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Faster SDC convergence on non-equidistant grids by

DIRK sweeps∗

Martin Weiser

December 9, 2013

Abstract

Spectral deferred correction methods for solving stiff ODEs are known to
converge rapidly towards the collocation limit solution on equidistant grids,
but show a much less favourable contraction on non-equidistant grids such as
Radau-IIa points. We interprete SDC methods as fixed point iterations for the
collocation system and propose new DIRK-type sweeps for stiff problems based
on purely linear algebraic considerations. Good convergence is recovered also
on non-equidistant grids. The properties of different variants are explored on
a couple of numerical examples.

1 Introduction

Spectral deferred correction methods (SDC) for solving ODEs are iterative schemes
based on approximately integrating defect equations with simple low order methods.
They have been introduced by Dutt, Greengard and Rokhlin [9] as a more directly
derived variant of the classical iterated defect correction methods [11,21]. One of the
main differences is the derivation in terms of the Picard integral equation instead
of the differential equation itself. A very similar approach, but staying closer to the
classical defect correction structure, has been suggested by Auzinger et al. [1–3].

SDC methods can be and have been interpreted as quite a number of different
methods. For a fixed number of sweeps, they are foremost Runge-Kutta methods,
the properties of which, such as order or accuracy and stability domains, have been
studied extensively [7, 9]. Applied to nonlinear differential equations, they can be
seen as Newton-like methods for solving the collocation system. Applied to the
linearized system, they form preconditioners for Krylov methods [5, 14] or fixed
point iterations in their own right [11]. Recently, SDC methods have also been used
to construct efficient time-parallel solvers [6, 10].

The interpretation of SDC methods as linear fixed point iterations will be pre-
sumed here. Convergence results for deferred correction methods based on the
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contractivity of linear fixed point iterations are scattered throughout the literature,
we mention just [2, 11, 14, 19]. While this perspective has been used to analyze
various SDC methods, it does not appear to have been used for the construction
of efficient SDC variants. This is the aim pursued in this work. The ultimate mo-
tivation and intended application is the application to reaction-diffusion equations
such as cardiac excitation [4], the properties of which are to be taken into account.
In particular we restrict the attention to negative real eigenvalues of the Jacobian
and to the occurence of very stiff components. Moreover, we anticipate the use of
iterative solvers for the implicit basic steps and neglect the potential advantage of
reusing factorizations of the Jacobian as considered, e.g., in [2]. In Section 2 we will
fix the notation of SDC methods used here from the perspective of linear algebra.
This will be exploited in Sections 3 and 4 for the construction of specialized cor-
rection sweeps with diagonally implicit Runge-Kutta (DIRK) structure. Stability
and accuracy domains of the resulting methods are experimentally investigated in
Section 5. Finally, numerical experiments are performed at three different ODE
systems with different properties in Section 6, illustrating the different convergence
properties of the constructed methods.

2 A linear algebra view on SDC convergence

First we will recollect spectral deferred correction methods in two variants, mainly
to fix notation. For a detailed description we refer to [9]. Subsequently, we will inter-
prete SDC methods as fixed point iterations for solving linear collocation equations
and investigate their convergence properties.

2.1 Spectral deferred correction methods

We consider approximate solutions of the initial value problem

ẏ(t) = f(y(t), t), y(0) = y0 (1)

on the interval [0, τ ].

Spectral differentiation: DSDC. With an approximate polynomial solution
y0 ∈ Pn at hand, the error ε = y − y0 satisfies the defect equation

ε̇(t) = f(y(t), t)− ẏ0(t) = f(y0(t) + ε(t), t)− ẏ0(t), ε(0) = 0, (2)

which can be approximately solved by integration with a simple time stepping
scheme on a time grid 0 = t0 < t1 < · · · < tn ≤ τ . Popular choices are equidistant
nodes or Gauß, Lobatto, and Radau points. Let τi = ti − ti−1 for i = 1, . . . , n.
Using the implicit Euler scheme, one obtains for εi ≈ ε(ti) and y0i = y0(ti)

εi = εi−1 + τi
(
f(y0i + εi, ti)− ẏ0i

)
, i = 1, . . . , n, (3)
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starting at ε0 = 0. Linearization around y0, i.e. substituting f(y0i + εi, ti) by
f(y0i , ti) + f ′(y0i , ti)εi yields the linearly implict scheme

(I − τif ′(y0i , ti))εi = εi−1 + τi
(
f(y0i , ti)− ẏ0i

)
, i = 1, . . . , n. (4)

The derivatives ẏ0i can be obtained as a linear combination of the values y0i ,

ẏ0i = τ−1
n∑
j=1

Dd
ij(y

0
j − y0),

where the coefficients Dd
ij = L′j(ti) of the spectral differentiation matrix Dd ∈

Rn×n are given in terms of the Lagrange polynomials Lj ∈ Pn with respect to the
normalized time grid 0, t1/τ, . . . , tn/τ .

A usually better approximation of the solution is then

y1(t) = y0(t) +

n∑
i=1

εiLi(t/τ), i.e. y1i = y0i + εi. (5)

Of course, this correction scheme can be iterated. If this fixed-point iteration con-
verges, the limit value y∗ ∈ Pn satisfies the collocation conditions

ẏ∗(ti) = f(y∗(ti), ti) for i = 1, . . . , n, y∗(0) = y0, (6)

and is therefore the solution of an implicit Runge-Kutta method of collocation type.

Spectral quadrature: QSDC. The defect equation (2) is easily tranformed into
the equivalent Picard equation

ε(t) =

∫ t

s=0
(f(y0(s) + ε(s), s)− ẏ0(s)) ds, (7)

which leads to

ε(ti) = ε(ti−1) +

∫ ti

s=ti−1

(f(y0(s) + ε(s), s)− f(y0(s), s)) ds

+

∫ ti

s=ti−1

f(y0(s), s) ds− (y0i − y0i−1).

Approximating the first integral by a simple numerical quadrature, e.g., right-
looking rectangular rule, and the second one by a quadrature rule on the nodes
t1, . . . , tn, one obtains

εi = εi−1 + τi
(
f(y0i + εi, ti)− f(y0i , ti)

)
+ τi

n∑
j=1

Sqijf(y0j , tj)− (y0i − y0i−1), (8)
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again starting at ε0 = 0. Linearization around y0 yields the linearly implicit scheme

(I − τif ′(y0i , ti))εi = εi−1 + τi

n∑
j=1

Sqijf(y0j , tj)− (y0i − y0i−1). (9)

An improved approximation is obtained as before by (5). As is apparent from (8),
any fixed point satisfies the collocation conditions (6) as long as the quadrature Sq

is exact for polynomials of degree up to n, which is the case for

Sqij =
τ

τi

∫ ti/τ

t=ti−1/τ
Lj(t) dt

in terms of the Lagrange polynomials on the normalized grid t0/τ, . . . , tn/τ .

2.2 SDC on Dahlquist’s equation

Many properties of time stepping schemes are already visible when applied to the
simple, linear test equation

ẏ = λy, y(0) = 1. (10)

In the following, we will apply the SDC methods to (10) and start developments
from there. The implicit Euler DSDC variants (3) and (4) both read

εi − εi−1 − τiλεi = τi

λy0i − τ−1 n∑
j=1

Dd
ij(y

0
j − 1)

 .

Multiplication by τ/τi yields

τ

τi
(εi − εi−1)− τλεi = τλy0i −

n∑
j=1

Dd
ij(y

0
j − 1),

or, in matrix form,

(D̂E − zI)ε = −(Dd − zI)y0 +Dd1, (11)

with z = τλ and lower bidiagonal approximate differentiation matrix

(D̂E)ij =
τ

τi
(δi,j − δi,j−1), i, j = 1, . . . , n

realized by the implicit Euler method. The QSDC variants (8) and (9) both read

εi − εi−1 − τiλεi = τi

n∑
j=1

Sqijλy
0
j − (y0i − y0i−1).



5

method D̂ Ŝ D S

DSDC D̂E I Dd I

QSDC D̂E I D̂E Sq

Table 1: Spectral differentiation and integration matrices arising in implicit Euler
based DSDC and QSDC methods (13).

Again, multiplication by τ/τi yields

τ

τi
(εi − εi−1)− zεi = z

n∑
j=1

Sqijy
0
j −

τ

τi
(y0i − y0i−1),

or, in matrix form,

(D̂E − zI)ε = −(D̂E − zSq)y0 + D̂E1. (12)

Comparing (11) and (12) reveals that both SDC variants differ only in the
matrices building up the right hand sides from values of y0. In joint notation, they
can be written as

(D̂ − zŜ)ε = −(D − zS)y0 +D1 (13)

with D̂, Ŝ,D, S as given in Tab. 1. Note that the spectral differentiation and integra-
tion matrices D,S appearing in the right hand side are “exact” up to the collocation
error, whereas D̂, Ŝ represent the lower order implicit Euler basic scheme and take
the role of approximate differentiation and integration matrices, respectively. The
convergence of the corresponding fixed point iteration

yk+1 = yk + (D̂ − zŜ)−1
(
−(D − zS)yk + y0D1

)
(14)

towards the collocation solution depends only on the properties of the iteration
matrix

G(z) = I − (D̂ − zŜ)−1(D − zS). (15)

As the motivating interest is in reaction-diffusion equations exhibiting a real spec-
trum of the Jacobian with dominant large negative eigenvalues, we restrict our
attention to 0 > z ∈ R. The two limit cases z → 0 and z → −∞ are important
for convergence of non-stiff components and the behavior of very stiff components,
respectively.

The case z → 0. This case is the limit of τ → 0 for fixed λ and thus determines
the non-stiff convergence of the integrator. The rule of thumb is that with a first-
order basic scheme, each SDC sweep increases the order by one until the convergence
order of the collocation discretization is reached (higher order basic schemes have
been considered for increasing the order by more than one in each sweep, see [12,
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Figure 1: Asymptotic contraction factor of implicit Euler SDC iterations on equidis-
tant and Radau points for Dahlquist’s equation versus z. Left: DSDC. Right:
QSDC.

13,16,20]). This implies that the contraction factor of the SDC iteration is O(−z),
which requires ρ(G(0)) = 0. This is automatically satisfied in the quadrature-based
SDC formulation due to D̂ = D, but in general not by the differentiation-based, see
Fig. 1. This is a striking point in favor of QSDC for non-stiff problems.

It has since long been known, however, that on equidistant grids, the differential
variant exhibits good contraction properties as well [11]: ρ(G(0)) = 0 holds due
to G(0) being nilpotent. This implies that, at least asymptotically, one order per
sweep is gained.

The case z → −∞. This case is the limit of |λ| � τ−1 for moderate step sizes
τ . It is usually encountered in differential-algebraic equations, in problems with
a pronounced scale separation between non-stiff and highly stiff components, and
penalty treatment of constraints, e.g., Dirichlet boundaries in parabolic PDE prob-
lems. Here we have G(z) → I − Ŝ−1S =: G(−∞). A rapid convergence of the
SDC iteration, in particular the aim of L-stability or at least a vanishing stability
function R(∞) = 0, requires ρ(G(−∞)) = 0, which is automatically satisfied by
the differentiation-based SDC formulation due to Ŝ = S, but in general not by the
quadrature-based. In fact, stagnation of QSDC iterations has been observed for
differential-algebraic problems [14]. This is a striking point in favor of DSDC for
stiff problems. In linear autonomous problems, this is of somewhat less importance
as transient components are nevertheless damped out, only much slower than they
should. In nonlinear or non-autonomous problems, these transient errors in stiff
components can spill over into non-stiff components and lead to order reduction.

Again, QSDC exhibits an improved convergence on equidistant grids, where
ρ(G(−∞)) = 0 holds, see Fig. 1.

Remark 2.1. The compact matrix notation used in this section for scalar ODEs
can be directly extended to ODE systems by using Kronecker products, see, e.g., [5].
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3 Nilpotent DIRK sweeps by LU decomposition

Usually, SDC methods are designed by choosing a simple basic integration
scheme (often explicit, or linearly or fully implicit Euler) for the defect equations (2)
or (7), which realizes an SDC iteration with lower triangular approximate differen-
tiation and integration matrices D̂ and Ŝ.

The linear algebra perspective offers a different approach: We can choose the
matrices D̂ and Ŝ first, and afterwards interprete the SDC iteration as a custom-
made integrator. Staying in the DSDC (Ŝ = S) and QSDC (D̂ = D) frameworks
for their remarkable limit-behavour discussed before, we are free to choose either
D̂ or Ŝ. A lower triangular shape of the approximate matrices, with nonvanishing
diagonal entries for implicit schemes, will retain the sweep structure of the SDC
iteration and hence allow an efficient implementation with only one system solve in
each step of the sweep. Using a linearly implicit Euler as basic scheme, the SDC
sweep reads(

D̂ii − τf ′(yki , ti)Ŝii
)
εki

= −
i−1∑
j=1

(D̂ij − τf ′(ykj , tj)Ŝij)εkj −
n∑
j=1

(
Dij(y

k
j − y0)− τSijf(ykj , tj)

)
,

which is but a minor modification of the simple linearly implicit Euler sweep. In
other words, an SDC sweep is no longer a sequence of simple basic schemes, but
one step of a diagonally implicit Runge-Kutta method.

Now assume that G = I − Â−1A, and we want to enforce fast asymptotic
convergence, i.e. ρ(G) = 0. One way to achieve this is to select Â based on an LU
decomposition of A.

Lemma 3.1. Let G = I−Â−1A and AT = LU with lower triangular L with diagonal
entries all 1 and U being upper tiangular. Then Â = UT implies ρ(G) = 0.

Proof. We have G = I − U−TUTLT = I − LT , which is a strictly upper triangular
matrix and hence nilpotent.

For the QSDC method with ρ(G(0)) = 0 already satisfied, we will enforce
ρ(G(∞)) = 0 and choose Ŝ = UT with ST = LU . The good convergence prop-
erties for z = 0 will not be affected in any way, as Ŝ plays no role in the limit
case. Analogously, for the DSDC method, we will enforce ρ(G(0)) = 0 and choose
D̂ = UT with DT = LU . Again, the good convergence properties for z → −∞ will
not be affected. The improvement over the standard approach on non-equidistant
grids shown in Fig. 2 is quite pronounced. For QSDC methods, the contraction
factors are an almost uniform improvement even over the case of equidistant collo-
cation nodes. Nevertheless, for DSDC the convergence order does not increase by
one for each sweep, but only asymptotically every n sweeps.
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Figure 2: Asymptotic contraction factor of Euler- and LU-based SDC iterations on
n Radau IIa points for Dahlquist’s equation versus z. Left: DSDC. Right: QSDC.

Theorem 3.2. Assume that DT = LU and D̂ = UT in the DSDC method. Then
there are constants c <∞ and γ > 0 such that ρ(G(z)) ≤ c|z|1/n for all |z| ≤ γ.

Proof. Due to Ŝ = S = I in DSDC, the iteration matrix is

G(z) = I − (UT − zI)−1(UTLT − zI)

with

(UT − zI)−1 =

(
I +

∞∑
k=1

(zU−T )k

)
U−T

if |z| ≤ γ := min(12‖U
−T ‖−1, 1). Thus,

G(z) = I −

(
I +

∞∑
k=1

(zU−T )k

)
(LT − zU−T )

= I − LT︸ ︷︷ ︸
N

+z

(
U−T − U−T

∞∑
k=0

(zU−T )k(LT − zU−T )

)
︸ ︷︷ ︸

A

holds with N being nilpotent of order n and A bounded independently of |z| ≤ γ
due to ‖zU−T ‖ ≤ 1/2. As ρ(G) = limk→∞ ‖Gk‖1/k, we consider

G(z)k = (N + zA)k,

which is a sum of 2k products of factors N and zA. Grouping the terms by the
number of factors zA, we obtain

(
k
i

)
terms consisting of i factors zA and k−i factors

N each. For i ≥ k/n these terms are bounded by

|z|i‖A‖i‖N‖k−i ≤ |z|k/n max{‖A‖, ‖N‖}k
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due to |z| ≤ 1. Otherwise there is at least one sequence of n factors of N , such that
the term vanishes. With c = 2 max{‖A‖, ‖N‖} we obtain the estimate

‖G(z)k‖1/k ≤
(

2k|z|k/n c
k

2k

)1/k

= c|z|1/n,

which completes the proof.

The analogous result ρ(G(z)) = O(|z|−1/n) for z → −∞ holds for QSDC meth-
ods.

Remark 3.3. An LU decomposition of D or S, respectively, need not exist without
pivoting. While pivoting can in principle considered here as well, the corresponding
permutations would modify the sweep structure, that no longer runs simply forward
in time. In favour of a traditional SDC sweep structure, we omit pivoting here.

4 Direct optimization of DIRK sweeps

The ad-hoc approach in the previous section has led to a considerable improvement
on nonuniform grids despite its simple, almost explicitly given approximation ma-
trices. Yet we can explore the design space of possible choices of D̂ and Ŝ more
comprehensively while restricting the setup to the Dahlquist test equation. In par-
ticular, the spectral radius of G for the limit cases may be of less interest than its
norm, or some other quantity. We will discuss interesting quantities as objectives
for optimizing the approximation matrices in the following subsection. Next, we
will explore possibilities for choosing design variables. In particular we need not
restrict the discussion to just D̂ and Ŝ, as we can use different approximate matrices
in each sweep.

4.1 Objectives

“Fast convergence” of SDC methods can mean quite a number of different things
in practice, such as asymptotic convergence rate, good error reduction in the first
few iterates, error reduction in the whole time interval or only at its end, and so
on. Here we will formulate a number of reasonable criteria for optimizing D̂ and
Ŝ, and investigate their properties. The optimization objectives are formulated in
terms of the iteration matrix G(z).

Spectral radius. The spectral radius ρ(G(z)) of the iteration matrix determines
the asymptotic convergence rate, and is therefoere relevant when performing many
SDC sweeps. The LU-based choices of D̂ and Ŝ above guarantee ρ(G(z)) = 0 for
the limit cases z = 0 and z → −∞. As is apparent from Fig. 2, intermediate values
of z, which are bound to occur in parabolic problems with sufficiently fine spatial
grid, experience a worse error reduction. In order to reduce those error components
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Figure 3: Spectral radius ρ(G(z)) versus z for QSDC sweeps applied to the Dahlquist
equation. Left: Radau(4) QSDC sweeps based on implicit Euler, LU-DIRK, and
numerically optimized matrices D̂, Ŝ for w ≡ 1. Right: Optimized Radau(n) sweeps
for w ≡ 1 and different numbers n of collocation points.

faster, we may choose the SDC matrices such that the maximal contraction factor
is minimized:

J(D̂, Ŝ) = max
z≤0

ρ(G(z)) (16)

This choice sacrifices the good properties at z = 0. As ρ(G(z)) = O(z) for z → 0 no
longer holds, we cannot expect to gain one order of convergence per SDC sweep. As
opposed to an error reduction by the factor of O(τ) we have to settle for a reduction
factor of approximately ρ(G(0)) > 0. The contraction behavior in terms of z can
be adjusted by introducing a weight function w(z) ≥ 0:

J(D̂, Ŝ) = max
z≤0

w(z)ρ(G(z))

With w(z) = 1 − z−1 we enforce ρ(G(0)) = 0 again. Note that this does not yet
guarantee one order of convergence improvement per SDC sweep (compare Theo-
rem 3.2) above.

In Fig. 3, resulting spectral radii are shown versus z for different numbers of
Radau-IIa collocation points and constant weight function w ≡ 1. Optimization of
D̂ and Ŝ were perfomed using a very simple-minded SQP scheme with numerical
differentiation and using the LU-based matrices D̂LU and ŜLU as initial values. The
maximum in (16) has been approximated by the lp norm ‖ · ‖64 evaluated on a
logarithmic grid with 100 points on [10−4, 104]. No global optimization has been
attempted, such that the results shown are likely to be somewhat less than optimal.
Nevertheless, a reduction of the worst case spectral radius compared to LU-based
QSDC is observed, at the cost of worse contraction in the limits z → 0 and z → −∞.

Pre-asymptotic contraction factors. Spectral deferred correction methods are
particularly attractive if they lead to efficient time stepping schemes with few SDC
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tion. Left: Radau(4) QSDC sweeps based on implicit Euler, LU-DIRK, and numer-
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sweeps, in which case not the spectral radius but the norm of G determines the
error reduction. Hence a reasonable optimization criterion would be

J(D̂, Ŝ) = max
z≤0

w(z)‖G(z)‖ (17)

with any appropriate matrix norm ‖ · ‖. In Fig. 4, the resulting error reduction
factors ‖G(z)‖2 are shown versus z for weight function w ≡ 1. Again we observe a
significant improvement of LU-based SDC sweeps over standard Euler sweeps, and
a further moderate improvement by numerically optimized sweeps, again at the cost
of worse contraction for z → 0. Notice that for z → −∞, the LU-based sweeps do
not lead to ‖G(z)‖2 → 0, as G(−∞) is nilpotent of order n, but not zero.

Final time error. While local error reduction is a worthwhile goal, the overall
quality of the computed solution will hinge on the global error transport. In this
conception, the relevant property of G is the error at the end of the time interval.
Whenever the last collocation point is at the end of the interval, e.g., with Radau
points, this error is determined by the last row of G only, which would then to be
minimized:

J(D̂, Ŝ) = max
z≤0

w(z)‖eTnG(z)‖ (18)

Here, en denotes the n-th unit vector in Rn. For different collocation points, e.g.,
Gauß points, a suitable linear combination of the rows of G has to be used instead.

In Fig. 5, the resulting error reduction factors ‖eTnG(z)‖2 are shown versus z
for weight function w ≡ 1. A similar pattern as for the spectral radius emerges:
LU-DIRK leads to a dramatic improvement over Euler-based SDC. In particular,
for z → −∞ the reduction factor approaches zero, as the last line of G(−∞) is
exactly zero due to its strictly upper triangular shape. Compared to that, a modest
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worst case improvement is achieved by numerical optimization, again sacrificing the
good properties in the limit cases z → 0 and z → −∞.

Sweep blocks. Already for the purpose of time error estimation, at least two
SDC sweeps will be performed. If we intend to apply a certain number of m sweeps,
the relevant error reduction is given by G(z)m instead of G(z), which may lead to
different optimal values of D̂ and Ŝ. Hence we may want to look at the average
reduction factors

J(D̂, Ŝ) = max
z≤0

w(z)‖G(z)m‖1/m or J(D̂, Ŝ) = max
z≤0

w(z)‖eTnG(z)m‖1/m

instead of (17) and (18), respectively.
The results shown in Fig. 6 show a significant improvement versus the single-

sweep optimization for the norm objective (17), but a moderate deterioration for the
final time objective (18). Both approach the spectral radius result for increasing m,
which is to be expected due to ρ(G) = limm→∞ ‖Gm‖1/m ≤ ‖G‖. The deterioration
in the final time objective is due to the fact that large errors remaining at times
t1, . . . , tn−1 have an impact on the error at tn in the next iteration and cannot be
ignored. In this aspect, the objective (18) is too optimistic, as submultiplicativity
‖eTnGm‖ ≤ ‖eTnG‖m usually does not hold.

4.2 Design variables.

Up to now we followed the strategy to design a single optimal SDC sweep that is to
be applied a sufficient number of times. Here we will explore SDC designs with more
freedom and flexibility, all of which can be combined with any of the optimization
objectives discussed above.
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Figure 6: Averaged error reduction per sweep versus z for Radau(4) QSDC sweeps

with numerically optimized matrices D̂, Ŝ for w ≡ 1. Left: Norm ‖G(z)m‖1/m2 .

Right: Final time error ‖eTnG(z)m‖1/m2 .

Flexible sweep blocks. Always applying m SDC sweeps at a time offers the
freedom to choose different approximate matrices in each of the m sweeps, leading
to optimization variables D̂j , Ŝj , j = 1, . . . , k corresponding to iteration matrices
Gj(z). The objective will then be

J(D̂1, Ŝ1, . . . D̂m, Ŝm) = max
z≤0

w(z)
∥∥∥eTn m∏

j=1

Gj(z)
∥∥∥1/m. (19)

As visible in Fig. 7, to be compared directly with Fig. 6, this richer design space
allows a further improvement over the optimization of single sweeps for multiple
iterations.
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Figure 7: Averaged error reduction per sweep versus z for m-block Radau(4) QSDC
sweeps with numerically optimized matrices D̂j(m), Ŝj(m) for w ≡ 1. Left: Norm
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Greedy sweeps. Applying always a fixed number m of SDC sweeps at a time
may incur inefficiencies, in particular for larger m, when one wants to control the
number of iterations such that a certain accuracy is achieved. A greedy style choice
of D̂m, Ŝm allows to terminate the SDC iteration after each sweep. The locally
optimal choice of approximate matrices is then given by

J(D̂m, Ŝm) = max
z≤0

w(z)
∥∥∥eTn m∏

j=1

Gj(z)
∥∥∥1/m,

where the optimization is performed sequentially for m = 1, . . . .

The resulting average contraction factors are shown in Fig. 8. As expected, the
improvement over single-sweep optimization m = 1 is less pronounced than in the
cases where the number m of sweeps is known beforehand (Figs. 6 and 7). This is
the price to pay for the flexibility to terminate the SDC iteration at any m. Given
that the reduction factor ‖G2(z)G1(z)‖1/2 visible in Fig. 7 is already better than
the greedy approach up to m = 8 and virtually as good as any block scheme for
larger m, the greedy style of choosing D̂j , Ŝj is probably not worthwhile.

5 Stability and accuracy domains

Even though the intended application to reaction-diffusion system fixes the focus on
real λ in the Dahlquist equation (10), we briefly explore the stability and accuracy
properties of different SDC variants for complex λ as well. In Fig. 9 we show
the domains of stability for Euler-QSDC (top) and LU-QSDC (bottom), both for
simultaneously increasing number of collocation points n and SDC iteration count k
(left, k = n) and fixed number of collocation points n = 4 with increasing iteration
count k. The stability domain is the subset of the complex plane, where for the
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Figure 9: Stability domains of QSDC methods based on Euler steps (top) and
LU-DIRK steps (bottom) Left: n = k = 2, . . . , 6. Right: n = 4, k = 2, 4, 8, 16.

rational approximation R of the exponential function realized by the QSDC method
|R(λ)| ≤ 1 holds. Note that the stability domain is outside the plotted curves.

None of the QSDC methods tested is A-stable. The LU-based methods are
A(α)-stable with α ≈ 89.7, while the Euler-based methods achieve α ≈ 89.9. Of
course, as the iterations converge towards the L-stable underlying Radau collocation
scheme, these angles will increase towards 90 degrees. For larger positive real values
of λ, the SDC convergence towards the collocation scheme appears to be rather slow
or even nonexistent.

Accuracy domains for the same methods are shown in Fig. 10. The accuracy
domain for ε = 10−4 is the subset of the complex plane for which |R(z) − ez| ≤ ε,
which is inside the plotted curves.

No significant difference between the Euler- and LU-based QSDC schemes is
apparent here. The slight differences can be attributed to the somewhat slower
convergence of the Euler-based SDC iterations, as they resemble longer a sequence
of Euler steps and approach the properties of the underlying Radau collocation
method later.
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Figure 10: Accuracy domains of QSDC methods based on Euler steps (top) and
LU-DIRK steps (bottom) for an error of 10−4. Left: n = k = 2, . . . , 6. Right:
n = 4, k = 2, 4, 8, 16.
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Figure 11: Stability domains of QSDC methods optimized for spectral radius (top)
and error at terminal time (bottom) Left: n = k = 2, . . . , 6. Right: n = 4, k =
2, 4, 8, 16. Compare with Fig. 9.

Stability and accuracy domains of directly optimized QSDC methods are shown
in Figs. 11 and 12, using the flexible sweep block design for a block size m = 2
with spectral radius objective or final time error objective (19), respectively. Even
though these methods are of first order only if a limited number of iterations is
performed, the accuracy domains for ε = 10−4 tend to be somewhat larger than
for the Euler and LU variants. This holds in particular for the final time error
objective, since the accuracy domain quantifies the error at the final time of the
SDC step only. We may notice that the accuracy domains are particularly large for
an even number of iterations, which corresponds to the iteration block size used for
optimizing the QSDC matrices.

Both variants are A(α)-stable with α ≈ 89.1 for the spectral radius objective
and α ≈ 89.8 for the final time error objective.

We may expect the linear algebra construction of QSDC matrices Ŝ, though done
here for the negative real axis only, to work fairly well also for general systems.
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Figure 12: Accuracy domains of QSDC methods optimized for spectral radius (top)
and error at terminal time (bottom) for an error of 10−4. Left: n = k = 2, . . . , 6.
Right: n = 4, k = 2, 4, 8, 16. Compare with Fig. 10.
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6 Numerical examples

Up to now we have designed SDC methods to work in some sense optimal on the
Dahlquist equation, in the expectation that their good properties translate to more
complex systems of nonlinear or nonautonomous ODEs, DAEs, and PDEs. In this
section, we will apply those SDC methods to a couple of examples, comparing and
interpreting the results. In particular we will check the conjectures that ‖eTnG(z)‖ is
more relevant for the global error transport than the other error reduction measures,
and that ‖G(z)‖ or ‖G(z)k‖ is more relevant for integrators using a small number
of sweeps than ρ(G(z)).

6.1 Prothero-Robinson example

We consider the nonautonomous generalization of Dahlquist’s test equation due
to [18],

ẏ = λ(y − g(t)) + ġ(t), y(0) = g(0), (20)

with g = sin on the time interval [0, 1]. The exact solution is sin(t). We consider
a “mildly stiff” setting with λ = −103, that shows a transition towards non-stiff
behavior for reasonably small step size τ .

Understanding SDC convergence. Compared to the limiting collocation meth-
od, SDC methods with a fixed number k of sweeps show a more complex convergence
behavior, see Fig. 13. From a theoretical point of view, the error in the mildly stiff
example should exhibit a “hump” when plotted versus the step size τ , as the LU
based SDC contraction rate given by the spectral radius of G is larger for z = τλ
in the range [−10,−1] than in the limit cases z → 0 and z → −∞ (see Fig. 2
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Figure 13: Error of LU-based QSDC methods on the Prothero-Robinson equa-
tion (20). Left: Error as a sum of collocation time discretization error and SDC
iteration error. Right: Actual observed error-work behavior on Radau(3) for
k = 1, 3, 5, 7, 9 sweeps and different time step sizes: final time error vs. total
number N of sweeps. Limiting lines are N−1 and N−3.
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and [11]). In particular, the rule of thumb “one order per sweep” is only reached
asymptotically for very small time steps, as then τλ has crossed the hump and
only then the contraction factor ρ(G) approaches zero. In this regime, a k-sweep
QSDC method can even show a convergence rate k that exceeds the order of the
underlying collocation scheme. This convergence behavior is actually observed in
numerical computations and can be expected to arise in Euler sweep SDC methods
on equidistant grids as well.

It is apparent from Fig. 13 and the considerations above that the notion of
“order” is insufficient to describe the error behavior of SDC methods properly in
the practically relevant pre-asymptotic step size and accuracy regions. In particu-
lar the numerical estimation of convergence order can yield quite arbitrary results
depending on the chosen step sizes, and is therefore to be interpreted with utmost
care.

Comparison of objectives and designs. Next we will compare different types
of DIRK schemes. As the convergence of LU based QSDC is impeded by the “hump”
around z ≈ −2, we try to have a “flat” contraction factor and therefore choose the
weight function w ≡ 1. Comparing Fig. 14 left with Fig. 13 right one can indeed
observe both the absence of a “hump” and the worse behaviour for τ → 0, as the
SDC contraction factor is no longer O(|z|). Overall, the error is somewhat smaller
than with LU based SDC sweeps.

Limiting the presentation to an intermediate value of k = 5 sweeps on Radau(3)
nodes, we compare different sweep types. In Fig. 14 right the effect of increasing
m in optimizing for ‖Gm‖ is shown. A significant improvement of up to two orders
of magnitude is achieved moving from m = 1 to m = 4 and above in a wide range
of z < −1. Taking more than one sweep iteration into account when optimizing
DIRK sweeps appears to be quite beneficial.

Next we compare different sweep constructions, namely standard implicit Eu-
ler, LU based sweeps, and directly optimized DIRK sweeps according to the crite-
ria (16), (17), and (18), respectively, in Fig. 15. The most striking improvement
is that of DIRK sweeps over standard implicit Euler sweeps, which are inefficient
for stiff problems. Only for z > −1, i.e. for non-stiff problems, the Euler sweep is
competitive. We can observe that all optimization criteria give a moderate overall
improvement over the LU based SDC sweeps. The rather large variation in the
error curves are probably due to “accidentally accurate” results, which can occur
quite frequently because of the low dimension of the ODE (20).

From all the error plots it is clear that no single SDC method with fixed number
of sweeps is an efficient method over the whole range of step sizes. Instead, an
adaptive selection of the number of sweeps is indispensable for robust efficiency and
time error estimation.
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Figure 14: Final time error vs. total number N of sweeps on Radau(3) of QSDC
methods on the Prothero-Robinson equation (20). Left: k = 1, 3, 5, 7, 9 DIRK
sweeps optimized for ‖G4‖. Limiting lines are N−1 and N−3. Right: k = 5 DIRK
sweeps optimized for ‖Gm‖, m = 1, . . . , 5.

6.2 Vienna equation

A more challenging example is the autonomous nonlinear system for y = [y1, y2]
T

ẏ1 = −y2 + λy1(‖y‖22 − 1)

ẏ2 = y1 + 3λy2(‖y‖22 − 1)
(21)

with initial value y(0) = [1, 0]T , λ = −105, exact solution [cos t, sin t]T , and final
time T = 3 studied in [3]. The system exhibits one stiff and one non-stiff component,
which continuously change their direction. The varying eigenvectors of the Jacobian
make this problem considerably harder to solve than the previous one, in particular
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Figure 15: Final time error vs. total number N of sweeps on Radau(3) of QSDC
methods. Left: Prothero-Robinson equation (20) with Euler, LU based, and directly
optimized DIRK sweeps for ρ(G), ‖G4‖, and ‖eT3G4‖. k = 5 sweeps. Right: Vienna
equation (21) with standard Euler and LU based sweeps for k = 1 and k = 6 sweeps.
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using the linearly implicit Euler method as a basic scheme. In fact, a significant
error reduction is observed with either method only for step sizes τ < 10−2. A fully
implicit Euler basic scheme gives better results [3, Table 6], but even then Newton’s
method for computing the implicit Euler steps is reported to diverge for step sizes
larger than 0.05. To overcome this problem, a separation of the components by
a QR factorization within SDC has been suggested in [3] but will not be pursued
here.

In Fig. 15, right, the error at T is shown versus the total number of sweeps for
Euler- and LU-based QSDC. The late onset of linearly implict Euler error reduction
requires to use small time steps for which the Radau(3) collocation error is already
in the order of 10−13. The total error is dominated by the SDC iteration error. The
Jacobian has two real eigenvalues, one close to zero, the other one in the order of
λ = −105. With time steps larger than 10−4 and |z| > 10, the Euler QSDC suffers
from its large contraction factor, whereas LU-based QSDC converges rather quickly
towards the Radau(3) solution.

6.3 Nonautonomous heat equation

The linear but nonautonomous heat equation

u̇ = ∆u+ xe−t, x ∈ ]0, 1[, u(0) = u(1) = 0, (22)

from [17] is considered on t ∈ [0, 0.1]. The “saw-tooth” shaped source term xe−t

introduces a long tail of high-frequency modes in every time step, such that es-
sentially the whole negative real axis covered by the spectrum of the Jacobian is
excited. Hence one expects a significant order reduction as the eigenvalues cross the
hump of LU based SDC for τ → 0. In fact, the Rosenbrock scheme GRK4T [15]
shows an effective order of 3.25 instead of the nominal consistency order 5 for sim-
ilar reasons [8, Chap. 9]. An equidistant finite difference discretization of size h
leads to discrete eigenvalues roughly covering the range [−h−2, 0]. Unless the usual
CFL condition τ < h2 for parabolic problems is satisfied, meaning that all eigen-
values have crossed the critical range around one, the SDC time stepping schemes
can be expected to behave as for the continuous problem. Consequently, a spatial
discretization with h = 10−2 is chosen for time step sizes τ > 10−4.

In Fig. 16 left we observe that for a small number k of sweeps, the standard
implicit Euler QSDC method converges quite rapidly, and results in a time stepping
scheme of effective estimated order 2.3. The fast error reduction during the first
few sweeps is due to the elimination of dominant low-frequent error modes with
small |z|. From about four sweeps on, these modes are sufficiently reduced for
the high-frequent error modes with small initial amplitude to dominate the total
error. Consequently, the large spectral radius of Euler QSDC effectively prevents
significant further progress.

In contrast, the convergence of LU based QSDC is steady due to the spectral
radius being significantly smaller than one. The price to pay is a somewhat larger
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Figure 16: Final time error vs. total number N of sweeps taken by QSDC methods
for the nonautonomous heat equation (22) on Radau(5). Left: LU and Euler sweeps
k = 1, 3, 5, 7, 9. Limiting lines are N−1 and N−2.3. Right: Euler and DIRK sweeps
optimized for (18) at k = 3, 6, 9 sweeps. A is with weight function w = (−z)−1/2,
B with w = 1.

error for smaller sweep numbers k ≤ 4. Ultimately, all QSDC methods with D̂ = D
and fixed k achieve an effective converge order of 2.3.

In Fig. 16 right, we explore the impact of the weight function w in the final
time objective (18), which turned out to give the best results among the different
optimization criteria in this example. As the excitation modes due to the nonau-
tonomous source term are of amplitude (−z)−1/2, we choose this power of z as
weight function w in case A, and for comparison w = 1 as case B. In case A, the
weight function singularity implies ‖eTnGm‖1/m → 0 for z → 0, such that the order
should increase with sweep count k. This is actually achieved again up to the effec-
tive order 2.3, with a slight improvement compared to the LU based sweeps. In case
B, the contraction factor does not vanish for z → 0, such that errors in low-frequent
modes are retained to some extent. As those are not damped out quickly by (22),
they add up, and a step size reduction does not lead to an error reduction. The
convergence order with respect to time step size τ is therefore 0. Nevertheless, a
somewhat faster SDC iteration convergence can be achieved, such that for an ap-
propriate combination of sweep number k and step size τ , even better results are
obtained.

This becomes more clear if we do not compare the error lines of fixed number k
of sweeps for varying step size τ , but look at the Pareto front of efficient (k, τ) com-
binations. Borrowing terminology from multicriteria optimization, a point (N, ε)
associated to an SDC method with total number N of sweeps and final time error
ε is said to dominate a different point (N ′, ε′), if N ≤ N ′ and ε ≤ ε′. For an SDC
method (here to be interpreted as a scheme where every parameter except for the
the sweep number k and the step size τ is fixed a priori), the Pareto front is the
boundary of the dominated set, i.e. all points (N, ε) for which a combination (k, τ)
exists such that the resulting SDC effort Nk,τ and error εk,τ dominate (N, k).
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Figure 17: Left: Pareto fronts of final time error vs. total number N of sweeps
taken by QSDC methods for the nonautonomous heat equation (22) on Radau(5).
k = 1, . . . , 12 sweeps are used. Limiting lines are N−2.5 and N−6. Right: most
efficient number k ∈ {1, . . . , 35} of sweeps in each step for given number of time
steps.

In Fig. 17, left, those Pareto fronts are shown. The significant gain of improved
DIRK sweeps over Euler sweeps is again apparent, as are the smaller differences
between the DIRK sweeps. Optimizing the sweep for criterion (18) with weight
function w = 1 appears to perform best in this example. This is due to the smaller
number of sweeps it requires for a certain error reduction, which can be observed
also in Fig. 17, right, where the Pareto-optimal number of sweeps is shown versus the
number of time steps 0.1/τ = N/k. Obviously, the stage order 7 of the underlying
Radau(5) collocation method can be recovered, with only a logarithmic efficiency
loss, if a sufficiently large number of SDC sweeps is performed.

Conclusion

The focus on SDC contraction makes it comparatively easy to construct efficient
SDC sweeps by simple linear algebra means, either by the generic LU approach
or direct numerical optimization. The thus constructed schemes often outperform
standard Euler based sweeps by a significant factor. In particular they are able to
recover the better convergence properties for stiff problems that are observed on
equidistant grids also on non-equidistant grids such as Radau-IIa.

The convergence behavior of those methods, however, can be quite complex.
The notion of “order” in time step size τ is clearly insufficient to describe the error-
work relationship in a meaningful way, which makes an adaptive choice of both,
step size and sweep number, highly desirable.
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