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Abstract

Transitive reductions and minimal equivalent subgraphs have proven
to be a powerful concept to simplify networks and to measure their re-
dundancy. Here we consider a generalization of the minimal equivalent
subgraph problem where a set of arcs is already given. For two digraphs
D = (V,A), D′ = (V,A′) with A′ ⊆ A, we ask for the minimal set of edges
of D that have to be added to D′ such that the transitive closure of D
equals the transitive closure of D′.

We present a method to compute such an extension and show that if
D is transitively closed, this problem can be solved in polynomial time.

1 Introduction

In bioinformatics, but also in many other fields, we are interested in measuring
the amount of information obtained by some data analysis method. For exam-
ple in the case of flux coupling analysis (FCA) [1], this data is provided as a
preordered set. A preordered set (V,→) is a set V with a binary relation→ that
satisfies

• a→ a for all a ∈ V (reflexive)

• if a→ b, b→ c for a, b, c ∈ V , then a→ c (transitive).

We can model (V,→) also with a directed graph (digraph) D = (V,A) that
satisfies for all a, b ∈ V

a→ b⇔ there exists a directed path from a to b in D.
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We call D transitively closed, if

a→ b⇔ (a, b) ∈ A ∀a, b ∈ V, a 6= b.

The transitive closure 〈D〉 = (V,B) of a digraph D = (V,A) is the smallest
transitively closed digraph that models the same preordered set as D.

A trivial method to measure the information in a preordered set would be to
count the number of pairs that are related, i.e. |A| for a transitively closed
digraph D = (V,A) that models the preordered set. However, this has the
disadvantage that as soon as one piece of additional information (one arc) is
added, due to the transitivity of the relation many other additional arcs are
also induced.

A more robust way to measure the information in a preordered set is to compute
a transitive reduction resp. a minimal equivalent subgraph.

A transitive reduction of a digraph D = (V,A) is defined to be a smallest digraph
Dmin = (V,Amin) that models the same preordered set as D [2]. Similarly, a
minimal equivalent subgraph of a digraph D = (V,A) is defined to be a smallest
digraph Dmin = (V,Amin) with Amin ⊆ A that models the same preordered set
as D [3]. We observe that these two notions are equivalent if D is transitively
closed.

It is easy to see that if one additional arc (one piece of information) is added,
the size of Amin will increase by at most 1. In this paper, we now address the
question of how the additional information of a digraph D compared to a smaller
digraph D′ can be measured and computed.

We write V 2 := V ×V to denote the set of ordered 2-tuples of a set V . Further-
more, we write D|X for digraphs D = (V,A) to denote the induced subgraph
(X,X2 ∩ A). In the following we always assume that D is simple, i.e. that it
does not contain loops and parallel edges must have different orientation.

2 Minimal Extensions

For digraphs D = (V,A), D′ = (V,A′) with A′ ⊆ A we define f(D,D′) as
the minimum number of arcs from D that have to be added to D′ so that the
transitive closures become the same. Formally,

f(D,D′) := min
E⊆A

{|E| : 〈D〉 = 〈(V,A′ ∪ E)〉} .

We call a minimizer E ⊆ A a minimal extension. A set E ⊆ A with 〈D〉 =
〈(V,A′ ∪ E)〉 is called an extension.

We observe that for a digraph D, f(D, ∅) gives the size of a minimum equivalent
subgraph. Computing f(D, ∅) is NP-hard [3]. If, however, D is transitively
closed, this corresponds to computing the transitive reduction of D, which can
be done in polynomial time [2].

We note that in general f(D,D′) 6= f(D, ∅) − f(D′, ∅), see Figure 1 for an
example. There, D = ({A,B,C}, {1, 2, 3}) and D′ = ({A,B,C}, {2, 3}). Then
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f(D, ∅) = 2 (the set {1, 2}), f(D′, ∅) = 2 (the set {2, 3}), but f(D,D′) = 1 (the
set {1}).

A B C
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Figure 1: Example why f(D,D′) = f(D, ∅) − f(D′, ∅) does not always hold.
The set D′ is drawn with continuous edges, while D also contains the dashed
edge.

3 Computation of Minimal Extensions

We now discuss how to compute f(D,D′) for digraphs D = (V,A), D′ = (V,A′)
with A′ ⊆ A. Let C ⊆ 2V be the set of maximal strongly connected components
(represented as the corresponding sets of vertices) of D.

We now define digraphs D̃, D̃′, where the strongly connected components of D
are contracted to single nodes (see Fig. 2 for an example):

D̃ := (C, Ã) with

Ã :=
{

(C1, C2) ∈ C2 : ∃(a, b) ∈ A, a ∈ C1, b ∈ C2

}
and

D̃′ := (C, Ã′) with

Ã′ :=
{

(C1, C2) ∈ C2 : ∃(a, b) ∈ A′, a ∈ C1, b ∈ C2

}
.

A B

Figure 2: A) D is the digraph containing both the continuous and the dashed
edges, while D′ is the subgraph of D that contains only the continuous edges.
The individual connected components of C are shaded in grey. B) D̃ is the
digraph drawn with continuous and dashed edges, while D̃′ is the one drawn
only with continuous edges.

Proposition 1 D̃ and D̃′ are acyclic.

Proof If D̃ would contain a cycle, this would contradict the maximality of the
components in C.
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Since Ã′ ⊆ Ã, if X is a cycle in Ã′, then X is also a cycle in Ã. This contradicts
the acyclicity of D̃ proven above. Hence, D̃′ is also acyclic. �

Proposition 2 If D is transitively closed, then D̃ is transitively closed.

Proof Assume (C1, C2) ∈ Ã and (C2, C3) ∈ Ã. By definition, there exists
a ∈ C1, b ∈ C2, b

′ ∈ C2, c ∈ C3 with (a, b) ∈ A and (b′, c) ∈ A. Since D|C2 is
strongly connected and transitively closed, b, b′ ∈ C2 implies that (b, b′) ∈ A.
Therefore, there exists a path (a, b, b′, c) from a to c, and, from the transitivity of
A, there must exist also an edge (a, c) ∈ A. It then follows that (C1, C3) ∈ Ã.�

Theorem 1 It holds that

f(D,D′) = f(D̃, D̃′) +
∑
C∈C

f(D|C , D′|C).

Proof ≥: Let E ⊆ A minimal s.t. 〈D〉 = 〈(V,A′ ∪ E)〉. Clearly, each edge
of E either lies inside a single strongly connected component of D, or
connects two different strongly connected components of D.

Claim 3.1
〈
(C, (A′ ∪ E) ∩ C2

〉
= 〈D|C〉 for all C ∈ C.

Proof Let B be the edges of the graph G :=
〈
(C, (A′ ∪ E) ∩ C2)

〉
. Let

e = (s, t) ∈ A∩C2 arbitrary but fixed. Since 〈D〉 = 〈(V,A′ ∪ E)〉 it follows
that there exists a path P that only uses edges in A′∪E from s to t. Since
C is a strongly connected component, it follows that all the edges in P
are contained in C. Hence, the path also exists in G and thus, e ∈ B and
A ∩ C2 ⊆ B. Since (A′ ∪ E) ∩ C2 ⊆ A ∩ C2, the claim follows. �

Claim 3.2
〈
D̃
〉

=
〈

(C, Ã′ ∪ Ẽ)
〉

with Ẽ := {(C1, C2) ∈ C2 : s ∈ C1, t ∈
C2, (s, t) ∈ E}.

Proof Let G = (C, B) :=
〈

(C, Ã′ ∪ Ẽ)
〉

. Let e = (C1, C2) ∈ Ã be

arbitrary but fixed. Since 〈D〉 = 〈(V,A′ ∪ E)〉 it follows that there exists
s ∈ C1, t ∈ C2 with (s, t) ∈ A and a path P = (s = p1, p2, . . . , pn = t),
n ≥ 2 using only edges in A′ ∪ E from s to t. Let Q := (q1, q2, . . . , qn)
with qi being the strongly connected component of C that contains pi,
i = 1, . . . , n. Note that q1 = C1 and qn = C2. It follows that Q is a path
in (C, Ã′ ∪ Ẽ). Hence, e ∈ B and Ã ⊆ B. Since Ã′ ∪ Ẽ ⊆ Ã, the claim
follows. �

From the claims it follows that E is an extension for each connected com-
ponent C ∈ C of size |E∩C×C| ≥ f(D|C , D′|C) and it also induces a valid
extension for D̃′ to D̃ of size |{(s, t) ∈ E : s ∈ C1 ∈ C, t ∈ C2 ∈ C, C1 6=
C2}| ≥ |Ẽ ∩ C × C| ≥ f(D̃, D̃′). Since an edge is either inside a connected
component or between two connected components, the ≥ relation of the
formula follows.
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≤: Let EC ⊆ A be an extension for each connected component C ∈ C, i.e.
〈(C, (A′ ∩ C × C) ∪ EC)〉 = 〈D|C〉. Let Ẽ ⊆ Ã be a vaild extension from

D̃′ to D̃, i.e.
〈
D̃
〉

=
〈

(C, Ã′ ∪ Ẽ)
〉

.

We now construct a valid extension for D′ to D with
∑

C∈C |EC | + |Ẽ|
edges. For each e = (C1, C2) ∈ Ã′ choose an arbitrary but fixed s(e) ∈
C1, t(e) ∈ C2 with (s(e), t(e)) ∈ A′, and for each e = (C1, C2) ∈ Ẽ choose
an arbitrary but fixed s(e) ∈ C1, t(e) ∈ C2 with (s(e), t(e)) ∈ A. Define
Ē := {(s(e), t(e)) : e ∈ Ẽ} and E := Ē ∪

⋃
C∈C EC .

Claim 3.3 〈D〉 = 〈(V,A′ ∪ E)〉

Proof Let G = (V,B) := 〈(V,A′ ∪ E)〉.
Let s ∈ C1 ∈ C, t ∈ C2 ∈ C with (s, t) ∈ A. By definition of Ẽ
there exists a path Q = (C1 = q1, q2, . . . , qn = C2), n ≥ 1 using edges
in Ã′ and Ẽ from C1 to C2. Let P := (s, s(q1, q2), t(q1, q2), s(q2, q3),
t(q2, q3), . . . , s(qn−1, qn), t(qn−1, qn), t). By construction there exist edges
from s(qi, qi+1) to t(qi, qi+1), i = 1, . . . , n− 1 in Ē ∪A′ ⊆ B.

We observe that {s, s(q1, q2)}, {t(qi−1, qi), s(qi, qi+1)} for i = 1, . . . , n− 1,
and {t(qn−1, qn), t} are each in the same connected component. Since
EC ⊆ E is a valid extension for each connected component C ∈ C, there ex-
ists for all a, b ∈ C a path using edges in A′∪EC from a to b. Hence, (a, b) ∈
B. Hence, it follows that (s, s(q1, q2)) ∈ B, (t(qi−1, qi), s(qi, qi+1)) ∈ B for
i = 1, . . . , n− 1, and (t(qn−1, qn), t) ∈ B.

It follows that P is a path connecting s to t using only edges in B. Since
G is transitively closed, it follows that (s, t) ∈ B. Thus, B ⊇ A and since
A′ ∪ E ⊆ A, we have G = 〈D〉. �

We observe that |E| = |Ẽ|+
∑

C∈C |EC | and the theorem follows. �

By Thm. 1 it follows that we only need to be able to compute f(D,D′) for di-
graphs that are acyclic and for digraphs where D forms one strongly connected
component. We first analyse the case of acyclic digraphs. The following propo-
sition characterizes the arcs in a minimal extension. It should be noted that it
does not apply for digraphs in general, since in general there exists no unique
minimal extension.

Proposition 3 (Locality) Assume D,D′ are acyclic and let E be minimal s.t.
〈D〉 = (V,B) = 〈(V,A′ ∪ E)〉. Then it holds for e = (a, b) ∈ A that e ∈ E if and
only if there exists no c ∈ V with (a, c) ∈ B and (c, b) ∈ B.

Proof ⇒: Assume there exists (a, c), (c, b) ∈ B. Due to the acyclicity of D
it follows that there exists no path in A that connects a to c and uses
(a, b) and there exists no path in A that connects c to b and uses (a, b).
Thus, there exists no path in A′ ∪ E that connects a to c or c to b and
uses (a, b). It follows that there exists a path from a to b that does not
use (a, b). Hence, (a, b) /∈ E.

⇐: Assume there exists no c ∈ V with (a, c) ∈ B and (c, b) ∈ B. Since 〈D〉 is
closed under transitivity, it follows that there exists no path from a to b
in A that does not use (a, b). Hence (a, b) ∈ E. �
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We observe that from the locality property (Prop. 3), we can easily compute
a minimal extension and hence f(D̃, D̃′). We now only have to show how to
compute the size of a valid extension for each of the strongly connected compo-
nents.

Theorem 2 (Full extension) Let D = (V,A), V 6= ∅ be the complete digraph
and D′ = (V = S∪̇T,A′) be a bipartite digraph with edges only going from the
sources S to the sinks T and assume each vertex is used by at least one edge.
Then f(D,D′) = max{|S|, |T |}.

Proof Since each node in S has at least one ingoing arc and each node in T has
at least one outgoing arc, it can be easily seen that f(D,D′) ≥ max{|S|, |T |}.
Hence, we only show the other direction.

Define E ⊆ A′ by iteratively removing one edge e = (s, t) and its vertices
(including incident edges) from G = D′ and adding e to E until it is not possible
anymore. Let V ′ be the vertices used by edges in E. We observe that (V ′, E)
consists of |E| weakly connected components (each a single edge). It follows
that there exists |E| edges F ⊆ (V ′ ∩ T ) × (V ′ ∩ S) such that 〈(V ′, E ∪ F )〉 is
one strongly connected component.

We further observe that for each s ∈ S there exists t ∈ V ′ with (s, t) ∈ A′ and
for each t ∈ T there exists s ∈ V ′ with (s, t) ∈ A′ (otherwise we could add
another edge to E.) It follows that in (V,A′∪F ) we can reach from every s ∈ S
every v ∈ V , and every t ∈ T can be reached from every v ∈ V .

We now iteratively add edges (t, s) to F where t ∈ T, s ∈ S are not yet used
by any edge in F . We observe that after this operation |F | = min{|S|, |T |} and
either only sources with no in-arc or sinks with no out-arc are left. For each of
these nodes we now add an edge to F to connect it to a node that has in-arcs
and out-arcs. It follows that finally |F | = max{|S|, |T |}.
It can be easily seen that now every source can also be reached from at least
one sink (and hence from any node) and from each sink we can reach a source
and hence, the whole network. �

Usually, however, the connected components C ∈ C do not have the form as in
Thm. 2, i.e. D|C is not bipartite. Hence, we have to bring them into that form
first.

Corollary 1 Let D = (V,A), V 6= ∅ be a complete digraph and D′ a digraph.
Then

f(D,D′) = 0 if 〈D′〉 = D

f(D,D′) = max{S, T}+ K, otherwise

where S is the number of sources (nodes without in-arc), T is the number of sinks
(nodes with out-arc) and K is the number of isolated (not weakly connected to
anything else in D′) strongly connected components of D′.

Proof If 〈D′〉 = D, it is strongly connected and we obviously do not have to
add any arcs.

For each strongly connected component of D′, we do not have to add any arcs.
Hence, we can contract all strongly connected components to a single node
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and assume w.l.o.g. that D′ does not contain non-trivial strongly connected
components (see Fig. 3 A and B).

We notice that after this reduction we have K isolated nodes.

We observe that every node that is not a source can be reached from a source,
and from each node that is not a sink we can reach a sink. It follows that for
each E ⊆ A where every source is reachable from every sink and vice versa in
(V,A′∪E) it holds that (V,A′∪E) is strongly connected. Hence, we can ignore
nodes that are neither sources nor sinks (see Fig. 3 C).

Since D′ contains more than one strongly connected component (i.e. after the
transformations D′ contains not only a single node) it follows that we have to
add one in-arc and one out-arc for each isolated node in D′ which is sink and
source at the same time. Hence, we can split up each isolated node into a sink
and a source without having to invest more edges to build a valid extension (see
Fig. 3 D). Finally, Thm. 2 yields f(D,D′) = max{S+K,T +K} = max{S, T}+
K (see Fig. 3 E and F). �

Note that in Thm. 1 and Prop. 3 we do not require that D is transitively
closed. This property is however important for Thm. 2 because otherwise a
minimal extension cannot be computed in polynomial time. This can be seen
by studying f(D, ∅), where 〈D〉 is the complete digraph. This corresponds to
finding a Hamiltonian cycle in D [2, 3].

4 Conclusion

We have shown that we can compute the size of a minimal extension f(D,D′)
for digraphs D,D′ by computing minimal extensions for each of the strongly
connected components and for the acyclic digraph obtained by contracting all
the strongly connected components of D into single nodes.

We showed that, for directed acyclic digraphs, f(D,D′) can be computed by
simple reachability tests in polynomial time. If D is the complete digraph, we
can also efficiently compute the size of an extension by simply counting the
number of source and sink nodes in D′.

Alltogether, we presented a polynomial time algorithm for transitively closed D
to compute the number f(D,D′) of arcs to be added from D to D′ such that
the transitive closures become the same.
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