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Abstract

For the solution of optimal control problems governed by nonlinear
parabolic PDEs, methods working on the reduced objective functional
are often employed to avoid a full spatio-temporal discretization of the
problem. The evaluation of the reduced gradient requires one solve of
the state equation forward in time, and one backward solve of the ad-
joint equation. The state enters into the adjoint equation, requiring the
storage of a full 4D data set. If Newton-CG methods are used, two ad-
ditional trajectories have to be stored. To get numerical results which
are accurate enough, in many case very fine discretizations in time and
space are necessary, which leads to a significant amount of data to be
stored and transmitted to mass storage. Lossy compression methods were
developed to overcome the storage problem by reducing the accuracy of
the stored trajectories. The inexact data induces errors in the reduced
gradient and reduced Hessian. In this paper, we analyze the influence of
such a lossy trajectory compression method on Newton-CG methods for
optimal control of parabolic PDEs and design an adaptive strategy for
choosing appropriate quantization tolerances.

Keywords: optimal control, semilinear parabolic PDEs, Newton-CG, trajec-
tory storage, lossy compression
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1 Introduction

Optimal control problems governed by nonlinear, time-dependent PDEs on 3D
spatial domains form an important problem-class in many fields, ranging from
engineering applications to medicine. For their solution, methods working on the
reduced objective functional are often employed to avoid a full spatio-temporal
discretization of the problem. The evaluation of the reduced gradient requires
one solve of the state equation forward in time, and one backward solve of
the adjoint equation. The state enters into the adjoint equation, requiring the
storage of a full 4D data set. If Newton-CG methods are used, two additional
trajectories have to be stored. To get numerical results which are accurate
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enough, in many cases very fine discretizations in time and space are necessary,
which leads to a significant amount of data to be stored and transmitted to
mass storage. A detailed overview of compression methods can be found in [7].

Checkpointing methods, see e.g. [10, 11, 12] are a popular technique to re-
duce the storage requirements of such trajectories at the cost of multiple PDE
solves. In [27], a computationally inexpensive method for lossy compression has
been developed, where the trade-off is between accuracy and storage require-
ments. There, for linear problems and steepest-descent methods, a technique
for adaptively controlling the error introduced by the inexact storage during the
optimization iterations was derived. For a medical application, cardiac defib-
rillation, this method was extended in [6] to a Newton-CG method for solving
the optimal control problem governed by the monodomain equations. In that
work, for simplicity, the influence of inexact storage of state and adjoint values
on the matrix-vector products during CG was neglected.

In this paper, we extend adaptive error control to general semi-linear systems
of reaction-diffusion equations, and analyze Newton-CG methods in a rigorous
way, providing adaptive accuracy requirements and error control for state, ad-
joint and linearized-state solutions. The behavior of conjugate gradient methods
in finite precision arithmetic is well-studied, e.g. [9, 13, 23, 16, 15]. While the
errors induced by lossy compression are significantly larger, the ideas developed
there can be re-used. Especially, inexact storage of solution trajectories leads
to inexact matrix-vector products, with the error varying in each CG iteration.
Krylov methods with inexact matrix-vector products were investigated in detail
for example in [21, 24, 1, 4].

This paper is organized as follows. In Sec. 2 we describe the problem setting,
introduce the basic ingredients of our lossy compression approach, and state
comparison principles used later in the derivation of error bounds. In Sec. 3, we
derive error bounds and computationally availably estimates. In order not to
impede the convergence of the optimization, accuracy requirements are given in
Sec. 4. In Sec. 5, we give numerical examples.

2 Preliminaries

In this section we fix the problem setting and standing assumptions. We briefly
introduce the lossy compression technique. For error estimation, we require a
comparison theorem for the governing PDEs.

2.1 Problem Setting

We consider the abstract optimal control problem

min
y∈Y,u∈U

J(y, u) subject to c(y, u) = 0,

with c : Y × U → Z? a semi-linear parabolic PDE on Hilbert spaces Y, U, Z.
More precisely, we deal with semi-linearsystems ofm reaction diffusion equations

∂y

∂t
−D∇ · (σ∇y) = f(y) + gΩ(u) in Ω× (0, T )

B∂νy + Cy = gΓ(u) on Γ× (0, T )

y(·, 0) = y0 in Ω

(RDS)
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with y : Ω× (0, T )→ Rm, and D ∈ Rm×m a diagonal matrix with at least one
non-zero element. Often the distributed control is only supported on parts of
the space-time cylinder. A typical example is a time-dependent control which
is spatially constant on a control domain Ωc ⊂ Ω, gΩ(u) = χΩc(x)u(t).

For application of comparison theorems, we require that the spatial domain
Ω ⊂ Rd has a sufficiently regular boundary Γ (C2, or at least satisfying the
interior sphere property, see e.g. [5, 2]). Further, we assume that the PDEs
possess an at least locally unique solution y(u) for every control u ∈ U . For
error estimation we require the functions gΩ, gΓ to be monotonely increasing in
the control u.

Throughout the paper, we assume that J : Y × U → R is given by

J(y, u) = J1(y) + J2(u).

By j we denote the reduced functional, j(u) = J(y(u), u). Further, we assume
that J, c are sufficiently smooth. The partial derivatives of the operator c are
given by

cy(y, u) : Y → Z?, cyy(y, u) : Y × Y → Z?, cu(y, u) : U → Z?, etc.,

with the corresponding adjoints

cy(y, u)? : Z → Y ?, cyy(y, u)? : Z → Y ? × Y ?, cu(y, u)? : U? → Z, etc.

2.2 Lossy Compression

The lossy compression algorithm consists of two main ingredients: quantization
and prediction. For discretization of the PDEs, we consider a time-stepping
scheme with, for simplicity of presentation, uniform time steps. At each time
step a nested family T0 ⊂ · · · ⊂ Tl of triangulations is used for spatial discretiza-
tion by linear finite elements, constructed from an initial triangulation T0 of the
domain Ω ⊂ Rd. The set of nodes on level j is denoted by Nj .

Quantization. For a given δ > 0, we define the quantization Qδ : R→ Z as

Qδ(y) :=

⌊
y + δ

2δ

⌋
,

the reconstruction Q†δ : Z→ R is given by

Q†δ(i) := 2δi.

This yields for the quantization error |y −Q†δ(Qδ(y))| ≤ δ.

Prediction. Values yk of coarse level nodes xk ∈ N0 are quantized directly
to ik = Qδ(yk), giving a reconstructed value ŷk := Q†δ(ik). For new nodes
xk ∈ Nj\Nj−1 on level j > 0, we make use of the grid hierarchy and quantize
and store only the deviation of yk from a prediction Pk(ŷl : l ∈ Nj−1) obtained
from reconstructed values ŷl of lower level nodes. For simplicity, here we use the
usual multigrid prolongation operator, which is just linear interpolation between
coarser grid nodes adjacent to xk. The prediction increases the frequency of
small numbers in the coefficients to be stored, such that subsequent entropy
coding reduces the amount of data to be stored effectively. More details on the
algorithmic procedure can be found in [27].
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2.3 A Comparison Theorem

In this section we briefly present a comparison principle for semi-linear systems
of reaction-diffusion equations (RDS).

In the following, for vectors y, z ∈ Rm, y ≥ z is defined as yi ≥ zi ∀i =
1, . . . ,m. Other relations etc. are also defined component-wise. For better
readability, often we do not state dependence of functions on (x, t), e.g. f(x, t, y)
is abbreviated by f(y).

Definition 2.1. 1. A function y is a sub-solution to (RDS), if in the dif-
ferential equations, initial- and boundary conditions “≤” holds instead of
“=”. y is a super-solution, if “≥” holds instead of “=”.

2. A function f : Rm → Rm is called quasi-monotone non-decreasing, if each
component fi(y) is non-decreasing in yj for each i 6= j.

3. A function f : Rm → Rm is called super-reaction function, if the inequality
f(y) ≥ f(y) ∀y ∈ Rm holds.

With these definitions, we state the following theorem and corollary, see
e.g. [5, 2].

Theorem 2.2. Let y, y be a sub- respectively super-solution to (RDS). Assume
f is uniformly Lipschitz continuous in y and is quasi-monotone non-decreasing.
Then y ≤ y in Ω× [0, T ].

Corollary 2.3. Let f be a quasi-monotone non-decreasing, uniformly Lips-
chitz continuous super-reaction function. Let y be a super-solution of the prob-
lem (RDS) with f replaced by f , and y a sub-solution of (RDS). Then y ≤ y
in Ω× [0, T ].

Remark 2.4. In the scalar case m = 1 the required quasi-monotonicity is
trivially fulfilled.

3 Error Estimates for Lossy Compression

In this section we analyze the influence of quantization errors on the reduced
gradient and Hessian-vector products. We derive error equations and propose
worst-case estimates. We use the following notations to distinguish between
different errors as well as exact and inexact quantities:

• ε· denotes the quantization error, e.g. εy is the quantization error of the
state variable y

• ·̂ denotes a inexactness due to compression, e.g. ŷ = y + εy

• ·̃ denotes an inexact quantity, where the inexactness is due to compression
of an input quantity. E.g. λ̃ denotes the adjoint equation using inexact
state values ŷ as an input (as opposed to λ using the exact state solution
y)

• e· denotes the error in quantities computed with inexact input, e. g.
λ̃ = λ+ eλ.
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3.1 Reduced Gradient

The reduced gradient can be computed via the implicit function theorem:

j′(u) = Ju(y, u) + cu(y, u)?λ, (1)

where λ solves the adjoint equation

cy(y, u)?λ = −Jy(y, u). (2)

Due to compression, only an inexact reduced gradient j̃′ can be computed, with
y replaced by its reconstruction ŷ in (1) and (2). The inexactly computed adjoint
state is denoted by λ̃.

Theorem 3.1. The error in the reduced gradient ej′ = j̃′ − j′ is given by

ej′ = cu(ŷ, u)?eλ, (3)

where the error in the adjoint equation eλ = λ̃− λ fulfills(
cy(ŷ, u)? − (cyy(ŷ, u)εy)

?)
eλ = −Jyy(ŷ, u)εy − (cyy(ŷ, u)εy)

?
λ̃ (4)

up to O(‖εy‖2).

Proof. Subtracting the adjoint equations for exact and inexact input gives

cy(ŷ, u)?λ̃− cy(y, u)?λ = −Jy(ŷ, u) + Jy(y, u). (5)

Using Taylor expansion, we have that

Jy(y, u) = Jy(ŷ, u)− Jyy(ŷ, u)εy +O(‖εy‖2), and

cy(y, u) = cy(ŷ, u)− cyy(ŷ, u)εy +O(‖εy‖2).

Thus (5) becomes

cy(ŷ, u)?eλ + (cyy(ŷ, u)εy)
?

(λ̃− eλ) = −Jyy(ŷ, u)εy,

which shows (4). As by our general assumptions Ju(ŷ, u) = Ju(y, u) and
cu(ŷ, u) = cu(y, u) the claim follows.

3.2 Reduced Hessian-Vector Products

To evaluate the action of the reduced Hessian j′′(u) on a given vector δu ∈ U ,
the following computations are needed:

1. solve the linearized-state equation cy(y, u)v = cu(y, u)δu for v ∈ Y

2. set z := Jyy(y, u)v + 〈cyy(y, u)(v, ·), λ〉Z?,Z

3. solve adjoint-for-Hessian equation cy(y, u)?w = z for w ∈ Z

4. set j′′(u)δu := Juu(y, u)δu+ cu(y, u)?w.

In terms of storage, either v or z have to be kept. Both variants have the same
implementation complexity, and similar error analysis. Here we choose to store
v during Step 1, and generate z on-the-fly in Step 3 from the stored quantities.

In the following we analyze in detail the errors introduced by lossy trajectory
compression.
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Step 1. Due to compression of y, the exact equation is not available. Instead
cy(ŷ, u)ṽ = cu(ŷ, u)δu is solved for ṽ.

Lemma 3.2. The error ev = ṽ − v fulfills(
cy(ŷ, u)− cyy(ŷ, u)εy

)
ev = −cyy(ŷ, u)εy ṽ (6)

up to O(‖εy‖2).

Proof. Subtracting exact and inexact equation, and using Taylor expansion as
in the proof of Thm. 3.1 we get

cy(ŷ, u)ev + cyy(ŷ, u)εyv = 0,

as by assumption cu is independent of y. Replacing v = ṽ − ev the claim
follows.

Step 2. Instead of z, only z̃ = Jyy(ŷ, u)ˆ̃v + 〈cyy(ŷ, u)ˆ̃v,
ˆ̃
λ〉 can be formed.

Sources of the inexactness here are not only the compression of y, but also the
inexactly computed and compressed trajectories λ, and ṽ.

Lemma 3.3. The error ez = z̃ − z is given by

ez =
(
Jyy(ŷ, u)− Jyyy(ŷ, u)εy

)
(ev + εv) + Jyyy(ŷ, u)εy ˆ̃v

+ 〈
(
cyy(ŷ, u)− cyyy(ŷ, u)εy

)
(ev + εv),

ˆ̃
λ〉+ 〈cyyy(ŷ, u)εy ˆ̃v,

ˆ̃
λ〉

+ 〈
(
cyy(ŷ, u)− cyyy(ŷ, u)εy

)
ˆ̃v, eλ + ελ〉

− 〈
(
cyy(ŷ, u)− cyyy(ŷ, u)εy

)
(ev + εv), eλ + ελ〉

(7)

up to O(‖εy‖2).

Proof. Computing z̃ − z gives

ez = Jyy(ŷ, u)ˆ̃v − Jyy(y, u)v + 〈cyy(ŷ, u)ˆ̃v,
ˆ̃
λ〉 − 〈cyy(y, u)v, λ〉︸ ︷︷ ︸

(?)

,

Using Taylor expansion, we have

Jyy(y, u)v = Jyy(ŷ, u)v − Jyyy(ŷ, u)εyv +O(‖εy‖2)

cyy(y, u)v = cyy(ŷ, u)v − cyyy(ŷ, u)εyv +O(‖εy‖2).

Thus (?) becomes
〈cyy(ŷ, u)v − cyyy(ŷ, u)εyv, λ〉.

By inserting λ =
ˆ̃
λ − eλ − ελ and v = ˆ̃v − ev − εv as well as recombining the

duality products, the claim is shown.

Step 3. As y and z are available only inexactly, we can only solve cy(ŷ, u)?w̃ =
z̃ for w̃.
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Lemma 3.4. The error ew = w̃ − w fulfills(
cy(ŷ, u)? −

(
cyy(ŷ, u)εy

)?)
ew = ez −

(
cyy(ŷ, u)εy

)?
w̃ (8)

up to O(‖εy‖2).

Proof. Subtracting exact and inexact equation, and using Taylor as before, we
get

cy(ŷ, u)?ew +
(
cyy(ŷ, u)εy

)?
w = ez.

Substituting w = w̃ − ew gives the desired result.

Step 4. Finally, only w̃ is available instead of w.

Lemma 3.5. The error emv = j̃′′(u)δu− j′′(u)δu in the matrix-vector product
is given by

emv = cu(ŷ, u)?ew. (9)

Proof. By assumptions, Juu, cu are independent of y. Subtracting exact and
inexact equation shows the lemma.

3.3 Worst Case Error Estimates

While the error can, in principle, be estimated up to O(‖εy‖2) by solving the
equations derived in the previous sections, this can not directly be used al-
gorithmically for two reasons. First, the equations should only be solved on
coarse, fixed grids to keep both the computational overhead and the storage
demand small. Second, for adaptively choosing the quantization tolerances to
store state, adjoint, and linearized-state, the error equations have to be solved
before the actual computation, thus computationally unavailable quantities have
to be replaced by estimates.

A worst case estimate for the error ez in the right-hand-side of the adjoint-
for-Hessian error equation (8) can easily be derived by taking absolute values, or
a suitable norm, and applying the Cauchy-Schwarz inequality. Here, and below,
taking the absolute value for the worst case is motivated by the parabolic nature
of the involved PDEs, which damp out oscillatory errors. Splitting the error into
the different contributions we arrive at

‖ez‖ ≤ ‖Jyy(ŷ, u)− Jyyy(ŷ, u)εy‖ ‖ev + εv‖+ ‖Jyyy(ŷ, u)εy‖
∥∥ˆ̃v
∥∥

+ ‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖ ‖ev + εv‖
∥∥ˆ̃
λ
∥∥+ ‖cyyy(ŷ, u)εy‖

∥∥ˆ̃v
∥∥∥∥ˆ̃
λ
∥∥

+ ‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖
∥∥ˆ̃v
∥∥ ‖eλ + ελ‖

+ ‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖ ‖ev + εv‖ ‖eλ + ελ‖ .

(10)

We now turn to evaluating the errors ev, eλ, and ew. The errors for adjoint
and adjoint-for-Hessian, given by (4) and (8), are governed by similar equations
with different right-hand-sides. We make use of Thm. 2.2 to get an upper bound
for the error e in the adjoint and adjoint-for-Hessian equations. The right-hand-
side of the error equation is given by

f(x, t, eι) =
(
cyy(ŷ, u)εy

)?
eι + ϕ−

(
cyy(ŷ, u)εy

)?
ψ, (11)
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where

ϕ =

{
−Jyy(ŷ, u)εy, ι = λ (adjoint)

ez, ι = w (adjoint-for-Hessian),

and

ψ =

{
λ̃, ι = λ (adjoint)

w̃, ι = w (adjoint-for-Hessian).

For the error in the linearized-state ev given by Eq. (6) we note that this
equation can be transformed to a similar structure, using the standard time
substitution t = T−τ (to transform the equation to a backward-in-time equation
like the adjoint equations), and setting ϕ = 0, ψ = ṽ.

To continue the discussion, we have to distinguish between scalar equations
and systems of reaction-diffusion equations.

Scalar equations. In the scalar case, we have the following error bound:

Theorem 3.6. Let m = 1, and eι be the solution of

cy(ŷ, u)?eι = f(x, t, eι), ι = {λ,w} (12)

with
f(x, t, e) = |cyy(ŷ, u)?|εmax

y e+ |ϕ|+ |cyy(ŷ, u)?ψ|εmax
y , (13)

and an upper bound on the state quantization error εmax
y ≥ εy(x, t) ∀(x, t) ∈

Ω× (0, T ) . Then eι ≤ eι.

Proof. The error estimate eι is the solution of a backward linear parabolic equa-
tion, where the source terms, boundary- and terminal values are non-negative.
By the parabolic maximum principle we get eι ≥ 0. Thus, for all eι satisfy-
ing Eq. (12), we have

f(x, t, eι(x, t)) ≥ f(x, t, eι(x, t)),

and eι is a super-solution to Eq. (4) or (8), respectively. With the standard time
transformation τ = T − t the backward-in-time equations (4) or (8) and (12)
are transformed to forward equations. Then by Thm. 2.2 in combination with
Rem. 2.4 the claim follows.

Remark 3.7. The estimates eι are still not computable error bounds, as they
depend on ŷ and λ̃ or w̃. Possible remedies are the use of upper bounds of these
quantities specific to the actual equations being used, or heuristic choices like
using quantities from previous optimization iterations. In Sec. 4 we give more
details on the actual realization and sketch an algorithm in Sec. 4.3.

Reaction-diffusion systems. In the case of reaction-diffusion systems, we
can construct a super-reaction function by following [2], and apply the compar-
ison theorem Thm. 2.2.

Theorem 3.8. Let e be a sub-solution to the adjoint error equation (4) or (8)
for ι = λ,w, respectively. Define f by

f i(x, t, e) = sup
{η|e≤η≤e, ηi=ei}

fi(x, t, η), i = 1, . . . ,m. (14)
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As in the scalar case, let eι, ι = {λ,w} be the solution of

cy(ŷ, u)?eι = f(x, t, eι), (15)

Then eλ ≤ eι.

Proof. The function f constructed by (14) is uniformly Lipschitz continuous in e.
It satisfies f(x, t, e) ≥ f(x, t, e) ∀e ∈ Rm and is quasi-monotone non-decreasing,
see [2]. Thus eι ≤ eι by Thm. 2.2.

Remark 3.9. The construction of super-reaction functions by (14) needs the
derivation of a sub-solution to the original error equation, and thus is problem-
dependent. For the monodomain equations describing the electrical activity of
the heart this has been carried out in detail in [6], see also Sec. 5.2.

4 Adaptive Quantization for Newton-CG

In this section we analyze the quantization accuracy required for the convergence
of Newton-CG methods in detail. Adaptive choice of quantization tolerances for
a steepest-descent method were already discussed in [27]. Specific to an optimal
control problem in cardiac defibrillation, adaptive quantization for the Newton-
CG method was introduced in [6]. Here, we generalize and extend these results,
based on the error equations of the previous section.

We assume that we are in a neighborhood of a local minimizer, such that
the reduced Hessian j′′(u) is positive definite. In the Newton-CG algorithm, the
Newton direction is approximately computed by applying the conjugate gradient
method to the Newton equation

j′′(u)δu = −j′(u).

Due to termination of the CG algorithm with a non-zero residual as well as lossy
compression of state, adjoint and linearized-state trajectories we compute

j′′(u)δu = −j′(u) + ej′ + r̃,

where r̃ is the inexactly computed residual. For convergence we require for the
true residual

‖r‖ ≤ ρ ‖j′(u)‖ , 0 < ρ < 1,

with ρ → 0 for super-linear convergence [3, 19]. As ‖r‖ ≤ ‖r̃‖ + ‖r̃ − r‖, we
need to control three error contributions. Thus we have to ensure

‖ej′‖+ ‖r̃‖+ ‖r̃ − r‖ ≤ ρ ‖j′(u)‖ . (16)

As ‖j′(u)‖ =
∥∥j̃′(u)− ej′

∥∥ ≥ ∥∥j̃′(u)
∥∥− ‖ej′‖, Eq. (16) is replaced by

(1 + ρ) ‖ej′‖+ ‖r̃‖+ ‖r̃ − r‖ ≤ ρ
∥∥j̃′(u)

∥∥ . (17)

which is fulfilled, if for ζ1, ζ2 ∈ (0, 1), ζ1 + ζ2 < 1

‖ej′‖ ≤ ζ1ρ
∥∥j̃′(u)

∥∥ /(1+ρ), ‖r̃‖ ≤ ζ2ρ
∥∥j̃′(u)

∥∥ , ‖r̃ − r‖ ≤ (1−ζ1−ζ2)ρ
∥∥j̃′(u)

∥∥
(18)

hold.
We discuss these three accuracy conditions in the following.
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4.1 Adaptive Quantization for the Gradient Computation

To satisfy the accuracy requirement ‖ej′‖ ≤ ζ1ρ ‖j′(u)‖ for the reduced gradient,
we have to determine a suitable quantization tolerance δy before solving state
and adjoint equations.

Theorem 4.1. In iteration i of the Newton method, define

µ = ‖cu(ŷ, u)?eλ‖ (19)

with the error estimate eλ from Thm. 3.6 or Thm. 3.8 for εmax
y = 1. Let

θ ≤
∥∥j̃′(ui+1)

∥∥ be an estimate for the inexact reduced gradient norm in iteration
i+ 1. If the state quantization tolerance δyi+1 satisfies

δyi+1 ≤
θζ1ρi+1

(1 + ρi+1)µ
, (20)

‖ej′,i+1‖ ≤ ζ1ρi+1

∥∥j̃′(ui+1)
∥∥ holds.

Proof. For the error in the adjoint we have eλ ≤ eλ for εmax
y = 1. Thus by scaling

and using monotonicity of cu(ŷ, u)?, we get ‖cu(ŷ, u)?eλ‖ ≤ δ ‖cu(ŷ, u)?eλ‖ for
εmax
y = δ. This yields

‖ej′,i+1‖ ≤ δyi+1 ‖cu(ŷ, u)?eλ‖ = θζ1ρi+1 ≤ ζ1ρi+1

∥∥j̃′(ui+1)
∥∥ .

For a computationally available approximation of eλ, we refer to Sec. 4.3,
see especially Eq. (31).

Remark 4.2. For implementation, we point to the following difficulties:

1. As a computationally available approximation of θ, we can choose

θ̃ =

∥∥j̃′(ui)∥∥2∥∥j̃′(ui−1)
∥∥ ,

assuming linear convergence. If we aim at super-linear convergence of
the Newton-CG method, the gradient-norm estimate θ̃ has to be adapted
accordingly, for example using θ̃ = ρi

∥∥j̃′(ui)∥∥ (see e. g. [19]).

2. As we only approximate the worst-case error eλ and the gradient norm of
the next iteration, we can not guarantee to keep the error bound ‖ej′‖ ≤
ζ1ρi+1 ‖j′(ui+1)‖. Multiplication of δyi+1 by some safety factor might be
necessary to avoid impeding the convergence, depending on the actual
problem. However, as typically the error is significantly over-estimated,
no safety factor was needed in the numerical examples.

4.2 Adaptive Quantization for Hessian-Vector Products

In the CG method, we have to ensure that on exit the remaining two bounds

‖r̃‖ ≤ ζ2ρ
∥∥j̃′(u)

∥∥ , ‖r̃ − r‖ ≤ (1− ζ1 − ζ2)ρ
∥∥j̃′(u)

∥∥
are satisfied. While the condition for the inexact residual is fulfilled by using
it as a termination criterion for the CG, the bound on the inexactness of the
computed residuals is more demanding.
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4.2.1 Quantization of v

First, we consider only the error contribution of the quantization of the linea-
rized-state solution. Due to compression of this trajectory, the Hessian-vector
products contain an error which might change in every CG iteration. Krylov
subspace methods with inexact matrix-vector products have been discussed
e.g. in [21, 24]. In [6], we adapted their work to our setting, proposing a quan-
tization tolerance

δvk ≤
lm
µ

(1− ζ1 − ζ2)ρi
∥∥j̃′(ui)∥∥

‖r̃k‖
. (21)

for the linearized-state trajectory in iteration k of the CG. Similar to Thm. 4.1,
in Eq. (21) µ = ‖cu(ŷ, u)?ew‖ with a worst case error bound ew for the error in
the adjoint-for-Hessian solution.

As discussed in [6], we used λmin/m as a heuristic for the unavailable,
problem-dependent value lm. There, λmin is an estimate for the smallest eigen-
value of the reduced Hessian, and m the maximal allowed number of CG itera-
tions. λmin can be estimated during the CG method using an inexact Rayleigh
quotient. Combination with a restart strategy—whenever significantly smaller
value for λmin is encountered, the CG method is started new using the current
δuk instead of δu0—yielded good results. Such a restart approach was neces-
sary, as due to the unknown values of lm and λmin the accuracy requirement
can not be guaranteed to hold.

In the following, we replace this heuristic restart strategy by a different,
theoretically better justified approach, that avoids a complete restart of the
CG, by tracking the computed residual error and re-computing the residual
if needed. It is motivated by the analysis of CG in finite precision presented
in [9, 13].

If we consider inexact Hessian-vector products, the iterates in the CG satisfy

δuk+1 = δuk + αkpk (22)

r̃k+1 = r̃k − αkj′′(u)pk + ξk+1 (23)

with direction pk and αk = (r̃k, r̃k)/(j′′(u)pk+ekmv,v, p
k). Here ξk+1 = −αkekmv,v

with ekmv,v denoting the error in the computed product j′′(u)pk due to com-
pressed storage of the linearized-state v. By Eq. (22) we can evaluate the true
residual belonging to the iterate δuk+1, and calculate the difference to the up-
dated residual r̃k+1 using the recurrence (23) as

j̃′(u) + j′′(u)δuk+1︸ ︷︷ ︸
=rk+1

−r̃k+1 = j̃′(u) + j′′(u)δu0 − r̃0 −
k+1∑
j=1

ξj .

Choosing δu0 = 0 allows to estimate the error in the residual as

∥∥rk+1 − r̃k+1
∥∥ ≤ k∑

j=0

|αj |
∥∥ejmv,v

∥∥ =: Ek+1. (24)

Thus by estimating an upper bound for
∥∥ekmv,v

∥∥ we can cheaply monitor the
error in the computed residual, and re-compute the residual from the current
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iterate δuk+1 when the error in the residual becomes too large, thus avoiding a
restart strategy based on λmin.

Residual replacement strategies were developed e.g. in [22, 25]. Analogously
to the latter, we trigger the restart in iteration k, when the estimated, accumu-
lated residual error E fulfills

Ek > ε
∥∥r̃k∥∥ , Ek > 1.1Einit, (25)

where ε is a given threshold parameter, and Einit is the estimated error at the last
restart (respectively the estimated error of the initial Hessian-vector product, if
no restart was triggered before). On a restart, we replace the current residual
r̃k by j′′(u)δuk + j̃′(u). For the evaluation of the Hessian-vector product, δv is
multiplied by some factor sv ≤ 1, such that the linearized state is stored more
accurately.

4.2.2 Quantization of y and λ

Besides the inexact linearized-state solution, quantization of the state y and
the adjoint λ contribute to the error in the Hessian-vector products. Choosing
suitable tolerances δy, δλ before solving state and adjoint equations poses the
main difficulty.

The error eλ contributes only to the error ez in the right-hand side of the
adjoint-for-Hessian error equation (8). Considering the estimate (10), and ne-
glecting products of errors, ‖eλ‖ is weighted by ‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖

∥∥ˆ̃v
∥∥.

Thus, for iteration i+ 1 of the Newton method, we seek to fulfill the bound

‖eλ‖ ≤
TOLλ

‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖
∥∥ˆ̃v
∥∥

by choosing δy as

δyi+1 ≤
TOLλ

‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖
∥∥ˆ̃v
∥∥ 1

‖eλ‖
. (26)

As before, eλ is the worst case error in the adjoint given by Thm. 3.6 or Thm. 3.8,
respectively.

For the evaluation of Eq. (27), an estimate for
∥∥ˆ̃v
∥∥ has to be provided. Apart

from restarts, ṽ is determined by the linear parabolic equation

cy(ŷ, u)ṽ = cu(ŷ, u)pk

in CG iteration k. As p0 = r0 = −j̃′(u) we estimate
∥∥ˆ̃v
∥∥ ≤ c

∥∥j̃′(u)
∥∥, where

the unknown constant c is replaced by some c̃ large enough, depending on the
actual problem. This is motivated by the fact that for exact CG,

∥∥pk∥∥ ∼ ∥∥rk∥∥.
For the choice of TOLλ, we aim to achieve the same error level as in the reduced
gradient, i.e. TOLλ = ζ1ρ

∥∥j̃′(u)
∥∥ /(1 + ρ). Combined, Eq. (26) becomes

δyi+1 ≤
ζ1ρi+1

c̃(1 + ρi+1) ‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖
1

‖eλ‖
. (27)

For the quantization of the adjoint λ it is sufficient to keep the quantization
error ελ well below the error eλ. This can be achieved by choosing

δλ ≤ sλ TOLλ

‖cyy(ŷ, u)− cyyy(ŷ, u)εy‖
∥∥ˆ̃v
∥∥ (28)

for some 0 < sλ � 1.
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4.3 Realization

To fix the details we present an algorithm for a Newton-CG method using
lossy compression with adaptive quantization tolerances. For better readability,
we focus on the important steps and quantities and do not give a complete
algorithm. Moreover, we restrict the discussion to scalar problems; for reaction-
diffusion systems, only the right-hand-sides of the error equations need to be
changed to suitable super-reaction functions as given in Thm. 3.8.

Algorithm 1 Newton-CG with adaptive quantization.

Input: δy0 , δ
λ
0 , initial guess for control u0

1: for i = 0, 1, . . . do
2: solve state equation c(y, ui) = 0, encode y using δyi
3: solve adjoint equation c(ŷ, ui)

?λ̃ = −Jy(ŷ, ui), encode λ̃ using δλi
4: check optimality condition; if optimal: stop
5: solve cy(ŷ, ui)

?e =
∣∣cyy(ŷ, ui)

?
∣∣δyi e+ 1, keep ‖e‖ , ‖cu(ŷ, ui)

?e‖
6: compute Newton step using CG: set δu0 = 0, p0 = r0 = −j̃′, E = 0, sv =

1, estimate λmin

7: while r̃k > ζ2ρi
∥∥j̃′(ui)∥∥ and k < m do

8: solve linearized-state equation cy(ŷ, ui)ṽ = cu(ŷ, ui)p
k, encode ṽ using

svδv, with δv given by (21)
9: solve adjoint-for-Hessian equation cy(ŷ, ui)

?w̃ = z̃
10: compute αk, update δuk+1, rk+1, pk+1

11: estimate error of Hessian-vector product
∥∥ekmv,v

∥∥
12: update E = E + |αk|

∥∥ekmv,v

∥∥
13: if E satisfies the restart conditions (25) then
14: decrease safety factor sv ← 0.1sv

15: restart CG by evaluating the residual r̃k+1 = j̃′(ui) + j′′(ui)δu
k+1

16: end if
17: end while
18: estimate new values for δyi+1, δ

λ
i+1

19: compute suitable step size si and update ui+1 = ui + siδu
20: end for

In line 5 of Alg. 1 we solve the error equation

cy(ŷ, ui)
?e = |cyy(ŷ, ui)

?|δyi e+ 1. (29)

Compared to Thm. 3.6, the terms |φ| and |ψ| are replaced by the constant 1-
function, allowing to re-use the solution by scaling with the appropriate right-
hand-sides.

For the initialization of the CG method (line 6), an estimate for the smallest
eigenvalue of the reduced Hessian is required. As proposed in [6], this can be
done at the cost of an additional Hessian-vector product (computed on a coarse,
fixed grid) by the Rayleigh quotient

λmin ≤
(
j′′(ui)p

0, p0
)

(p0, p0)
.
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During the CG, λmin can be updated in each iteration k using

λmin ≤ min
j=1,...,k

(
j′′(ui)p

j + ejmv, p
j
)

(pj , pj)
,

as all quantities needed for the inexact Rayleigh quotient are available at no
additional cost. For the determination of δv in line 8, lm = λmin/m is used in
Eq. (21).

Further, µ needs to be specified. An estimate of ew taking ez into account
is not available at this stage of the algorithm. We thus use µ ≈ ‖cu(ŷ, ui)

?e‖
computed in line 5 ignoring error contributions other than the quantization of
the linearized-state trajectory.

For the estimation of
∥∥ekmv,v

∥∥ in line 11 we have to evaluate the error in the
linearized-state by solving

cy(ŷ, ui)ev =
∣∣cyy(ŷ, ui)

∣∣δyi ev +
∥∥cyy(ŷ, ui)ˆ̃v

∥∥
L∞δ

y
i ,

which can be done by scaling the result of Eq. (29) by
∥∥cyy(ŷ, ui)ˆ̃v

∥∥
L∞δ

y
i .

Additionally, we can evaluate ez by Eq. (10), using ev, δ
y
i , δ

λ
i , δ

v as well as
eλ. The latter is computed by scaling ‖e‖ (from the solution of Eq. 29) by∥∥−Jyy(ŷ, ui)− cyy(ŷ, ui)

?λ̃
∥∥
L∞δ

y
i ,

a quantity which can be cheaply computed during solution of the adjoint equa-
tion. With this we can estimate

emv = ‖cu(ŷ, ui)
?e‖

(∥∥ez∥∥+
∥∥cyy(ŷ, ui)

?w̃
∥∥
L∞δ

y
i

)
. (30)

Remark 4.3. While theoretically this allows to estimate the overall error in
the Hessian-vector products, in practice the error is over-estimated significantly.
For determination of the quantization tolerances this decreases the performance
of the compression, but has no influence on the convergence of the optimization.
To algorithmically assert the condition on the error in the residual, ‖r̃ − r‖ ≤
(1− ζ1 − ζ2)ρ

∥∥j̃′(u)
∥∥ these bounds are not sharp enough.

Before starting the next Newton iteration, new values for δyi+1 and δλi+1 have
to be provided in line 18. The state quantization tolerance is computed by using
the minimum of the values given by Eqs. (27), (20). In the latter,

µ =
∥∥cu(ŷ, ui)

?e
∥∥∥∥−Jyy(ŷ, ui)− cyy(ŷ, ui)

?λ̃
∥∥
L∞ , (31)

where—as a heuristic—the value of λ̃ from the current iteration is used as an
approximation for the next iteration. For the adjoint, δλi+1 is determined by
Eq. (28).

Remark 4.4. The computed error bounds are very coarse, leading to smaller-
than-necessary quantization tolerances. Whenever problem-dependent informa-
tion allows better estimates, the performance of the lossy compression algorithm
will increase. However, in practice the quantization error will be oscillatory in
almost all cases, so the true error will be significantly smaller than the worst-case
estimates, even if the error equations would be solved with high accuracy.
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5 Numerical Examples

For the numerical examples, we restrict ourselves to 2D problems. The adaptive
lossy compression method has been implemented in the C++ finite element tool-
box Kaskade 7 [8]. The compression factor is used to measure the performance
of the compression method; it is defined as the ratio between uncompressed
and compressed data. All computations were carried out on a Dual-Core AMD
Opteron 8220 CPU with 2.8 GHz, without using parallelization.

5.1 Kolmogorov Equation

As a first example we consider an optimization problem from [27], governed by
the semi-linear Kolmogorov equation. The control is only varying in time and is
constant in space on each of five control domains. The optimal control problem
is given by

min
1

2
‖y − yd‖2L2(Ω×(0,T )) +

α

2
‖u‖2L2(0,T ;R5)

subject to

yt − σ2∆y = f(y) + χΩcu(t) in Ω× (0, T )

∂νy = 0 on ∂Ω× (0, T )

y(·, 0) = y0 in Ω

with f(y) = y(y − a)(b− y) and

Ω = (0, 1)× (0, 1), T = 10, a = 0.1, b = 1, σ = 0.15

yd(x, t) =
1

1 + e

(
(‖x‖− 1

3 )· 1
σ
√

2
−t

) , y0(x) = yd(x, 0), α = 10−5.

The control domain is given by Ωc =
⋃5
i=1 Ωci with Ωc1 = [0.125, 0.25] ×

[0.75, 0.875], Ωc2 = [0.75, 0.875]2, Ωc3 = [0.4375, 0.5625]2, Ωc4 = [0.125, 0.25]2,
and Ωc5 = [0.75, 0.875]× [0.125, 0.25].

Following the theory presented above, the error in the adjoint equation eλ
fulfills

−[eλ]t − σ2∆eλ = fy(ŷ)eλ − fyy(ŷ)εyeλ − εy + fyy(ŷ)εyλ̃.

The error ev in the linearized-state v due to inexact storage of y satisfies the
equation

[ev]t − σ2∆ev = fy(ŷ)ev − fyy(ŷ)εyev + fyy(ŷ)εy ṽ.

In the adjoint-for-Hessian, the error ew is determined by

−[ew]t − σ2∆ew = fy(ŷ)ew − fyy(ŷ)εyew + fyy(ŷ)εyw̃ + ez

where ez is given by

ez = ev + εv − 〈
(
fyy(ŷ)− fyyy(ŷ)εy

)
(ev + εv),

ˆ̃
λ〉 − 〈fyyy(ŷ)εy ˆ̃v,

ˆ̃
λ〉

− 〈
(
fyy(ŷ)− fyyy(ŷ)εy

)
(ev + εv), eλ + ελ〉

− 〈
(
fyy(ŷ) + fyyy(ŷ)εy

)
ˆ̃v, eλ + ελ〉.
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We use the algorithm sketched in Sec. 4.3, without any additional a-priori
information, on a fixed FE grid with 32768 elements and 16641 vertices. Fig. 1
shows the progress of the optimization. No significant difference between com-
pressed and uncompressed storage is visible. The corresponding quantization
tolerances for state and adjoint are shown in Fig. 2, where sλ = 1 for the deter-
mination of δλ by Eq. (28). Before iteration 5, the state quantization tolerance
δy is determined by Eq. (27), afterwards the tolerance given by Eq. (20) is
smaller. We observe that, due to the worst-case error estimation, the quanti-
zation tolerance is reduced severely in the final Newton iterations, such that
(nearly) no compression can be achieved in the last two iterations. A remedy
for this problem is to use more problem-dependent information for the error
estimation, to achieve tighter error bounds. To some extend the reduction of
the compression factors is due to the fixed grid, as the requested accuracy for
quantization is far below the discretization error.

For one solution of the state equation, 254.5s CPU time were needed (av-
eraged over all iterations), whereas the compression required 6.5s. Solution of
the adjoint equation required 267.6s on average, with additional 10.7s for com-
pression. The error equations were solved on a mesh with 4225 vertices; error
estimation required 38.6s CPU time per iteration. Overall, encoding/decoding
incurred an overhead of 3.3%, with additionally less than 1% overhead for error
estimation (the latter compared to the overall step computation time).

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9

n
or

m
re

d
u

ce
d

gr
ad

ie
n
t

iteration

compressed
reference

Figure 1: L2-norm of the reduced gradient with and without compression. No
significant difference is notable.

For triggering the residual replacement during the CG method, the threshold

ε =
(
(1 − ζ1 − ζ2)ρi

∥∥j̃′(ui)∥∥)1/2 is used (see Eq. (25)). The safety factor sv is
set to one in the beginning, and multiplied by 0.1 on each re-computation of the
residual. Fig. 3 shows the behavior of the residual during the CG in Newton
iteration 6. Compression factors ranging between 8.0 and 117.4 were achieved.
Two residual replacements were triggered, in CG iterations 3 and 6. For the
re-computation of the residual from the current iterate, the compression factors
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Figure 2: Adaptively chosen quantization tolerances and corresponding com-
pression factors for state (left) and adjoint (right).

were 2.8 and 1.4, respectively. Overall, 142 CG iterations were needed during
the 8 Newton iterations, with additional 12 residual replacement computations.
At most three re-computations were necessary per Newton iteration.
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Figure 3: Behavior of CG in Newton iteration 6. The true residual denotes the
residual without quantization of the linearized state. In iterations 3 and 6 the
residual was re-computed.

With our previous restart strategy (see [6], and the discussion in Sec. 4.2.1),
9 Newton iterations with 189 CG iterations and 33 restarts were required for
convergence. The behavior of both strategies is compared in Fig. 4. With the
new residual replacement, re-computations were required in CG iterations 3 and
4, whereas the previous approach leads to restarts in CG iteration 2,3,4, and 6.
Overall, using the old restart strategy, more CG iterations are required. The
convergence of CG is impeded by the old approach, as, due to the complete
restart, the superlinear CG convergence is cut off. With the newly proposed
residual replacement this perturbation is minimal, as all other quantities except
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Figure 4: Behavior of CG in Newton iteration 5. The true residual denotes
the residual without quantization of the linearized state. Left: new residual
replacement, right: old restart strategy.

the residual itself are kept.

5.2 Monodomain Equations

As an example for reaction-diffusion systems, we consider an optimal control
problem for the monodomain equations (see e.g. [18, 14]) on a simple 2D unit
square domain Ω = (0, 1)2. This system describing the electrical activity of the
heart consists of a parabolic PDE for the transmembrane voltage v, coupled
to pointwise ODEs for the gating variable w. As membrane model, we use
the Rogers-McCulloch variant of the Fitzhugh-Nagumo model [20]. The state
system is given by

vt = ∇ · σ∇v − Iion(v, w) + χΩcu(t)

wt = η2

( v
vp
− η3w

)
,

(32)

with
Iion(v, w) = gv

(
1− v

vth

)(
1− v

vp

)
+ η1vw.

Homogeneous Neumann boundary conditions and initial values

v(x, 0) =

{
101.0 in Ωexi

0 otherwise

w(x, 0) = 0 in Ω.

are prescribed. Here, Ωexi is a circle with radius 0.04 and midpoint (0.5, 0.5).
The state variable is y = (v, w); σ : R2 → R2×2 and g, ηi, vp, vth ∈ R+ are given
parameters. For details, see e.g. [17]. The control u is spatially constant on the
control domain Ωc = [0.37, 0.4]× [0.45, 0.55]∪ [0.6, 0.63]× [0.45, 0.55], modeling
an extracellular current stimulus.

For the objective functional we choose

J(y, u) =
1

2
‖v‖2L2(Ωobs×(0,T )) +

α

2
‖u‖2L2(0,T ) → min,
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i.e. we aim at damping out an excitation wave. We set Ωobs = Ω\
(
[0.35, 0.42]×

[0.43, 0.57]∪ [0.58, 0.65]× [0.43, 0.57]
)
, and α = 3× 10−6. A detailed discussion

of this optimal control problem, including optimality conditions, can be found
in [6].

To apply the adaptive error control techniques presented in Sec. 4, we need
to derive a super-reaction function for the system (32). The adjoint variables are
denoted by (p, q), the solution of the linearized-state equation by (δv, δw), and
the adjoint-for-Hessian solution by (δp, δq). Adapting the approach presented
in [6] to the present setting, we get the following equations for the error in the
adjoint variables:

−[ep]t −∇ · σ∇ep − aep +
η2

vp
eq = c

−[eq]t − dep + η2η3eq = f
(33)

where

a = −[Iion]v(v̂, ŵ) + [Iion]vv(v̂, ŵ)εv + [Iion]vw(v̂, ŵ)εw

c = |χΩobs
εv − [Iion]vv(v̂, ŵ)εv ˆ̃p− [Iion]vw(v̂, ŵ)εw ˆ̃p|

d = |[Iion]w(v̂, ŵ) + [Iion]wv(v̂, ŵ)εv|
f = |[Iion]wv(v̂, ŵ)εv ˆ̃p|.

The sub-solution eq required for Thm. 3.8 is given by

eq = min
{
cvp/η2, f/(η2η2)

}
,

with

c(x, t) =−
(
εmax
v +

∥∥[Iion]vv(v̂, ŵ)p̃
∥∥
L∞(Ω×(0,T ))

εmax
v + η1 ‖p̃‖L∞(Ω×(0,T )) ε

max
w

)
f(x, t) =−η1 ‖p̃‖L∞(Ω×(0,T )) ε

max
v .

We refer to [6, Lem. 4.8] for the derivation.
The error in the adjoint-for-Hessian due to quantization of the linearized-

state trajectory is estimated by the same equation with modified term c,

c = |χΩobs
εv +−[Iion]vv(v̂, ŵ)εv δ̃p− [Iion]vw(v̂, ŵ)εw δ̃p|.

As in the scalar case, the error equations are solved once with right-hand-side
1, and scaled with the correct right-hand-side for evaluation of the error. For
the residual replacement, we choose the same parameters ε, s as in the scalar
example above (Sec. 5.1).

As before, the optimization progress is not affected by lossy compression
of the trajectories (Fig. 5). We show the corresponding compression factors
for state and adjoint in Fig. 6. As in the previous example, the quantization
tolerances decrease during the Newton iterations. In contrast to the previous
work [6], here the quantization tolerance for the adjoint is chosen adaptively as
well.

For one solution of the state equation, 408s CPU time were needed (averaged
over all iterations), additionally compression required 24.6s. Solution of the ad-
joint equation required 388.1s on average, with additional 11.2s for compression.
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The error equations were solved on a mesh with 4225 vertices; error estimation
required 96.6s CPU time per iteration. Overall, encoding/decoding incurred an
overhead of 4.5%. During the eight Newton iterations, 25 linearized-state and
adjoint-for-Hessian solves were required. On average, one Hessian-vector prod-
uct required 1272.5s CPU time; the overhead for error estimation thus amounts
to less than 2% per iteration.
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Figure 5: L2-norm of the reduced gradient with and without compression.
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Figure 6: Adaptively chosen quantization tolerances δ· and corresponding com-
pression factors for state (left) and adjoint (right).

We show the behavior of the CG method during Newton iteration 7 in Fig. 7.
For comparison, the version without residual replacement is plotted as well,
showing stagnation of the true residual (computed without quantization of the
linearized-state trajectory) before the required accuracy is reached. Three resid-
ual replacements were computed, in CG iteration 3, 4, and 6 with compression
factors of 13, 11.2, and 10.2. For this example, very high compression factors
were achieved during the CG, ranging between 44 and 4758.7 over the course of
the optimization. Overall, eight residual replacements had to be computed.
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Figure 7: Behavior of CG in the final Newton iteration. The true residual
denotes the residual without quantization of the linearized state. Left: behavior
without residual replacement; Right: with residual replacement.

Remark 5.1. In this paper, we only considered fixed, uniform meshes. The
lossy compression technique can be applied without modifications to adaptively
refined meshes as well, see e.g. [6]. In this case, the connectivity of the grids has
to be stored as well. We refer to [26] for an efficient algorithm. Combination of
mesh storage and lossy compression for the FE solutions is presented in [7].

Conclusion

In this paper, we analyzed the impact of lossy trajectory compression on New-
ton-CG methods for optimal control of parabolic PDEs. We extended and
generalized previous results, and presented an algorithm for adaptively choos-
ing quantization tolerances. While the compression itself, as well as the error
estimation, incur a negligible overhead in computation time, the overhead for
re-computation of residuals is slightly more significant. The numerical examples
show the expected qualitative behavior with respect to quantization tolerances
and compression factors, but it is notable that considering the worst-case error
leads to a severe overestimation of the error. This decreases the efficiency of the
compression, as the chosen quantization tolerances are too small. A possible
remedy is using problem-specific information to derive tighter error estimates.
As typically the quantization error is oscillatory, future work will be concerned
with the derivation of alternative error estimates, taking that oscillatory nature
into account.
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