XII]. We only state the result for the special case of square matrix
pencils.

Theorem 2 (Kronecker canonical form) Let A,E ∈ Cn×n. Then there exist invertible
matrices S, T ∈ Cn×n such that the pencil S(A+ λE)T is block-diagonal with diagonal blocks
of one of the following forms:

Pk,γ(λ) =


γ − λ 1

. . .
. . .

. . . 1
γ − λ

 ∈ Ck×k, γ ∈ C; (7)

Mk(λ) =


1 −λ

. . .
. . .

. . . −λ
1

 ∈ Ck×k; (8)

Gk(λ) =


1

−λ
. . .

. . . 1
−λ

 ∈ Ck×(k−1), (9)
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Gk(λ)> ∈ C(k−1)×k. (10)

where the parameters γ ∈ C and k ≥ 1 depend on the particular block and hence may be
different in different blocks. The canonical form is unique up to permutations of blocks.

Blocks of the form (7) are associated with finite eigenvalues γ ∈ C, and ∞ is an eigenvalue
if and only if the canonical form contains a block of the form (8). Furthermore, the pencil
is singular if and only if it contains at least one block of the forms (9) or (10). Note that in
some references, also zero blocks S(λ) = 0 ∈ Cm×` are introduced in the canonical form, but
these are redundant because they can also be expressed by combining m blocks G1(λ) of size
1× 0 with ` blocks G1(λ)> of size 0× 1.

For a given regular point λ0 ∈ C of the pencil A+ λE, we define the matrices

Cj(λ0) := R(λ0) (ER(λ0))j = (A+ λ0E)−1
(
E(A+ λ0E)−1

)j
, j ∈ N. (11)

Then C0(λ0) = R(λ0) and it is straightforward to check that

Cj(λ0) = (−1)j
1

j!

djC0(λ)

dλj

∣∣∣∣
λ=λ0

, j ≥ 1. (12)

Furthermore, we have Cj+1(λ0) = R(λ0)ECj(λ0) and Ci(λ0)ECj(λ0) = Ci+j+1(λ0) for all
i, j ≥ 0. A further important property of the matrices Cj(λ0) is given in the following lemma.

Lemma 3 Let A,E ∈ Cn×n and let λ0 ∈ C be a regular point of A+ λE. Then there exists
an n0 ≤ n such that the matrices C1(λ0), . . . , Cn0(λ0) are linearly independent, and for all
j > n0, we have

Cj(λ0) ∈ span {C1(λ0), . . . , Cn0(λ0)} .

Proof. Note that the transformation S(A + λE)T , with S, T invertible, changes the ma-
trices Cj(λ0) into SCj(λ0)T (j ≥ 1). Therefore, we may assume without loss of generality
that A+ λE is in Kronecker canonical form. If for some j0 > 1,

Cj0(λ0) ∈ span {C1(λ0), . . . , Cj0−1(λ0)} , (13)

i.e., there exist α1, . . . , αj0−1 such that Cj0(λ0) =
∑j0−1

k=1 αkCk(λ0), then by (11) we have

Cj0+1(λ0) = R(λ0)ECj0(λ0) =

j0−1∑
k=1

αkCk+1(λ0) ∈ span {C2(λ0), . . . , Cj0(λ0)} .

Thus, using (13) and induction we obtain that

Cj(λ0) ∈ span {C1(λ0), . . . , Cj0−1(λ0)} , j ≥ j0. (14)

We set n0 to be the minimum of all j0 satisfying (13). Observe that C0(λ) is block diagonal
with blocks that are upper-triangular Toeplitz matrices, i.e., matrices with constant entries
along each of the diagonals. By (12), the matrix Cj(λ0) (j ≥ 1) has the same block structure,
again with upper-triangular Toeplitz blocks. Therefore, each of the matrices Cj(λ0) (j ≥ 1)
is uniquely determined by the first rows of all the diagonal blocks, and hence the matrices
C1(λ0), . . . , Cn+1(λ0) are linearly dependent. Thus, n0 ≤ n.

The following theorem presents equivalent conditions for the pencil A+ τuv∗ + λE to be
singular for some value of τ .
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Theorem 4 Suppose that the pencil A+λE is regular, where A,E ∈ Cn×n, and let u, v ∈ Cn.
Then the following conditions are equivalent.

(a) The pencil A+ τ0uv
∗ + λE is singular for some τ0 ∈ C.

(b) The function Q(λ) = v∗(A+ λE)−1u is a nonzero constant function.

(c) The polynomial in two variables p(λ, τ) = det(A+ τuv∗ + λE) satisfies

p(λ, τ) = (1 + ζτ) det(A+ λE)

for some ζ ∈ C \ {0}.

(d) There exists τ0 ∈ C such that the eigenvalues of A + τuv∗ + λE are constant for τ ∈
C \ {τ0}.

(e) For every regular point λ0 ∈ C of A+ λE we have v∗C0(λ0)u 6= 0 and

v∗Cj(λ0)u = 0, j = 1, 2, . . . , n. (15)

(f) For some regular point λ0 ∈ C of A+ λE we have v∗C0(λ0)u 6= 0 and the identities in
(15) hold.

Furthermore, if (b) holds, then A + τuv∗ + λE is singular precisely for τ0 = −1/Q(λ), and
this τ0 coincides with τ0 from statements (a) and (d).

Proof. (a)⇒(b) If the pencil A + τ0uv
∗ + λE is singular, then every λ0 ∈ C is a singular

point. By Proposition 1(ii) we have Q(λ0) = −1/τ0 for every regular point λ0 of A+ λE, so
Q(λ) is constant and nonzero.

(b)⇒(a) If Q(λ) is a constant nonzero function on the set of regular points of A + λE,
then with τ0 = −1/Q(λ) the pencil A+ τ0uv

∗ + λE has infinitely many finite singular points
by Proposition 1(ii). Hence, it is singular.

(b)⇒(c) follows from Proposition 1(i) with ζ = Q(λ).
(c)⇒(d) For a fixed τ 6= τ0 := −1/ζ, the eigenvalues of A + τuv∗ + λE are solutions of

p(λ, τ) = 0 in the variable λ. Therefore, if (c) holds, they are constant for τ 6= τ0 := −1/ζ.
(d)⇒(b) By Proposition 1 the pencil A + τuv∗ + λE is regular for all but at most one

value of τ . Thus, if (d) holds, then

det(A+ τuv∗ + λE) = c(τ) det(A+ λE), τ ∈ C \ {τ0} ,

with some nonzero function c(τ). Then, by Proposition 1(i), for every regular point λ of
A+ λE one has

c(τ) = 1 + τQ(λ), τ ∈ C \ {τ0} ,

and hence,

Q(λ) =
c(τ)− 1

τ
(16)

for all τ ∈ C \ {τ0}. Thus (b) holds as the right hand side of (16) is independent of λ.
(b)⇒(e) If Q(λ) is constant, then the identities (12) imply that

0 = Q(j)(λ0) = (−1)jj! · v∗Cj(λ0)u
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for j = 1, . . . , n, and for any regular point λ0 ∈ C of A+λE. Moreover, we have 0 6= Q(λ0) =
v∗R(λ0)u = v∗C0(λ0)u.

(e)⇒(f) is trivial.
(f)⇒(b) If (f) holds, then by Lemma 3 and (12), all derivatives ofQ(λ) at λ0 are zero. Since

Q(λ) is a rational function, it is constant, and it is nonzero because Q(λ0) = v∗C0(λ0)u 6= 0.

3 The rank-one distance to singularity for general pencils

In this section we will investigate the distance to singularity for low rank perturbations in the
sense of the following definition.

Definition 5 Let A+ λE, A,E ∈ Cn×n be a regular pencil. Consider perturbation matrices
∆E,∆A ∈ Cn×n with rank ∆A ≤ κA, rank ∆E ≤ κE, such that the perturbed pencil Ã+λẼ :=
A+ ∆A+ λ(E + ∆E) is singular.

Then the rank-(κA, κE) distance to singularity of A+ λE is defined as

δκ1,κ2(A,E) = min
{
‖[∆A,∆E]‖F

∣∣∣∆A,∆E ∈ Cn×n;

rank ∆A ≤ κA, rank ∆E ≤ κE , det(Ã+ λẼ) ≡ 0
}
.

Here for convenience, the minimum over the empty set is defined as +∞. In the particular
case κA = 1 and κE = 0, we call δ1,0 the rank-one distance to singularity of A+ λE.

Remark 6 The generalized Schur form of the pair (A,E), see, e.g., [10], states that there
exist unitary matrices U, V such that both UAV = [aij ] and UEV = [bij ] are upper triangular
matrices. From this we immediately deduce that δ1,1(A,E) < +∞ for any regular pencil
A + λE. Indeed, (∆A,∆E) = (−U∗a11e1e

>
1 V
∗,−U∗b11e1e

>
1 V
∗) is a rank-(1,1) perturbation

that makes the pencil A+λE singular. Furthermore, note that δκA,0(A,E) < +∞ if and only
if E is not invertible. Indeed, if E is singular, then there is at least one zero entry on the
diagonal of UEV , say bjj = 0. Then ∆A = −U∗ajjeje>j V ∗, ∆E = 0 is a perturbation that
makes A + λE singular, showing that δκA,0(A,E) ≤ δ1,0(A,E) < +∞. If on the other hand
E is nonsingular, then no perturbation of A of any rank κA will make the pencil singular, so
δκA,0(A,E) = +∞. One should also note, that the so constructed singularizing perturbations
need not to be the ones of minimal norm, see [3].

In the following we will be mainly concerned with the distance δ1,0(A,E), and we begin with
one of the main results of the paper that shows that the problem of determining δ1,0(A,E)
can be reformulated as a quadratic optimization problem with a quadratic constraint. (For
convenience, we set max ∅ := 0 and 1/0 := +∞.)

Theorem 7 Let A + λE with A,E ∈ Cn×n be a regular matrix pencil, and let λ0 be an
arbitrary regular point. Then

δ1,0(A,E)−1 = max
{
|v∗R(λ0)u|

∣∣∣u, v ∈ Cn, ‖u‖ ‖v‖ = 1, v∗Cj(λ0)u = 0, j = 1, . . . , n
}
.
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Proof. Recall that δ1,0(A,E) equals the minimal |τ | for all τ ∈ C for which there exist
u, v ∈ Cn with ‖uv∗‖F = 1 such that the pencil A + τuv∗ + λE is singular. On the other
hand, the pencil A+ τuv∗ + λE is singular if and only if the equations (15) are satisfied and
τ = −1/Q(λ0) = −1/v∗R(λ0)u, see Theorem 4(c). Thus

δ1,0(A,E) = min
{
|v∗R(λ0)u|−1

∣∣∣u, v ∈ Cn, ‖uv∗‖F = 1, v∗Cj(λ0)u = 0, j = 1, . . . , n
}
.

Taking inverses of both sides and noting that ‖uv∗‖2F = ‖u‖2 ‖v‖2 finishes the proof.
The explicit representation of the rank-one distance to singularity as a minimum of a

quadratic function with quadratic constraints allows for the development of numerical meth-
ods. We will discuss such methods in the following, but before that, we construct a simple
estimate from below for δ1,0. For this, observe that the constraints v∗Cj(λ0)u = 0 of Theo-
rem 4 can be expressed as

0 = tr
(
v∗Cj(λ0)u

)
= tr

(
uv∗Cj(λ0)

)
= 〈Cj(λ0), vu∗〉,

so the rank-one matrices vu∗ and Cj(λ) are orthogonal with respect to the standard inner
product on Cn×n for j = 1, . . . , n. Thus, vu∗ lies in the orthogonal complement

(span {C1(λ0), . . . , Cn(λ0)})⊥ ,

of the linear space generated by C1(λ0), . . . , Cn(λ0). The following Lemma shows that this
space is independent of λ0.

Lemma 8 The linear span with complex coefficients

span {C1(λ0), . . . , Cn(λ0)}

does not depend on the choice of the regular point λ0 of A+ λE.

Proof. Fix a regular point λ0 of A+λE. First we show that the set Z of all regular points
λ for which

span {C1(λ), . . . , Cn(λ)} ⊆ span {C1(λ0), . . . , Cn(λ0)} (17)

is open in the set of all regular point of A + λE. Let λ1 ∈ Z. Since R(λ) is analytic, there
exists a neighborhood U of λ1 such that

C0(λ) = R(λ) =

∞∑
j=0

(λ− λ1)j(−1)jCj(λ1),

converges absolutely for all λ ∈ U , cf. (12). Due to Lemma 3 one has

R(λ) =

n∑
j=0

aj(λ− λ1)jCj(λ1),
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with some coefficients a0 = 1, a1, . . . , an ∈ C, depending, possibly, on λ1. Hence,

Ck(λ) = R(λ)(ER(λ))k =

 n∑
j=0

(λ− λ1)jajCj(λ1)

E n∑
j=0

(λ− λ1)jajCj(λ1)

k

=

n·k∑
l=0

(λ− λ1)l
( ∑
i0+···ik=l

(ai0 · · · aij )︸ ︷︷ ︸
=:bl

Ci1(λ1)E · · ·ECij (λ1)

)

=
n·k∑
l=0

(λ− λ1)l bl Cl+k(λ1),

and by Lemma 3, we have

Ck(λ) ∈ span {Ck(λ1), . . . , Cnk+k(λ1)} ⊆ span {C1(λ1), . . . , Cn(λ1)} .

Thus, span {C1(λ), . . . , Cn(λ)} ⊆ span {C1(λ1), . . . , Cn(λ1)} ⊆ span {C1(λ0), . . . , Cn(λ0)} for
all λ ∈ U which shows that Z is open.

Now observe that Z is also closed in the set of all regular points of A+ λE. To see this,
let λk ∈ Z converge with k →∞ to a regular point z0. By continuity, Cj(λk) then converges
for k →∞ to Cj(z0) for j = 1, . . . n. By hypothesis, we have

Cj(λk) ∈ span {C1(λ0), . . . , Cn(λ0)}

for j = 1, . . . , n, and hence, since finite-dimensional subspaces are closed, it follows that

Cj(z0) ∈ span {C1(λ0), . . . , Cn(λ0)}

for j = 1, . . . , n, and thus z0 ∈ Z. Since the set of regular points of A+ λE is connected, we
have that Z is equal to the set of regular points. Finally, since λ0 was arbitrary, a symmetry
argument shows that the inclusion in (17) is an equality.

In view of Lemma 8 we introduce

D := (span {C1(λ0), . . . , Cn(λ0)})⊥ , (18)

where λ0 is any regular point of A+λE. Recalling that PD denotes the orthogonal projection
from Cn×n to D, we continue with two examples.

Example 9 Let A + λE = Pk,γ(λ) be a block of size k > 0 associated with the finite
eigenvalue γ as in (7). In this case

R(λ) =


(γ − λ)−1 −(γ − λ)−2 . . . (−1)k−1(γ − λ)−k

0 (γ − λ)−1 . . .
...

...
. . .

. . . −(γ − λ)−2

0 . . . 0 (γ − λ)−1

 .
Then a straightforward calculation using formula (12) shows that C1(λ), . . . , Cn(λ) are linearly
independent upper triangular Toeplitz matrices with nonzero diagonals. Consequently, we
have R(λ) ∈ span {C1(λ), . . . , Cn(λ)} and PDR(λ) = 0.
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Example 10 Let A + λE =Mk(λ) be a block of size k > 0 associated with the eigenvalue
infinity as in (8). By (12) for j ≤ k − 1 it follows that Cj(λ) is an upper-triangular Toeplitz
matrix, with its first row equal to[

0 · · · 0 aj+1λ
0 · · · anλ

k−j−1
]
,

where the zero entry is repeated j times, and aj+1, . . . , an ∈ R \ {0}. Hence, PDR(λ) = Ik.

Examples 9 and 10 suggest that PDR(λ0) may also be independent of the choice of the
regular point λ0 and this is indeed the case as the next result shows.

Proposition 11 If A + λE is a regular pencil, then the matrix PDR(λ0) does not depend
on the choice of the regular point λ0. Furthermore, PDR(λ0) = 0 if and only if infinity is a
regular point of A+ λE.

Proof. As in the proof of Lemma 8 fix a regular point λ0 and define the set W of all those
regular points λ for which PDR(λ0) = PDR(λ). We show thatW is open in the set of regular
points. Take λ1 ∈ W and let U be a neighborhood of λ1 such that for all λ ∈ U we have

R(λ) =
n∑
j=0

(λ− λ1)j aj Cj(λ1),

with some coefficients a0 = 1, a1, . . . , an ∈ C, see the proof of Lemma 8. By Lemma 8, we
have

PDR(λ) =
n∑
j=0

aj(λ− λ1)jPspan{C1(λ1),...,Cn(λ1)}⊥Cj(λ1) = PDR(λ1)

for all λ ∈ U and thus W is open. The set W is clearly closed in the set of the regular points,
hence, it is equal to the set of regular points which is a connected set.

For the ‘furthermore’ part note, that without loss of generality one may assume that A+λE
is in Kronecker canonical form, and using (12), one may consider each block separately. If
A + λE = Pk,γ(λ) then by Example 9 one has PDR(λ0) = 0 and if A + λE = Mk(λ) then
PDR(λ0) = Ik.

In view of Proposition 11 we define the quantity

ρ(A,E) := ‖PDR(λ0)‖−1
F .

for a regular point λ0 of A + λE. By Proposition 11, ρ(A,E) is well defined if and only if
infinity is an eigenvalue of A+ λE. If this is not the case, then we set ρ(A,E) := +∞.

The following observation is a key step in showing that ρ(A,E) can be used as a lower
bound for δ1,0(A,E).

Proposition 12 Let A+ λE be a regular pencil, let λ0 be a regular point and let G ∈ Cn×n
be of rank one. Then

A+ τG+ λE

is singular for some τ0 ∈ C if and only if PDG
∗ = G∗ and tr(GR(λ0)) 6= 0.

If these conditions hold, then

τ0 = − 1

tr(GR(λ0))
.

10



Proof. Let G = uv∗, with some u, v ∈ Cn. Note that PD(G∗) = G∗ is equivalent to

0 = 〈Cj(λ0), G∗〉 = tr(uv∗Cj(λ0)) = v∗R(λ0)(ER(λ0)ju, j = 1, . . . , n,

for any regular point λ0 of A + λE. Together with the fact that v∗R(λ0)u = tr(uv∗(λ)) =
tr(GR(λ0)) 6= 0, the assertion follows by Theorem 4, equivalence (a)⇔(e). The identity

τ0 = − 1

v∗R(λ0)u
= − 1

tr
(
GR(λ0)

)
then follows from the second part of Theorem 4.

As a consequence we obtain the following lower bound for the rank-one distance to singu-
larity.

Theorem 13 Let A+ λE be a regular pencil and let E be singular, i.e., infinity is an eigen-
value. Let the linear subspace D of Cn×n be defined by (18) and (11), and let D0, . . . , Dk be
an orthonormal basis of D with

D0 =
PDR(λ0)

‖PDR(λ0)‖F
.

Then the set

Ξ :=

[α0, . . . , αk]
T ∈ Ck+1

∣∣∣∣α0 6= 0,

k∑
j=0

|αj |2 = 1, rank

 k∑
j=0

αjDj

 = 1


is not empty and

δ1,0(A,E) = ρ(A,E) min
(α0,...,αk)∈Ξ

|α0|−1.

In particular, we have
δ1,0(A,E) ≥ ρ(A,E).

Proof. By assumption, there exists a matrix G of rank one and Frobenius norm one, such
that A + τG + λE is singular for some τ ∈ C, see Remark 6. By Proposition 12 we have
G∗ =

∑k
j=0 αjDj for some α0, . . . , αn ∈ C, with

∑k
j=0 αj = 1, as well as

0 6= tr
(
GR(λ0)

)
= 〈R(λ0), G∗〉 = α0〈R(λ0), D0〉 = α0 ‖PDR(λ0)‖ ,

which implies that α0 6= 0. This shows that Ξ 6= ∅.
Conversely, if G∗ ∈ Ξ then by Proposition 12 the pencil A+ τG+ λE is singular for

τ = − 1

tr
(
GR(λ0)

) = − 1

α0 ‖PDR(λ0)‖
= −α−1

0 ρ(A,E).

Taking δ1,0(A,E) as the minimum of |τ | taken over all pairs (τ,G) with G∗ ∈ Ξ and such that
A+ τG+ λE is singular, finishes the proof.

Remark 14 The quantity min(α0,...,αk)∈Ξ |α0|−1 may be expressed in terms of zeros of multi-
variate polynomials. Indeed, considering the 2×2 minors of the matrices Di, we immediately
see that the rank condition in the definition of Ξ is equivalent to

pi1,i2,j1,j2(α0, . . . , αk) :=

k∑
i,j=0

(
(αiDi)i1,j1(αjDj)i2,j2 − αiαj(Di)i2,j1(Dj)i1,j2

)
= 0

11



for every i1, i2, j1, j2 = 1, . . . , n, i1 6= i2, j1 6= j2, with (Di)p,q denoting the (p, q) entry of the
matrix Di. In other words, to compute δ1,0(A,E) one needs to find a common zero of the
polynomials pi1,i2,j1,j2 on the unit sphere, with the largest absolute value of the α0 coordinate.

The inequality ρ(A,E) ≤ δ1,0(A,E) may be strict as the following example demonstrates.

Example 15 Let A+ λE =Mk(λ) with Mk(λ) as in (8) and k > 0. Since by Example 10
we have PDR(λ) = Ik, it follows that ρ(A,E) = k−1/2. On the other hand, δ1,0(A,E) is
clearly greater than or equal to the minimal singular value of A, which is one in this case.

Further examples can be found in Section 6, where the analogue of Theorem 13 for Hermitian
pencils is discussed.

4 Singularizing perturbations for Hermitian pencils

We call a pencil A+λE Hermitian if both matrices A and E are Hermitian, which we denote
by A,E ∈ Cn×nH .

Definition 16 Let A+λE, A,E ∈ Cn×nH be a regular Hermitian pencil. Then the Hermitian
rank-(κA, κE) distance to singularity of A+ λE is defined as

δHκA,κE (A,E) = min
{
‖[∆A,∆E]‖F

∣∣∣∆A,∆E ∈ Cn×nH , rank ∆A ≤ κA, rank ∆E ≤ κE ,

det
(
A+ ∆A+ λ(E + ∆E)

)
≡ 0
}
.

In the particular case κA = 1 and κE = 0, we call δH1,0(A,E) the Hermitian rank-one distance
to singularity of A+ λE.

Clearly, for any κA, κE , we have

δκA,κE (A,E) ≤ δHκA,κE (A,E).

and if κA ≥ κ1, κE ≥ κ2 then δHκA,κE ≤ δHκ1,κ2 . These inequalities may be strict as demon-

strated in Example 18 below which presents a pencil for which δκA,κE (A,E) < δHκA,κE (A,E)

and δH2,0(A,E) < δH1,0(A,E).

In the following, we show that for any Hermitian pencil A+λE we have δH1,1(A,E) < +∞
and we will characterize all Hermitian pencils for which δH1,0(A,E) < +∞. We will also present
a family of Hermitian pencils for which

δ1,0(A,E) < δH1,0(A,E) = +∞.

The analysis is based on the canonical form for Hermitian pencils under congruence, see [26].

Theorem 17 (Hermitian canonical form) Let A,E ∈ Cn×nH . Then there exists an in-
vertible matrix S ∈ Cn×n such that the pencil S∗(A + λE)S is block-diagonal with diagonal
blocks of one of the following forms:

12



i) blocks corresponding to a real eigenvalue γ ∈ R:

J sk,γ(λ) := s


γ − λ

. .
.

1

. .
.
. .
.

γ − λ 1

 ∈ Ck×k, s ∈ {−1, 1} ; (19)

ii) blocks corresponding to a pair of conjugate complex eigenvalues γ, γ, with γ ∈ C+ :=
{z : Im z > 0}:

J2k,γ(λ) :=

[
0 J 1

k,γ(λ)

J 1
k,γ̄(λ) 0

]
∈ C2k×2k, (20)

where J 1
k,γ(λ) and J 1

k,γ̄(λ) are defined as in (19);

iii) blocks corresponding to the eigenvalue infinity:

N s
k (λ) := s


1

. .
.
−λ

. .
.

. .
.

1 −λ

 ∈ Ck×k, s ∈ {−1, 1} ; (21)

iv) singular blocks:

L2k−1(λ) :=

[
0 Gk(λ)

G>k (λ) 0

]
∈ C(2k−1)×(2k−1), (22)

where Gk(λ) is given by (9).

The parameters γ ∈ C, s ∈ {−1, 1}, and k ≥ 1 depend on the particular block and hence may
be different in different blocks. Moreover, the canonical form is unique up to permutation of
diagonal blocks.

A Hermitian pencil is singular if and only if it contains blocks of the form (22). In contrast
to the unstructured canonical form, besides the eigenvalues and the sizes of the blocks, the
numbers s in the blocks (19) and (21) associated with real eigenvalues and the eigenvalue
infinity are additional invariants. They are called the signs of the blocks and their collection
is called the sign characteristic of the Hermitian pencil A+ λE, see, e.g., [9].

If A+ λE is a regular Hermitian pencil, then the Hermitian canonical form S∗(A+ λE)S
reduces to a block-diagonal pencil of the form⊕

γ∈σR

Nγ⊕
j=1

J s(j,γ)
kj(γ),γ

⊕
 ⊕
γ∈σC+

Nγ⊕
j=1

J2kj(γ),γ

⊕
N∞⊕
j=1

N s(j,∞)
kj(∞)

 , (23)

where σR, σC+ denote the sets of real eigenvalues and eigenvalues with positive imaginary
part of A+ λE, respectively, and where Nγ ≥ 0, kj(γ) > 0, s(kj , γ) ∈ {−1, 1}, j = 1, . . . , Nγ ,
γ ∈ σR ∪ σC+ ∪ {∞}.

In the following, we will make use of several assumptions on the Hermitian canonical form
of a regular Hermitian pencil which we list for later reference:

13



i) there are no non-real eigenvalues, each fixed γ ∈ σR is semi-simple and all corresponding
blocks have the same sign, i.e.,

σC+ = ∅ and s(j, γ) =: s(γ), kj = 1, j = 1, . . . , Nγ , γ ∈ σR; (24)

ii) infinity is a semi-simple eigenvalue, i.e.,

kj = 1, j = 1, . . . , N∞; (25)

iii) all blocks corresponding to infinity have the same sign, i.e.,

s(j,∞) =: s(∞), j = 1, . . . , N∞. (26)

If κA = 1 and κE = 0, then the general form of a Hermitian rank-one perturbation of a
Hermitian pencil is given by

A+ τuu∗ + λE, τ ∈ R.

In this case the Weyl function takes the form Q(λ) = u∗R(λ)u, cf. (5) and (6).

Example 18 Let a > 0 and

A+ λE = aN+
2 (λ)⊕N+

1 (λ) =

 0 a 0
a −aλ 0
0 0 1

 .
We show that for a < 1 we have δH2,0(A,E) < δH1,0(A,E) < +∞, and δ1,0(A,E) < δH1,0(A,E).
It is clear that

δH2,0(A,E) ≤ a

∥∥∥∥∥∥
 0 1 0

1 0 0
0 0 0

∥∥∥∥∥∥
F

= a

√
2

2
.

On the other hand let u = [u1, u2, u3]> ∈ C3 be such that A+λE+ τuu∗ is singular for some
τ ∈ R. Then, according to Theorem 4, the Weyl function

Q(λ) = u∗(A+ λE)−1u = a−1λū1u1 + a−1(ū2u1 + ū1u2) + ū3u3

is nonzero and constant. This implies that u1 = 0 and from

det(A+ τuu∗ + λE) = det

 0 a 0
a τū2u2 − aλ τū2u3

0 τ ū3u2 τ ū3u3 + 1

 = −a2(1 + τ ū3u3)

we obtain that δH1,0(A,E) = ‖τuu∗‖F = 1. Finally, note that

A− a

 0 1 0
0 0 0
0 0 0

+ λE

is singular and hence δ1,0(A,E) ≤ a < 1 = δH1,0(A,E).
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In the following we present necessary and sufficient conditions in terms of the Hermitian
canonical form for the Hermitian rank-one distance to singularity being finite. Let A+λE be
a regular pencil in Hermitian canonical form (23) and let u = [u>1 , u

>
2 , u

>
3 ]> be an associated

conformable partition of the entries of a vector u ∈ Cn. Introducing the functions

Qf (λ) := u∗1

⊕
γ∈σR

Nγ⊕
j=1

(
J s(j,γ)
kj(γ),γ(λ)

)−1

u1 + u∗2

 ⊕
γ∈σC+

Nγ⊕
j=1

(
J2kj(γ),γ(λ)

)−1

u2, (27)

and

Q∞(λ) := u∗3

N∞⊕
j=1

(
N s(j,∞)
kj(∞) (λ)

)−1

u3, (28)

we obtain the following result.

Lemma 19 Let A + λE be a regular Hermitian pencil in canonical form (23) and let the
correspondingly partitioned vector u = [u>1 , u

>
2 , u

>
3 ]> ∈ Cn be such that A + τuu∗ + λE is

singular for some τ = τ0 ∈ R. Then u3 6= 0, Qf (λ) ≡ 0, and Q∞(λ) ≡ − 1
τ0

, where Qf and
Q∞ are as in (27) and (28), respectively.

If, additionally, A+λE has only real eigenvalues (including infinity), all finite eigenvalues
are semi-simple and for each fixed real eigenvalue all corresponding blocks are of the same sign,
i.e., the assumption (24) holds, then u1 = 0, and u2 is void.

Proof. Introducing the partitioning

u1 = [uγ,j ]γ∈σR, j=1,...,Nγ ,

u2 = [uγ,j ]γ∈σC+ , j=1,...,Nγ ,

u3 = [u∞,j ]j=1,...,N∞ ,

of the vectors u1, u2, u3, we have that

Qf (λ) =
∑
γ∈σR

Nγ∑
j=1

u∗γ,j

(
J s(j,γ)
kj(γ),γ(λ)

)−1
uγ,j +

∑
γ∈σC+

Nγ∑
j=1

u∗γ,j

(
J2kj(γ),γ(λ)

)−1
uγ,j .

Furthermore, for γ ∈ σR, j = 1, . . . , Nγ , we obtain

u∗γ,j

(
J s(j,γ)
k,γ (λ)

)−1
uγ,j

= s(j, γ) u∗γ,j


(−1)k−1(γ − λ)−k · · · −(γ − λ)−2 (γ − λ)−1

... . .
.

. .
.

−(γ − λ)−2 . .
.

(γ − λ)−1

uγ,j ,
where we abbreviated k = kj(γ) for simplicity. Analogously, partitioning conformably u>γ,j =

[u>γ,j,1, u
>
γ,j,2], for γ ∈ σC+ , j = 1, . . . , Nγ , we get that

u∗γ,j (J2k,γ(λ))−1 uγ,j =

[
uγ,j,1
uγ,j,2

]∗ [
0

(
J 1
k,γ̄(λ)

)−1(
J 1
k,γ(λ)

)−1
0

] [
uγ,j,1
uγ,j,2

]
= u∗γ,j,1

(
J 1
k,γ̄(λ)

)−1
uγ,j,2 + u∗γ,j,2

(
J 1
k,γ(λ)

)−1
uγ,j,1,
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where again we used k = kj(γ) for simplicity. Note that for each γ ∈ σR the function Qf (λ)
has either a pole in γ or

Nγ∑
j=1

u∗γ,j

(
J s(j,γ)
kj(γ),γ(λ)

)−1
uγ,j ≡ 0. (29)

Analogously, for each γ ∈ σC+ , the function Qf (λ) has either a pole in γ or

Nγ∑
j=1

u∗γ,j

(
J2kj(γ),γ(λ)

)−1
uγ,j ≡ 0. (30)

Hence, Qf (λ) is either a zero function or a rational function, which is not a polynomial. On
the other hand, for j = 1, . . . , N∞ we have that

u∗∞,j

(
N s(j,∞)
kj(∞) (λ)

)−1
u∞,j = s(j,∞) u∗∞,j


λk−1 · · · λ 1
... . .

.
. .
.

λ . .
.

1

u∞,j , (31)

where we use the abbreviation k = kj(∞). Hence, Q∞(λ) is a polynomial. By Theorem 4
the function Q(λ) is constantly equal to −1/τ0. Therefore, Qf (z) ≡ 0 and Q∞(z) ≡ −1/τ0.
Hence, u3 6= 0.

To prove the second assertion, note that if the assumption (24) holds, then u2 is void and
the left hand side of (29) is zero if and only if uγ,j = 0, j = 1, . . . , Nγ .

The following Theorem presents the main result of this section, classifying several low-rank
distances for Hermitian pencils.

Theorem 20 Let A+ λE, with A,E ∈ Cn×nH , be a regular Hermitian pencil.

(i) There exist u ∈ Cn and τ0 ∈ R \ {0} such that the pencil

A+ τ0uu
∗ + λE

is singular if and only if the Hermitian canonical form of A+λE contains either an odd
sized block associated with the eigenvalue infinity, or two even sized blocks of possibly
distinct dimensions with opposite signs, i.e., it contains at least one of the following two
blocks:

(i.1) N s
2k+1(λ), k ≥ 0, s ∈ {1,−1},

(i.2) N 1
2l(λ)⊕N−1

2l′ (λ), l, l′ ≥ 1.

(ii) There exist matrices B ∈ Cn×2, H = H∗ ∈ C2×2 and τ0 ∈ R \ {0} such that

A+ τ0BHB
∗ + λE

is singular if and only if infinity is an eigenvalue of the pencil, i.e., if and only if the
Hermitian canonical form of A+ λE contains at least one block of the form

(ii.1) N s
k (λ), k ≥ 1, s ∈ {1,−1}.
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(iii) There exist v ∈ Cn and τ0 ∈ R \ {0} such that the pencil

A+ λ(E + τ0vv
∗)

is singular if and only if the Hermitian canonical form of A + λE contains either an
odd sized block associated with the eigenvalue zero, or two even sized blocks of possibly
distinct dimensions with opposite signs, i.e., it contains at least one of the following two
blocks:

(iii.1) J s2k+1,0(λ), k ≥ 0, s ∈ {1,−1},

(iii.2) J 1
2l,0(λ)⊕ J −1

2l′,0(λ), l, l′ ≥ 1.

(iv) There exist matrices C ∈ Cn×2, K = K∗ ∈ C2×2 and τ0 ∈ R \ {0} such that

A+ λ(E + τ0CKC
∗)

is singular if and only if zero is an eigenvalue of the pencil, i.e., if and only if the
Hermitian canonical form of A+ λE contains at least one block of the form

(iv.1) J sk,0(λ), k ≥ 1, s ∈ {1,−1}.

(v) There exist vectors u, v ∈ Cn, h ∈ {−1, 1} and τ0 ∈ R \ {0} such that

A+ hτ0uu
∗ + λ(E + τ0vv

∗)

is singular, regardless of the particular Hermitian canonical form of A+ λE.

Proof. In the complete proof we assume without loss of generality that A + λE is in the
Hermitian canonical form (23) and that u = [u>1 , u

>
2 , u

>
3 ]> is partitioned correspondingly.

(i) Assume that A + τ0uu
∗ + λE is singular for some τ0 ∈ R \ {0}. Then by Lemma 19

and ũ := [0, 0, u>3 ]>, we have

ũ∗(A+ λE)−1ũ = Q∞(λ) ≡ const 6= 0.

Hence, by Theorem 4, the pencil A + τ0ũũ
∗ + λE is singular as well. Therefore, we may

assume that A+λE only has the eigenvalue infinity. Suppose now that there are no odd sized
blocks corresponding to infinity and that all even sized blocks have the same sign, i.e.,

A+ λE = N s
2l1(λ)⊕ · · · ⊕ N s

2lN∞
(λ), (32)

where s ∈ {±1}. We also assume that l1 ≥ · · · ≥ lN∞ , and let u = [u>1 , . . . , u
>
N∞

]> be the
corresponding partition of the entries of the vector u. Denoting by uj,i the i-th (scalar) entry
of uj we obtain from (31) that

Q(λ) = u∗j

(
N s

2lj
(λ)
)−1

uj = s

2lj−1∑
i=0

d
(j)
i λi, (33)

where
d

(j)
i =

∑
i1+i2=2lj−i+1

ūj,i1 uj,i2 , j = 1, . . . , Nj , i = 1, . . . , 2lj − 1. (34)
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Hence, the leading coefficient of the polynomial Q(λ) is

s
∑

j∈{j:lj=l1}

|uj,1|2λ2l1−1.

On the other hand, Q(λ) is constant, therefore, uj,1 = 0 for j such that lj = l1. Subsequently,
according to (33) and (34), the coefficient of λ2l1−3 in Q(λ) equals

s

 ∑
j∈{j:lj=l1}

(
ūj,1uj,3 + |uj,2|2 + uj,1ūj,3

)
+

∑
j∈{j:lj=l1−1}

|uj,1|2
 .

Since Q(λ) is constant and uj,1 = 0 if lj = l1, we get uj,2 = 0 if lj = l1 and also uj,1 = 0 if
lj = l1 − 1. Proceeding in this way by induction for j = 1, . . . , N∞ we obtain uj,r = 0, for
r = 1, . . . , lj . Hence, setting

N s
2l1(λ) =

[
0 N s

l1
(λ)

N s
l1

(λ) −λEl111

]
and u1 =

[
0
ũ1

]
,

where ũ1 ∈ Cl1 and where El111 denotes the l1 × l1 matrix with one in the (1, 1)-position and
zeros elsewhere, we obtain that

A+ τuu∗ + λE =

 0 N s
l1

(λ) 0

N s
l1

(λ) −λEl111 + τ ũ1ũ
∗
1 τ ũ1ũ

∗

0 τ ũũ∗1 Ã+ λẼ + τ ũũ∗

 ,
where ũ = [u>2 , . . . , u

>
N∞

]> and

Ã+ λẼ = N s
2l2(λ)⊕ · · · ⊕ N s

2lN∞
(λ).

Thus, by Laplace expansion, induction, and using that | detN s
lj

(λ)| = 1, we obtain

|det(A+ τuu∗ + λE)| = | det(Ã+ λẼ + τ ũũ∗)| = · · · = 1,

and hence the pencil A+ τuu∗+λE = A+λE is regular for all τ , which contradicts the main
assumption that A+ τ0uu

∗ + λE is singular for some τ0 ∈ R \ {0}. As a consequence, (32) is
false, which finishes the proof of one direction of (i).

To see the converse implication it is enough to consider the two cases that A+ λE equals
the block(s) in (i.1) or (i.2), respectively. If A + λE = N s

2k+1(λ), k ≥ 0, s ∈ {1,−1}, then
setting u = e(k+1)/2 we get that the pencil A − suu∗ + λE singular. In the other case, we

have A + λE = N−1
2l (λ) ⊕ N 1

2l′(λ), l, l′ ≥ 0, and we first consider the situation when l = l′.

Let u = [u(1)>, u(2)>]> be partitioned conformably and such that

u
(1)
j = u

(2)
j for j = 1, . . . , k − 1, and Re(u

(1)
1 u

(1)
k ) 6= Re(u

(2)
1 u

(2)
k ).

Then, due to (33), (34) and the fact that the signs of the two blocks of A+ λE are opposite,
we have

Q(λ) = −2 Re(u
(1)
1 u

(1)
k ) + 2 Re(u

(2)
1 u

(2)
k ),
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which is a nonzero constant. Application of Theorem 4 finishes the proof in the situation
l = l′.

If l 6= l′, then we assume for simplicity that l′ > l, the case l < l′ can be treated similarly.
Let l̃ = (l′ − l)/2 and let u ∈ Ck be a vector such that

u1 = · · · = ul̃ = ul̃+l+1 = · · · = ul′ = 0.

Then
u∗(N 1

l′ (λ))−1u = v∗(N 1
l (λ))−1v

with v = [ul̃+1, . . . , ul̃+l]
>. This reduces the situation to the case l′ = l and thus finishes the

proof of (i).
(ii) If infinity is not an eigenvalue of A + λE then, due to the regularity of A + λE, the

matrix E is invertible. Hence, A + B̃ + λE is regular for all B̃ ∈ Cn×n. Assume now, that
infinity is an eigenvalue of A+λE. If the canonical Hermitian form of A+λE contains one of
the structures listed in (i.1) or (ii.2), then we set B = [u, 0], H = I2, where u is constructed as
in the proof of (i). By (i) the pencil A+τ0BHB

∗+λE is singular for some τ0. The remaining
case to consider is that A+λE has only even blocks of the same sign corresponding to infinity.
It is enough to consider the case that A+ λE = N s

2l(λ), l ≥ 1, s ∈ {−1, 1}. Setting

B = [e1, e2l], H =

 0 0 1
0 I2l−2 0
1 0 0

 ,
we then have that the pencil A−BHB∗ + λE is singular.

(iii) and (iv) follow from (i) and (ii) by interchanging the roles of A and E.
(v) Without loss of generality we may assume that A+ λE is a single block of one of the

forms (19), (20), or (21). The cases A+ λE = N s
1 (λ) and A+ λE = J s1,0(λ), s ∈ {−1, 1}, are

trivial. Consider the case

A+ λE = N s
k (λ), k ≥ 2, s ∈ {−1, 1} , (35)

and let w = e1 + ek−1 + ek, with the special case w = e1 + e2 if k = 2, and let τ = −s/2.
According to Proposition 1(i), the fact that det(A+ λE) = ±1, and formulas (33) and (34),
the characteristic polynomial of A+ τ1ww

∗ + λE equals

±
(
1− 1

2
(2λ+ 2)

)
= ±λ,

with the special case ±
(
1− 1

2(λ+ 2)
)

= ±1
2λ if k = 2, and clearly has a simple zero at λ = 0.

Therefore, the pencil A + τ1ww
∗ + λE has in its Hermitian canonical form a block J s1,0(λ).

By (iii) there exists v ∈ Ck and τ0 ∈ R \ {0} such that the pencil A + τ1uu
∗ + λ(E + τ0vv

∗)

is singular. Setting h = sgn(τ0τ1) and u = |τ0|−
1
2 |τ1|

1
2w finishes the proof in this case.

Consider next the case

A+ λE = J sk,γ(λ), γ ∈ R \ {0} , s ∈ {1,−1} . (36)

Taking u = e1, τ1 = s(−1)kγk, then according to Proposition 1(i) and the fact that det(A+
λE) = ±1(γ − λ)k, the characteristic polynomial of A+ τ1uu

∗ + λE equals

±(γ − λ)k
(

1− γk

(γ − λ)k

)
= ±

(
(γ − λ)k − γk

)
,
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and clearly has a simple zero at λ = 0. As in case (35), application of (ii) finishes the proof.
Next, consider the case

A+ λE = J2k,γ(λ), γ ∈ C+, k > 0. (37)

Taking u = −(1
2γ

k)e1 + ek+1, τ1 = (−1)k+1, then according to Proposition 1(i) and the fact
that det(A+ λE) = (−1)k(γ − λ)k(λ+ γ̄)k, the characteristic polynomial of A+ τ1uu

∗ + λE
equals

(−1)k(γ − λ)k(λ+ γ̄)k
(

1− γk

2(γ − λ)k
− γ̄k

2(λ+ γ̄)k

)
,

and clearly has a simple zero at λ = 0. As in cases (35), (36), application of statement (ii)
finishes the proof.

The remaining case to consider is

A+ λE = J sk,0(λ), s ∈ {1,−1} , k ≥ 2.

In this situation the statement follows from (35) by interchanging the roles of A and E.

Remark 21 Observe that if A + λE = N s
2k+1(λ), then the sign of τ0, as constructed in the

proof of (i), is opposite to s. In the case that A + λE = N+
2l (λ) ⊕ N−2l′(λ), the sign τ0 can

be arbitrary, depending on the choice of u. This observation remains valid under congruence
transformations W ∗(A+ τuu∗ + λE)W , since both the sign characteristic and the sign of τ0

stay invariant.

Remark 22 Note that Theorem 20 presents two different methods of making the pencil
N s

2k+1(λ) singular. In (i) the matrix A is perturbed by a rank-one matrix so that the perturbed
pencil equals L2k+1(λ). On the other hand in (v) first A is perturbed so that zero is an
eigenvalue, and then the matrix E is perturbed to get the block L1(λ) in the Hermitian
canonical form.

5 An explicit formula for the rank-one distance to singularity
for a special Hermitian pencil

In this section, we present an explicit formula for δH1,0(A,E) in a specially simple case.

Theorem 23 Let A + λE be a regular Hermitian pencil that has only real eigenvalues (in-
cluding infinity) that are all semi-simple and such that for each fixed finite eigenvalue all
corresponding blocks in the Hermitian canonical form have the same sign, i.e., the Hermitian
canonical form (23) of A + λE satisfies (24) and (25). Then for every invertible matrix S,
such that S(A+ λE)S∗ is in Hermitian canonical form one has

δH1,0(A,E) ≥
∥∥S|ker(ES∗S)

∥∥−2
. (38)

Furthermore, if all blocks corresponding to the infinity eigenvalue are of the same sign s∞,
i.e., the Hermitian canonical form (23) of A+ λE satisfies (24)–(26), then

δH1,0(A,E) =
∥∥S|ker(ES∗S)

∥∥−2
.

and for every u ∈ ker(ES∗S), u 6= 0 the pencil A− s∞ ‖Su‖−2 uu∗ + λE is singular.
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Proof. Fix an invertible matrix S, such that S(A+ λE)S∗ is in Hermitian canonical form
and let u ∈ Cn. Observe that the pencil A+τ0uu

∗+λE is singular if and only if u ∈ ker(ES∗S)
and

−1/τ0 = u∗(A+ λE)−1u. (39)

To see this, set uJ = Su, AJ = SAS∗, and EJ = SES∗. If A+ τuu∗+λE is singular for some
τ = τ0 ∈ R, then the pencil AJ + τ0uJu

∗
J + λEJ is singular as well. By Lemma 19 applied to

AJ ,EJ and uJ and the fact that all blocks corresponding to the eigenvalue infinity are of size
one, we have uJ ∈ kerEJ , or equivalently u ∈ ker(ES∗S). Then (39) follows from Theorem 4.
The converse implication is immediate. Using this observation, we have

δH1,0(A,E)−1

= max
{
|τ |−1

∣∣ (u, τ) ∈ Cn × R, A+ τuu∗ + λE is singular, ‖u‖ = 1
}

= max
{
|u∗(A+ λE)−1u|

∣∣u ∈ ker(ES∗S), ‖u‖ = 1
}

= max
{
|u∗J(AJ + λEJ)−1uJ |

∣∣uJ ∈ kerEJ ,
∥∥S−1uJ

∥∥ = 1
}
.

Since the pencil AJ + λEJ is in Hermitian canonical form and infinity is a semi-simple eigen-
value, the part of AJ corresponding to kerEJ is diagonal with entries ±1 on the diagonal,
depending on the signs of the blocks corresponding to infinity. Thus, for uJ ∈ kerEJ we have
that |u∗J(AJ + λEJ)−1uJ | ≤ ‖uJ‖2. Hence,

δH1,0(A,E)−1 ≤ max
{
‖uJ‖2

∣∣∣uJ ∈ kerEJ ,
∥∥S−1uJ

∥∥ = 1
}

= max
{
‖Su‖2

∣∣∣u ∈ kerES∗S, ‖u‖ = 1
}

=
∥∥S|ker(ES∗S)

∥∥2
.

If all blocks corresponding to the eigenvalue infinity have the same sign s∞, then we have
|u∗J(AJ + λEJ)−1uJ | = ‖uJ‖2 for uJ ∈ kerEJ , and thus δH1,0(A,E)−1 =

∥∥S|ker(ES∗S)

∥∥2
. If in

this case u ∈ ker(ES∗S) \ {0}, then the pencil A+ τuu∗ + λE is singular for

τ =
−1

u∗(A+ λE)−1u
=

−1

u∗J(AJ + λEJ)−1uJ
=

−1

s∞ ‖uJ‖2

=
−s∞
‖Su‖2

=
−s∞
‖Su‖2

.

The assumption of equal signs of blocks corresponding to finite real eigenvalues is essential
for the first part of Theorem 23. This is demonstrated in the following example.

Example 24 Let

S(A+ λE)S∗ =

 1
λ
−λ

 = AJ + λEJ ,

where S is any invertible matrix satisfying∥∥∥S−1[1, 1, 1]>
∥∥∥ < ∥∥∥S−1[1, 0, 0]>

∥∥∥ . (40)

Observe that ∥∥S|ker(ES∗S)

∥∥2
= max

{
‖uJ‖2

∣∣∣uJ ∈ kerEJ ,
∥∥S−1uJ

∥∥ = 1
}

(41)

=
∥∥∥S−1[1, 0, 0]>

∥∥∥−2
.
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On the other hand, the pencil AJ + u0u
∗
0 + λEJ is singular also for u0 = [1, 1, 1]>, i.e., the

pencil A+ uu∗ + λE is singular with u1 = S−1u0, and hence

δH1,0(A,E) ≤ ‖u1u
∗
1‖F =

∥∥∥S−1[1, 1, 1]>
∥∥∥2
. (42)

Equations (40), (41) and (42) are in contradiction with (38).

Similarly, one can construct examples showing the necessity of the assumption that the pencil
has no non-real eigenvalues.

Example 25 Consider the pencil

AJ + λEJ =

 1 0 0
0 0 λ− α− ıβ
0 λ− α+ ıβ 0

 , α, β ∈ R.

Then not only the perturbation AJ−uJu∗J +λEJ with uJ = [1, 0, 0]> ∈ kerEJ is singular, but
also AJ − u0u

∗
0 + λEJ with u0 = [1, 0, 1]>. Choosing an appropriate transformation matrix S

leads, as in Example 24, to a contradiction with (38).

The assumption of equal signs of blocks corresponding to the eigenvalue infinity is essential
for the second claim of Theorem 23, as the following example demonstrates.

Example 26 Let

A+ λE =

[
0 1
1 0

]
.

Then for every a ∈ R \ {0} and the matrix

S =

√
2

2

[
1/a a
−1/a a

]
,

we have S(A+ λE)S∗ =

[
1 0
0 −1

]
. Due to the fact that kerE = C2, we obtain

∥∥S|ker(ES∗S)

∥∥ = ‖S‖ ≥
√

2

2
|a|,

which may be chosen arbitrarily large by varying a, while δH1,0(A,E) = 1.

6 Computing the rank-one distance to singularity for Hermi-
tian pencils

In this section we present the analogues of the results from Section 3 for the case of Hermitian
pencils. We begin with the Hermitian version of Theorem 7. The proof follows the same lines
as in Section 3 and is not repeated here.

Theorem 27 Let λ0 be an arbitrary regular point of the Hermitian pencil A+ λE. Then

δH1,0(A,E)−1 = max
{
|u∗R(λ0)u|

∣∣∣u ∈ Cn, u∗u = 1, u∗Cj(λ0)u = 0, j = 1, . . . , n
}
.
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To measure distances, consider the real orthogonal space of Hermitian matrices Cn×nH with
the real inner product

〈X,Y 〉H := tr(Y X).

The corresponding norm is the Frobenius norm and the inner product equals 〈X,Y 〉 restricted
to the set of Hermitian matrices, but we use the subscript H to avoid confusion. The adjective
‘H-orthogonal’ and the symbol ‘⊥H ’ will refer to orthogonality and orthogonal complement
in the space

(
Cn×nH , 〈·, ·〉H

)
. The matrices Cj(λ0) are defined as before by (11). Clearly, if λ0

is real, then the matrices Cj(λ0) are all Hermitian.
Then Lemma 8 takes the form below. Note that we have to give a different proof, because

the set of real regular points need not be a connected set and this fact was used in the proof
of Lemma 8.

Lemma 28 For any regular point λ0 ∈ R of the regular Hermitian pencil A+ λE we have

spanR {C1(λ0), . . . , Cn(λ0)} = spanR {Cj(λ0) | j ∈ N, j ≥ 1} (43)

and the span does not depend on the particular choice of λ0.

Proof. Let the regular point λ0 ∈ R be fixed. Assume that there exists a regular point
λ1 ∈ R and k ∈ N \ {0} such that

Ck(λ1) 6∈ spanR {C1(λ0), . . . , Cn(λ0)} .

By Lemma 8, we have nevertheless Ck(λ1) ∈ spanC {C1(λ0), . . . , Cn(λ0)}. Choosing a ba-
sis C1(λ0), . . . , Cn0(λ0) of the complex linear span, see Lemma 8, there exist coefficients
α1, . . . , αn0 ∈ C such that

n0∑
i=1

αiCi(λ0) = Ck(λ1) =
(
Ck(λ1)

)∗
=

n0∑
i=1

ᾱiCi(λ0),

where we have used that Ck and Cji , i = 1, . . . , n0 are Hermitian. This implies that

0 =

n0∑
i=1

(αi − ᾱi)Ci(λ0),

and hence all α1, . . . , αn0 are real, contradicting the assumption. This proves (43) and

{C1(λ1), . . . , Cn(λ1)} ⊆ {C1(λ0), . . . , Cn(λ0)} .

By symmetry of the argument, the latter inclusion is an identity.
As in the unstructured case we define

DH :=
(

spanR {C1(λ0), . . . , Cn(λ0)}
)⊥H ⊆ Cn×nH , (44)

where λ0 is any real regular point of the Hermitian pencil A+ λE. If V is a real subspace of
Cn×nH , then by PH

V we denote the orthogonal projection from Cn×nH to V.

Lemma 29 Let A+λE be a regular Hermitian pencil and let G be a Hermitian matrix. Then

PH
DHG = PDG. (45)
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Proof. Recall that if A and E are Hermitian, then so are the matrices Cj(λ0), j = 1, . . . , n.
Let C̃1(λ0), . . . , C̃ñ(λ0) be the result of Gram-Schmidt orthonormalization of the matrices
C1(λ0), . . . , Cn(λ0) with respect to the complex inner product 〈·, ·〉. However, note that
〈X,Y 〉 ∈ R for Hermitian X,Y and therefore, C̃1(λ0), . . . , C̃ñ(λ0) are Hermitian matri-
ces and thus identical to those obtained by Gram-Schmidt orthonormalization applied to
C1(λ0), . . . , Cn(λ0) with respect to the real inner product 〈·, ·〉H . Hence,

PDG = G−
ñ∑
j=1

〈
G, C̃j(λ0)

〉
= G−

ñ∑
j=1

〈
G, C̃j(λ0)

〉
H

= PH
DHG. �

Lemma 29 immediately allows to deduce Hermitian versions of Propositions 11 and 12.

Proposition 30 If A+ λE is a regular Hermitian pencil then the matrix PH
DR(λ0) does not

depend on the particular choice of the regular point λ0 ∈ R. Furthermore, PH
DR(λ0) = 0 if

and only if infinity is not an eigenvalue of A+ λE.

Proposition 31 Let λ0 ∈ R be a regular point of the Hermitian n×n pencil A+ λE and let
G ∈ Cn×n be a Hermitian matrix of rank one. Then

A+ τG+ λE

is singular for some τ ∈ R if and only if PH
DG = G and tr(GR(λ0)) 6= 0. If the latter is the

case, then

τ = − 1

tr(GR(λ0))
.

Observe that by (45) we have

ρ(A,E) = ‖PDR(λ0)‖−1
F =

∥∥PH
DHR(λ0)

∥∥−1

F
,

where λ0 is any real regular point of the Hermitian pencil A + λE. By Proposition 30, we
furthermore have that ρ(A,E) < +∞ if and only if infinity is an eigenvalue of A+ λE.

We now present an analogue of Theorem 13. Note that in this context the inequality
ρ(A,E) ≤ δH1,0(A,E) for the estimate ρ(A,E) ≤ δ1,0(A,E) follows directly from Theorem 13

and the fact that δ1,0(A,E) ≤ δH1,0(A,E).

Theorem 32 Let A + λE be a regular Hermitian pencil for which infinity is an eigenvalue,
and let λ0 ∈ R be any regular point. Furthermore, introduce the linear subspace DH of Cn×n
defined by (44) and (11), and let DH

0 , . . . , D
H
l be an orthonormal basis of DH with

DH
0 =

PH
DHR(λ0)∥∥∥PH
DHR(λ0)

∥∥∥ .
Introduce also

ΞH =

[α0, . . . , αl]
> ∈ Rl+1

∣∣∣∣α0 6= 0,

l∑
j=0

|αj |2 = 1, rank

 l∑
j=0

αjD
H
j

 = 1

 .

Then ΞH 6= ∅ if and only if δH1,0(A,E) < +∞. In this case

δH1,0(A,E) = ρ(A,E) min
(α0,...,αl)∈ΞH

|α0|−1.
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Proof. Besides the fact that we have to additionally assume that δH1,0(A,E) is finite, the
proof follows the same lines as the proof of Theorem 13, with the use of Proposition 31
instead of Proposition 12, G being additionally Hermitian, DH

0 , . . . , D
H
l replacing D0, . . . , Dk

and τ, α0, . . . , αl ∈ R replacing τ, α0, . . . , αk ∈ C.

Remark 33 Note that Theorem 20(i) gives a criterion for δH1,0(A,E) < +∞ in terms of the
canonical form of A + λE. Therefore, Theorem 32 may be also viewed as a method for
revealing the structure at infinity of a given Hermitian pencil. Similarly as in Remark 14, the
rank condition in the definition of ΞH is equivalent to

pHi1,i2,j1,j2(α0, . . . , αk) :=
l∑

i,j=0

(
(αiD

H
i )i1,j1(αjD

H
j )i2,j2 − (αiD

H
i )i2,j1(αjD

H
j )i1,j2

)
= 0

for every i1, i2, j1, j2 = 1, . . . , n, i1 6= i2, j1 6= j2, with (DH
i )pq denoting the (p, q) entry of the

matrix DH
i .

Example 34 Let

A+ λE = N 1
2 (λ) =

[
0 1
1 λ

]
.

Then R(0) =

[
0 1
1 0

]
and C1 =

[
1 0
0 0

]
. Hence,

DH
0 =

√
2

2

[
0 1
1 0

]
, DH

1 =

[
0 0
0 1

]
,

and, thus

p1,2,1,2(α0, α1) = det

[
0 α0/

√
2

α0/
√

2 α1

]
= −α

2
0

2
,

which clearly has no zeros on the real sphere which confirms that by Theorem 20(i) the
Hermitian rank one distance to singularity is infinite.

Example 35 Let A + λE be defined as in Example 18, where a is sufficiently small. By
Theorem 32, we have δH1,0(A,E) = 1 > a = δ1,0(A,E) ≥ ρ(A,E) showing that ρ(A,E) �
δH1,0(A,E) is possible.

Example 36 In Examples 15 and 35 the reason for the estimate ρ(A,E) being essentially
smaller than δ1,0(A,E) or δH1,0(A,E), respectively, was the presence of Jordan chains. How-

ever, even if we start with a pencil satisfying ρ(A,E) = δH1,0(A,E), then a simple congruence

transformation (A+λE) 7→ T (A+λE)T ∗ can also cause ρ(TAT ∗, TET ∗) < δH1,0(TAT ∗, TET ∗).
With

A+ λE =

[
1

λ

]
, T =

[
a 1
c 0

]
, (detT = −c 6= 0),

we obviously have ρ(A,E) = δ1,0(A,E) = δH1,0(A,E) = 1. Consider the transformed pencil

T (A+ λE)T ∗ =

[
a
c

] [
ā c̄

]
+ λ

[
1 0
0 0

]
,
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let u = [u1, u2]> ∈ C2 be arbitrary and let τ ∈ R be such that

Ã+ λE :=

[
d 0
0 0

]
:=

[
a
c

] [
ā c̄

]
+ τuu∗ + λ

[
1 0
0 0

]
is singular, where d ∈ C. For this we need τ < 0, hence we may just take τ = −1. Then
u2 = eıθc for some θ ∈ [0, 2π) and consequently u1 = eıθa. Since the vector u was chosen
arbitrarily, we have shown that

δH1,0(TAT ∗, TET ∗) = |eıθ|
∥∥∥∥[ ac

] [
ā c̄

]∥∥∥∥
F

= |a|2 + |c|2. (46)

On the other hand observe that

R(λ) = T−∗
[

1
λ−1

]
T−1, Cj(λ) = T−∗

[
0

λ−(j+1)

]
T−1,

so that we can write the resolvent as

R(λ) = T−∗
[

1
0

]
T−1 + λT−∗

[
0

λ−2

]
T−1

= T−∗
[

1
0

]
T−1 + λC1(λ).

Hence, spanR{C1(λ), . . . , Cn(λ)} = spanR{C1(λ)} and thus,

PDR(λ) = PspanR{C1(λ)}⊥HR(λ) = PspanR{C1(λ)}⊥H

(
T−∗

[
1

0

]
T−1

)
=

1

|c|2
Pspan{C1(λ)}⊥H

[
0 0
0 1

]
. (47)

Furthermore, spanR {C1(λ)} = spanR{C̃1(λ)}, where

C̃1(λ) =

[
−c̄
ā

] [
−c a

]
,
∥∥∥C̃1(λ)

∥∥∥2

F
= (|c|2 + |a|2)2.

With this we obtain

PspanR{C1(λ)}

[
0 0
0 1

]
=

∥∥∥C̃1(λ)
∥∥∥−2

F
tr

([
0 0
0 1

]
C̃1(λ)

)
C̃1(λ)

=
|a|2

(|c|2 + |a|2)2
C̃1(λ).

Using (47) we have

PDR(λ) =
1

|c|2

([
0 0
0 1

]
− |a|2

(|c|2 + |a|2)2
C̃1(λ)

)
=

|a|2

|c|2(|c|2 + |a|2)2

[
|c|2 −c̄a
−āc |c|4+2|c|2|a|2

|a|2

]
.
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Figure 1: The numerically obtained plot of the constant function f(λ) =
Pspan{C1(λ),...,Cn(λ)}⊥R(λ).

and an easy calculation gives

ρ(TAT ∗, TET ∗)−1 =
|c|(|c|2 + |a|2)√

2|a|2 + |c|2
.

Comparing this with (46), we see that for a → ∞ and c constant, the estimate ρ(A,E) is
essentially smaller then δH1,0(A,E). Also note that with a → ∞ the condition number of T
grows to infinity.

The theoretical results of this section are not very suitable for numerical computation, since
in the neighborhood of a singular pencil the standard eigenvalue methods may behave very
erratically. This is demonstrated in the following example.

Example 37 To illustrate potential numerical errors in eigenvalue computation in the neigh-
borhood of singular pencils, we used matlab [19] to evaluate the formula for the projection

Pspan{C1(λ),...,Cn(λ)}⊥X = X −
ñ∑
j=1

〈
X, C̃j(λ)

〉
,

where C̃1(λ), . . . , C̃ñ(λ) is determined via Gram-Schmidt orthonormalization applied to the
matrices C1(λ0), . . . , Cn(λ0) and A+λE = S∗

(
N+

3 (λ)⊕J1,5(λ)
)
S, where S is some invertible

random matrix.
We present the results for the theoretically constant function

f(λ) :=
∥∥∥Pspan{C1(λ),...,Cn(λ)}⊥R(λ)

∥∥∥−1

in Figure 1. Note that f(λ) is not only deviating from the constant function at the singular
point λ = 5. For this system we have ρ(A,E) = 0.45.
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7 The method of alternating projections

In this section we consider both the situation that A+λE is an arbitrary unstructured pencil
or a Hermitian pencil. By Proposition 12 and 31, we have that a singularizing rank-one
perturbation of the regular n × n pencil A + λE is given by a matrix G ∈ Cn×n satisfying
PDG∗ = G∗ and rank(G) = 1, where in the Hermitian case we assume in addition that G is
Hermitian.

To derive a numerical method to compute such a singularizing perturbation matrix G,
we start with an arbitrary matrix R0 ∈ Cn×n. It can then be anticipated that the projected
matrix R1 :=

(
PDR

∗
0)∗ will be closer to a singularizing perturbation matrix. However, R1

need not be of rank one, not even in the case that the initial matrix R0 was of rank one. So,
the idea for the construction of a numerical method is to project R1 to the nearest rank-one
matrix. This will most likely move the projected matrix out of D again, but alternating this
process using the two mentioned projections, we can hope to converge to a rank-one matrix
G satisfying PDG

∗ = G∗. We will call this procedure the method of alternating projections.
The orthogonal projection of a matrix X ∈ Cn×n to the set of matrices of rank one can

be easily performed using the singular value decomposition X = UΣV ∗ of X, where and
Σ = diag(σ1, . . . , σn), with σ1 ≥ σ2 ≥ · · · ≥ σn and where U and V are unitary. Setting

Q(X) = U diag(σ1, 0, , . . . , , 0)V ∗ (48)

uniquely defines the matrix Q(X) if σ1 > σ2, but depends on the actual singular value
decomposition if σ1 = σ2. Choosing in each case a particular SVD then fixes a mapping
Q : Cn×n → Cn×n, so that the matrix Q(X) satisfies (48) for every X ∈ Cn×n. Similarly, we
define by QH a mapping satisfying (48) and such that QHX is Hermitian for a Hermitian
matrix X. Given an arbitrary initial nonzero matrix R0 ∈ Cn×n, we then define the sequence
of matrices

R2k+1 :=
(
PDR

∗
2k

)∗
, R2k+2 = Q(R2k+1), k = 0, 1, . . . .

In the Hermitian case we set

RH2k+1 = PDR
H
2k, RH2k+2 = QH(RH2k+1), k = 0, 1, . . . ,

if the initial matrix RH0 is a nonzero Hermitian matrix. The choice of R0, as well as the choice
of Q as one of the mappings satisfying (48) will affect the limiting behavior of the sequence,
see Example 41.

In view of Theorems 13 and 32 the natural candidate for the initial value is R0 = R(λ0),
where λ0 is a regular point of A + λE. By Lemma 8 and Proposition 11, the matrices Rj ,
j > 1, are independent on the choice of λ0.

Proposition 38 Let A + λE be a regular pencil with A,E ∈ Cn×n. If the alternating pro-
jection sequence (Rk)k∈N converges to some G 6= 0 with k → ∞, then G is of rank one, the
pencil A− (tr(GR(λ0)))−1G+ λE is singular, and δ1,0(A,E) ≤ | tr(GR(λ0))|−1 ‖G‖F .

If, additionally, A and E are Hermitian and the Hermitian alternating projection sequence
(RHk )k∈N converges for k → ∞ to some G 6= 0, then G is an Hermitian matrix of rank one,
the pencil A− (tr(GR(λ0)))−1G+ λE is singular, and δH1,0(A,E) ≤ | tr(GR(λ0))|−1 ‖G‖F .

Proof. Note that the matrix G satisfies PDG
∗ = G∗, QG = G. Application of Proposi-

tion 12 finishes the proof. The Hermitian case follows analogously.
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If R0 is sufficiently close to the set of singularizing perturbations of the form τuv∗, then
convergence of the sequence (Rk)k∈N follows from general results in [1]. The following two
examples illustrate the convergence behavior of the method.

Example 39 Let A+λE be a regular pencil of the form A+λE = (A′+λE′)⊕E(λ), where

A′ + λE′ =



ε1 λ
ε2 λ

. . .
. . .

. . . λ
εk


with 0 < |εl0 | < |εl|, l 6= l0 for some l0 ∈ {1, . . . , k}, and where E(λ) is a regular pencil with
only finite and nonzero eigenvalues. Then

R1 = (PDR(0)∗)∗ =


ε−1

1

ε−1
2

. . .

ε−1
k

⊕ 0

and R2 = Q
(
PDR(0)∗

)∗
= ε−1

l0
el0e

∗
l0

, where el0 denotes the l0-th vector of the canonical basis
in Cn. Observe that R2 ∈ D, i.e., the sequence (Rk) becomes constant for k ≥ 2. On the
other hand, one has

δ1,0(A,E) = δ1,0(A′, E′) ≥ δ(A′, E′) ≥ σmin(A) = |εl0 |,

where the inequality δ(A′, E′) ≥ σmin(A) results from [3, Section 5.2]. Hence, δ1,0(A,E) = |εl0 |
and ε2

l0
R2 realizes this distance.

Example 40 We apply the alternating projection method to Example 36 with a = 30,
c = 1, which has a unique rank-one singularizing perturbation of A+λE. After 106 iterations
performed with Matlab [19]. For λ0 = 0.5 the computed singularizing perturbation is[

−863.3295 −29.3888
−29.3888 −1.0004

]
,

while the only rank-one perturbation G that makes the pencil A+G+ λE singular equals

G =

[
−900 −30
−30 −1

]
.

A plot of the convergence behavior is presented in Figure 2.

Example 41 For

A+ λE =

[
0 1
1 λ

]
the sequence (RHj ) with the initial value RH0 = R(0.5) computed via the Matlab program
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Figure 2: Graph of ‖R2n −G‖F

[U,Sigma]=eig(V1);

[m,id]=max(abs(diag(Sigma)));

Sigma2=zeros(n,n); Sigma2(id,id)=Sigma(id,id);

V=U*Sigma2*U’;

diverges. On the other hand, to compute the mapping Q(X), the Matlab program

[U1,Sigma,U2]=svd(X);

Sigma2=zeros(n,n); Sigma2(1,1)=Sigma(1,1);

QX=U1*Sigma2*U2’;

with the same initial value R0 = R(0.5) yields that the sequence Rj is constant for j ≥ 2 and
with

G =

[
0 −1
0 0

]
.

Both results confirm the theory as there is no Hermitian rank-one perturbation that singu-
larizes the given Hermitian pencil.

For the Hermitian pencil

A+ λE =

[
0 1
1 λ

]
⊕
[

10
]

one obtains the sequence

lim
j→∞

RHj =

[
0 −0.5
−0.5 +∞

]
⊕
[

0
]
,

while

lim
j→∞

Rj =

[
0 −1
0 0

]
⊕
[

0
]
.

Thus, while the unstructured method converges to a singularizing perturbation matrix of
minimal norm, the Hermitian method fails to find a Hermitian singularizing perturbation.
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On the other hand, setting R0 = RH0 =

[
0 0
0 0

]
⊕
[

10
]

one gets

Rj = RHj =

[
0 0
0 0

]
⊕
[
−10

]
, j ≥ 1,

so now the Hermitian method finds the unique Hermitian singularizing perturbation matrix of
rank one while the unstructured method does not find the singularizing perturbation matrix
of minimal norm.

Examples 40 and 41 show the difficulties with the alternating projection method. It is still
an open problem to derive a monotonically convergent sequence to the smallest singularizing
rank-one perturbation.

8 Other low-rank distances

In this section, we present some further results on singularizing perturbations of arbitrary
rank. The central role in the Sections 3 and 5 is played by Theorem 7, which further refers to
Theorem 4, condition (e). Here we show an analogue of the aforementioned condition (e) in
Theorem 4 in the Hermitian case with κA = κE = 1. The condition is, however, significantly
more complicated and thus harder to apply.

For the pencil A+ λE, we consider the perturbations

A+ τB1B
∗
2 + λ(E + τF1F

∗
2 ), τ ∈ C,

with the two choices
B1, B2 ∈ Cn×κA , F1, F2 ∈ Cn×κE , (49)

rankB1 = rankB2 = κA ≥ 0, rankF1 = rankF2 = κE ≥ 0. (50)

Similarly as in Section 2, we define the matrix valued Weyl functions

Q(λ) =

[
B∗2
λF ∗2

]
R(λ)

[
B1 F1

]
, (51)

and

Q(∞) =

[
0 0

F ∗2E
−1B1 F ∗2E

−1F1

]
, (52)

if infinity is a regular point of A + λE. Observe that Q(λ) is analytic on the set of regular
points of A+ λE.

Proposition 42 Let the n × n pencil A + λE be regular, let B1, B2, F1, F2 be as in (49)
and (50), and let τ0 ∈ C \ {0}. Then

(i) the characteristic polynomial p(λ) of A+ τ0B1B
∗
2 + λ(E + τF1F

∗
2 ) is given by

p(λ) = det(A+ λE) · det
(
IκA+κE + τ0Q(λ)

)
;

(ii) a regular point λ0 ∈ C∪ {∞} of A+ λE is a singular point of the pencil A+ τ0B1B
∗
2 +

λ(E + τF1F
∗
2 ) if and only if −1/τ0 is an eigenvalue of the matrix Q(λ0).
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Proof. (i) If λ0 ∈ C is a regular point of A+ λE, then one has

p(λ) = det
(
A+ τ0B1B

∗
2 + λ0(E + τ0F2F

∗
2 )
)

= det(A+ λ0E) · det

(
In + τ0(A+ λ0E)−1

[
B1 F1

] [ B∗2
λF ∗2

])
= det(A+ λ0E) · det

(
IκA+κE + τ0Q(λ0)

)
.

(ii) For λ0 ∈ C the proof is a direct consequence of (i). The case λ0 =∞ follows from

det(E + τ0F1F
∗
2 ) = det(E) · det(Iκ2 + τ0F

∗
2E
−1F1)

= det(E) det
(
IκA+κE + τ0Q(∞)

)
.

From Proposition 42, we obtain immediately that a regular point λ0 ∈ C∪ {∞} of A+ λE is
a singular point of the pencil A+ τB1B

∗
2 + λ(E + τF1F

∗
2 ) for at most κA + κE values of the

parameter τ .
The statements (a’)–(c’) in the following theorem directly generalize respective statements

from Theorem 4.

Theorem 43 Let the n × n pencil A + λE be regular and let B1, B2, F1, F2 be as in (49)
and (50). Then the following statements are equivalent.

(a’) The pencil A+ τ0B1B
∗
2 + λ(E + τ0F1F

∗
2 ) is singular for some τ0 ∈ C.

(b’) On the set of regular points of A+λE, all matrices Q(λ) have common, nonzero eigen-
values ζ1, . . . , ζk (independent of λ), where k is some integer with 1 ≤ k ≤ κA + κE.

(c’) The polynomial in two variables

p(τ, λ) = det(A+ τB1B
∗
2 + λ(E + τF1F

∗
2 ))

is divisible by the polynomial q(λ, τ) = (1 + ζ1τ) · · · (1 + ζkτ) with some ζ1, . . . , ζk 6= 0,
for some k ∈ N with 1 ≤ k ≤ κA + κE.

Furthermore, the numbers ζ1, . . . , ζk in (b’) and (c’) coincide and the pencil A + τ0B1B
∗
2 +

λ(E + τ0F1F
∗
2 ) is singular precisely if and only if τ0 = −1/ζj for some j ∈ {1, . . . , k}.

Proof. (a’)⇔(b’) If the pencil A+τ0B1B
∗
2+λ(E+τF1F

∗
2 ) is singular, then each λ ∈ C∪{∞}

is a singular point. By Proposition 42(i) we get that −1/τ0 is an eigenvalue of the matrix
Q(λ0) for all regular points λ0 ∈ C ∪ {∞} of A+ λE, so (b’) is satisfied for some k ≥ 1. The
reversed argument proves the converse implication.

(b’)⇒(c’) Let ζ1, . . . , ζk be the common nonzero eigenvalues of the matrices Q(λ0), where
λ0 is a regular point of A+ λE. Then

det(Iκ1+κ2 + τQ(λ)) = (1 + ζ1τ) · · · (1 + ζkτ)Q1(τ, λ)

for some function Q1(τ, λ) polynomial in τ and rational in λ. Hence, by Proposition 42(i),

p(τ, λ) = (1 + ζ1τ) · · · (1 + ζkτ) det(A+ λE)Q1(τ, λ).

Since p(τ, λ) is a polynomial in λ, the function det(A+λE)Q1(τ, λ) is polynomial in λ and τ .
(c’)⇒(b’) Assume that (c’) holds. Then

p(−1/ζj , λ) = 0, λ ∈ C, j = 1, . . . , k

and hence the pencil A+ τ0B1B
∗
2 + λ(E + τF1F

∗
2 ) is singular with τ0 = −1/ζj , j = 1, . . . , k.
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Example 44 Let κ1 = 2, κ2 = 0, B1 = B2 = I2, and let

A =

[
2 0
0 1

]
, E =

[
0 0
0 0

]
Then the function Q(λ) ≡ A−1 has two constant eigenvalues. Furthermore, this simple
example shows, that the number k appearing in (b’) and (c’) need not be equal to the number
of singular blocks in the perturbed pencil.

Example 45 In this example we show that point (d) of Theorem 4, i.e., the fact that the
eigenvalues are constant in τ when the perturbed pencil is regular, cannot easily be generalized
to the case of perturbations of arbitrary rank. Consider the perturbed pencil[

1 + τ 0
0 λ+ τ

]
which is singular for τ = −1, but for τ 6= −1 the eigenvalues are ∞ and −τ .

The perturbed pencil [
1 + τλ 0

0 λ+ λτ

]
is singular for τ = −1, but for τ 6= −1 the eigenvalues are zero and −1/τ .

The perturbed pencil  λ(τ + 1) 0 1
0 (τ + 1) λ
1 λ (τ + 1)


is singular for τ = −1, but for τ 6= −1 the eigenvalues are roots of the polynomial λ3 − (1 +
τ)λ + 1, i.e., they are nonconstant functions of τ . A detailed discussion on fractional power
series expansions of eigenvalues of a perturbed singular pencil is given in [6].

Remark 46 Consider an Hermitian n × n pencil A + λE and perturbations of the form
A+ τ0uu

∗ + λ(E + τ0vv
∗) or A− τ0uu

∗ + λ(E + τ0vv
∗). Note that by Theorem 20(iii) every

Hermitian pencil can be made singular by one of the above perturbations. There seems to be
no simple condition, similar to those of Theorem 4(c), which would be equivalent to the fact
that one of the above eigenvalues is constant in some neighborhood of some λ0. Observe that

Q(λ) =

[
u∗R(λ)u u∗R(λ)v
λv∗R(λ)u λv∗R(λ)v

]
and the eigenvalues of Q(λ) equal

ζ1,2(λ) = −1

2

(
t(λ)±

√
∆(λ)

)
,

where
t(λ) = t(λ;u, v) = trQ(λ), d(λ) = d(λ, u, v) = detQ(λ).

Setting
∆(λ) = ∆(λ;u, v) = t2(λ;u, v)− 4d(λ;u, v),
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fixing a regular point λ0 with ∆(λ0) 6= 0 and expressing the derivatives of the above functions
in terms of A, E, u and v, we obtain

tk(u, v) :=
∂kt

∂λk
(λ0) = trQ(k)

u,v(λ0)

= u∗R(k)(λ0)u+ λ0v
∗R(k)(λ0)v + kv∗R(k−1)(λ0)v;

dk(u, v) :=
∂kd

∂λk
(λ0)

=

k∑
i=1

(
k
i

)[
u∗R(i)(λ0)u

(
λ0v
∗R(k−i)(λ0)v + (k − i)v∗R(k−i−1)v

)
− u∗R(i)(λ0)v

(
λ0v
∗R(k−i)(λ0)u+ (k − i)v∗R(k−i−1)u

)]
.

For l = 1, 2 . . . we set

∆l(u, v) :=
∂l(t2 − 4d)

∂λl
(λ0) = 2

bl/2c∑
i=0

tl−i(u, v)

(l − i)!
ti(u, v)

i!
− 4dl(u, v).

Differentiating the formula for the eigenvalue ζ1(λ) with the help of the Faá di Bruno formula
(see [13, Theorem 1.3.2]), and finding the zeros of the derivatives of the eigenvalues, we get
the following necessary and sufficient condition on the pair (u, v) for the eigenvalue ζ1(λ) of
Q(λ) to be constant.

0 = tk(u, v) +
∑ k!

i1! · · · ik!

(
1

2

)
i1+···+ik

∆
1−2(i1+···ik)

2 (u, v)

·
(

∆1(u, v)

1!

)i1 (∆1(u, v)

2!

)i2
· · ·
(

∆k(u, v)

k!

)ik
for k = 1, 2 . . . , where we used the Pochhammer symbol (x)j := x(x− 1) · · · (x− j + 1), and
where the sum is taken over all sequences i1, i2, i3, ..., ik−j+1 of non-negative integers such
that

i1 + 2i2 + 3i3 + · · · kik = k.

The necessary and sufficient condition on the pair (u, v) for the eigenvalue ζ2(λ) of Q(λ) being
constant is analogue.

9 Conclusions

We have studied low rank perturbations of unstructured and Hermitian pencils matrix with
the goal to find smallest norm perturbations that make the pencil singular. Motivated by the
fact that most ’smallest distance perturbations’ can be realized by small rank perturbations,
we have identified several cases which allow characterizations to these smallest distance and
contributed partial results to the open problem of finding the distance to singularity for matrix
pencils.
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