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Abstract

Flux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstruc-
tions and guiding genetic manipulations. Originally, it was introduced for constraint-based
models of metabolic networks that are based on the steady-state assumption. Recently, we
have shown that the steady-state assumption can be replaced by a much weaker lattice-
theoretic property related to the supports of metabolic fluxes. In this paper, we further
extend our approach and delevelop an efficient algorithm for general qualitative flux cou-
pling analysis (QFCA). We illustrate our method by thermodynamic flux coupling analysis
(tFCA), which allows studying steady-state metabolic models with loop-law thermodynamic
constraints. These models do not satisfy the lattice-theoretic properties required in our pre-
vious work. For a selection of genome-scale metabolic network reconstructions, we discuss
both theoretically and practically, how thermodynamic constraints strengthen the coupling
results that can be obtained with classical FCA.

1 Introduction

Constraint-based modeling has become a widely used approach for the analysis of genome-
scale reconstructions of metabolic networks [16, 4]. Given a setM of metabolites and a set R of
reactions, the metabolic network is modeled by its stoichiometric matrix S ∈ RM×R and a set of
irreversible reactions Irr ⊆ R. Based on this description, constraints are used to characterize the
space of possible metabolic behaviors. The classical starting point of constraint-based modeling
is the steady-state (or mass balance) constraint Sv = 0. It states that every metabolite has to
be produced at the same rate as it is consumed. The set

C = {v ∈ RR | Sv = 0, vIrr ≥ 0}

is called the steady-state flux cone. It contains all flux distributions v ∈ RR satisfying the
stoichiometric and irreversibility constraints.

A prominent example of constraint-based methods is flux balance analysis (FBA) [26]. Here,
linear programming is used to predict how efficiently an organism can realize a certain biological
objective, e.g., how much biomass can be produced out of a limited amount of nutrients. FBA
can be used to predict the impact of gene or reaction knockouts in an organism. However,
typically not all reactions in a metabolic network can carry flux independently from each other.
In other words, by knocking out one reaction, one may implicitly disable flux through other
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reactions. Detecting this kind of dependencies is important for the identification of knock-out
targets, because some reactions may be easier to manipulate than others [12]. In addition,
dependency information can also be used to check the consistency of metabolic network recon-
structions [5] or to find co-regulated reactions [20].

Flux coupling analysis (FCA) [6] was introduced to comprehensively analyze these kinds of
dependencies between reactions. A reaction s ∈ R is called blocked if vs = 0, for all v ∈ C,
otherwise s is called unblocked. Burgard et al. [6] defined three types of coupling relations for a
given pair of unblocked reactions (r, s):

• s is directionally coupled to r, written s → r, if for all v ∈ C, vs 6= 0 implies vr 6= 0.
Equivalently, we could require that for all v ∈ C, vr = 0 implies vs = 0, which is denoted

by r
=0−→ s in [15] or [14].

• r and s are partially coupled, written r ↔ s, if both r → s and s→ r hold.

• r and s are fully coupled, if there exists λ 6= 0 with vr = λvs, for all v ∈ C.

• r and s are uncoupled, if neither r → s nor s→ r holds.

Due to a number of theoretical and algorithmic improvements [15, 9, 14], it is now possible
to perform FCA on large genome-scale metabolic network reconstructions in a few minutes of
computation time on a standard desktop computer.

As can be seen from the definition, directional coupling does not depend on the precise
amount of flux through a given reaction. It only matters whether there is a flux different from
zero or not. In this sense, FCA is a qualitative method. As we will see, FCA can also be applied
to more general qualitative models of metabolic networks such as those introduced in [24, 7].
These models do not use the steady-state assumption because it turns out to be too strong for
certain applications.

Goldstein et al. [11] generalized FCA to constraint-based models that do not have to satisfy
the steady-state assumption, but instead fulfill certain lattice-theoretic properties related to the
supports of the metabolic fluxes. Given a flux vector v ∈ RR, its support is defined by

supp(v) := {i ∈ R | vi 6= 0}.

By working with supp(v) instead of v, flux coupling analysis can be performed in a qualitative
way. While lattices are a very general concept [8], we have to consider here only finite lattices
L with reaction sets a ⊆ R as elements. Let 2R denote the power set of R. A family of reaction
sets L ⊆ 2R defines a lattice if ∅ ∈ L and if L is union-closed, i.e., a, b ∈ L implies a∪b ∈ L. Note
that each reaction set a ∈ L can be naturally interpreted as a metabolic pathway consisting
exactly of the reactions r ∈ a. For standard FCA, the flux lattice LC is defined by the supports
of the steady-state flux vectors,

LC := {supp(v) | Sv = 0, vIrr ≥ 0} .

Given an arbitrary lattice L ⊆ 2R, we generalize the notion of flux coupling in the following
way [11]. A reaction s ∈ R is blocked in L if s 6∈ a, for all a ∈ L, otherwise s is unblocked in L.
Given two reactions r and s that are unblocked in L, we say that s is directionally coupled in L
to r if and only if

∀a ∈ L : s ∈ a⇒ r ∈ a. (1)

In the case of L = LC , this corresponds exactly to standard FCA as introduced before.
The generalization of FCA to lattices already allows analyzing a wide range of metabolic

network models. For example, we may use lattices to perform FCA on constraint-based models
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with lower and upper bounds on the flux rates [11]. However, there are interesting cases where
the lattice assumption is still too strong. Consider the network in Fig. 1. Here, reaction 1 is not
directionally coupled to reaction 3, because v = (0, 0, 1, 1) is a steady-state flux. However, this
flux is an internal circulation, which violates the second law of thermodynamics. As observed
by Beard et al. [2], a thermodynamically feasible flux must not contain any internal circulation.
If we add thermodynamic constraints, reaction 3 becomes fully coupled to 1 and thus, we get a
stronger result than without these constraints.

1 2

3

4

a b

Figure 1: Here, all reactions are irreversible. Without thermodynamic constraints, reaction 1 is not
directionally coupled to reaction 3, since reactions 3 and 4 form an internal circuit (dashed arrows).
With thermodynamic constraints, reactions 1 and 3 are fully coupled.

The key property of lattices is that metabolic pathways can be combined by taking the
union of the supports. However, if the pathways have to satisfy thermodynamic constraints,
this is not always possible. For example, in Fig. 2, the pathways {r, b, s, d, e}, {r, a, s, c, e} are
thermodynamically feasible, but the combination {r, a, b, s, c, d, e} is not thermodynamically
feasible, since it contains the internal circuit {r, a, d}.

r
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Figure 2: The only exchange reaction in this network is e and the white arrow-heads indicate reversible
reactions. If r carries thermodynamically feasible flux, then s must also carry flux. But, s can carry
both positive or negative flux.

In this paper, we show how to overcome this problem. We develop an efficient algorithm for
general qualitative flux coupling analysis (QFCA), where we do not require the lattice-theoretic
axioms. As a concrete instance of our framework, we present thermodynamically constrained
flux coupling analysis (tFCA) and apply it to a number of genome-scale metabolic network
reconstructions.

2 Qualitative FCA

The definition of directional coupling in (1) could also be applied to the family T ⊆ 2R of
supports of thermodynamically feasible fluxes (see Sect. 3 for a formal definition). However, as
shown in Sect. 1, T need not be a lattice, and thus we cannot directly use the results of [11].
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2.1 QFCA for P ⊆ 2R

In this section, we present a qualitative form of FCA that works not only for the supports
T ⊆ LC of the thermodynamically feasible fluxes, but for any ∅ 6= P ⊆ 2R. First we define

s blocked in P :⇔ ∀a ∈ P : s 6∈ a, and

r
=0−→ s in P :⇔ ∀a ∈ P : r 6∈ a⇒ s 6∈ a.

Next we introduce the set of irreducible elements in P

J (P ) :=

{
b ∈ P \ {∅}

∣∣∣∣∣ ∀A ⊆ P : b =
⋃
a∈A

a⇒ b ∈ A

}
,

and the set M (P ) of (non-trivial) minimal elements in P

M (P ) := {e ∈ P \ {∅} | ∀a ∈ P : a ( e⇒ a = ∅} .

Note that M (P ) ⊆ J (P ), but in general not M (P ) = J (P ). The closure of P is defined by

〈P 〉 =

{⋃
a∈A

a

∣∣∣∣∣ A ⊆ P
}
.

It is easy to see that 〈P 〉 is the smallest lattice that contains P . We say P is a generator of 〈P 〉.
We observe that for any lattice L, J (L) is the unique minimal generator, thus L = 〈J (L)〉. It
follows 〈J (P )〉 = 〈P 〉 and J (P ) = J (〈P 〉). Now we can state our first result:

Theorem 1. Consider any ∅ 6= P ⊆ 2R and suppose B ⊆ 2R such that J (P ) ⊆ B ⊆ 〈P 〉. For
a reaction s ∈ R, the following are equivalent:

(a) s blocked in P ,

(b) s blocked in 〈P 〉,

(c) s blocked in B,

(d) s blocked in 〈B〉.

For two reactions r, s that are unblocked in P , the following are equivalent:

(a) r
=0−→ s in P ,

(b) r
=0−→ s in 〈P 〉,

(c) r
=0−→ s in B,

(d) r
=0−→ s in 〈B〉.

Proof. Since J (P ) ⊆ B ⊆ 〈P 〉, we have 〈P 〉 = 〈B〉. Thus, it is sufficient to prove (c)⇔ (d).
⇒: Assume s is unblocked (resp. s is not directionally coupled to r) in 〈B〉. By definition,

there exists a ∈ 〈B〉 such that s ∈ a (resp. s ∈ a 63 r). Since J (〈B〉) is a generator of 〈B〉,
there exists b ∈ J (〈B〉) with s ∈ b (resp. s ∈ b 63 r). Since b ∈ 〈B〉 and by definition of 〈B〉,
there exists A ⊆ B ⊆ 〈B〉 with b =

⋃
a∈A a. Since b is irreducible, it follows that b ∈ A and

thus b ∈ B. This proves that s is unblocked (resp. s is not directionally coupled to r) in B.
⇐: Assume s is unblocked (resp. s is not directionally coupled to r) in B. Then there exists

a ∈ B such that s ∈ a (resp. s ∈ a 63 r). Since B ⊆ 〈B〉, we have a ∈ 〈B〉. It follows that s is
unblocked (resp. s is not directionally coupled to r) in 〈B〉.

4



2.2 Algorithm for QFCA in P

In [11], we presented a generic algorithm for finding blocked reactions and determining flux
coupling pairs, which works for arbitrary lattices L ⊆ 2R. In order to use this algorithm
in a particular lattice L, we only have to provide a method test(s) (resp. test(r,s)) that
returns a lattice element a ∈ L with s ∈ a (resp. s ∈ a 63 r), if such elements exists, and ∅
otherwise. Here we show that a similar result holds for flux coupling analysis in P . Given
B ⊆ 2R with J (P ) ⊆ B ⊆ 〈P 〉, we only have to define a method testBlockedB(s) (resp.
testCoupledB(r, s)) that finds a ∈ B, s ∈ a (resp. s ∈ a 63 r), if such an element exists, and
returns ∅ otherwise.

Theorem 2. Assume ∅ 6= P ⊆ L and J (P ) ⊆ B ⊆ 〈P 〉. Let testBlockedB : R → 2R be a
function satisfying

testBlockedB(s) =

{
a, if ∃a ∈ B : s ∈ a,
∅, otherwise.

Let testCoupledB : R×R → 2R be a function satisfying

testCoupledB(r, s) =

{
a, if ∃a ∈ B : s ∈ a 63 r,
∅, otherwise.

Then a reaction s is blocked in P if and only if testBlockedB(s) = ∅. Two unblocked reactions

r, s are directionally coupled in P , i.e., r
=0−→ s in P holds, if and only if testCoupledB(r, s) =

∅.

Proof. We show only the last part. By Thm. 1, we know that r
=0−→ s in P holds if and only if

r
=0−→ s in B. From the definition of testCoupledB, we get testCoupledB(r, s) = ∅ if and only

if r
=0−→ s in B.

Corollary 1. The algorithm introduced in [11] implemented by using the functions testBlockedB
and testCoupledB performs FCA for P .

3 Thermodynamic Constraints

Now we apply the framework from Sect. 2 to develop an algorithm for thermodynamic FCA
(tFCA). We will work with the relaxed form of thermodynamic constraints introduced by Beard
et al. [2], who use the following formulation:

Sv = 0, steady-state (2)

vIrr ≥ 0, irreversible reactions (3)

∆µivi < 0 ∨ vi = 0, ∀i ∈ I, thermodyn. constr. (4)

∆µ = µTSI , potential differences (5)

v ∈ RR, µ ∈ RM,

where I denotes the set of internal reactions (i.e., reactions that are not exchange reactions),
SI the submatrix of the stoichiometric matrix S corresponding to the reactions in I, and µ
the chemical potential of each metabolite (Gibbs free energy of formation). Given a metabolic
network N = (M,R, I, S, Irr), a flux vector v ∈ RR is called thermodynamically feasible if there
exists a vector µ ∈ RM such that (2), (3), (4), and (5) are satisfied.
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By multiplying µT from the left side with SI (·T denotes transposition), the potential dif-
ferences for internal reactions are obtained. This is equivalent to the often found formulation
K∆µ = 0, where K is the null-space matrix of SI . The motivation behind (4) is that normally
a chemical reaction carries flux if and only if it reduces Gibbs free energy [3, 1, 21]. Since
many reactions are catalyzed by enzymes, however, it can happen that an enzyme, for example
because of regulatory control, is not present; and hence, the corresponding reaction is effectively
not possible and carries essentially no flux, even if there is a negative potential difference. Thus,
zero flux is always allowed, too. Note that other formulations of thermodynamic constraints
(for example in [10]) do not have this property, .

As it can easily be seen from the definition, thermodynamic feasibility depends only on the
sign of the fluxes. This is the idea underlying the use of oriented matroids as suggested by
Beard et al. [2]. Let sign(v) ∈ {−, 0,+}R denote the vector of signs of v ∈ RR. For example,
for v = (3, 5, 0,−1, 2) we have sign(v) = (+,+, 0,−,+). Given a sign vector A ∈ {−, 0,+}R,
we will also write A = (A+, A−) with

A+ = {r ∈ R : Ar = +}, A− = {r ∈ R : Ar = −}.

Since we want to talk about fluxes contained in other fluxes, we define the following inclusion
relation:

(A+, A−) ⊆ (B+, B−) if and only if A+ ⊆ B+ and A− ⊆ B−.

Note that if all reactions are irreversible (and thus all sign vectors of feasible fluxes are non-
negative), then this subset relation is equivalent to the ordinary subset relation on the support
of the fluxes.

It has been shown [2, 19, 18] that a flux v is thermodynamically feasible if and only if v
does not contain an internal circulation, i.e., a flux vector w ∈ RI \ {0} with SIw = 0 and
wI∩Irr ≥ 0:

Theorem 3. Given a metabolic network N = (M, R, I, S, Irr), a flux vector v ∈ RR
satisfying (2) and (3) is thermodynamically feasible if and only if there is no w ∈ RI \ {0} with
sign(w) ⊆ sign(vI) and SIw = 0.

Using this characterization we define the space T of thermodynamically feasible fluxes as
follows:

T :=

{
supp(v) :

Sv = 0, vIrr ≥ 0,
@w 6= 0 : SIw = 0, sign(w) ⊆ sign(v)

}

4 Thermodynamic FCA

For our implementation of thermodynamically constrained FCA, we do not operate directly on
the space T of thermodynamically feasible fluxes. Instead, we make use of Thm. 1 and work on
the space

B :=

supp(v) :
Sv = 0, vIrr ≥ 0,

@w 6= 0 :
SIw = 0, wI∩Irr ≥ 0,
supp(w) ⊆ supp(v)

 .

Since sign(w) ⊆ sign(v) implies supp(w) ⊆ supp(v), we get immediately B ⊆ T . However,
B can be strictly smaller than T . For example, we may have flux through parallel, reversible
reactions in T . This is not allowed in B, because parallel, reversible reactions together form an
internal circuit.
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To apply Thm. 1, we have to show that the irreducible elements of T are contained in B.
First, we note that the irreducible elements of T form a subset of the elementary modes defined
as

E :=M
(
LC
)

=
{
e ∈ LC

∣∣ ∀a ∈ LC : a ( e⇒ a = ∅
}
.

This is an immediate consequence of the next lemma.

Lemma 4.1. For every v ∈ T , there exist elementary modes e1, . . . , ek ∈ E∩T with v =
⋃k

i=1 ei.

Proof. This lemma follows directly from Lemma 4 in [18]. Alternatively, the notion of feasibility
classifier as introduced by Terzer in [25] and used in the supplementary material of [13] leads
to an easy proof.

Corollary 2. J (T ) ⊆ E =M
(
LC
)

Now we can state the desired result:

Proposition 1. J (T ) ⊆ B

Proof. By Cor. 2, every e ∈ J (T ) is minimal in LC . Thus, there is no a ∈ LC \ {∅} with a ( e.
Assume e 6∈ B. Then there exists w ∈ RI \ {0} with SIw = 0, wI∩Irr ≥ 0, and supp(w) ⊆ e.
If supp(w) ( e, then e is not minimal in LC . If supp(w) = supp(e), then e is the support of
the internal circulation w, and it follows e 6∈ T . In both cases, we get a contradiction, hence
e ∈ B.

Altogether, we have shown J (T ) ⊆ B ⊆ T ⊆ 〈T 〉. According to Thm. 1, we may per-
form FCA in T via FCA in B. Based on Thm. 2, we define methods testBlockedB(s) and
testCoupledB(r, s), in which we solve the following mixed integer linear program (MILP) (for
sufficiently large M > 0):

min 0

s.t. Sv = 0, (6)

vIrr ≥ 0, (7)

−Mai ≤ vi ≤Mai, (8)∑
i∈c

ai ≤ |c| − 1, ∀c ∈ C (9)

vs = 2b− 1, vs ∈ {−1, 1}, (10)

vr = 0, (11)

ai, b ∈ {0, 1} ∀i ∈ R.

Here, C :=M ({supp(w) | SIw = 0, wI∩Irr ≥ 0}) denotes the set of minimal supports of internal
circulations, and |c| is the cardinality of c ∈ C. The idea of this MILP is the following. The
variables ai describe the support of the flux vector v. In (8), we require only that ai = 0 implies
vi = 0, because the ai appear only in the circuit constraints (9). Violated circuit constraints
cannot become feasible by setting additional ai = 1. The 0-1 variable b is used to force positive
or negative flux through reaction s.

The functions testBlockedB(s) (resp. testCoupledB(r, s)) can now be implemented by
searching for a feasible solution v of the MILP (6) – (10) (resp. (6) – (11)). If this MILP is
infeasible, we return the value ∅, otherwise the reaction set a = supp(v).
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5 Implementation

The efficiency of the algorithm in [11] results from a search via nested intervals. The unblocked
reactions in a lattice L are exactly those contained in the maximum element

max := 1L :=
⋃
a∈L

a.

Similarly, the reactions not coupled to r in L are exactly those contained in the maximum
element

maxr := 1L⊥{r} :=
⋃

a∈L⊥{r}

a

of the lattice
L⊥{r} = {a ∈ L | r /∈ a} .

The algorithm in [11] determines max (resp. maxr) via lower and upper bounds lb ⊆ max ⊆ ub

(resp. lb ⊆ maxr ⊆ ub). The lower bound lb is the union of known pathways (”witnesses”),
which in the case of maxr must not contain r. The upper bound ub excludes reactions that
are known to be blocked. Thus, only the remaining reactions s ∈ ub \ lb have to be tested.
Traditional FCA tests the feasibility of

{
v ∈ RR

∣∣ Sv = 0, vIrr ≥ 0, vr = 0, |vs| ≥ 1
}

via linear
programming (LP). Supports of feasible solutions extend the lower bound (by at least adding
s), while infeasibility leads to an update ub← ub \ {s}.

In principle, it would be possible to realize thermodynamic FCA just by replacing these
feasibility tests with the functions testBlockedB and testCoupledB introduced in Sect. 4.
However, when calling these functions, we have to solve an NP-hard problem due to the ther-
modynamic constraints [17]. Since solving the MILP is computationally hard, we decided to use
our knowledge of the lattice structure to minimize the number of function calls. We introduce
a relaxation for preprocessing, which is 〈T 〉 ⊆ LC . For the search of unblocked reactions in T
(note 1T = 1〈B〉), we start with ub = 1LC . To find directionally coupled reactions in T (derived
from 1〈B〉⊥{r}), we continue with ub = 1T ∩ 1LC

⊥{r}
, where 1LC

⊥{r}
is the set of reactions not

directionally coupled to r by traditional FCA.
Our software has been implemented in Java and alternates between traditional FCA and

tFCA, using the results of FCA computations whenever possible to infer tFCA properties. To
perform traditional FCA and the test testCoupledB, we use Cplex 12.5 for solving the LPs and
MILPs. The internal circuits of the network are computed with a variant of the WW-algorithm
[27] using the efmtool by Terzer et al. [25]. All the networks analyzed in this study have a low
number of internal circuits, which made this approach feasible and easy to implement.

A prototype implementation of tFCA is available at http://hoverboard.io/L4FC.

6 Discussion

6.1 Theoretical Differences

6.1.1 Standard couplings are preserved

If r
=0−→ s in LC , then r

=0−→ s in T , since an infeasible system cannot become feasible by
adding constraints. It follows that if two reactions are directionally coupled in LC , they are
also directionally coupled in T .
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6.1.2 New partial couplings

In Fig. 2, we see an example where r
=0−→ s in LC , but r is not directionally coupled to s in LC

(and thus r is not partially coupled to s in LC). However, s
=0−→ r in T , hence r is partially

coupled to s in T . Further examples are the pairwise in LC uncoupled reactions a, b, c, d. With
thermodynamic constraints however, a↔ c in T and b↔ d in T . In particular, we can deduce
va = vc and vb = vd for every thermodynamically feasible flux vector.

6.1.3 New directional couplings

In Fig. 3, we see an example where reactions a, b are uncoupled in LC (because of flux vectors
with supports {a, c, d} and {b, c}). But, b is directionally coupled to a in T , since flux through
the circuit {b, c} alone is thermodynamically infeasible.

a
b

c

d

Figure 3: Example with uncoupled reactions that are thermodynamically coupled. The white arrow-
heads indicate that the reactions are reversible.

6.2 Practical Comparison

To evaluate our method in practice, we compared standard FCA and tFCA on several genome-
scale metabolic network reconstructions from the BiGG-database [23]. The computational ex-
periments were done with Java Oracle JDK 1.7.45 on a MacBook Air (2012), 1.8 GHz Intel
Core i5, 4GB RAM, Mac OS X 10.8. For solving the linear programs and MILPs, we used
CPLEX 12.5. The results are given in Tab. 1.

In all the considered networks, tFCA was able to detect additional blocked and coupled
reactions. However, the impact of the additional thermodynamic constraints heavily depends
on the network.

When we analyze all pairs of coupled reactions, there is a lot of redundant information. By

transitivity, if we have couplings a
=0−→ b, b

=0−→ c, a
=0−→ c, then the third can be inferred from

the first and the second. In practice, this can lead to a quadratic blow-up of redundant couplings
and hence the numbers of coupled pairs does not really reflect the gained information. In order
to get a more adequate description, we computed a minimum set of couplings from which all
other couplings can be deduced (in the case of FCA), and a minimum extension of this set from
which all additional couplings in tFCA can be deduced. The details of this computation are
described in [22].

In average, we found around 1% − 6% of additional couplings (in the minimal extension).
In most cases, new directional couplings arised from previously uncoupled reactions. Only in
one case, previously uncoupled reactions became partially coupled. We also observed that the
reaction cystathionine g-lyase (CYSTGL) was part of new directional couplings in M. tuberculosis,
while in S. cerevisiae the thermodynamic constraints blocked this reaction.

In the case of H. pylori iIT341, many new couplings are found because these reactions are
part of the main biomass production pathway. If one of the reactions in the pathway is blocked,
the whole pathway breaks down, which induces these couplings. However, if some reaction is part
of an internal circuit, standard FCA allows such a reaction to be active via the circuit. This way
standard FCA cannot detect that the reaction is part of the pathway. The reactions homoserine
O-trans-acetylase (HSERTA), O-Acetyl-L-homoserine succinate-lyase (adding cysteine) (METB1r)

9



Model blocked couples runtime

E. coli iAF1260

FCA 839 2101 36.35

tFCA 848 2128 47.74

extension 9 49

S. cerevisiae iND750

FCA 635 885 7.73

tFCA 640 935 12.43

extension 5 58

M. tuberculosis iNJ661

FCA 281 831 6.08

tFCA 287 834 9.46

extension 6 9

S. aureus iSB619

FCA 278 544 3.02

tFCA 279 546 3.95

extension 1 3

H. pylori iIT341

FCA 118 516 2.2

tFCA 124 515 5.05

extension 6 10

Table 1: Comparison of thermodynamic flux coupling results for different genome-scale networks.
blocked Number of blocked reactions in the network.
couples Minimal number of pairs of directionally coupled reactions r

=0−→ s from which all couplings can
be induced by transitive closure.
runtime Total runtime without pre-processing (calculation of internal circuits for tFCA). Times are
given in seconds.
FCA Results for traditional FCA (steady-state assumption).
tFCA Results for thermodynamical FCA (steady-state, no internal circuits).
extension Minimal number of changes necessary to extend the FCA coupling graph to the tFCA coupling
graph.

and O-succinylhomoserine lyase (SHSL1r, SHSL2r) in H. pylori iIT341 provide an example for
this effect.

A summary of the results for H. pylori iIT341 is given in Fig. 4. The coupling types are
depicted in a set-diagram style:

• The set of reactions blocked without thermodynamic constraints (blocked by FCA) is
contained in the box of reactions blocked with thermodynamic constraints (blocked by
tFCA). The number of reactions that are only blocked due to thermodynamic constraints
is indicated in the set difference. In the case of H. pylori, there are 6 such reactions.

• Since there are more reactions blocked with thermodynamic constraints than without,
some of the coupled reactions that we found by standard FCA contain reactions that are
blocked with thermodynamic constraints. This is why the set of reactions coupled by FCA
intersects the set of thermodynamically blocked reactions and the set of thermodynami-
cally coupled reactions. For both intersections, we report how many pairs of reactions fall
into the respective category.

• In the set difference of the thermodynamically minus the normally coupled reactions, we
included the number of coupling pairs that fell into this category.
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blocked by tFCA

blocked
by FCA

coupled by tFCA

H. pylori iIT341
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6 additional
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reactions
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classes

147 coup.
classes
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Figure 4: Results for H. pylori iIT341. We found that homoserine O-trans-acetylase (HSERTA), O-Acetyl-
L-homoserine succinate-lyase (adding cysteine) (METB1r) and O-succinylhomoserine lyase (SHSL1r,
SHSL2r) are not only necessary for biomass production (as computed by standard FCA) but cannot
work without this function. Together with the biomass reaction and all its partially coupled reactions
they form one of the new coupling classes. Furthermore, the under tFCA partially coupled (but not
fully coupled) SHSL2r and HSERTA were originally (in FCA) uncoupled. “couples” refers to the minimal
number of (additional) couplings from which all couplings can be inferred by transitive closure.

In Fig. 4, we see that the standard FCA couplings can be represented by 516 couplings, 6 of
which are actually blocked by thermodynamic constraints. Thermodynamic constraints give
additional information on 10 couplings. Thermodynamic constraints also merged 6 groups of
partially coupled reactions to 2 groups.

Tab. 1 shows that the new tFCA algorithm runs only slightly slower than the FCA algorithm
from [11]. This is achieved by the pre-processing step that first applies standard FCA, which
already detects many couplings (see Sec. 6.1.1). In addition, witnesses are found that prove some
reactions to be also thermodynamically unblocked, or uncoupled. Only for the few remaining
cases where we cannot deduce any information from the previous step, we have to start the
MILP solver.

7 Conclusion

We presented a refined version of FCA that finds more coupled reactions than standard FCA.
Although thermodynamic constraints were used that are usually NP-hard, it was possible to
also analyze genome-scale networks like E. coli iAF1260 in a few minutes. We observed that
thermodynamic constraints do not only give additional blocked reactions but also additional
coupled reactions. The concrete impact highly depends on the network that is analyzed.

We also observed in Thm. 1 that the presented approach is not only applicable to looplaw
thermodynamic constraints but to any kind of restrictions of the flux space. Extensions of
this method to also include concentration information or other constraints are straight-forward.
Only the transformation in Sec. 4 cannot be applied directly, because it uses specific properties
of loop-law thermodynamic constraints.

A prototype implementation of tFCA is available at http://hoverboard.io/L4FC.
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