
A Branch-Cut-And-Price Algorithm for a
Combined Buy-at-Bulk Network Design Facility

Location Problem?

Ashwin Arulselvan, Mohsen Rezapour, and Wolfgang A. Welz

Insitut für Mathematik, Technische Universtät Berlin
arulsel,rezapour,welz@math.tu-berlin.de

Abstract In the combined buy-at-bulk network design facility location
problem we are given an undirected network with a set of potential facil-
ities and a set of clients with demands. In addition, we are also provided
a set of cable types with each cable type having a capacity and cost
per unit length. The cost to capacity ratio decreases from large to small
cables following economies of scale. A network planner is expected to
determine a set of facilities to open and install cables along the edges of
the network in order to route the demands of the clients to some open
facility. The capacities of the installed cable must be able to support the
demands of the clients routed along that edge.The objective is to mini-
mize the cost that is paid for opening facilities and installing cables.
We model the problem as an integer program and propose a branch-cut-
and-price algorithm for solving it. We study the effect of two family of
valid inequalities that naturally emerge from the model. We present the
results of our implementation that were tested on a set of large real world
instances.

1 Introduction

We consider a problem that integrates buy-at-bulk network design into the clas-
sical uncapacitated facility location problem. We model applications in which a
set of facilities must be located to serve a set of clients, while a capacitated
network must be designed connecting every client to its facility. In telecommu-
nication networks, for example, this corresponds to installing routing devices on
the network nodes, and laying cables, e.g. fiber-optic cables, along the edges of
the network so that the required demands can be routed through the routing
devices in the resulting network. The facilities here could be central offices or
distribution points where devices could be installed to serve the clients.

The Buy-at-Bulk network design with uncapacitated Facility Location prob-
lem, denoted by BBFL, can be stated as follows. We are given an undirected
graph G = (V,E) with nonnegative edge lengths ge ∈ R≥0, e ∈ E; a set F ⊆ V of
facilities with cost fi ∈ R≥0; and a set of clients D ⊆ V with demands dj ∈ Z>0,

? Supported by DFG Research Center Matheon “Mathematics for key technologies”
in Berlin.

j ∈ D. We are also given K types of access cables that may be used to connect
clients to open facilities. A cable of type i has capacity ui ∈ Z>0 and cost (per
unit length) σi ∈ Z≥0. The task is to open a subset I ⊆ F of facilities and
construct a forest in order to route the demands from the clients to the facilities.
The entire demand of each client must be routed via the forest to an open facil-
ity by installing access cables (probably multiple copies) along the edges of the
forest with a capacity capable of supporting the routed demand.1. The objective
is to minimize the total cost of opening facilities and installing access cables,
where the cost for installing a single access cable of type i on edge e is σige. This
problem includes the classical facility location problem as a special case and is
therefore NP-hard.

If we already decide on the forest (edges supporting the solution), then we
need just to choose the optimal combination of the cables for each edge separately
with total capacity that covers the demand that flows through each edge. To
model and solve the single-sink buy-at-bulk network design problem, Salman
et.al [9] point out that one can precompute (via dynamic programming) the
optimal combination of cable types for all flow levels. This gives a monotonically
increasing step cost function for the flow on any edge in the network. This allows
modeling the problem as a single commodity network flow problem (since there is
a single sink) with additional variables to model the resulting nonlinear objective
function. After this transformation, one can look for the optimal module of the
step cost function to be installed on every edge. We will make use of this in our
formulations. We assume that for each edge e a set Ne = {n1, n2, . . . , nNe

} of
modules is given, and at most one of these modules can be installed to support
the corresponding flow along that edge. Each module n has a cost of ge,n and a
capacity of ue,u.

1.1 Previous and related work

To the best of our knowledge, the combination of the facility location and the
buy-at-bulk network problem has been considered for the first time in [14]. They
show that this combination can be seen as a special case of the Cost-Distance
problem, and thereby provide the first O(log(|D|)) approximating algorithm for
this problem. Ravi et al. [6] later developed an O(K) approximation, where K
is the number of cable types, for this problem and called it Integrated logistics.
As far as we are aware, this is the first exact algorithm for this combination.
However, the combination of the facility location and network design (with K =
1) problem has been studied in the literature; see [15,16] and references within
them for more details.

Single-Sink Buy-at-Bulk problem (SSBB) can be seen as a further simplifica-
tion of the problem above in which the set of open uncapacitated facilities is
given in advance, and considered as a single-sink. The SSBB problem has been

1 We allow the demand crossing a single edge to use different access cables, but the
collection of edges traversed must be a path in G.

2

widely studied in the both operations research and computer science communi-
ties. It should be noticed that there are two variants of the SSBB problem in the
literature namely, splittable SSBB (s-SSBB) and unsplittable SSBB (u-SSBB),
depending on whether the demand of each client is allowed to be routed along
several paths or not. We remark that the u-SSBB problem is a special case of
our problem.

Several approximation algorithms for this problem have been proposed in the
computer science literature. For the unsplittable case, Garg et al. [2] developed
an O(K) approximation, using LP rounding techniques, where K is the number
of cable types. The first constant factor approximation for this problem is due
to Guha et al. [4]. Talwar [7] showed that an LP formulation of this problem has
a constant integrality gap and provided a 216 approximation algorithm. Using
sampling techniques, this factor was reduced to 145.6 by Jothi et al. [5], and later
to 40.82 by Grandoni et al. [3]. For the splittable case, Gupta et al. [13] presented
a simple 76.8-approximation algorithm using random-sampling techniques. Un-
like the algorithms mentioned above, their algorithm does not guarantee that the
solution is a tree. Modifying Gupta’s algorithm, the approximation for u-SSBB
was later reduced to 65.49 by Jothi et al. [5], and then to 24.92 by Grandoni et
al. [3].

In the operation research literature, this problem is also known as single-
source network loading problem [8] or (in the case of telecommunication network
planning) Local Access Network Design Problem (LAN) [9].

In [11] Randazzo et al. study the LAN problem with two cable types under
the assumption that the solution must be a tree (with unsplittable flow). They
provide a multicommodity flow based formulation for the problem and solve it
by applying Benders’ decomposition. Salman et al. [9] consider the LAN prob-
lem with multiple cable types where the cable types obey economies of scale.
They apply flow-based MIP formulations and work with relaxations obtained
by approximating the capacity step cost function by its lower convex envelope
to provide a special branch-and-bound algorithm for LAN design. Raghavan
and Stanojevic [12] later reformulate this approximation technique as a stylized
branch-and-bound algorithm. Working with the approximate step cost function,
as defined in [9], Ljubic et al. [8] study exact approaches, based on disaggre-
gating the commodities and using Benders decomposition on a multicommodity
flow based formulation.

Our contribution We model the problem as an integer program that uses an
exponential number of variables. We propose a branch-cut-and-price approach
to solve the problem. We discuss and study some valid inequalities in our ex-
periments that strengthen the formulation. We present the results from our
computational study on several real world instances.

Organization We begin with the integer programming formulation for combined
buy-at-bulk network design facility location problem in section 2. We then dis-
cuss the valid inequalities we considered for the integer program in Section 3. In

3

Section 4, we explain the branch-cut-and-price procedure that discusses the pric-
ing subproblem, branching strategies and primal heuristics. Finally in Section 5,
we give the details of the implementation. We also explain the test instances and
present our results before we conclude.

2 IP Formulation

We propose a path-based formulation for the problem with an exponential num-
ber of variables and solve it using column generation. We are given an undirected
graph G=(V,E). For the sake of modelling paths, we first create a dummy root
node r and connect all facilities with the root node. Let E′ = E ∪

{⋃
i∈F (i, r)

}
.

Let P (j) denote the set of all possible paths in G′ = (V ∪ {r}, E′) starting from
client j and terminating at the root node r. Remember that the demand of each
client must be routed to an open facility, and so to the root node, via a single
path. For each j ∈ D and for each p ∈ P (j), we introduce a binary variable yp
which indicates if flow from j is routed along p. The binary variables zi indicate
whether facility i is open or not. For an edge e = (k, l) and a module n ∈ N(k,l)

the variable xkl,n indicate whether module n has been installed on edge (k, l) or
not. Then the problem can be formulated as follows:

(IP1) min
∑
i∈F

fizi +
∑

(k,l)∈E

∑
n∈N(k,l)

g(k,l),n · xkl,n (1)

∑
p∈P (j)

yp = 1, ∀j ∈ D (2)

∑
j∈D

∑
p∈P (j)

{(k,l),(l,k)}∩p 6=∅

djyp ≤
∑

n∈Nkl

ukl,nxkl,n, ∀(k, l) ∈ E (3)

∑
n∈Nkl

xkl,n ≤ 1, ∀(k, l) ∈ E (4)

∑
p∈P (j):(i,r)∈p

yp ≤ zi, ∀i ∈ F,∀j ∈ D (5)

yp, xkl,n, zi ∈ {0, 1} (6)

Constraints (2) force each client to be connected to a routing path. Constraints (3)
ensure that we install sufficient capacity to support the flow along routing paths,
Constraints (4) guarantee that at most one module is installed along each edge
and Constraints (5) ensure that a serving facility is open.

3 Valid Inequalities

3.1 Cover Inequalities

In order to derive the cover inequalities corresponding to each constraint in
set (3), we obtain a knapsack structure by complementing the x variables (re-

4

placing x by 1 − x) in the constraint. Consider the constraint in set (3) corre-
sponding to edge (k, l) ∈ E. Let Ukl =

∑
n∈Nkl

ukl,n. We define c(k,l) = (Dc,Mc)
to be a cover with respect to edge (k, l), where Dc ⊆ D and Mc ⊆ Nkl, if∑

j∈Dc

dj +
∑

n∈Mc

ukl,n > Ukl

We say that a cover is minimal when just removing any item either from Dc

or Mc results a cover for which the above inequality does not hold. It is not
hard to show that if c(k,l) is a minimal cover, then the following inequalities are
valid [17]:∑

j∈Dc

∑
p∈P (j):(k,l)∈p

yp +
∑

n∈Mc

(1− xkl,n) ≤ |Mc|+ |Dc| − 1⇐⇒

∑
j∈Dc

∑
p∈P (j):(k,l)∈p

yp ≤
∑

n∈Mc

xkl,n + |Dc| − 1 (7)

Let (x∗, y∗, z∗) be the optimal fractional solution of the LP relaxation of model
IP1. Now, we present how to find a cover inequality corresponding to edge (k, l)
violated by (x∗, y∗, z∗). For each j ∈ D, we let

w∗j =
∑

p∈P (j):(k,l)∈p

y∗p

And let Fkl ⊆ Nkl be the set of modules for the edge (k, l) such that x∗kl,n > 0.
The most violated cover inequality can be detected by solving the knapsack
problem shown below:

min γ =
∑

n∈Fkl

x∗kl,nxkl,n +
∑
j∈D

(1− w∗j)wj (8)

∑
j∈D

djwj +
∑

n∈Fkl

ukl,nxkl,n ≥
∑

n∈Fkl

ukl,n + 1 (9)

xkl,n ∈ {0, 1},∀n ∈ Fkl (10)

wj ∈ {0, 1},∀j ∈ D (11)

Which is equivalent to the following standard knapsack problem in maximization
form by replacing x by 1− x̄, and w by 1− w̄.∑

m∈Fkl

x∗kl,n +
∑
j∈D

(1− w∗j)−max
∑

n∈Fkl

x∗kl,nx̄kl,n +
∑
j∈D

(1− w∗j)w̄j (12)

∑
j∈D

djw̄j +
∑

n∈Fkl

ukl,nx̄kl,n ≤
∑
j∈D

dj − 1 (13)

x̄kl,n ∈ {0, 1},∀m ∈ Fkl (14)

w̄j ∈ {0, 1},∀j ∈ D (15)

5

Let D′ ⊆ D and F ′kl ⊆ Fkl be the optimal subsets of the minimizing knapsack
problem. Then, it is easy to show that (x∗, y∗, z∗) violates the following cover
inequality if γ < 1.∑

j∈D′

∑
p∈P (j):(k,l)∈p

yp ≤
∑

n∈F ′
kl,m∪{Nkl\Fkl}

xkl,n + |D′| − 1 (16)

3.2 Cut inequalities

The modules generated follow economies of scale and hence the LP relaxation
ends up fractionally picking the last module -with the lowest cost/capacity rate-
at optimality for most edges. Indeed, this is the main reason for the integrality
gap of IP1 to be arbitrarily large. In this section we try to remedy this difficulty
by introducing a set of valid inequalities, called cut inequalities, as follows: Given
a fractional optimal solution (x∗, y∗, z∗), for the graph G′ = (V ∪ {r}, E′), we
take the edge capacities to be, ukl =

∑
n∈Nkl

x∗kl,n, for all (k, l) ∈ E and 1 for
all other edges. For every customer s ∈ D we solve the maximum flow problem
with source as s and sink as r. If the flow value is less than 1, we obtain the
following violated cut ∑

(k,l)∈C

∑
n∈Nkl

xkl,n ≥ 1 (17)

Where C is the corresponding the minimum cut. The validity of the cut follows
from the fact that every customer needs to be connected to some facility along
a path with every edge in the path having at least one module installed. Note
that not all modules need to be picked in the generated inequality. Since we are
allowed to install at most one module on edge, it is enough if we consider those
modules with capacities greater than the demand of the customer.

4 Solution procedure

Since the path based formulation presented above contains an exponential num-
ber of variables, our solution procedure is based on the column generation tech-
niques. We consider as the restricted master problem the continuous relaxation
of the IP1 model including all the constraints and the x and z variables, but
only the y variables corresponding to a subset P ′(j) ⊆ P (j) of paths for each
j ∈ D.

4.1 Column generation

We iteratively solve the restricted master problem and search for new columns
having negative reduced cost that is computed using the the optimal dual so-
lution. Let the dual variables corresponding to Constraints (2) be µj . We will
refer to the dual variables corresponding to Constraints (3) with the notation as

6

πkl, forall (k, l) ∈ E and the dual variables corresponding to Constraints (5) by
γji , forall i ∈ F, j ∈ D. For each j ∈ D, we determine if a path p in P (j) \ P ′(j)
could improve the current (fractional) solution. The pricing problem associated
with client j is:

min
p∈P (j)

−

µj +
∑

(k,l)∈p
l 6=r

djπkl +
∑
i∈F

Ipi γ
j
i

where Ipi is an indicator variable denoting whether edge (i, r) is in the path p or
not (r being the root node). Given the graph G′ = (V ∪ {r}, E′), we take the
weight of an edge (k, l) to be −djπkl, for all (k, l) ∈ E and weights −γji , for all
i ∈ F, (i, r) ∈ E′. We now find the shortest path in E′ from j to the root node r.
Note that the dual vectors π,γ ≤ 0 and so Dijkstra’s algorithm can be used to
find the shortest path. If the solution to this shortest path problem has length
less than µj , then the solution is not optimal for the master problem and this
path should be added into our restricted master problem. The new restricted
master problem is re-solved and the process is iterated as long as the pricing
problems corresponding to the clients generate new columns.

We notice that the feasible solutions space of the restricted master problem
may be empty during the loop mentioned above, due to branching constraints
(see Section 4.3) or in the beginning when no columns have been generated yet.
In this case, we use Farkas’ Lemma to add columns that gradually move the
solutions space closer to the feasible region. Note that this is the same problem
as the pricing problem above considering the so called dual Farkas values. This
method has been called Farkas pricing, and provided in [10] within the SCIP
framework (see Section 5).

4.2 Cut generation

Once the column generation is over, we start searching for the cover inequalities
violated by the current fractional solution. We search for such cuts as described
in Sections 3.1 and 3.2. The generated cover cuts (16) will not change the struc-
ture of the pricing problem, however the weights associated with edges of the
network may be changed. Hence the column generation process should be re-
peated considering the new pricing problems, once new cuts are added.

Each (k, l) has multiple cover inequalities associated with it. Let C(k,l) be
the set of covers associated with edge (k, l). Let C =

⋃
(k,l)∈E C(k,l). For a

cover c ∈ C, let Dc be the set of clients involved in the cover and αc be the
corresponding dual variable.

The new pricing problem associated with client j is:

min
p∈P (j)

−

µj +
∑

(k,l)∈p
l 6=r

djπkl +
∑
i:i∈F

Ipi γ
j
i +

∑
(k,l)∈p

∑
c∈C(k,l)

j∈Dc

αc

 (18)

7

Note that cut inequalities (17) involving x variables improve the quality of the
bound without affecting the pricing problem.

Such a loop is repeated until neither new columns nor cuts are added.

4.3 Branching Strategies

So far, we have described how we employ the column generation and cut separa-
tion methods for solving the master problem. However, the optimal solution to
the master problem might not be integral, even at the end of the price-and-cut
loop. Integer linear programs are typically solved by using Branch-and-Bound, a
widely known technique, which uses branching to enforce integrality. This tech-
nique, when used together with column generation and cut separation is called
Branch-Cut-and-Price. The most intuitive branching rule is, given variable yp
with a continuous value, to create two branches, the first one with yp = 0 and
other with yp = 1. But this cannot be done due to the column generation algo-
rithm. If a path p is fixed to zero, the pricing subproblem will find this route
again on the next iteration and will return it to the restricted master. An al-
ternative can be to implement standard branching in the space of the compact
formulation. We branch by adding constraints that gives lower and upper bound
on the capacity of an edge that currently has a fractional flow value. However,
this branching decision destroys the pricing subproblem structure. To get around
these issues, we follow closely the so called path-splitting branching rule used
for multi-commodity flow in [1] where branching constraints bound the number
of paths that use a common starting path from a client as follows. Consider any
j ∈ D whose demand is routed along more than one path, say two distinct paths
p1 and p2, in the current (fractional) solution to the master problem. Note that
paths have at least node j in common. Consider the first node at which these
two paths split. We consider the edges e1 and e2 present in p1 and p2 respec-
tively emanating from this node. We create two branches with one imposing∑

p∈P (j):p∩{e2}6=∅ yp = 0 and the other imposing
∑

p∈P (j):p∩{e1}6=∅ yp = 0. In [1],
they partition the set of edges emanating from this node into two sub-sets E1

and E2 such that E1 (E2, respectively) intersects p1 (p2, respectively). Then,
they impose

∑
p∈P (j):p∩E2 6=∅ yp = 0 in one branch and

∑
p∈P (j):p∩E1 6=∅ yp = 0 in

the other branch. This branching strategy is more efficient than the one we im-
plemented in terms of convergence. We plan to follow this in our future work. We
remark that these branching decisions requires no changes in the basic structure
of the pricing problem, which remains a simple shortest path problem through
all the enumeration process. In our implementation, the branching priorities for
x and z are higher than that of the y variables.

4.4 Primal Heuristic

For the overall performance of a Branch-and-Price approach it is crucial that
good primal solutions to the problem are found fast using heuristics. One possible
idea for such a heuristic is to treat the problem including all variables generated
hitherto as a fixed Integer Problem and then solve it using a commercial solver

8

like CPLEX. The result gives us the best possible solution that can be achieved
without adding new variables and only using the paths from P ′(j). Since the
number of variables is fixed, this problem is much easier to solve and even if the
solution process of the sub-IP is canceled after a certain amount of time, the
best solution found is still a feasible solution to our problem.

5 Experiments

The Branch-Cut-and-Price approach has to been implemented using the frame-
work provided by SCIP [10]. In this context SCIP handles all the underlying
Integer Programming specific aspects and has be extended with problem depen-
dent plugins for the pricing and branching as well as the cut generation and
primal heuristic. As explained in Section 4.1 the pricing problem corresponds
to solving a shortest path problem for every customer, which is solved via an
implementation of Dijkstra’s Algorithm.
To avoid that this computation is performed for all the customers in every iter-
ation, we implemented a two step approach: In the first step one single-source
shortest paths problem is solved to find lower bounds for the shortest paths to
every customers. If we take a look at the arc costs corresponding to the problem
for client j, we notice that only the dual variables corresponding to the Con-
straints (5) and to the cover cuts depend on j. The µj and the capacities dj can
be applied after the shortest paths have been calculated. However, different dual
variables resulting from the Constraints (5) are selected for different customers.
Here the smallest of the corresponding values is used as an arc weight. This leads
to the following optimization problem, where the shortest r-j-paths in the re-
sulting graph represent a lower bound to the shortest paths in the actual pricing
problem:

−µj + dj

 min
p∈P (j)

 ∑
(k,l)∈p
l 6=r

−πkl +
∑
i:i∈F

Ipi ·min
j∈D

−γji
dj

As the dual variables αc are all not positive, this gives us a lower bound of the
pricing problem (18).
In the second step the graph with client dependent weights is then only solved
for the clients j that had a non-negative path in the first step.

As described in Section 4.4 CPLEX is used to find good solutions using only
paths form the current P ′(j). To make this process as efficient as possible the
CPLEX-problem is created by adding all variables corresponding to P ′(j), which
is then solved in the background so that the main CPU-thread can still continue
to perform the regular branch-and-bound process using SCIP. If CPLEX finds
a new improving solution the main thread is being signaled and this solution
is than added as a new solution for SCIP so that it can immediately be used
as an upper bound in the branch-and-bound. After either CPLEX reaches a
certain node limit or after too many new variables have been generated since

9

the last start of the Heuristic, the new variables are added and the solver is
restarted. By adding variables to the existing CPLEX-problem we assure that
solutions found in previous runs are still available and automatically used in the
new computation. To improve the solution process we also add the found valid
inequalities to the problem. Those inequalities are problem dependent and thus
improve the automatically generated cuts by CPLEX.

For the cover inequalities we use the solver provided as part of SCIP that
uses dynamic programming to find an optimal Knapsack solution. The min-
cut computations for the cut inequalities are performed using a push-relabel
maximum flow algorithm.

Test instances The instances tested correspond to real world network planning
problem. The networks were generated from the publicly available information
obtained through geographic information systems. Each instance correspond to
a region in Germany and was constructed bearing in mind the potential cus-
tomer and facility locations. The street segment form the edges, while the street
intersections and traffic circles provide the intermediate nodes. The informa-
tion about the different cable types along with their costs and capacities were
provided by our industry partners.

Computational results All computations were performed on Intel Xeon E5-2630,
2.3 GHz CPUs using one thread for SCIP and three threads for the CPLEX-
Heuristic with a time limit of 10 hours. We used CPLEX 12.4 and SCIP version
3.0.2.

inst |V | |E| |F | |D| #vars #cover #cut final root
generated inequalities inequalities gap gap

a 1675 1730 104 604 15757 3774 4493 21.23% 21.55%
b 4110 4350 230 1670 29098 8191 11487 25.78% 25.92%
c 6750 7352 531 2440 35381 0 9716 38.00% 38.00%
d 4227 4484 319 1490 40703 1853 10291 28.60% 28.60%
e 11544 12478 890 4275 43975 0 6044 70.44% 70.44%
f 637 826 101 39 66556 1222 577 19.08% 21.72%
g 6750 7352 531 2440 36315 0 10244 37.77% 37.77%
h 2271 1419 498 349 30874 642 1732 23.59% 23.73%
i 1315 1434 148 238 52563 4514 3150 21.45% 21.75%

From the results we could see that we have trouble solving the root LP in the
larger instances (with more than 6000 nodes). This is an expected behavior with
column generation as it has stabilization issues. For the smaller instances, we
were able to close the gap to less than 25%. The issue with stability needs to be
addressed for the larger instances by generating more useful columns. For the
larger instances, the pass on the cut inequalities added a sufficient number of

10

cuts reaching the cut count limit for the iteration and hence the cover inequal-
ity call was bypassed in every iteration. The root gap presented was calculated
using the best integer solution. The observation to be made is that the branch-
ing strategies need to be revised as the lower bounds are not improving much
once the branching commences for most instances. We observed that the valid
inequalities introduced helped in significantly improving the lower bound.

6 Conclusion

We presented a branch-cut-and-price algorithm for solving the multisink buy-
at-bulk network design problem. We studied the effect of the two families of
valid inequalities. The model shows promise in solving reasonably large real
world instances. As future work, we intend to address the stabilization of column
generation process and device sophisticated branching strategies. We also intend
to design an efficient primal heuristic that would eventually replace the CPLEX
based heuristic.

References

1. C. Barnhart, C. A. Hane, and P. H. Vance. ”Using branch-and-price-and-cut to
solve origin-destination integer multicommodity flow problems.” Operations Re-
search 48.2 2000, pages 318-326.

2. N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F. S. Salman and A. Sinha. On
the integrality gap of a natural formulation of the single-sink buy-at-bulk network
design formulation. In Proc. of IPCO 2001, pages 170-184.

3. F. Grandoni and T. Rothvoß. Network design via core detouring for problems
without a core. In Proc. of ICALP 2010, pages 490-502.

4. S. Guha, A. Meyerson, K. Munagala. A constant factor approximation for the
single sink edge installation problems. In Proc. of STOC 2001, pages 383-388.

5. R. Jothi and B. Raghavachari. Improved approximation algorithms for the single-
sink buy-at-bulk network design problems. In Proc. of SWAT 2004, pages 336-348.

6. R. Ravi, A. Sinha. Integrated logistics: Approximation algorithms combining facil-
ity location and network design. In Proc. of IPCO 2002, pages 212-229.

7. K. Talwar. The single-sink buy-at-bulk LP has constant integrality gap. In Proc.
of IPCO 2002, pages 475-486.

8. I. Ljubic, P. Putz, and J. J. SalazarGonzalez. Exact approaches to the singlesource
network loading problem. Networks 59.1, 89-106, 2012.

9. F. S. Salman, R. Ravi and J. Hooker. Solving the Local Access Network Design
Problem. INFORMS J. on Computing, 20:2, 243-254, 2008.

10. T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation 2009, pages 1-41.

11. C. D. Randazzo, H. P. L. Luna, and P. Mahey. Benders decomposition for local
access network design with two technologies. Discrete Mathematics & Theoretical
Computer Science 4.2 2001, pages 235-246.

12. S. Raghavan, and D. Stanojevic. A note on search by objective relaxation. Telecom-
munications planning: innovations in pricing, network design and management.
Springer US, 2006, pages 181-201.

11

13. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In STOC 2003, pages 365-372.

14. A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: Two metric network
design. In FOCS 2000, pages 624-630.

15. S. Melkote and M.S. Daskin. An integrated model of facility location and trans-
portation network design. Transportation Research Part A, 35(6) 2001, pages 515-
538.

16. S. Melkote and M.S. Daskin. Capacitated facility location-network design prob-
lems. European Journal of Operational Research, 129(3) 2001, pages 481-495.

17. G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization, 1988,
Wiley-Interscience, NY, USA,

12

