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Abstract

Constraint-based modeling of genome-scale metabolic network reconstructions has be-
come a widely used approach in computational biology. Flux coupling analysis is a
constraint-based method that analyses the impact of single reaction knockouts on other
reactions in the network. We present an extension of flux coupling analysis for double and
multiple gene or reaction knockouts, and develop corresponding algorithms for an in silico
simulation. To evaluate our method, we perform a full single and double knockout analysis
on a selection of genome-scale metabolic network reconstructions and compare the results.

Introduction

Constraint-based modeling has become a widely used approach for the analysis of genome-
scale reconstructions of metabolic networks [1]. Given a set of metabolites M and a set of
reactions R, the metabolic network is represented by its stoichiometric matrix S € RM*R,
and a subset of irreversible reactions Irr C R. The flux cone C = {v € R* | Sv = 0,v; >
0,7 € Irr} contains all steady-state flux vectors satisfying the stoichiometric and thermodynamic
irreversibility constraints. Based on this flux cone, many analysis methods have been proposed
over the years (see e.g. [2] for an overview). Flux Balance Analysis (FBA) [3, 4] solves a linear
program (LP) max{cTv | Sv = 0,1 < v < u} over the (truncated) flux cone in order to predict
how efficiently an organism can realize a certain biological objective. For example, one may
compute the maximal biomass production rate under specific growth conditions. Flux Coupling
Analysis (FCA) [5, 6] studies dependencies between reactions. Here the question is whether or
not for all steady-state flux vectors v € C, zero flux v, = 0 through some reaction r implies
zero flux vs = 0, for some other reaction s.

Knockout analysis has become an important technique for the study of metabolic networks
and in metabolic engineering. Starting from flux balance analysis (FBA), various in silico
screening methods for genetic modifications have been developed, see [7, 8] for an overview. On
the one hand, complete methods have been proposed, which systematically explore all possible
knockout sets up to a given size, e.g. [9, 10]. On the other hand, there are heuristic algorithms
such as [11, 12, 13, 14], which may be considerably faster, but in general are not complete.
Klamt et al. [15, 16, 17] developed the related concept of minimal cut sets, which are (inclusion-
wise) minimal sets of reactions whose knockout will block certain undesired flux distributions
while maintaining others.
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Recent progress in the development of algorithms for flux coupling analysis (FCA) [6, 18]
may lead to a different approach. FCA [5] describes the impact of each possible single reaction
knockout in a metabolic network. It analyzes which other reactions become blocked after
removing one reaction (“directional coupling”), and which reactions are always active together
(“partial coupling”). As we will see, using flux coupling information inside a double or multiple
knockout simulation may significantly reduce the search space, without loosing any information.

In this paper, we present an algorithmic framework for double and multiple knockouts
in qualitative models of metabolic networks. We will use a lattice-theoretic approach [18],
which includes classical constraint-based models at steady-state as a special case, but which is
much more general. We illustrate and evaluate our method by computing full double knockout
simulations on a selection of genome-scale metabolic network reconstructions. In particular,
we compare the impact of single vs. double reaction knockouts on the other reactions in the
network. We also show how our method can be extended to gene (in contrast to reaction)
knockouts, and provide computational results for both cases.

Our algorithms are based on an efficient search for the maximal element in suitably defined
lattices [18]. To simulate all double or multiple reaction knockouts, we describe a method to
select a subset of the reactions as representatives for the whole system. More precisely, we
partition the reaction set in equivalence classes of partially coupled reactions. This enables us
to obtain the information about all possible double or multiple reaction knockouts much faster
and to store the results in a compact format.

The approach developed in this paper is a qualitative method. We do not measure the
quantitative impact of knockout sets on the cellular growth rate (or other metabolic fluxes)
as this would be done in an FBA approach. Instead, we count how many reactions become
blocked by a knockout, similar to the fluz balance impact degree introduced in [19]. However,
even though we do not apply FBA to evaluate the impact of a knockout, the idea of working
with representatives for reaction classes via partial coupling could also be applied in an FBA
context. Thus, studies like [20] and even MILP-based approaches like [21] might benefit from
this method.

Methods

Reaction coupling in the context of knockout analysis

We start from a metabolic network N' = (M, R, S, Irr) given by a set of metabolites M, a set of
reactions R, a stoichiometric matrix S € RM>*® and a set of irreversible reactions Irr C R. The
set C = {v € R®| Sv=0,v, > 0,r € Irr} of all flux vectors v € R satisfying the steady-state
(mass balance) constraints Sv = 0 and the thermodynamic irreversibility constraints v, > 0, for
all r € Irr, is called the steady-state flux cone. A reaction s € R is called blocked if vs = 0, for
all v € C, otherwise s is unblocked. Two unblocked reactions r, s are called directionally coupled
[5], written r:—(>)s, if for all v € C, v, = 0 implies v = 0. A possible biological interpretation
is that the reactions directionally coupled to r are those reactions that will become blocked by
knocking out the reaction r.

To determine which reactions are coupled, a simple approach would be to solve for each pair
of reactions (r, s) two linear programs (LPs) and to check whether max {v, | v € C,v, =0} =
min {vs | v € C,v, = 0} = 0. During the last years, efficient flux coupling algorithms have been
developed [6, 18] that drastically reduce the number of LPs to be solved, so that that genome-
wide metabolic network reconstructions can now be analyzed in a few minutes on a desktop
computer (compared to a couple of days of running time before).

Whether reactions are blocked or coupled does not depend on the specific flux values. It



only matters whether or not v, = 0 resp. vs = 0. In this sense, flux coupling is a qualitative
property that can be analysed by studying the set L¢ = {suppwv | v € C} of all supports of
flux vectors v € C, where suppv = {r € R | v, # 0}. Each element a € L® is the set of active
reactions of some flux vector v € C. Therefore, we can interpret L¢ as the set of all possible
reaction sets or pathways in the flux cone C. Since L does not contain any information about
specific flux values, we also speak of a qualitative model of the metabolic network N.

In [18, 22], we have shown that flux coupling analysis can be extended to much more general
qualitative models, where the space of possible pathways L C 2 can be any non-empty subset
of the power set 2%, e.g. L = {suppv | v € C,v thermodynamically feasible}. The definition
of flux coupling needs only be slightly modified in order to be applicable to these qualitative
models. A reaction t € R is called blocked in L if and only if for all @ € L, we have t ¢ a. For
reactions r, s € R that are unblocked in L, we define r Dsin L, if for all a € L, r ¢ a implies
s ¢ a. To distinguish between the original flux coupling and its qualitative extension, we will
call the latter reaction coupling from now on.

The goal of this paper is to study more general dependencies between reactions, where the
flux through some reaction has to be zero, if the flux through two or more other reactions is
Z€ro.

Definition 1 (Joint reaction coupling). Given a qualitative model L C 2R of a metabolic
network N, let r,s,t € R be unblocked reactions in L such that neither r Nt inLnorsStinL
holds. We say t is jointly coupled to the pair {r, s} in L, written {r, s} Dt in L, if foralla € L,
r & a and s ¢ a implies t ¢ a.

More generally, given a set K C R of unblocked reactions in L, we say that t is jointly
coupled to K in L, written K Dt in L, if foralla € L, anK = 0 implies t ¢ a, and K’ in L
does not hold for any O # K' C K.

Note that in the definition of the joint coupling relation {r, s} tin L, we require that the

simple couplings r =t in L and s V¢ in L both do not hold. Thus, joint coupling is about the
synergistic effect of a pair of reactions 7, s on some other reaction ¢, which cannot be obtained
by either r or s alone. Similarly, tin L can only hold if K’ ¢ in L does not hold, for any
smaller knockout set K" C K.

Lattices and maximal elements

In [18], we presented a generic algorithm for flux coupling analysis in qualitative models. This
algorithm determines the pairs of coupled reactions by computing the maximal element in
suitably defined lattices.

A family of reaction sets L C 2% is a (finite) lattice if ) € L and for all aj,az € L, we
have a1 U as € L. The biological interpretation of this property is that the combination of two
metabolic pathways should be a pathway again. In [18] we showed that L is a lattice. Any
finite lattice L has a unique mazimal element 1y, (w.r.t. set inclusion), which is simply the union
of all lattice elements, i.e., 1, = U a. For any subset of reactions K C R, we may define the

acL
family

LL;C:{CLEL|(ZQIC:®}

called L without IC of those reaction sets a € L that do not contain any reaction in K. If L is a
lattice, then Lk is a lattice again, and thus it has a maximal element

1p . = U a.

a€L,anKC=0



Given any lattice L C 2%, we have shown in [18] that a reaction 7 € R is unblocked in L if
and only if r € 1;. For two unblocked reactions r,s € 17, the coupling relation rYsin L
holds if and only if s ¢ 11, ,. In [18], we also presented an efficient algorithm to compute 1,
and 17, -y Once these maximal elements have been found, one can immediately determine the
blocked and coupled reactions.

In this paper, we generalize these results to joint couplings. We present a method to compute
the effects of double (resp. multiple) reaction knockouts based on the maximal element 17, (rs}

(resp. 1, ).

Proposition 1. If L C 2% is a lattice, then for any unblocked reactions r,s,t € 15, we have:
=0, . . .
{r,s} =t in L if and only if t € (1LL{T} N 1LL{S}) Nz
More generally, for a set of unblocked reactions K C 11, we have

K3t inL if and only if t € ( ﬂlLJ_IC\{k}) Nz .-
ke

Proof. We prove only the first part. The second part follows by induction.
Assume {r, s} =t in L. By definition, we know ¢ ¢ a for all a € L4, and therefore

t ¢ 1ln, ., I {rs} =¢in L, we also know that neither r ¢ in L nor s —¢ in L and that

all three reactions are unblocked, i.e., r,s,t € 17. As discussed in [18], we have r=tin L if
and only if t € 11\ ILHT}. Since t € 17, we conclude t € 1L¢{r}7 and by the same argument

telr, . Hence, t€ (1o, Nn ) \ 1o,
If t € (1L¢{T-} N ILHS}) \ 1LL{7-,5} holds, then ¢ ¢ 1LL{7-,5}7 which implies t ¢ a for all
a € Ly Since t € 1p,,, N1g, ., we can again apply [18] to see that r =Vt in L and

sVt in L do not hold. Finally, since r, s,t € 1 are unblocked, we get {r, s} tin L. O

In [22], we considered even more general qualitative models () # P C 2R where P needs not
be a lattice. We showed there that qualitative flux coupling analysis can be done in the lattice
LP = (P) that is generated by P. The results we will present in this paper would be applicable
to those qualitative models P as well, but for simplicity we will continue to work with models
L that are lattices.

Classes of partially coupled reactions

To determine joint coupling relations }C =t in L, we will use as much as possible the information

that can be obtained from standard couplings r Dsin L, i.e., with normal FCA. If r sin L,
any pathway a € L that does not use reaction r will also not use reaction s. Thus, knocking
out s in addition to r will not affect the system, i.e., {a€ L |r,s¢a}={a€ L |r¢a}.
Additional improvements can be obtained by looking at partially coupled reactions. Two
unblocked reactions r,s € 1; are called partially coupled in the lattice L, written r <> s, if
both 7 = sin L and s 7 in L. The relation < is reflexive, transitive and symmetric, and
thus an equivalence relation. Any equivalence relation defines a partition of its ground set
into equivalence classes. In our case, 11 = ¢, [r].,, where [r],, = {s€ 1. [r« s} An
equivalence class can be represented by any of its elements, ie., [r], = [f] if r<7. By
selecting one element from each equivalence class, we get a set of representatives Rep C 1p,
that covers all unblocked reactions, i.e., 11, = |, cpep [7] <, - We will call [r] ., the coupling class
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Figure 1: Example network with coupled reactions

Reaction ri3 is coupled to reaction r5. Thus, a double knockout of {r5,r13} has the same
effect as the simple knockout of 75. In both cases, the reactions {rs, rs, 79,712, 713,715} become
blocked, while the others remain unblocked.

There are two pairs of partially coupled reactions, namely 77 <> r14 and rg <+ r15. Therefore, no
knockout sets containing r14 or 715 need to be analysed. The impact of a double knockout of
{r14,7} will be the same as for {r7,r}.

or reaction class of reaction r. Biologically, coupling classes can be interpreted as subsets of

reactions that are always active together, similarly to the notion of enzyme subsets in [23].
For r,7 € [r] , and a € L, we have r € a if and only if # € a. Thus, a knockout of r has

the same impact as a knockout of #. Furthermore, r can only be blocked by another knockout

k ¢ [r] . if the same holds for 7, i.e., k=Yrin L if and only if k=7 in L. Tt follows that
to analyse the effect of a knockout pair {7, 5}, one can instead knockout the corresponding
representatives {r,s} with 7 € [r] , and 5§ € [s] . To simulate all double knockouts, one
does not have to check all pairs {{7,5} | 7,5 € 1}, but it is enough to iterate over a fixed
set of representatives: {{r,s} | r,s € Rep}. As we will see, for many genome-scale network
reconstructions, there are only about half as many different equivalence classes as there are
unblocked reactions (Tab. 1). Thus, only about 1/4 of all original pairs need to be checked. As
mentioned before, although we apply this compression to reaction coupling analysis, it could
also be combined with FBA-based methods.

Algorithms

In [18], we introduced an algorithm that allows finding the maximum element of a finite lattice
L utilizing a method Test that checks if a given reaction r € R is blocked in L, and if not
returns a pathway a € L with r € a. The following Algorithm 1 is an extension of this method.
It allows finding all the reactions in R that are unblocked after a multiple knockout K C 1.



Algorithm 1. Multiple Knockout Analysis

Input: A set of knockout reactions K C 1r, |K| > 2.
From FCA we reuse:

e A set of representatives Rep
o Maximum elements ISANTSE forke K
o A set of previously computed pathways W C L (witnesses)
Output: The set of reactions 11, . that are unblocked in the subnetwork R\ K.

function MKO (K)
w=|Ja, withWix={aeW|anKk =0}
a€EW

ub = ﬂ lLL{k}
kex

for r € Rep do
if r € ub\ 1b then
a = FINDPATH(r, K)
if r € a then
lb=aU1lb
else
ub = ubN 1LL{r}
return 17, , = ub

function FINDPATH (T, K)

a thereexvistsac L : rca, ank =10,
return

0 otherwise.

As discussed in [18], the flexibility of the lattice-based approach comes from hid-
ing the search for specific pathways in a separate function FindPath. For traditional
steady-state based models, FindPath can be realized by solving the linear programs
max {£v; | Sv = 0,vr; > 0,0, =0,k € K}. But, one can also use other modeling hypotheses
and corresponding algorithmic methods (see [22] for the example of thermodynamic loop law
constraints). The skeleton of Algorithm 1 will remain the same, only the auxiliary function
FindPath has to be changed.

In Algorithm 1, we perform a multiple knockout analysis with a fixed knockout set K.
For a full d-dimensional knockout analysis, we would have to iterate over all  C 15 with
|K| = d, which is computationally very expensive. However, we can still use the partition of 1y,
into equivalence classes of partially coupled reactions. Thus, our next Algorithm 2 calculates
representatives of all jointly coupled reactions in the case of double knockouts.

Algorithm 2. Full Double Knockout Analysis
Input: From FCA we reuse:

e A set of representatives Rep

o Maximum elements Ir, gy for r € Rep

o A set of previously calculated pathways VW C L (witnesses)

Output: The set dkos containing all joint couplings {r, s} Ntin L, with r,s,t € Rep.



dkos = ()
for r,s € Rep withr < s do
ifre 1Li{s} and s € 1LL{T} then
b= Ua, with Wiy ={a €W | r,s¢a}
a€W] (1 s}
ub = known = 1L¢{r} N ]'LL{S}
fort € Rep do
ift € ub\ 1b then
a = FINDPATH(t, {r, s})
if t € a then
lb=aU ldb
else
ub = ubN 1LL{t}

dkos = dkos U {{7’, s} NtinL|te known \ ub}

return dkos

In Algorithm 2, we iterate over a subset of all possible double knockouts without loosing
any information. For this, we filter redundant knockout pairs such as r Vsin L (by checking
selp, m). It is unnecessary to test such a pair, because a knockout of {r, s} is equivalent
to the single knockout of r. For higher-dimensional knockout sets one can proceed in a similar
fashion:

Let K = {ki,...,kq} C Rep be a d-dimensional knockout set. Then we need not need test
KC, if any of the following conditions is fulfilled:

o k; =9 k; in L for two reactions k;, k; € I,

o {ki,ki,} = k; in L for three reactions k;,, ki,, k; € K,

o {ki,, kiy, kis} :—(>)kj in L for four reactions k;,, ki,, ki, € K,
e ctc.

Standard FCA finds all pairs of reactions that are directionally coupled. This allows us to
iterate in Algorithm 2 over the set {r, s} € Kg1 with

Ko = {{kl,kg} C Rep | not kiigkj in L}.

K21 contains all 2-tuples of coupling class representatives that are not coupled with respect to
knockouts up to cardinality 1.

If one is interested to perform a full triple knockout analysis and joint coupling information
is available, one can adapt the filtering technique and iterate over all {ry, 72,73} € K31 (or K32)
with
]Cg 1 = {{]{1, kQ,kg} Q Rep ‘ not ki iekj n L} s

)

)

Kso — {{kl,kg,kg} C Rep ( not k; =9 k; and not {ki,, ki,} =0 k; in L}.

K3,1 contains all 3-tuples of coupling class representatives that are not directionally coupled,
and K32 all triples that do not contain reactions that are coupled with respect to knockouts up
to cardinality 2. Similarly one could define KCg,.



While these techniques are applied here only to reaction coupling analysis, they
could also be combined with FBA-based methods. Thus, if one is interested to mea-
sure the impact of all possible triple knockouts on FBA, it would be sufficient to solve
max {Upiomass | SU = 0, vy > 0,v =0} for all £ € K37 (if only FCA data is available) or
all K € K34 (if FCA and joint coupling data is available).

The case of gene knockouts

Often metabolic networks contain regulatory rules for the gene products that catalyze the
reactions, e.g. reaction rq is catalyzed by the product of a gene g1 and reaction o is catalyzed
by the gene product of g; or go. Here r; is only possible if g; is active, and ro can only be
blocked by a simultaneous knockout of the two genes g1 and gs. Typically, there is no 1-1
relationship between the set of genes G and the set of reactions R. On the one hand, there are
reactions that only get blocked by a combination of two or more gene knockouts, as indicated
above in r9 = g1 V g2. On the other hand, the knockout of a single gene g € G may block more
than one reaction. For example, reactions r; and r3 may both depend on the gene g;. Then
one immediately gets that a knockout of g; implies v; = v3 = 0. Let us further assume that
FCA and double reaction knockout analysis have been performed, leading to 3¥4in L and
{1,3} =06 in L. Based on this information, we can extend the reactions that are blocked by
the knockout of gene g; to v1 = v3 = v4 = vg = 0. Thus, in this example we have 2 reactions
(r1,73) that are associated to the gene g; based on information that is directly available in the
network reconstruction, but in total 4 reactions (r1,rs,r4,7¢) that are coupled to the gene g;.
We formalize these notions in the following definition.

Definition 2 (Gene coupling). Consider a qualitative model L C 2% of a metabolic network
N with reaction set R and gene set G. Let o : 29 — 2% T' s Kr be a function defining a set
of reactions Kr associated to the knockout of all genes in the set I'. For an unblocked reaction
relrp and ' C G we define:

=7 inL if and only if r ¢ 1r .-

We say that the reaction r is coupled to the gene knockout I.
If T = {g} is a single gene, we simply write g:—(>)r in L.

Given the function « : 29 — 2%, we can determine the reactions coupled to the gene set
I' by applying Algorithm 1 to the set of associated reactions Kr. Note that the definition of
gene coupling slightly differs from the one of joint reaction coupling. Here, we do not exclude
reactions that are already knocked out by single (or smaller set of) gene knockouts. This is to
account for the possibility that, for example, a reaction r may be associated to a single gene
knockout g;, but not to the double knockout {g1, g2} (assume r = g1 V —g9).

To simulate the impact of all single gene knockouts, one can perform an iteration over all
genes g € G. Similarly, one can determine all double gene knockout effects by an iteration over
all pairs of genes {g1, g2} C G. However, in contrast to Algorithm 2, we cannot use gene class
representatives to decrease the number of pairs that have to be analyzed.

Results and Discussion

To evaluate our method, we simulated all single and double reaction knockouts for a number of
genome-scale metabolic network reconstructions from the BiGG-database [24]. The computa-
tions were done on a MacBook Air (2012), with 1.8 GHz Intel Core i5, 4GB RAM, and running



Java Oracle JDK 1.7.45 under Mac 0S X 10.9. To solve linear programs (LPs), we used CPLEX
Version 12.6.

Impact of double knockouts

Tab. 1 shows the impact of single and double reaction knockouts for the different networks.
In most cases, the knockout of a single reaction class (due to the knockout of one or more
of its reactions) blocks the reactions in 4 to 5 other reaction classes in average. The least
robust system is S. aureus iSB619, where a single knockout has an average impact of almost
12 coupled reaction classes. In S. aureus iSB619, about 9.2% of all possible double knockouts
{r, s} have joint coupling effects, i.e., there exist reactions ¢t € R that are blocked by the double
knockout {r, s}, but not by a single knockout of r or s alone. This is a comparatively large
number. For the bigger E. coli models iAF1260 and iJO1366, only around 1% of all double
knockouts of two uncoupled reaction classes {r, s} have an impact that exceeds the effects of
the corresponding two single knockouts. In S. aureus, double knockouts also have very strong
combined effects. In addition to the reaction classes that would be knocked out by r or s alone,
in average more than 7 reaction classes are coupled to a double knockout corresponding to a

joint coupling {r, s} tin L. But, even for the most robust system, M. tuberculosis iNJ661,
a double knockout (if its impact is different from the two single knockouts) in average has a
combined effect of 2 additional knocked out classes resp. 5.8 reactions.

Knockout options

In our next experiment, we take the opposite perspective (Tab. 2). We analyse how resistant an
average reaction is to single or double knockouts. More precisely, we ask the following question:
Given a reaction ¢, what are the possible choices for a single reaction r resp. a pair of reactions

{r, s} such that rtin L resp. {r,s} =04 in L holds. This perspective corresponds to a lab
experiment for finding knockout targets for the reaction ¢. Here, we consider single reactions

instead of reaction classes. This means that for {r, s} =tin Lwithr,s,te Rep, we get |[r]|-|[s]]
knockout options for all the [[t]| reactions that belong to the same reaction class as t.

For most of the studied networks, the average number of knockout options for a given target
reaction is in the range of 25-85 single reactions and 100-150 reaction pairs. With all double
knockout information at hand, one can reduce the set of all possible knockout candidates for a
wet lab experiment to a small number, and additionally decide beforehand which of them have
the smallest side effects.

Impact on biomass production

To finish our discussion, we study the impact of knockouts on biomass production. To measure
this, we counted the number of single and double knockouts that block the biomass reaction.
Tab. 3 presents the results for the largest available models of the respective organisms. For
two of them, more than one biomass reaction was available. In the case of E. coli iJO1366, we
present the results for both of the two biomass reactions, for S. aureus, we selected 2 ouf of the
14 available reactions.

We observe that for most of the organisms, the number of single knockouts that block
biomass production is very similar to the number of different double knockouts (corresponding
to joint couplings) having this property, although the number of double knockout candidates is
much larger (quadratic in [1|;).



Algorithmic considerations

To perform a double knockout analysis, we first run standard flux coupling analysis (FCA) using
the L4FC routine from [18]. Then we calculate the unblocked reactions for each double knockout
of a pair of reaction class representatives. Tab. 4 presents the running times for six genome-scale
network reconstructions and the central metabolism of F. coli. Even for our largest network,
E. coli 1JO1366 with its 2583 reactions, the complete simulation of all double reaction knockouts
took less than 1h 10 min.

Next we discuss the number of LPs we have to solve in order to obtain this additional
information. For all our networks, double knockout analysis required solving 5 to 20 times as
many LPs than single knockouts, i.e., classical FCA. While this seems to be a large number, it is
relatively small compared to the complexity of the problem. A full double knockout simulation
is comparable to iterating over all reactions r € Rep, removing the reaction r and performing
a single knockout simulation for each of the resulting subnetworks. Reusing known pathways
as witnesses and including reaction coupling information as proposed in [18] allows performing
|Rep| simulations with only 5 to 20 times the effort in LP solving. Tab. 1 shows that the median
value for |Rep| is 370 for our networks.

Gene knockouts

Tab. 5 gives the runtimes and the number of LPs for single and double gene knockouts. To
determine the reactions associated to a (double) gene knockout, we used the library JEval that
allows fast evaluation of logical formulas given as Java strings. As expected we are confronted
with longer runtimes up to almost 4h for double gene knockouts compared to < 70 min for
double reaction knockouts. This is due to the fact that we need to check every single pair
of genes instead of a representative selection like the one we could apply in double reaction
knockout analysis. In spite of this, with the methods proposed here, a full simulation of double
reaction or double gene knockouts on a genome-scale metabolic network reconstruction can still
be performed in a reasonable time.

Conclusions

On the algorithmic side, this study presented the following main results:

e Algorithm 2 is an effective method for a complete double knockout analysis in genome-
scale metabolic networks.

e Using Algorithm 1, it is possible to compute the impact of specific multiple knockout sets
containing 3 or more reactions.

e By exploiting the information present in reaction coupling data (obtained by FCA), one
can significantly decrease the number of candidates that need to be tested in double and
multiple knockout simulations.

Regarding the biological data, we can make the following observations based on our computa-
tional experiments:

e In the genome-scale metabolic network reconstructions that were considered in this study,
1-10% of the possible double knockout sets have joint coupling effects. Thus, given a
randomly chosen reaction pair, the probability is high that the combined effect of the
double knockout (in terms of other blocked reactions) will be the same as for the two
corresponding single knockouts.
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e However, in all these networks, there exists a small number of double knockouts show-
ing synergistic effects, blocking 5 to 20 additional reactions in average. These double
knockouts cannot be predicted from the single knockout/reaction coupling data alone.

Due to the algorithmic improvements, we are now able to perform full double gene or reaction
knockout simulations in a few hours of computation time. Thus, whenever one is interested
in understanding the robustness of a network to knockouts, one should take the opportunity
and run such an in silico simulation, before starting other more time consuming and expensive
experiments.

A prototype implementation of double knockout simulation is available at http://
hoverboard.io/L4FC.
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Tables

Table 1: Knockout impact on different networks.

ub: Number of unblocked reactions in the original network.

classes: Number of different reaction classes, i.e., equivalence classes w.r.t. partial coupling
.

single knockout impact: Average impact of single reaction knockouts, i.e., average number
of reactions classes that become become blocked by a single knockout. In brackets: Average
number of reactions that become blocked (belonging to different reaction classes).

double knockout impact: Average additional impact of double reaction knockouts, i.e.,
average number of reactions classes that become become blocked by a double knockout {r, s},
but are not blocked by a single knockout of either r or s. In brackets: Average number of
additional reactions that become blocked.

double knockout ratio: Percentage of pairs of (uncoupled) reaction classes that have joint
coupling effects. The average numbers are determined by ﬁ > nck impact (k) with K = Rep

for the single, and K = {{r, s} | r, s € Rep with neither r =sin L nor s 7 in L for the double
knockouts.

Model Single KOs Double KOs
ub classes impact impact ratio
E. coli iJO1366 1718 1078 4.51 (16.6) 4.41 (10.1) 1.0%
E. coli iAF1260 1543 975  4.12 (13.7) 4.04 (9.24) 0.8%
S. cerevisiae iIND750 631 371 5.42 (14.6) 5.52 (10.3) 2.7%
M. tuberculosis iNJ661 744 370 4.74 (35.6) 1.99 (5.78) 5.1%
S. aureus iISB619 465 207 11.7 (44.9) 7.31 (17.2) 9.2%
H. pylori iIT341 436 150 6.65 (58.6) 4.71 (15.5) 9.7%
E. coli textbook 87 55 1.96 (3.58) 15.7 (24.5) 12%
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Table 2: Average number of knockout options.

sko options: Average number of reactions r that lead as single knockouts to inactivity of a
: .1

target reaction ¢: dotel, Zgiot b

dko options: Average number of uncoupled reaction pairs {r, s} that lead as double knockouts

to inactivity of a target reaction t: ﬁ dtel, E{T 9= L 1.

Model Single KOs Double KOs

options options
E. coli 1JO1366 35.1 143
E. coli 1AF1260 26.4 78.0
S. cerevisiae iINDT50 25.6 106
M. tuberculosis iNJ661 82.7 120
S. aureus iISB619 65.9 245
H. pylori iIT341 143 126
E. coli textbook 6.92 132
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Table 3: Number of knockouts for the biomass reaction in selected networks.

class size: Number of reactions in the same coupling class as the biomass reaction, i.e., number
of reactions that carry flux if and only if the biomass reaction carries flux.

Single Knockouts: Number of different single knockouts (classes and reactions) that block
the biomass reaction. Only reactions that are not partially coupled to the biomass (from a
different reaction class) are counted.

Double Knockouts: Number of different double knockouts that block the biomass reaction
when combined. Only reactions that are not directionally coupled to the biomass are counted.

Model Single Knockouts Double Knockouts
reaction id cl. size classes reactions cl. pairs reac. pairs
E. coli 1JO1366

Ec_biomass_1J01366_WT_53p95M 20 101 343 130 339

Ec_biomass_iJ01366_core_53p95M 1 80 288 90 268
S. cerevisiae iINDT750

biomass_SC4 bal 26 54 156 60 142
M. tuberculosis iNJ661

biomass_Mtb_9_60atp 160 64 154 48 83
S. aureus iISB619

SA_biomass_la 8 25 63 59 157

SA biomass_ba 1 58 215 54 100
H. pylori iIT341

BiomassHP_published 189 36 76 41 81
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Table 4: Runtime and number of solved LPs for double reaction knockouts.

The computation was done in three steps: Calculation of the blocked reactions, flux coupling
analysis to determine the coupled reactions, and finally the double knockout simulations.
Times are given in seconds if not specified otherwise (numbers may not add up due to rounding
errors).

Model Step Total
blocked couples dko

LPs 1718 9943 133225 144886
E. coli 1JO1366

time 2.0 42.2 4016.4 1h 8 min

LPs 1679 10780 52112 64571
E. coli 1IAF1260

time 1.7 31.5 2688.2 45 min 21s

LPs 597 3987 90664 95248
S. cerevistae iIND750

time 0.33 6.8 397.8 6 min 45s

LPs 327 3416 20647 24390
M. tuberculosis iNJ661

time 0.33 5.6 177.7 3 min 4s

LPs 144 3638 19477 23259
S. aureus 1ISB619

time 0.09 2.8 43.2 46.0s

LPs 106 1812 6753 8671
H. pylori iIT341

time 0.06 1.9 18.0 20.0s

LPs 26 341 1739 2106
FE. coli textbook

time 0.004 0.06 0.62 0.68s
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Table 5: Runtime and number of solved LPs for single and double gene knockouts.
Times are given in seconds if not specified otherwise.

Model Step
gko dgko

LPs 719 263844
E. coli 1JO1366

time 1.2  3h 49 min

LPs 516 229498
E. coli iIAF1260

time 8.6 2h 55 min

LPs 1323 308145
S. cerevisiae INDT50

time 6.4 37 min 36s

LPs 175 77346
M. tuberculosis iINJ661

time 1.2 15 min 59s

LPs 49 38689
S. aureus iISB619

time 0.68 9 min 42s

LPs 27 19348
H. pylori iIT341

time 0.24 1 min 52s

LPs 2 2023
E. coli textbook

time 0.04 4.4s
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